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We investigate the impact of Stackelberg routing to reduce the price of anarchy in network routing games. In this setting,
an � fraction of the entire demand is first routed centrally according to a predefined Stackelberg strategy and the remaining
demand is then routed selfishly by (nonatomic) players. Although several advances have been made recently in proving that
Stackelberg routing can, in fact, significantly reduce the price of anarchy for certain network topologies, the central question
of whether this holds true in general is still open. We answer this question negatively by constructing a family of single-
commodity instances such that every Stackelberg strategy induces a price of anarchy that grows linearly with the size of the
network. Moreover, we prove upper bounds on the price of anarchy of the largest-latency-first (LLF) strategy that only depend
on the size of the network. Besides other implications, this rules out the possibility to construct constant-size networks to
prove an unbounded price of anarchy. In light of this negative result, we consider bicriteria bounds. We develop an efficiently
computable Stackelberg strategy that induces a flow whose cost is at most the cost of an optimal flow with respect to demands
scaled by a factor of 1+√

1−�. Finally, we analyze the effectiveness of an easy-to-implement Stackelberg strategy, called
SCALE. We prove bounds for a general class of latency functions that includes polynomial latency functions as a special
case. Our analysis is based on an approach that is simple yet powerful enough to obtain (almost) tight bounds for SCALE in
general networks.
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1. Introduction. Over the past years, the impact of the behavior of selfish, uncoordinated users in congested
networks has been investigated intensively in the theoretical computer science and operations research literature.
In this context, network routing games have proved to be an appropriate means of modeling selfish behavior
in networks. The basic idea is to model the interaction between the selfish network users as a noncooperative
game. We are given a directed graph with latency functions on the arcs and a set of origin-destination pairs,
called commodities. Every commodity has a demand associated with it that specifies the amount of flow that
needs to be sent from the respective origin to the destination. We assume that every demand represents a large
population of players, each controlling an infinitesimal small amount of flow of the entire demand (such players
are also called nonatomic). The latency that a player experiences to traverse an arc is given by a (nondecreasing)
function of the total flow on that arc. We assume that every player acts selfishly and routes his flow along a
minimum-latency path from its origin to the destination; this corresponds to a common solution concept for
noncooperative games, that of a Nash equilibrium (here Nash or Wardrop flow; see Wardrop [37]). In a Nash
flow, no player can improve his own latency by unilaterally switching to another path.

It is well-known that Nash equilibria can be inefficient in the sense that they need not achieve socially
desirable objectives (Braess [3], Dubey [10]). In the context of network routing games, a Nash flow in general
does not minimize the total cost; said differently, selfish behavior may cause a performance degradation in the
network. Koutsoupias and Papadimitriou [22] initiated the investigation of the efficiency loss caused by selfish
behavior. They introduced a measure to quantify the inefficiency of Nash equilibria, which they termed the price
of anarchy. The price of anarchy is defined as the worst-case ratio of the cost of a Nash equilibrium over the
cost of a system optimum. In recent years, considerable progress has been made in quantifying the degradation
in network performance caused by the selfish behavior of noncooperative network users. In a seminal work,
Roughgarden and Tardos [32] showed that the price of anarchy for network routing games with nonatomic
players and linear latency functions is 4/3; in particular, this bound holds independently of the underlying
network topology. The case of more general families of latency functions has been studied by Roughgarden [27]
and Correa et al. [7]. (For an overview of these results, we refer to the book by Roughgarden [30].) Despite
these bounds for specific classes of latency functions, it is known that the price of anarchy for general latency
functions is unbounded even on simple parallel-arc networks (Roughgarden and Tardos [32]).

330

mailto:bonifaci@mpi-inf.mpg.de
mailto:harks@math.tu-berlin.de
mailto:g.schaefer@cwi.nl


Bonifaci, Harks, and Schäfer: Stackelberg Routing in Arbitrary Networks
Mathematics of Operations Research 35(2), pp. 330–346, © 2010 INFORMS 331

Because of this large efficiency loss, researchers have proposed different approaches to reduce the price of
anarchy in network routing games. One of the most prominent approaches is the use of Stackelberg routing
(Korilis et al. [21], Roughgarden [28]). In this setting, it is assumed that a fraction � ∈ �0�1� of the entire
demand is controlled by a central authority, termed Stackelberg leader, while the remaining demand is controlled
by the selfish nonatomic players, called the followers. In a Stackelberg game, the Stackelberg leader first routes
the centrally controlled flow according to a predetermined policy, called the Stackelberg strategy, and then
the remaining demand is routed by the selfish followers. The aim is to devise Stackelberg strategies so as to
minimize the price of anarchy of the resulting combined flow with respect to the optimal solution for the entire
demand.

Although Roughgarden [28] showed that computing the best Stackelberg strategy, i.e., one that minimizes the
price of anarchy of the induced flow, is NP-hard even for parallel-arc networks and linear latency functions,
several advances have been made recently in proving that Stackelberg routing can indeed significantly reduce the
price of anarchy in network routing games. A well-studied Stackelberg strategy is the largest-latency-first (LLF)
strategy. Intuitively, LLF tries to save the part of an optimal flow that is unattractive for the selfish followers
by sending flow along paths of large latencies. More precisely, LLF computes an optimal flow for the entire
demand and orders the paths that carry a positive amount of flow by nonincreasing latencies. According to this
order, it then iteratively sends as much flow as possible along these paths (not exceeding the optimal flow value)
until an � fraction of the demand has been routed.

Roughgarden [28] showed that for parallel-arc networks, the LLF strategy reduces the price of anarchy to
1/� independently of the latency functions. That is, even if the Stackelberg leader controls only a small constant
fraction of the overall demand, the price of anarchy reduces to a constant (while it is unbounded in the absence
of any centralized control). More recently, Swamy [36] obtained a similar result for single-commodity, series-
parallel networks and Fotakis [12] for parallel-arc networks and unsplittable flows. Despite these positive results,
a central question regarding the effectiveness of Stackelberg routing was still open: Does every routing game
admit a Stackelberg strategy inducing a bounded price of anarchy? More precisely, is there a function g� · �
such that, for any Stackelberg routing game, there is a Stackelberg strategy inducing a flow with cost at most
g��� times the cost of the optimal flow? This question has been posed explicitly by Roughgarden [26, Open
Problem 4].

Besides these efforts, researchers have also tried to characterize the effectiveness of easy-to-implement Stack-
elberg strategies for specific classes of latency functions. One of the simplest Stackelberg strategies is SCALE
(see also Roughgarden [28]), which simply computes an optimal flow for the entire demand and then scales this
flow down by �. The current best-known bound for the price of anarchy induced by SCALE on multicommodity
networks and linear latency functions is credited to Karakostas and Kolliopoulos [18]. More recently, Swamy
[36] derived the first general bounds for polynomial latency functions.

1.1. Our results. We investigate the impact of Stackelberg routing to reduce the price of anarchy in network
routing games with nonatomic players. Our contributions are the following:

(i) We show that there exists a family of single-commodity networks for which every Stackelberg strategy
induces a price of anarchy of 	�k�, where k is a parameter that represents the size of the network. By increasing
the size of the network, we can thus show that the price of anarchy is unbounded. The result holds indepen-
dently of the fraction � ∈ �0�1� of the centrally controlled demand. This settles the open question raised by
Roughgarden [26].

