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Abstract

In this talk we introduce the concept of Q-Gorenstein smoothing of surface sin-
gularities, and we analyze it in the context of quotient singularities. Important ex-
amples of these are cyclic quotient singularities, and we study them in detail. Then
we classify the quotient singularities which admit a Q-Gorenstein smoothing. To
conclude, we introduce the functor Def ′X, which will be fundamental to understand
the deformation space DefX.

1 Introduction

Definition 1.1. Let p ∈ X be the germ of a normal surface singularity over C. Let 0 ∈ ∆
be the germ of a smooth curve. A flat family π : X→ ∆ of surfaces is called a Q-Gorenstein
smoothing of X if

(i) π−1(0) = X;

(ii) π−1(t) is smooth for all t ∈ ∆ \ {0};

(iii) KX/∆ is Q-Cartier, where KX/∆ = KX − π∗K∆.

Observation 1.2. Here are some reasons why it is interesting to study Q-Gorenstein
smoothings of surface singularities.

(1) Intrinsic interest in understanding the whole Def X. This will be finally settled with
Arie’s talk next week.

(2) On the other hand, Q-Gorenstein deformation theory can be used to construct inter-
esting smooth surfaces π−1(t), t 6= 0. In this way, Lee and Park [LP06] constructed
an example of simply connected minimal surface of general type with pg = 0 and
K2 = 2 (geography of the moduli space of surfaces of general type).
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Figure 1: Minimal resolution of a cyclic quotient singularity

(2’) Understand the KSBA boundary of the moduli space of surfaces.

We specialize to the case when X has quotient singularities, i.e., the singularities of
the quotient of a smooth projective surface by the action of a finite group G. Important
examples of quotient singularities are cyclic quotient singularities.

2 Surface cyclic quotient singularities

Definition 2.1. A cyclic quotient singularity is locally analytically isomorphic to

C2/〈
(
ξ 0
0 ξr

)
〉,

where r < n are two coprime positive integers, g.c.d.(r, n) = 1 and ξ is a primitive n-th
root of unity. We denote such singularity with 1

n
(1, r).

Remark 2.2. The exceptional divisor of the minimal resolution of a cyclic quotient singu-
larity is always a chain of smooth rational curves with negative self-intersection numbers
−b1, . . . ,−bk. Since a cyclic quotient singularity can be characterized by these numbers,
sometimes we denote the cyclic quotient singularity by [b1, . . . , bk] (see Figure 1). The
numbers b1, . . . , bk are related to 1

n
(1, r) by the following continued fraction:

n

r
= b1 −

1

b2 − 1
b3−...

.

3 Q-Gorenstein smoothing of surface quotient singu-

larities

Definition 3.1. A surface quotient singularity which admits a Q-Gorenstein smoothing
is called a singularity of class T .
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Theorem 3.2 ([KSB88]). A singularity of class T is either an ADE singularity or a cyclic
quotient singularity 1

dn2 (1, dna− 1) with g.c.d.(a, n) = 1.

Proof. The fact that ADE singularities are of class T is simple to check. We show that
1
dn2 (1, dna− 1) is of class T . For the converse implication, we refer to [KSB88].

Assume that p ∈ X is such singularity. Before starting, we give the big picture of the
proof:

Y Y

X X.

Zn Zn

Write X = Y/〈ζ〉 where ζ is a primitive n-th root of unity. Therefore Y has a singularity
of type

1

dn
(1, dna− 1) =

1

dn
(1,−1) =

1

dn
(1, dn− 1) = Adn−1,

which is given by xy − zdn = 0 for suitable local coordinates on Y . We have that ζ acts
on C3 by

ζ · (x, y, z) = (ζx, ζ−1y, ζaz).

The only fixed point of the 〈ζ〉-action is (0, 0, 0) ∈ Y .
Now let ∆ = C[[t]], Y = {xy − zdn + t = 0} → ∆, and X = Y/〈ζ〉. We can extend

the 〈ζ〉-action on Y by setting ζ · t = t. Then X → ∆ is a smoothing of X, because the
〈ζ〉-action does not have fixed points on the fibers over t ∈ ∆ \ {0}. In addition, X → ∆
is a Q-Gorenstein smoothing because KX/∆ = KX is Q-Cartier. The reason for this is that
Y is smooth and X is the quotient of Y by a finite group, so X is Q-factorial.

Example 3.3.

