IN550 Machine Learning Altri modelli di apprendimento

Vincenzo Bonifaci

Stima di densità: Kernel density estimation

- Modello generativo
- Scopo: ricostruire la distribuzione di probabilità dei dati

Definisce

$$p(x) \propto \frac{1}{m} \sum_{i=1}^{m} k \left(\frac{x - x^{(i)}}{h} \right),$$

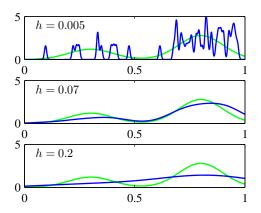
dove h>0 e la funzione $k:\mathcal{X}\to\mathbb{R}$ (detta *Parzen kernel*) deve soddisfare

$$k(u) \ge 0$$
, $\int k(u)du = 1$.

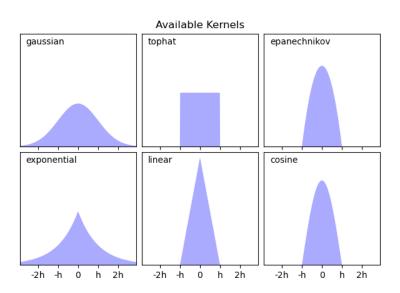
L'iperparametro h è chiamato banda del kernel [bandwidth]

Stima di densità: Kernel density estimation

Esempio: kernel gaussiano $k(u) = \exp(-\|u\|^2/2)$

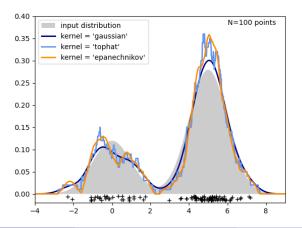


Kernel density estimation in scikit-learn



Kernel density estimation in scikit-learn

```
kde = KernelDensity(kernel='gaussian', bandwidth=0.75)
kde.fit(X_train)
logprob = kde.score_samples(X_test)
# restituisce log p(x) per ogni x in X_test
```



Individuazione di anomalie [anomaly detection]

■ Applicazione: riconoscere osservazioni "anomale" (esempio: difetti di fabbrica, comportamenti sospetti, attacchi informatici ecc.)

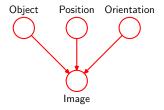
Idea: stima la distribuzione p(x) degli esempi "normali" e segnala anomalia se

$$p(x) < \epsilon$$

per una appropriata soglia $\epsilon>0$

Modelli bayesiani a grafo [graphical models]

- Modello generativo
- Sfrutta le dipendenze causali note tra variabili

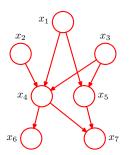


Esempio: osservo Image e voglio ricostruire Object, Position, Orientation conoscendo le distribuzioni condizionate p(Image|Object), p(Image|Position), p(Image|Orientation) e le distribuzioni a priori

Modelli bayesiani a grafo [graphical models]

$$p(x) \stackrel{\text{def}}{=} \prod_{j=1}^{d} p(x_j | \text{parents}_j)$$

dove $x = (x_1, \dots, x_d)$ e parentsj sono i genitori del nodo j



$$p(x) = p(x_1)p(x_2)p(x_3)p(x_4|x_2,x_3)p(x_5|x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

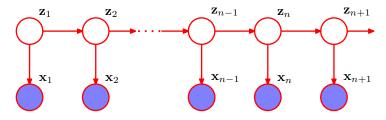
Rif.: C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

Vincenzo Bonifaci IN550 Machine Learning

8/15

Hidden Markov models

Modello generativo per dati sequenziali



Il modello è determinato dalle distribuzioni:

$$p(x_i \mid z_i)$$

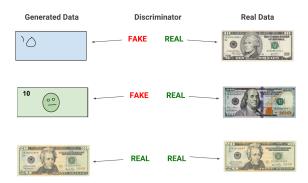
$$p(z_i \mid z_{i-1})$$

$$p(z_1)$$

Rif.: C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

Generative Adversarial Networks (GANs)

- Modello generativo
- Due reti neurali in competizione: un generatore e un discriminatore

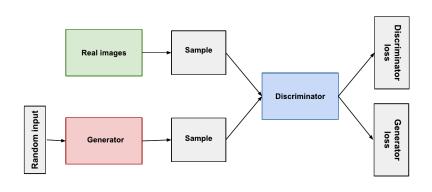


Generative Adversarial Networks (GANs)

Esempio: generazione di volti

thispersondoesnotexist.com

Generative Adversarial Networks (GANs)



$$g^* = \operatorname*{argmin}_g \max_d v(g,d)$$

Rif.: I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press 2016

12 / 15

Vincenzo Bonifaci IN550 Machine Learning

Problema degli "esperti" [prediction with expert advice]

- Apprendimento con rinforzo
- Insieme di *m* "esperti" che forniscono previsioni
- Esempio: l'indice MIB (borsa di Milano) domani salirà o scenderà?

giorno	E_1	E_2	E_3	realtà
1	scende	sale	scende	scende
2	sale	sale	scende	sale
3	sale	scende	sale	scende
•••				

Problema degli "esperti"

- T intervalli di tempo: ad ogni intervallo $t \leq T$,
 - L'esperto E_i fornisce una predizione $\mathcal{E}_i^t \in \{0,1\}$
 - lacksquare Sulla base del vettore \mathcal{E}^t , prendiamo una decisione $p^t \in [0,1]$
 - Ci viene comunicato l'esito reale $o^t \in \{0, 1\}$
- Obiettivo: minimizzare la discrepanza tra il numero di errori

$$L_T \stackrel{\mathrm{def}}{=} \sum_{t=1}^T |p^t - o^t|$$

e gli errori del miglior esperto a posteriori:

$$L_T^* \stackrel{\text{def}}{=} \min_{i=1}^m \sum_{t=1}^T |\mathcal{E}_i^t - o^t|$$

Problema degli "esperti"

Teorema

Esiste una strategia decisionale tale che

$$\frac{1}{T}(L_T - L_T^*) \to 0$$
 per $T \to \infty$

Strategia decisionale:

- 1 Assegna un peso ad ogni esperto (inizialmente pari a 1/m)
- 2 Aggiorna(*) i pesi in base alle predizioni di ogni giorno
- 3 Segui la decisione data dalla media pesata degli esperti
- (*) La formula di aggiornamento è analoga a quella usata nell'algoritmo di boosting AdaBoost

Rif.: N. Cesa-Bianchi, G. Lugosi, *Prediction, Learning, and Games*, Cambridge University Press 2006