(ii) We prove that for every fixed �, the price of anarchy for the LLF strategy is bounded by O�b�n�m�k��,
where b�n�m�k� is some function depending on the number of vertices, arcs, and commodities of the network,
both for single-commodity and multicommodity networks. This complements the negative result above and
shows that no small (i.e., constant-size) networks exist that enable to prove an unbounded price of anarchy. These
are also the first upper bounds for a Stackelberg strategy that hold for both arbitrary networks and arbitrary
latency functions.

(iii) In light of our negative result, we investigate the effectiveness of Stackelberg routing strategies compared
to an optimum flow for a larger demand, i.e., we consider bicriteria bounds. We develop an efficiently computable
Stackelberg strategy inducing a flow whose cost is at most the cost of an optimal flow with respect to demands
increased by a factor of 1+√

1−�.
(iv) We give upper bounds on the efficiency of SCALE for a general class of latency functions, which, among

others, contains polynomial latency functions with nonnegative coefficients. We also derive the first tight lower
bounds for SCALE. Our bound is tight for concave latency functions; for higher-degree polynomials, our bounds
are almost tight (though there remains a small gap for small values of �). Our results also imply that for concave
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latency functions and general networks, SCALE achieves an approximation guarantee of less than 1.12 with
respect to the best Stackelberg strategy (which is NP-hard to compute).

1.2. Significance. Our negative result settles an important open question regarding the applicability of
Stackelberg routing in general networks. Though most existing results show that the performance degradation
because of the absence of central control is independent of the underlying network topology, our results shows
that the network topology matters in the context of Stackelberg routing. On one hand, we present a family of
instances that show that the price of anarchy of every Stackelberg strategy is unbounded if we are allowed to
increase the size of the network arbitrarily. On the other hand, we prove that the price of anarchy for LLF is
bounded in terms of the size of the input network. Besides these structural insights, our negative result also has
an impact on several other related settings outlined here.

A basic assumption inherent in almost all network routing games that have been studied in the past is that
players are entirely selfish. However, experiments in economics show that this assumption is too simplistic in
many scenarios (see also Chen and Kempe [4] and the references therein). In Stackelberg routing games, we
abandon this assumption (at least partially) because we assume that only a fraction of the players is selfish
while the other players may behave arbitrarily. Note that the behavior of the nonselfish players can be seen as
a potential Stackelberg strategy. As a consequence, our negative result also carries over to these settings.

Most notably in this context is the very recent work by Chen and Kempe [4], who introduce a new network
routing game with nonatomic players that is capable to model the players’ degree of altruism. Every player i has
an altruism level �i and the utility function is a linear combination of a selfish part (player i’s latency) and an
altruistic part (the average latency of all players). By varying �i from 1 to 0 to −1, player i’s degree of altruism
ranges from altruistic to selfish to spiteful, respectively. The authors show, among other results, that if all players
have a uniform altruism level of � > 0, i.e., there are no entirely selfish players, then the price of anarchy is
bounded by 1/� for arbitrary networks and semiconvex latency functions. On the other hand, our negative result
implies that if the players who are entirely selfish (�i = 0) only control a nonzero fraction of the overall demand,
then the price of anarchy is unbounded, even for single-commodity networks and independently of the altruism
levels of the nonselfish players (�i �= 0). In fact, based on this negative result, Chen and Kempe [4] restrict their
analysis of the price of anarchy for nonuniform altruism levels to parallel-arc networks.

Fotakis [12] and Harks [14] studied Stackelberg routing for atomic congestion games and atomic splittable
network games, respectively. Our lower-bound construction can be easily adapted to the unsplittable flow setting
as well as to the atomic splittable case. Thus, it follows that even for symmetric congestion games (with or
without fractional assignments), there exist no Stackelberg strategies inducing a bounded price of anarchy.

There are numerous applications that can be interpreted as a Stackelberg routing game. Here, we focus on
highlighting only one of them: the routing of Internet traffic within the domain of an Internet service provider
(see also Sharma and Williamson [33]). Here, the Internet service provider centrally controls a fraction of the
overall traffic traversing its domain. In this setting, our second result provides the Internet service provider
with an efficient algorithm to route the centrally controlled traffic. The performance of this routing algorithm is
characterized by a smooth trade-off curve that scales between the absence of centralized control (doubling the
demands is sufficient) and completely centralized control (no scaling is necessary). Additionally, our result has
a nice interpretation for the class of (practical relevant) M/M/1-latency functions that model arc capacities: In
order to beat the cost of an optimal flow, it is sufficient to scale all arc capacities by 1+√

1−�. Our bound is
a natural generalization of the bicriteria bound by Roughgarden and Tardos [32] for the entirely selfish setting
(see Correa et al. [8] for other related results).

1.3. Techniques. In order to prove that the price of anarchy of every Stackelberg strategy is unbounded,
we construct a family of network instances. The crucial insight that we exploit in the multicommodity case is
that one can devise a graph topology and corresponding latency functions such that for every commodity whose
demand is not entirely controlled by the Stackelberg leader, the selfish followers have an incentive to harm some
other players by inducing a constant latency on their path (the latency along this path would be zero otherwise).
Because no Stackelberg leader can control all the commodities (assuming � �= 1), we can ensure that the total
cost induced by the followers grows with the number of commodities. We believe that these ideas might turn
out to be useful in order to prove negative results in other settings that involve selfish behavior. Our single-
commodity instance simulates the multicommodity instance by introducing a supersource and supersink that are
connected to the origins and destinations of the commodities, respectively. In order to control the amount of
flow that is routed through every commodity, we tailor the latency functions so as to mimic capacities on these
arcs.
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We also show that the LLF strategy induces a price of anarchy that is bounded by O��−1 · b�n�m�k��, where
b�n�m�k� is a function that depends on the number of vertices, arcs, and commodities of the network. In order
to prove this, we bound the price of anarchy of LLF in terms of the worst-case ratio between the maximum
latency that a selfish follower experiences if the followers are routed according to a Nash flow and the maximum
latency that a follower experiences if the followers are routed according to an arbitrary flow. To the best of our
knowledge, this relation has not been observed before and might be of independent interest. Our upper bounds
then simply follow from existing results, characterizing the ratio of the largest latency in a Nash flow and that
of a flow that minimizes the maximum latency (Correa et al. [9], Lin et al. [24], Roughgarden [29]).

We introduce a general approach, which we term �-approach, to prove upper bounds on the price of anarchy
of Stackelberg strategies for specific classes of latency functions. This approach is simple yet powerful enough
to obtain (almost) tight bounds for SCALE in general networks. For polynomial latency functions, our approach
yields upper bounds that significantly improve the currently best bounds by Swamy [36]. For linear latency
functions, we derive an upper bound that coincides with a previous bound of Karakostas and Kolliopoulos [18].
Their analysis is based on a (rather involved) machinery presented in Perakis [25]. However, our analysis is
much simpler; in particular, we do not rely on the machinery in Perakis [25]. Moreover, we show that this bound
also holds for concave latency functions. A number of real-world problems may be formulated as network flow
problems involving concave latency functions. Cost functions of this type are useful when dealing with network
routing problems in the presence of economy of scale (see Gallo et al. [13]). We present a generalized Braess
instance that shows that for the concave case, our bound is tight; a similar instance can be used to show that
for higher-degree polynomials with nonnegative coefficients, our bounds are almost tight and leave only a small
gap for small values of �. We are confident that our �-approach will prove useful to derive upper bounds on the
price of anarchy in other settings. For instance, the �-approach can be applied to prove upper bounds when flows
are unsplittable. So far, such upper bounds for general networks are only known for linear latency functions (see
Fotakis [12]).