(1) 1
3
(1, 1) is not of class T ;

(2) 1
4
(1, 1) = 1

1·22 (1, 1 · 2 · 1 − 1) is of class T . The exceptional divisor on the minimal
resolution is [4];

(3) 1
16

(1, 7) = 1
4·22 (1, 4 · 2 · 1 − 1) is of class T . The exceptional divisor on the minimal

resolution is [3, 2, 2, 3] because

16

7
= 3− 1

7
5

= 3− 1

2− 1
5
3

= 3− 1

2− 1
2− 1

3

.
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The next proposition shows that a singularity of class T can be recognized by the shape
of the exceptional divisor of its minimal resolution.

Proposition 3.4 ([Wah81, KSB88]).

(i) [4] and [3, 2, . . . , 2, 3] are of class T ;

(ii) If [b1, . . . , bk] is of class T , then [2, b1, . . . , bk−1, bk + 1] and [b1 + 1, b2, . . . , bk, 2] are of
class T ;

(iii) A singularity of class T which is not ADE is obtained from a singularity in (i) to
which we apply the steps in (ii).

Remark 3.5. Say we have a projective variety X with only one singularity of class T . Can
we Q-Gorenstein smooth X? The answer in general is no! We can locally Q-Gorenstein
smooth the singularity, however we may not be able to do it globally. The same kind of
problem arises if X has several singularities of class T . How do we know that we can
Q-Gorenstein-smooth all of them simultaneously?

This can be done if H2(TX) = 0, where recall TX = Hom(ΩX ,OX). This is actually a
standard argument: consider an affine cover X = ∪αUα where each Uα contains at most one
T singularity. Then we can Q-Gorenstein-smooth each Uα individually, and the condition
H2(TX) = 0 guarantees that we can glue all the smoothings together.

In practice, the condition H2(TX) = 0 can be tricky to check, but in this case other
methods are employed: the vanishingH2(TX) is implied by the vanishing of the cohomology

group H2(TX̃(− logE)), where X̃ is the minimal resolution of X and E is the reduced
exceptional divisor (see [LP06, Section 2]).

4 Back to general deformation theory: the functor

Def ′X

Let p ∈ X be the germ of a singularity of class T . Then X is Q-Gorenstein (i.e., NKX is
Cartier for some nonzero integer N). The index of X is defined to be the smallest positive
integer N such that NKX is Cartier. With this setting we have the following lemma.

Lemma 4.1. [Hac04, Lemma 3.3] Let X→ ∆ be a Q-Gorenstein smoothing of X. Then N

is the least positive integer such that ω
[N ]
X/∆ is invertible (ω

[N ]
X/∆ = i∗ω

⊗N
X◦/∆ where i : X◦ ↪→ X

is the Gorenstein locus, or equivalently, ω
[N ]
X/∆ = (ω⊗NX/∆)∗∗).

Definition 4.2. Define the functor

Def ′X(S) = {flat families π : X→ S | π−1(s) = X, ∃ s ∈ S, and ω
[N ]
X/S is invertible}/∼=.

S is taken to be the spectrum of a finite local C-algebra. Then Def ′X is pro-represented
(i.e. it is a small filtered colimit of representable functors) by a subspace of Def X.
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Theorem 4.3. The points of Def ′X are in 1-to-1 correspondence with the points of Def Y
corresponding to ZN -equivariant smoothings of Y , where

Y = Spec
X

(OX ⊕ ω[1]
X ⊕ . . .⊕ ω

[N−1]
X ).

(Recall, this is the relative Spec of a coherent sheaf of algebras A. Spec
X

(A) → X is an
affine morphism and the preimage of Spec(R) is Spec(Γ(Spec(R),A)).) Observe that Y
has an Adn−1 singularity, which is easier to study.

The previous theorem is important because it gives us a more tangible notion of defor-
mation. Arie will talk more about the importance of Def ′X to study Def X.

Example 4.4. We already know from Theorem 3.2 that 1
3
(1, 1) is not of class T . But

now Theorem 4.3 gives us another way to see this. Q-Gorenstein smoothings of 1
3
(1, 1)

are in bijection with Z3-equivariant smoothings Y → ∆ of C2. But the only possibility is
Y = C2 ×∆, and after quotienting by Z3 to obtain X we get that all fibers of X→ ∆ are
singular (this actually requires some checking). So there is no Q-Gorenstein smoothing of
1
3
(1, 1).

Remark 4.5. One could require that all the powers ω
[n]
X/S to commute with base change

(this condition implies that ω
[N ]
X/S is invertible, where N is the index). This moduli functor

was considered in [Hac04], and it gives a better behaved moduli space.
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