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Abstract

A new technique was recently introduced by Bonifaci et al. for the analysis of real-time systems
scheduled on multiprocessor platforms by the global Earliest Deadline First (EDF) scheduling algorithm.
In this paper, this technique is generalized so that it is applicable to the schedulability analysis of real-
time systems scheduled on multiprocessor platforms by any work-conserving algorithm. The resulting
analysis technique is applied to obtain a new sufficient global Deadline Monotonic (DM) schedulability
test. It is shown that this new test is quantitatively superior to pre-existing DM schedulability analysis
tests; in addition, the degree of its deviation from any hypothetical optimal scheduler (that may be
clairvoyant) is quantitatively bounded. A new global EDF schedulability test is also proposed here that
builds on the results of Bonifaci et al. This new test is shown to be less pessimistic and more widely
applicable than the earlier result was, while retaining the strong theoretical properties of the earlier result.
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1 Introduction

Real-time systems comprised of recurrent processes or tasks are often modeled using the sporadic
tasks model. In this model, each sporadic task τi is characterized by three parameters — a worst-case
execution time Ci, a relative deadline Di, and a period Ti. Such a task generates a potentially infinite
sequence of jobs. Successive jobs of τi arrive at least Ti time units apart, with each job having an
execution requirement ≤ Ci and a deadline Di time units after its arrival time.

We consider here real-time systems that can be modeled in this manner as collections of independent
sporadic tasks, and that are implemented upon a platform comprised of several identical processors.
We assume that the platform is fully preemptive, and that it allows for global inter-processor migration.
(However, each job may execute on at most one processor at each instant in time.) We study the be-
havior of two well-known algorithms when scheduling systems of sporadic tasks upon such preemptive
platforms: Earliest Deadline First [16, 20] and Deadline-Monotonic (DM) [19].

Schedulability tests for sporadic task systems. It is evident from the definition that a sporadic task
system may generate infinitely many different collections of jobs during different executions. In hard-
real-time systems, it must be guaranteed prior to system run time that all deadlines will be met. Such
guarantees are made by schedulability tests. Let A denote a scheduling algorithm. A sporadic task sys-
tem is said to be A-schedulable upon a specified platform if A meets all deadlines when scheduling each
of the potentially infinite different collections of jobs that could be generated by the sporadic task system,
upon the specified platform. An A-schedulability test accepts as input the specifications of a sporadic
task system and a multiprocessor platform, and determines whether the task system is A-schedulable.
An A-schedulability test is said to be exact if it identifies all A-schedulable systems, and sufficient if it
identifies only some A-schedulable systems. (Of course, an A-schedulability test may never incorrectly
mis-identify some system that is notA-schedulable, as beingA-schedulable.) A sufficient schedulability
test that is not exact is pessimistic, but for many situations an exact schedulability test is unknown or
is computationally intractable. From an engineering point of view, a tractable schedulability test that is
exact is ideal, while a tractable sufficient test with low pessimism is acceptable.

No exact schedulability tests are known, of any computational complexity, for the global EDF and
DM scheduling of sporadic task systems (although an exact test of unacceptably high computational
complexity, based on brute force state-space search, has been proposed [3] for EDF, for the special case
when all task parameters are restricted to be integers). A number of sufficient schedulability tests have
been proposed, including [1, 4, 8–10, 14, 18] – see [12] for a fairly comprehensive survey. It has been
observed that none of these sufficient tests dominates all the others — there are schedulable systems
deemed to be so by each test, which the other tests fail to identify as being schedulable. In the absence
of such domination, extensive simulation experiments have been performed [5, 6, 12, 13] comparing
the efficacy of the different tests in scheduling large collections of randomly-generated task systems.
Although such simulations are very useful particularly in that they provide insight into the kinds of
scenarios under which the different schedulability tests are superior to each other, the applicability of
such simulation-based analysis is limited by the doubts raised regarding how realistic the random task-
system generators are. In essence, it is difficult to generalize the validity of these results beyond the
kinds of workloads that are modeled by the random task-system generator.



Processor speedup factor. Processor speedup factors represent a quantitative approach towards com-
paring different sufficient schedulability tests. A schedulability test is defined to have a processor
speedup factor f , f ≥ 1, if any task system not deemed to be schedulable by this test upon a par-
ticular platform is guaranteed to not be feasible – schedulable by an optimal clairvoyant scheduler –
upon a platform in which each processor is at most 1/f times as fast. More formally,

Definition 1 (Processor speedup factor) A schedulability test has a processor speedup factor f , f ≥
1, if it is guaranteed that any task system that is feasible upon a specified platform is deemed to be
schedulable by the test upon a platform in which each processor is at least f times as fast.

Intuitively, the processor speedup factor of a schedulability test quantifies both the pessimism of the
test and the non-optimality of the scheduling algorithm. According to this metric, schedulability tests
with smaller processor speedup factors are superior to ones with larger processor speedup factors, with
a processor speedup factor equal to one implying both that the scheduling algorithm is optimal and that
the test is exact.