1.4. Related work. The idea of using Stackelberg strategies to improve the performance of a system was first
proposed by Korilis et al. [21], who identified necessary and sufficient conditions for the existence of Stackelberg
strategies that induce a system optimum; their model differs from the one discussed here. Roughgarden [28] first
formulated the problem and model considered here. Roughgarden [28] also proposed some natural Stackelberg
strategies such as SCALE and LLF. For parallel-arc networks, he showed that the price of anarchy for LLF is
bounded by 4/�3 + �� and 1/� for linear and arbitrary latency functions, respectively. Both bounds are tight.
He also showed that for certain types of Stackelberg strategies, which he termed weak strategies (see §2 for a
definition), the price of anarchy for multicommodity networks can be unbounded (Roughgarden [28]). However,
this did not rule out the existence of effective Stackelberg strategies in general. Moreover, Roughgarden [28]
also proved that it is NP-hard to compute the best Stackelberg strategy. Kumar and Marathe [23] investigated
approximation schemes to compute the best Stackelberg strategy and gave a polynomial-time approximation
scheme for the case of parallel-arc networks.

Karakostas and Kolliopoulos [18] proved upper bounds on the price of anarchy for SCALE and LLF. Their
bounds hold for arbitrary multicommodity networks and linear latency functions. Their analysis is based on a
result obtained by Perakis [25] to bound the price of anarchy for network routing games with asymmetric and
nonseparable latency functions. Furthermore, Karakostas and Kolliopoulos [18] showed that their analysis for
SCALE is almost tight. More recently, Swamy [36] obtained upper bounds on the price of anarchy for SCALE
and LLF for polynomial latency functions. Swamy [36] also proved a bound of 1+ 1/� for single-commodity,
series-parallel networks with arbitrary latency functions. Fotakis [12] studied LLF and a randomized version of
SCALE for the case of unsplittable flows. He proved upper and lower bounds on the price of anarchy for linear
latency functions. For parallel-arc networks, Fotakis [12] proved that LLF still achieves an upper bound of 1/�
for arbitrary latency functions in this case.

Correa and Stier-Moses [6] proved, besides some other results, that the use of opt-restricted strategies, i.e.,
strategies in which the Stackelberg leader sends no more flow on every arc than the system optimum, does not
increase the price of anarchy. Sharma and Williamson [33] considered the problem of determining the smallest
value of � such that the price of anarchy can be improved. They obtained results for parallel-arc networks and
linear latency functions. Kaporis and Spirakis [16] studied a related question of finding the minimum demand
that the Stackelberg leader needs to control in order to enforce an optimal flow.

Another prominent way to reduce the price of anarchy in nonatomic network routing games is the use
of nonnegative tolls on arcs of the network. In the area of transportation networks, this concept has been
called congestion toll pricing (see, for example, Knight [19], Beckmann et al. [2], Smith [35], and Hearn and
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Ramana [15]). This mechanism assigns tolls to certain arcs of the network, which are charged to those users
that decide to take routes through them. If users value latency relative to toll the same, Beckmann et al. [2]
showed that charging users the difference between the marginal cost and the real cost in the socially optimal
solution (marginal cost pricing) leads to an equilibrium flow that is optimal. Cole et al. [5] considered the case of
heterogeneous users, that is, users value latency relative to cost differently. For single-commodity networks, Cole
et al. [5] showed the existence of tolls that induce an optimal flow as Nash flow. Finally, Fleischer et al. [11],
Karakostas and Kolliopoulos [17], and Yang and Huang [38] proved that there are tolls inducing an optimal
flow for heterogenous users even in general networks.

2. Model and notation. In a network routing game, we are given a directed network G = �V �A� and
k origin-destination pairs �s1� t1�� � � � � �sk� tk� called commodities. We let n and m refer to the number of vertices
and arcs of G, respectively. For every commodity i = 1�2� � � � � k, a demand ri > 0 is given that specifies
the amount of flow with origin si and destination ti. The interpretation here is that ri corresponds to a large
population of nonatomic players, each controlling an infinitesimally small amount of the entire demand that
needs to be sent from si to ti. Let �i be the set of all paths from si to ti in G and let � = ∪i�i. A flow is a
function f � � → �+. The flow f is feasible (with respect to r) if for all i,

∑
P∈�i fP = ri. For a given flow f ,

we define the flow on an arc a ∈A as fa =
∑

P�a fP .
Moreover, each arc a ∈ A has an associated variable latency la� �+ → �+. For each a ∈ A, the latency

function la is assumed to be nondecreasing and differentiable. If not indicated otherwise, we assume that xla�x�
is a convex function of x. Such functions are called standard (Roughgarden [27]). The latency of a path P with
respect to a flow f is defined as the sum of the latencies of the arcs in the path, denoted by lP �f �=

∑
a∈P la�fa�.

The triple �G� r� l� is called an instance.
We assume that every nonatomic player aims at routing his flow along a path that has minimum latency.

Informally, a Nash flow (or selfish flow) is a feasible flow such that no player has an incentive to unilaterally
deviate from his path. More formally, a feasible flow f is a Nash flow if for every i= 1�2� � � � � k and P�P ′ ∈�i

with fP > 0, lP �f �≤ lP ′�f �. That is, all si − ti paths to which f assigns a positive amount of flow are paths of
minimum latency; in particular, these paths have equal latency. The cost of a flow f is C�f �=∑

P∈� fP lP �f �.
Equivalently, C�f �=∑

a∈A fala�fa�. It is well-known that if f and f ′ are Nash flows for the same instance, then
C�f �=C�f ′� (see, e.g., Roughgarden and Tardos [32]). A feasible flow of minimum cost is called optimal and
denoted by o.

In a Stackelberg network game, we are given, in addition to G, r , and l, a parameter � ∈ �0�1�. A (strong)
Stackelberg strategy (Roughgarden [28]) is a flow g feasible with respect to r ′ = ��1r1� � � � ��krk� for some
�1� � � � ��k ∈ �0�1� such that

∑k
i=1�iri = �

∑k
i=1 ri. If �i = � for all i, g is called a weak Stackelberg strategy

(Roughgarden [30]). Thus, both strong and weak strategies route a fraction � of the overall traffic but a strong
strategy can choose how much flow of each commodity is centrally controlled. For single-commodity networks
the two definitions coincide. A Stackelberg strategy g is called opt restricted if ga ≤ oa for all a ∈A.

Given a Stackelberg strategy g, let l̃a�x�= la�ga+x� for all a ∈A and let r̃ = r − r ′. Then, a flow h is called
a Nash flow induced by g if it is a Nash flow for the instance �G� r̃� l̃�. Smith [34, Equation (9)] has proved that
the Nash flow h can be characterized by the following variational inequality: h is a Nash flow induced by g if
and only if for all flows x feasible with respect to r̃ ,

∑
a∈A hal̃a�ha�≤

∑
a∈A xal̃a�ha� or, equivalently,

∑
a∈A

hala�ga+ha�≤
∑
a∈A

xala�ga+ha�# (1)

We will mainly be concerned with the cost of the combined induced flow g + h, given by C�g + h� =∑
a∈A�ga+ha�la�ga+ha�# In particular, we are interested in bounding the ratio C�g+h�/C�o�, called the price

of anarchy.
In the remainder of the paper, we assume that the reader is familiar with the asymptotic notations O� · �,

	� · �, and $� · �; their definition can be found in any book on the analysis of algorithms, for example the one
by Knuth [20]. We will also use the shorthand �k� �= %1�2� � � � � k&.

