IN550 Machine Learning – A.A. 2025/26
La pagina web inerente la precedente erogazione dell’insegnamento da parte del docente è reperibile qui.
Avvisi
Orari ed aule
Quando: Martedì 16.00-19.00 (lezione + esercitazione) e Giovedì 16.00-18.00 (lezione)
Dove: Lab (Martedì), aula A (Giovedì)
Libro di testo
Il libro di testo adottato è
-
[W] Machine Learning Refined di J. Watts, R. Borhani, A.K. Katsaggelos (Cambridge University Press, 2ª edizione, 2020). Una copia del testo è reperibile nella biblioteca di area scientifica, sede Torri. Il repository GitHub del libro, contenente esempi in Jupyter, è qui.
Gli altri riferimenti bibliografici utilizzati dal docente nella preparazione delle lezioni sono:
-
[S] Understanding Machine Learning di S. Shalev-Shwartz, S. Ben-David (Cambridge University Press, 2014). Reperibile anche in biblioteca di area scientifica, sede centrale.
-
[J] An Introduction to Statistical Learning di G. James, D. Witten, T. Hastie, R. Tibshirani (Springer, 2ª edizione, 2021).
-
[M] Probabilistic Machine Learning di K.P. Murphy (MIT Press, 2022). Reperibile anche in biblioteca di area scientifica, sede Torri.
-
[B] Pattern Recognition and Machine Learning di C.M. Bishop (Springer, 2006). Reperibile anche in biblioteca di area scientifica, sede centrale.
-
[G] Hands-On Machine Learning with SciKit-Learn, Keras, and TensorFlow di A. Géron (O’Reilly, 3ª edizione, 2022). Reperibile anche in biblioteca di area scientifica, sede centrale. Il repository GitHub del libro, contenente esempi in Jupyter, è qui.
-
[SAV] Deep Learning with PyTorch di E. Stevens, L. Antiga, T. Viehmann (Manning, 2020). Il repository GitHub del libro, contenente esempi in Jupyter, è qui.
Legenda: = scaricabile, = disponibile in biblioteca, = include un repository con esempi di codice
Software utilizzato e quaderni Jupyter
Le esercitazioni utilizzeranno il linguaggio di programmazione Python 3. Si svilupperanno quaderni di Python interattivo (Jupyter) utilizzando varie librerie.
L’ambiente software consigliato, disponibile gratuitamente e liberamente installabile sul proprio calcolatore, è Anaconda. La versione testata dal docente è Anaconda3-2023.03, ma anche con versioni successive i quaderni dovrebbero funzionare correttamente.
Il materiale delle Esercitazioni verrà reso disponibile all’interno del canale Teams del corso (File > Materiale del corso).
Diapositive a cura del docente
Diario delle lezioni
I riferimenti [W] (oppure [S], [J], eccetera) indicano le sezioni del libro di testo o degli altri riferimenti bibliografici.
Data | Argomenti | Riferimenti al testo | Allegati |
---|
Progetti software
Le linee guida per la realizzazione dei progetti verranno inserite nella cartella Teams del corso.
Esempi di progetti realizzati in passato
Anno Accademico | Autore | Titolo | Dataset |
---|---|---|---|
2024-25 |
Sabatini Davide |
Vision Transformer per la classificazione di immagini |
|
2024-25 |
Teodori Giulia |
Sovrapposizione di oggetti in dinamica molecolare |
Dati sintetizzati durante il progetto |
2024-25 |
Perucca Cecilia |
Classificazione di frutta a guscio |
|
2024-25 |
Falcone Nicoletta |
Disturbi dell’udito: uno studio sulla popolazione degli Stati Uniti del 2019 |
|
2024-25 |
Marchetti Sara |
Classificazione delle meduse nel Mar Mediterraneo |
Jellyfish Image Dataset + dati raccolti durante il progetto |
2024-25 |
Carroccia Manuel |
L’impatto della qualità dell’aria sulla salute umana |
|
2024-25 |
Quintavalle Francesco |
Classificazione di segnali stradali |
|
2023-24 |
Camerini Nicoletta |
Classificazione del livello di obesità di un individuo |
|
2023-24 |
Massarone Serena |
Applicazioni di modelli di apprendimento supervisionato per previsione sintomi post partum |
|
2023-24 |
Di Santo Silvia |
Esopianeti |
|
2023-24 |
Gasparrini Gabriele |
Heart attack prediction |
|
2023-24 |
Romoli Roberta |
Studio delle scosse di assestamento nelle sequenze dell’Appennino Centrale |
Dati INGV |
2023-24 |
Vallifuoco Augusta Gioia |
Analisi di opere d’arte: riconoscimento di artisti usando reti neurali |
Dati raccolti durante il progetto |
2023-24 |
Attolini Chiara |
Classificazione e generazione di testo usando reti neurali |
|
2023-24 |
Manna Sara |
Qualità dell’acqua: classificazione binaria per predire la potabilità dell’acqua |
|
2023-24 |
Sellarione Francesca |
Convolutional Neural Network per il riconoscimento e la classificazione di gemme |
|
2023-24 |
Galvan Fabio |
Predizione della sopravvivenza di pazienti affetti da insufficienza cardiaca |
|
2022-23 |
Ferretti Federica |
Come la scienza dei dati consiglia il ristorante per te |
|
2022-23 |
Galatro Sara |
Dati raccolti durante il progetto |
|
2022-23 |
Lisi Andrea |
Machine Learning per il riconoscimento di strumenti musicali |
|
2022-23 |
Longaroni Giacomo |
Classificazione di immagini raffiguranti 5 diverse condizioni meteo attraverso Convolutional Neural Network |
|
2022-23 |
Moretti Davide |
Riconoscimento di immagini generate artificialmente |
|
2022-23 |
Tacchetti Fabiana |
Riconoscere segnali di depressione tramite post su Twitter |
|
2020-21 |
Del Papa Michele |
Sistema di predizione del genere e recommendation systems |
|
2020-21 |
Di Gregorio Silvio |
Dipendenza tra valori inquinanti e condizioni meteo |
|
2020-21 |
Meloni Pietro |
Classificazione di messaggi WhatsApp |
Dati raccolti durante il progetto |
2020-21 |
Passacantilli Elisa |
Il mondo del lavoro per i ragazzi degli istituti superiori professionali |
Dati raccolti durante il progetto |
2020-21 |
Proietti Alessio |
TensorPRO: Tensorflow Privacy Remindful Optimization |