3. Limits of Stackelberg routing. In this section, we prove that there does not exist a Stackelberg strategy
that induces a price of anarchy bounded by a function of � only. More precisely, we show that for any fixed
� ∈ �0�1�, the ratio between the cost of the flow induced by any Stackelberg strategy and the optimum can be
arbitrarily large, even in single-commodity networks.
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Figure 1. The graph Gk used in the proof of Theorem 3.1. Arcs are labeled with their types.

3.1. Multicommodity networks. We first show this claim for multicommodity networks. In this case, such
a result was already known to hold for weak Stackelberg strategies (Roughgarden [30]); here, we prove that it
also holds for strong Stackelberg strategies.

Theorem 3.1. Let M > 0 and � ∈ �0�1�. There is a multicommodity instance � = �G� r� l��� such that
if g is any strong Stackelberg strategy for � inducing a Nash flow h and o is an optimal flow for the instance
�G� r� l�, then C�g+h�≥M ·C�o�.

To prove Theorem 3.1, we will use an instance based on the graph depicted in Figure 1. For a positive integer k,
the graph Gk has 4k + 2 vertices Vk = %s0� t0� s1� t1� p1� q1� � � � � sk� tk� pk� qk&. The arc set Ak is the union of
three sets, %�pi� qi�� i ∈ �k�&, %�si� ti�� i ∈ �k�&, and %�si� pi�� �qi� ti�� �qi� pi+1�� i ∈ �k�& ∪ %�s0� p1�� �qk� t0�&. We
call the arcs in these sets of type A, B, and C, respectively (see Figure 1). There are k + 1 commodities
0�1� � � � � k. Commodity i has origin si and destination ti. The demand is r0 �= �1−��/2 for commodity 0 and
r1 �= �1+��/2k for all other commodities. Thus, the total demand is r0 + kr1 = 1.

The latency of an arc is determined by its type. Type B arcs have constant latency 1 and type C arcs have
constant latency 0. Type A arcs have latency l*�x�, where the function l*�x� is defined as follows:

l*�x�=




0� if x≤ r0+

1− r0 + r1 − x
�1− *�r1

� if x≥ r0 + 2*r1#

Here, * is any positive constant such that * < �1−��/�1+��. In the interval �r0� r0 + 2*r1�, the function
l* is defined arbitrarily so that, overall, it is a standard and convex function (see also Figure 2). In particular,
l*�x�≥ 1− �r0 + r1 − x�/��1− *�r1� for all x.

Let us first bound the cost of the optimal flow.

Lemma 3.1. C�o�≤ 1.

Proof. Consider the flow f̄ where each commodity is routed along the shortest path (in terms of number of
arcs) from origin to destination. The latency on the s0 − t0 path is zero because the load on each arc of the path
is r0 and l*�r0�= 0. The latency of each other si− ti path is 1. Then, C�o�≤C�f̄ �= k · r1 = �1+��/2 ≤ 1. �

Proof of Theorem 3.1. For i= 1�2� � � � � k, let gi be the amount of flow sent by the Stackelberg strategy
over the arc �si� ti�. Because the total value of the flow controlled by any Stackelberg strategy is �, we have∑k

i=1 gi ≤ �.
The crucial point is that without loss of generality, all the selfish flow induced by g on an si − ti path,

i �= 0, will be sent along the path �si� pi� qi� ti�. Indeed, if the arc �si� ti� contained some selfish flow hi > 0, the
latency of the path �si� pi� qi� ti� would be l*�r0 + r1 − gi − hi� < 1 = l�si� ti��gi + hi�. However, this contradicts
the definition of Nash flows. Thus, the combined flow on each �pi� qi� arc is exactly r0 + r1 − gi. Now, let P0 be
the unique s0 − t0 path. We have

lP0
�g+h�≥

k∑
i=1

l*�r0 + r1 − gi�≥
k∑
i=1

(
1− gi

�1− *�r1

)
≥ k− �

�1− *�r1
= 1

1− * ·
(

1−�
1+� − *

)
· k#

The last inequality follows from
∑

i gi ≤ � and the last equality from r1 = �1+��/2k. Because * < �1−��/
�1+��, we conclude that lP0

�g+h�=	�k�. Together with Lemma 3.1, we obtain

C�g+h�≥ r0 · lP0
�g+h�= 1

2 · �1−�� ·	�k�=	�k� ·C�o�#

Thus, the ratio of C�g+h�/C�o� can be made arbitrarily large by picking a sufficiently large k. �
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x

l� (x)

r0

0

1

r0 +2�r1

1 – 1–2�
1–�

r0+r1

Figure 2. The latency function l*�x� used in the proof of Theorem 3.1.

Remark 3.1. We remark that the proof of Theorem 3.1 also works for undirected networks. In these net-
works, flow can be sent across an edge in both directions and the aggregated flow of an edge is defined as
the sum of the flows traversing that edge (in either direction). To see that the lower-bound proof still holds,
observe that the selfish flow of commodity i ∈ �k� is still routed along the �si� pi� qi� ti� path. The selfish flow
sent from s0 to t0 now has potentially more paths available than in the directed case. However, it is easy to see
that this flow is sent along the �s0� p1� q1� � � � � pk� qk� t0� path and, thus, the proof goes through without change.
We do not know, however, whether the lower bound for single-commodity networks presented can be extended
to undirected networks.

3.2. Single-commodity networks. We use the insights gained in the previous section to prove the following
stronger result.

Theorem 3.2. Let M > 0 and � ∈ �0�1�. There is a single-commodity instance � = �G� r� l��� such that,
if g is any strong Stackelberg strategy for � inducing a Nash flow h and o is an optimal flow for the instance
�G� r� l�, then C�g+h�≥M ·C�o�.

Theorem 3.2 extends Theorem 3.1 to single-commodity networks. The main idea behind the proof of The-
orem 3.2 is to simulate the instance used in Theorem 3.1 by creating a supersource s and a supersink t and
connecting them to the sources and sinks of the original network (see also Figure 3). If somehow we were able to
enforce the s− t flow to split according to the demand vector of the multicommodity instance, the result would
easily follow as in the proof of Theorem 3.1. In order to achieve this, we use latency functions that simulate
capacities on the arcs connecting the supersource to the sources and the sinks to the supersink. Although these
“capacities” might be exceeded, we will make sure that if the excess flow is too large, the price of anarchy will
already be large enough for our purposes.

To prove Theorem 3.2, we use the instance Gk = �Vk�Ak� depicted in Figure 3. For a positive integer k, the
graph Gk has 4k+ 4 vertices. There is a single commodity �s� t� with unit demand. Define r0 �= �1−��/2 and
r1 �= �1 + ��/2k. Note that the total demand is equal to r0 + kr1. Every arc is of one of five different types

s t

s0

p1 q1 p2 q2 p3

s1 t1 s2 t2

. . .

qk–2 pk–1 qk–1 pk qk
t0

sk–1 tk–1sk tk

C A C A C C A C A C

B

C C

B

C C

B

C C

B

C C

D

E E E E

D

Figure 3. The graph Gk used in the proof of Theorem 3.2. Arcs are labeled with their types.
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%A�B�C�D�E& as indicated in Figure 3. The latency of an arc is determined by its type. Type B arcs have
constant latency 1 and type C arcs have constant latency 0. Arcs of type A have the following latency function:

l0�x�=




0� if x≤ r0+

1− r0 + r1 − x
r1

� if x > r0#

Although l0�x� is not differentiable at r0, it can be approximated with arbitrarily small error by standard
functions.

For fixed L and 1 , let uL�1�x� be any standard function satisfying uL�1�L�= 0 and uL�1�L+1�=M/1 . Type D
arcs have latency ur0� 3/3k3�x�, and type E arcs have latency ur1� 3/3k3�x�. We will fix the constant 3 later in the
proof.

Lemma 3.2. C�o�≤ 1#

Proof. Let P0 be the path �s� s0� p1� q1� p2� � � � � pk� qk� t0� t�. For i ∈ �k�, let Pi be the path �s� si� ti� t�.
Consider the feasible flow f such that fP0

= r0 and fPi = r1 for i ∈ �k�. The latency induced by f is zero on arcs
of type A, C, D, and E, and one on arcs of type B. Thus, C�o�≤C�f �= k · r1 = �1+��/2 ≤ 1. �

Lemma 3.3 will allow us to focus on the case where the combined flow on type D and E arcs does not exceed
a certain threshold value.

Lemma 3.3. For any Stackelberg strategy g inducing a Nash flow h, the following hold:
(i) If a is a type D arc and ga+ha ≥ r0 + 3/3k3, then C�g+h�≥M ·C�o�.
(ii) If a is a type E arc and ga+ha ≥ r1 + 3/3k3, then C�g+h�≥M ·C�o�.
Proof. We prove statement (i); the proof for (ii) is similar. We have C�g + h�≥ �ga + ha� · la�ga + ha�=

�ga+ha� · ur0� 3/3k3�ga+ha�≥ �r0 + 3/3k3� ·M/�3/3k3�≥M . The proof follows from Lemma 3.2. �

For the remainder of the proof, we assume that there is no arc satisfying the conditions of Lemma 3.3;
otherwise, Theorem 3.2 follows immediately.

Lemma 3.4. For any Stackelberg strategy g inducing a Nash flow h, the following hold:
(i) For any arc a= �qi−1� pi�, i ∈ �k�, ga+ha ≥ r0 − 3/k.
(ii) For any arc a= �s� si�, i ∈ �k�, ga+ha ≥ r1 − 3/k.
Proof. Regarding (i), we will prove by induction on i the stronger claim

ga+ha ≥ r0 − �2i+ 1�3/3k2#

For i= 1, notice that, by Lemma 3.3, the flow along each of �s� s1�� � � � � �s� sk� is at most r1 + 3/3k3, so the
flow on �s� s0� must be at least 1 −∑k

i=1�r1 + 3/3k3� = 1 − kr1 − 3/3k2 = r0 − 3/3k2# However, the flow on
�s� s0� is the same as that on arc �s0� p1�= �q0� p1�. Notice that a similar argument allows us to also conclude
that the flow on each �s� si� arc (i ∈ �k�� is at least r1 − 3/3k2. This implies (ii) for all i ∈ �k�.

To prove (i) for i > 1, consider the ith block in the graph (Figure 4) and let f = g+h. By flow conservation,
f�qi�pi+1�

= f�qi−1� pi�
+ f�s� si�− f�ti� t�. Using induction and Lemma 3.3,

f�qi�pi+1�
= f�qi−1� pi�

+ f�s� si�− f�ti� t�
≥ �r0 − �2i− 1�3/3k2�+ �r1 − 3/3k2�− �r1 + 3/3k3�= r0 − �2i+ 1�3/3k2# �

We are now ready to conclude the proof of Theorem 3.2.

From qi–1
pi qi To pi+1

si ti

From s To t

gi + hi

Figure 4. The ith block of the graph Gk.
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Proof of Theorem 3.2. For any i ∈ �k�, consider the ith block in the graph (Figure 4). Let gi� hi be the
Stackelberg and selfish flow on the arc �si� ti�, respectively. We have two cases:

(i) hi = 0. In this case, using Lemma 3.4, the flow on arc �pi� qi� is at least r0 − 3/k+ r1 − 3/k− gi. The
latency on that same arc is thus at least l0�r0 + r1 − 23/k− gi�.

(ii) hi > 0. In this case, the Nash flow on path P ′
i = �s� si� ti� t� is strictly positive. Consider the path P ′′

i =
�s� si� pi� qi� ti� t�. By definition of Nash flow, lP ′′

i
�g + h� ≥ lP ′

i
�g + h�. Notice that the two paths P ′

i � P
′′
i share

all their nonzero-latency arcs except for �si� ti� (only present in P ′
i ) and �pi� qi� (only present in P ′′

i ). Thus,
lP ′′

i
�g + h� ≥ lP ′

i
�g + h� implies l�pi� qi��g + h� ≥ l�si� ti��g + h� = 1. As a consequence, l�pi� qi��g + h� ≥ 1 =

l0�r0 + r1�≥ l0�r0 + r1 − 23/k− gi� because gi and 3/k are nonnegative.
In both cases, l�pi�qi��g+h�≥ l0�r0 + r1 − 23/k− gi�≥ 1− �gi+ 23/k�/r1.

The latency on the path P0 = �s� s0� p1� q1� � � � � pk� qk� t0� t� is at least

lP0
�g+h�≥

k∑
i=1

l�pi� qi��g+h�≥
k∑
i=1

(
1− gi+ 23/k

r1

)
≥ k− �

r1
− 23
r1

=
(

1−�− 43
1+�

)
k#

The last inequality is a consequence of the fact that the total Stackelberg flow is �; thus,
∑

i gi ≤ �.
Choosing 3 < �1 − ��/4, we can conclude that lP0

�g + h�=	�k�. Together with Lemmas 3.2 and 3.4, this
gives

C�g+h�≥ �r0 − 3/k� · lP0
�g+h�≥ � 1

2 · �1−��− 3� ·	�k�=	�k� ·C�o�#
Thus, the ratio C�g+h�/C�o� can be made arbitrarily large by picking a sufficiently large k. �

Remark 3.2. Suppose the Stackelberg leader is solely interested in minimizing the cost of the flow that he
controls, i.e., C1�g + h�=∑

a∈A gala�ga + ha�. Our result also implies that even the ratio C1�g + h�/C�o� can
be unbounded, independent of the Stackelberg strategy g.

4. Upper bounds for LLF. The results of the previous section reveal that the price of anarchy of every
Stackelberg strategy is unbounded, even in single-commodity networks. Note that in our proofs, we crucially
exploit that the size of the network can be made arbitrarily large. More precisely, we constructed a family
of graphs Gk with n = $�k� vertices and m = $�k� arcs and showed that the price of anarchy grows as a
function of k. A natural question that arises is whether it is necessary to expand the network in order to prove
an unbounded price of anarchy. Or, said differently, is it possible to raise the price of anarchy beyond any fixed
M > 0, even for constant-size networks (for instance, the Braess graph)?

We answer this question negatively by proving (for any fixed �) an upper bound on the price of anarchy of
O�b�n�m�k��, where b�n�m�k� is some function depending on the number of vertices, arcs, and commodities of
the network. The upper bound holds for the particular Stackelberg strategy known as largest-latency-first (LLF);
see Roughgarden [28] and Swamy [36]. Besides complementing the negative results of the previous section,
these are also the first upper bounds for LLF in general networks that hold for arbitrary latency functions.

LLF works as follows for a given instance � = �G� r� l���: First, compute an optimal flow o for �G� r� l�
and then successively saturate the paths used by o in nonincreasing order of their latencies until we have routed
an � fraction of the overall demand. More precisely, we initially set ga �= 0 for all arcs a ∈ A and define the
residual demand as 4 �= �40 �= �

∑k
i=1 ri. While 4 remains positive, we repeatedly find a path P such that

lP �o�=maxP� �o−g�P>0 lP �o� and set ga �= ga+min%4� �o−g�P & for all arcs a ∈ P and 4 �= max%0�4−�o−g�P &.
Because o is an acyclic flow, the flow g can be computed in polynomial time. Clearly, g is opt restricted because
ga ≤ oa for every arc a ∈A by construction. Observe that LLF is a strong Stackelberg strategy.

Consider the instance �̃ = �G� r̃� l̃� (as defined in §2). Recall that l̃a�x� �= la�ga + x� for all a ∈ A. The
maximum latency of a flow f is defined as L�f � �=maxP∈�� fP>0 l̃P �f �. Let h be a Nash flow and let omax denote
a flow that minimizes the maximum latency. Then, 5L �= L�h�/L�omax� denotes the worst-case ratio between the
maximum latency of a Nash flow and the maximum latency of an arbitrary flow. To prove the upper bound, we
bound the price of anarchy induced by LLF in terms of 5L. The upper bound will then follow from the previously
known fact that 5L can be bounded in terms of the network size only (Roughgarden [29], Lin et al. [24]).

Theorem 4.1. Let � = �G� r� l��� be a multicommodity instance with m arcs and let g be the LLF strategy.
Then, C�g+h�≤ �m+ 1/��5LC�o�.

Proof. Consider the quantity Lg �=minP∈�� gP>0 lP �o�. We claim that

L�h�≤ 5LL�omax�≤ 5LL�o− g�≤ 5LLg#
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The first inequality follows from the definition of 5L, the second inequality follows because o− g is feasible
for �̃ , and the third inequality follows because L�o− g�≤ Lg by the definition of LLF.

We further observe that
�40L

g ≤ ∑
P∈�

gP lP �o�=
∑
a∈A

gala�oa�≤C�o�#

The first inequality follows from the definition of Lg while the second is trivially valid because g is opt restricted.
We are now ready to bound the cost C2 of the followers:

C2�g+h� �=
∑
a∈A

hala�ga+ha�=
∑
P∈�

hP l̃P �h�

≤ L�h�
∑
P∈�

hP = �1−��40L�h�

≤ �1−��405LL
g ≤ 1−�

�
5LC�o�#

For bounding the cost C1 of the Stackelberg leader, we partition the set of arcs into A1 �= %a ∈A� ha > 0& and
A2 �= %a ∈A� ha = 0&. Then

C1�g+h� �=
∑
a∈A

gala�ga+ha�=
∑
a∈A1

gala�ga+ha�+
∑
a∈A2

gala�ga+ha�

≤ ∑
a∈A1

gala�ga+ha�+C�o�

≤ �A1��40L�h�+C�o�≤m5LC�o�+C�o�= �m5L+ 1�C�o�#

Combining the bounds for C1 and C2 yields

C�g+h�≤
((
m+ 1

�
− 1

)
5L+ 1

)
C�o�#

As 5L ≥ 1, Theorem 4.1 is proved. �

Corollary 4.1. Let � = �G� r� l��� be a single-commodity instance with n vertices and m arcs, and let g
be the LLF strategy. Then, C�g+h�≤ �n− 1��m+ 1/��C�o�.

Proof. Roughgarden [29] proves that 5L ≤ n− 1 for single-commodity instances with n vertices. �

Corollary 4.2. Let � = �G� r� l��� be a multicommodity instance with n vertices, m arcs, and k com-
modities, and let g be the LLF strategy. Then, C�g + h� ≤ b�n�m�k��m + 1/��C�o�, where b�n�m�k� =
2O�min%kn�m logn&�.

Proof. Lin et al. [24] prove that 5L = 2O�min%kn�m logn&� for any multicommodity instance with n vertices, m
arcs, and k commodities. �

5. A bicriteria bound for general latency functions. As we have seen in the previous sections, no
Stackelberg strategy controlling a constant fraction of the traffic can reduce the price of anarchy to a con-
stant, even if we consider single-commodity networks. In light of this negative result, we therefore compare the
cost of a Stackelberg strategy on an instance � = �G� r� l��� to the cost of an optimal flow for the instance
�� = �G��r� l� in which the demand vector has been scaled up by a factor �> 1.

We propose the following simple Stackelberg strategy, which we term augmented SCALE (ASCALE):
(i) Compute an optimal flow o� for the instance ��.
(ii) Define the Stackelberg flow by g �= ��/��o�.

We prove that the resulting flow induced by the Stackelberg strategy ASCALE satisfies C�g+h�≤C�o�� if we
choose �= 1+√

1−�. This result can be seen as a generalization of the result by Roughgarden and Tardos [32]
that the cost of a Nash flow is always less than or equal to the cost of the optimal flow for an instance in which
demands have been doubled. Our bound gives a smooth transition from absence of centralized control (where
doubling the demands is sufficient) to completely centralized control (where no augmentation is necessary).

Lemma 5.1. If g is the ASCALE strategy, C�g+h�≤∑
a∈A�1/��o�a la�ga+ha�.
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Proof. Consider the flow �1− ��g/�; it is a flow feasible with respect to �1− ��r . Using the variational
inequality (1), we get ∑

a∈A
hala�ga+ha�≤

1−�
�

∑
a∈A

gala�ga+ha�#

Adding
∑

a gala�ga+ha� to both sides and using g = ��/��o� proves Lemma 5.1. �

Theorem 5.1. If g is the ASCALE strategy, C�g + h� ≤ 1/��− 1� · �1 − �/�� · C�o��. Furthermore, this
bound is tight.

Proof. We first show that for every arc a ∈A,

o�a la�ga+ha�≤ �ga+ha�la�ga+ha�+
(

1− �

�

)
o�a la�o

�
a �# (2)

There are two cases. When ga+ha ≥ o�a , the inequality holds simply because its left-hand side is upper bounded
by the first summand of the right-hand side. Otherwise, if o�a > ga+ha, we obtain

o�a la�ga+ha� ≤ �ga+ha+ o�a − ga
)
la�ga+ha�= �ga+ha�la�ga+ha�+

(
1− �

�

)
o�a la�ga+ha�

≤ �ga+ha�la�ga+ha�+
(

1− �

�

)
o�a la�o

�
a �#

Summing (2) over all a ∈A, we obtain

∑
a∈A

o�a la�ga+ha�≤C�g+h�+
(

1− �

�

)
C�o��#

Invoking Lemma 5.1, we get

� ·C�g+h�≤∑
a∈A

o�a la�ga+ha�≤C�g+h�+
(

1− �

�

)
C�o��#

Solving for C�g+h� now gives the bound as claimed. The bound is also tight, as can be seen by considering a
slightly modified Pigou instance. �

Corollary 5.1. Let �= 1+√
1−�. If g is the ASCALE strategy, then C�g+h�≤C�o��.

For a given instance � = �G� r� l���, the SCALE strategy is defined as g = �o, where o is an optimal flow
for �G� r� l�. Theorem 5.2 shows that our result for ASCALE has a consequence for the SCALE strategy as
well.

Theorem 5.2. Let g = �o be the SCALE strategy for instance � = �G� r� l���. Define a modified instance
�̂ = �G� r� l̂��� with latency functions l̂a�x�= la�x/��/� for every arc a, where �= 1+√

1−�, and let Ĉ�·�
denote the cost of a flow with respect l̂. Let ĥ be the Nash flow induced by ĝ = g in �̂ . Then, Ĉ�ĝ+ ĥ�≤C�o�.
Proof. Observe that the SCALE strategy for � can be obtained by computing the ASCALE strategy for

� 1/� �= �G� r/�� l��� and scaling it up by a factor of �; that is, ĝ = �g, where g is the ASCALE strategy for
� 1/�. Let h be the Nash flow induced by g in � 1/�. By the variational inequality (1),∑

a∈A
hala�ga+ha�≤

∑
a∈A

yala�ga+ha� (3)

for any flow y feasible for �1−��r/�. Because la�x/��/�= l̂a�x�, we can rewrite (3) as
∑

a��ha�l̂a�ĝa+�ha�≤∑
a��ya�l̂a�ĝa + �ha�. This implies that �h is a Nash flow induced by ĝ in �̂ . Because the cost of Nash

flows is unique, Ĉ�ĝ + �h� = Ĉ�ĝ + ĥ�. Finally, because Ĉ��x� = C�x� for any flow x, we can conclude
Ĉ�ĝ+ ĥ�= Ĉ���g+h��=C�g+h�≤C�o� where the inequality follows from Corollary 5.1. �

A class of latency functions that are of high practical relevance are so-called M/M/1 latency functions (see
also Roughgarden and Tardos [32]). These functions are of the form la�x�= 1/�ua − x�, where ua intuitively
represents the capacity of arc a. Theorem 5.2 has a particularly nice interpretation in this case: The modified
latency functions are l̂a�x�= la�x/��/�= 1/���ua − x/���= 1/��ua − x�. In a purely selfish scenario, Theo-
rem 5.2 therefore implies that to beat optimal routing, it is sufficient to double the capacity of every arc. This
has been observed before by Roughgarden and Tardos [32]. In the Stackelberg scenario, Theorem 5.2 shows
that it is sufficient to increase the capacities by a factor of 1+√

1−� if the SCALE strategy is used.
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6. Bounds for specific classes of latency functions. In this section, we first present a general approach,
which we call �-approach, to analyze the price of anarchy of opt-restricted Stackelberg strategies. We then use
the �-approach to derive bounds on the price of anarchy of the SCALE strategy for a general class of latency
functions including polynomial latency functions with nonnegative coefficients.

6.1. �-approach. We start by proving an upper bound on the cost of the combined flow induced by an
opt-restricted Stackelberg strategy.

Lemma 6.1. For any opt-restricted strategy g, C�g+h�≤∑
a∈A oala�ga+ha�.

Proof. The proof follows immediately by applying the variational inequality (1) with x= o− g. �

For any latency function la and nonnegative numbers ga, �, we define the following nonnegative value:

7�la+ ga��� �= sup
oa�ha≥0

oa
ga+ha

· la�ga+ha�−�la�oa�
la�ga+ha�

# (4)

(We assume by convention 0/0 = 0.) To bound the price of anarchy, we use the variational inequality
(Lemma 6.1) and bound the cost of the induced flow on every arc by some �-fraction of the optimal cost plus
some 7-fraction of the cost of the induced flow itself:

C�g+h�=∑
a∈A
�ga+ha�la�ga+ha�≤

∑
a∈A

� · oala�oa�+7�la+ ga��� · �ga+ha�la�ga+ha�# (5)

Now, the idea is to determine a � that provides the tightest bound possible. Choosing �= 1, the above approach
resembles the one that was previously used by Correa et al. [7] to bound the price of anarchy of network routing
games; however, optimizing over the parameter � provides an additional means to obtain better bounds. The
idea of introducing the scaling parameter � was first introduced in the context of bounding the price of anarchy
in atomic congestion games (see Harks [14]).

For a given opt-restricted strategy g, we further define 7�g��� = maxa∈A 7�la+ ga���# Before we state the
main theorem, we need one additional definition.
Definition 6.1. Given an opt-restricted strategy g, the feasible region is 8�g� �= %� ∈�+ �7�g��� < 1&#
Notice that every � ∈8�g� induces a bound on the price of anarchy.

Theorem 6.1. Let � ∈8�g�. Then C�g+h�≤ ��/�1−7�g�����C�o�.
Proof. The proof follows immediately from (5), Lemma 6.1, and the definition of 7�g���. �

6.2. Bounds for SCALE. In the following, we will analyze the SCALE strategy, defined by g = �o.
Definition 6.2. Let �d be a class of continuous, nondecreasing, and standard latency functions satisfying

l�c z�≥ cdl�z� ∀ c ∈ �0�1�# (6)

�d contains, among others, polynomials with nonnegative coefficients and degree at most d. This characteri-
zation has been used before by Correa et al. [7].

6.2.1. SCALE: Latency functions in �1. We first consider latency functions that are in �1. In particular,
this class contains continuous, nondecreasing, standard, and concave latencies.

Lemma 6.2. Assume � ∈ �0�1� and latency functions in �1. Then,

7��o���≤max
{

1
�
�1−��� 1

4�

}
#

Proof. By the definition of 7=7�la+�oa���,

7= sup
oa�ha≥0

oa
�oa+ha

· la��oa+ha�−�la�oa�
la��oa+ha�

#

We consider two cases: (i) �oa+ ha ≥ oa and (ii) �oa+ ha ≤ oa. In (i), we define < �= oa/��oa+ha� ∈ �0�1�.
Then, we have

7= sup
oa�ha≥0�<∈�0�1�

< · la��oa+ha�−�la�<��oa+ha��
la��oa+ha�

≤ max
<∈�0�1�

<�1−�<�= 1
4�
�
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where the last inequality follows from the definition of �1. The second case (ii) leads to

7≤ sup
oa�ha≥0

oa
�oa+ha

· la��oa+ha�−�la��oa+ha�
la��oa+ha�

≤ sup
oa�ha≥0

oa
�oa+ha

�1−��≤ 1
�
�1−���

where the first inequality is valid because latencies are nondecreasing. �

We are now prepared to derive an upper bound on the price of anarchy.

Theorem 6.2. The price of anarchy of the SCALE strategy for latency functions in �1 is at most

�1+√
1−��2

2�1+√
1−��− 1

#

Proof. Let � = 1
2 �1 + √

1−��. Then, by Lemma 6.2, 7��o��� ≤ 1/�2�1+√
1−��� < 1, and thus

� ∈8��o�. The proof now follows from Theorem 6.1. �

Note that the same bound has been proven by Karakostas and Kolliopoulos [18] for the special case of affine
latencies. We next present a family of instances that pointwise match the upper bound of Theorem 6.2 for
infinitely many values of �. More precisely, the lower bound is matched for all values of � such that 1/

√
1−�

is an integer. To the best of our knowledge, this is the first tight bound for values of � �= 0�1.

Theorem 6.3. Let n≥ 2 be an integer and let c= 1− �n−1��/n. Then, the price of anarchy of the SCALE
strategy for latency functions in �1 is at least

nc2 + �n− 1��c
�n− 1�c+ 1/n

#

Moreover, for all �= 1− 1/k2, with k a positive integer, there exists an n such that the corresponding bound
matches the upper bound of Theorem 6.2.

Proof. We use the instance depicted in Figure 6(a). (Similar networks have been used in other constructions
as well; see Babaioff et al. [1] and Roughgarden [31].) There is a single commodity �s� t� with unit demand.
In the optimal flow, the demand is split evenly among the paths �s�pi� qi� t�, i ∈ �n�. The resulting cost is
C�o�= �n− 1�c+ 1/n#

The SCALE strategy sends a flow of value �/n along each direct path �s�pi� qi� t�, i ∈ �n�. Due to the
condition c = 1 − �n− 1��/n, the Nash flow is sent along the zigzag path �s�p1� q1� p2� � � � � pn� qn� t�. Thus,
the cost of the combined flow g+h is given by

C�g+h�= n

(
1− n− 1

n
�

)2

+ �n− 1��c= nc2 + �n− 1��c�

and the bound follows.
To see that the bound is tight when � = 1 − 1/k2, pick n = k + 1 = 1 + 1/

√
1−�. After substituting

the expressions for n and c into the bound and appropriate rewriting, we obtain the same expression as in
Theorem 6.2. �

We show that there exist instances such that no Stackelberg strategy can achieve a price of anarchy better
than �4− 2�+�2�/3 for linear latency functions. That is, the upper bound on the price of anarchy of SCALE
for latency functions in �1 (Theorem 6.2) is almost best possible (see Figure 5 for a comparison of the lower
bound for arbitrary Stackelberg strategies and the upper bound of SCALE).

Theorem 6.4. There is an instance � = �G� r� l��� with linear latency functions such that if g is an arbi-
trary Stackelberg strategy for � inducing a Nash flow h and o is an optimal flow for the instance �G� r� l�, then
C�g+h�≥ �4− 2�+�2�/3 ·C�o�.

Consider the Braess instance (Figure 6(b)) and suppose we send one unit of flow from s to t. Let g1, g2, and g3

be the flow that the Stackelberg leader sends on the upper, zigzag, and lower path, respectively. Note that
g3 = �− g1 − g2. Analogously, let h1, h2, and h3 be the flow values on the respective paths of the selfish flow
induced by g.

We first prove Lemma 6.3:

Lemma 6.3. Let g be an arbitrary Stackelberg strategy. The selfish flow h induced by g then satisfies
h1 = h3 = 0.
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Figure 5. Lower bound for arbitrary Stackelberg strategies vs. upper bound of SCALE for linear latency functions (left) and the respective
ratio (right).

Proof. The latency of the zigzag path is l2 = g1 + 2g2 + g3 + h1 + 2h2 + h3 = 1 + g2 + h2, where we
exploit that g3 = � − g1 − g2 and h3 = �1 − �� − h1 − h2. The latencies of the upper and lower paths are
l1 = g1 + g2 +h1 +h2 +1 and l3 = 1+ g2 + g3 +h2 +h3, respectively. Note that l1 ≥ l2 and l3 ≥ l2 independently
of the choice of h2. Because the selfish flow is routed on minimum latency paths, we must have h1 = h3 = 0
and h2 = �1−��. �

Proof of Theorem 6.4. The cost of an optimal flow o for the Braess instance is C�o�= 3/2. Consider the
cost of the combined flow g+h. Using Lemma 6.3, we obtain

C�g+h� = �g1 + g2 + �1−���2 + �g2 + g3 + �1−���2 + g3 + g1

= �g1 + g2 + �1−���2 + �1− g1�
2 +�− g2#

This expression is minimized if g1 = �/2 and g2 = 0, i.e., SCALE is the best strategy in this case. We obtain

C�g+h�
C�o�

≥ 2���/2+ �1−���2 + �1−�/2�2 +��
3

= 4− 2�+�2

3
# �

Because computing the best Stackelberg strategy is NP-hard (Roughgarden [28]), one may want to devise
Stackelberg strategies that are efficiently computable and achieve a good approximation ratio. We say that a
Stackelberg strategy g achieves an approximation ratio of c ≥ 1 iff for every instance the cost of the (combined)
flow induced by g is at most c times the cost of the (combined) flow induced by any other Stackelberg strategy.
In this context, Corollary 6.1 follows immediately from Theorems 6.2 and 6.4.

Corollary 6.1. The approximation ratio that the SCALE strategy achieves for latency functions in �1 is
at most

2−�+ 2
√

1−�
1+ 2

√
1−� · 3

4− 2�+�2
< 1#12#
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Figure 6. (a) Generalized Braess instance used in the proof of Theorem 6.3. (b) Braess instance. Arcs are labeled with their latency
functions.
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6.2.2. SCALE: Latency functions in �d. Next, we consider the class �d of continuous, nondecreasing,
and standard latency functions with d ≥ 1. The proof of Lemma 6.4 proceeds along the same lines as the proof
of Lemma 6.2.

Lemma 6.4. Assume � ∈ �0�1� and latency functions in �d. Then,

7��o���≤max
{

1
�
�1−��� d

d+ 1
· 1
��d+ 1���1/d

}
#

Proof. The proof proceeds along the same lines as the proof of Lemma 6.2. The only difference is the first
part: (i) �oa+ha ≥ oa. As before, we define < �= oa/��oa+ha� ∈ �0�1�. We have

7= sup
oa�ha≥0�<∈�0�1�

< · la��oa+ha�−�la�<��oa+ha��
la��oa+ha�

≤ max
<∈�0�1�

<�1−�<d�= d

d+ 1
· 1
��d+ 1���1/d

# �

Lemma 6.5. There is a unique � ∈ �0�1�, call it �d, such that

1
�
�1−��= d

d+ 1
· 1
��d+ 1���1/d

#

Then, �d = zdd/�d+ 1�, where zd ≥ 1 is the unique solution to the equation zd+1 − �d+ 1�z+�d= 0.

Proof. Substituting �= zdd/�d+ 1� in the starting equation and rewriting yields zd+1 − �d+ 1�z+�d = 0.
To verify that this equation has indeed exactly one solution larger than 1, use (for example) Descartes’ rule of
signs. �

We are now ready to prove an upper bound for functions in �d.

Theorem 6.5. The price of anarchy of the SCALE strategy for latency functions in the class �d is at most

�d+ 1�zd −�d
�d+ 1�zd −d

�

where zd ≥ 1 is the unique solution of the equation zd+1 − �d+ 1�z+�d= 0.

Proof. We will use Theorem 6.1 with �= �d. However, in order to apply Theorem 6.1, we first need to
upper bound 7��o��d�. Using Lemmas 6.4 and 6.5, we know that

7��o��d�≤
d

d+ 1
· ��d+ 1��d�

−1/d = d

d+ 1
· z−1

d < 1#

This implies �d ∈8��o� and we can invoke Theorem 6.1 to obtain a bound on the price of anarchy given by

�d
1−7��o��d�

≤ zdd/�d+ 1�
1− �d/�d+ 1��z−1

d

= zd+1
d

�d+ 1�zd −d
= �d+ 1�zd −�d

�d+ 1�zd −d
# �
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Figure 7. Upper vs. lower bounds for SCALE for polynomial latency functions of degree 2 (left) and 3 (right). The plots also show the
previously best upper bound by Swamy [36].
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A lower bound for polynomial latency functions of degree d can be obtained by generalizing the construction
used in Theorem 6.3. We use again the network of Figure 6(a), except that we replace everywhere the latency
function x by xd and the constant c by �1− �n− 1��/n�d. The optimal flow is still split evenly on the direct
paths so that, with similar arguments, we obtain the following lower bound.

Theorem 6.6. Let n ≥ 2 be an integer and let c = �1 − �n− 1��/n�d. Then, the price of anarchy of the
SCALE strategy for latency functions in the class �d is at least

nc1+1/d + �n− 1��c
�n− 1�c+ n−d #

Notice that Theorem 6.6 does not fix n so it is possible to optimize n based on � as in Theorem 6.3. For
polynomial latency functions of degree 2 and 3, we compare in Figure 7 the lower bound thus obtained with
the upper bound of Theorem 6.5 and also indicate the improvement with respect to the previously best bounds
obtained by Swamy [36].
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