It is reasonable to ask whether it makes sense to bundle both the non-optimality of the scheduling
algorithm and the pessimism of the test into a single metric. From a pragmatic perspective, we believe
that the answer is “yes” for our domain of interest, which is hard-real-time systems. Since it must
be a priori guaranteed in such hard-real-time systems that all deadlines will be met during run-time, a
scheduling algorithm is only as good as its associated schedulability test. In other words, a scheduling
algorithm, no matter how close to optimal, cannot be used in the absence of an associated schedulability
test able to guarantee that all deadlines will be met; what matters is that the combination of scheduling
algorithm and schedulability test together have desirable properties.

This research. Some novel techniques were introduced in [15], for global EDF schedulability analy-
sis of sporadic task systems. These techniques were applied to design an EDF schedulability test that
is optimal from the perspective of processor speedup factor (this will be explained in greater detail in
Section 2). In this paper, we generalize the analysis technique of [15] to render it applicable to algo-
rithms other than EDF; in particular, so that it is applicable to DM 1. Also, we present some pragmatic
improvements that reduce some the pessimism of the [15] test for EDF, and indicate how such pragmatic
improvements can be done for DM scheduling as well.

Organization. The remainder of this paper is organized as follows. In Section 2, we briefly review
some related work that is most relevant to the research presented here, and that helps place our results
in context. In Section 3, we present the task and system models used in this work, and describe tech-
niques — demand bound function and its refinement the maxmin or the forced-forward demand bound
function — that are used for quantifying the cumulative execution requirement of a task system upon a
platform. In Section 4 we generalize the novel analysis technique from [15] to extend its applicability to
both EDF and DM scheduling (in fact, to any work-conserving scheduling discipline), and thereby obtain
necessary un-schedulability conditions for both EDF and DM. In Section 5 we use these unschedula-
bility conditions to obtain processor speedup bounds for both EDF and DM (while the derivation for

1However unlike the results in [15] which are applicable for arbitrary sporadic task systems, we restrict our attention in
this paper to systems in which each task’s deadline is no larger than its period: Di ≤ Ti for all tasks τi. Such systems are
called constrained sporadic task systems.



EDF repeats the one from [15], the bound for DM is new). In Section 6 we present an algorithm im-
plementing an EDF schedulability test that strictly dominates the one from [15], and indicate how this
implementation can be modified to come up with a DM schedulability test as well.

2 Prior results

It has been shown [21] that any collection of independent jobs that are feasible upon a platform
comprised of m speed-( m

2m−1
) processors is EDF-schedulable upon a platform comprised of m speed-1

processors. It was also shown that this bound is tight: there are task systems feasible on m speed-
( m

2m−1
+ε) processors that are not EDF-schedulable onm speed-1 processors, for arbitrary small positive

ε.
Although the result in [21] is very interesting and important from a theoretical perspective, it does not

yield an EDF-schedulability test for sporadic task systems, since it does not tell us how to determine
whether a given sporadic task system is feasible (upon the slower platform).

Recently [15], a new sufficient schedulability test for sporadic task systems was derived, which was
shown to possess a processor speedup factor of (2− 1

m
) on anm-processor platform2. It follows from the

result from [21] cited above that this EDF-schedulability test is in fact speedup-optimal. (By speedup-
optimal, we mean that no EDF-schedulability test for sporadic task systems can possibly have a proces-
sor speedup factor less than this test’s.)

With regards to sufficient schedulability tests for global DM scheduling3, a test was presented in [17]
for determining whether a given sporadic task system is global-DM schedulable upon a preemptive
multiprocessor platform comprised comprised of m unit-capacity processors. It was shown that the
processor speedup factor for this global-DM schedulability test is at most (4 − 1

m
), when implemented

upon m-processor platforms. This result was subsequently improved [7], and extended to sporadic task
systems [11] which are not constrained (i.e., in which individual tasks’ relative deadlines may exceed
their periods). These improved results yield a processor speedup factor equal to

2(m− 1)

(4m− 1)−
√

12m2 − 8m+ 1
.

This approaches 2
√

3 (which is ≈ 3.73) as m→∞.
The global EDF schedulability test of [15] is, despite its theoretical significance as a speedup-optimal

test, of limited applicability in the analysis of actual real-time systems. First, it fails to identify as being
EDF-schedulable any system τ for which maxτi∈τ

(
Ci/Di, Ci/Ti

)
is larger than m/(2m − 1) (where

m denotes the number of processors), and hence, for example, cannot be used to determine the EDF-
schedulability of any task system containing even a single task with Ci/Di or Ci/Ti > 0.5. Even for
task systems τ satisfying maxτi∈τ

(
Ci/Di, Ci/Ti

)
≤ m/(2m− 1), we will see in Section 6 that the test

of [15] is overly pessimistic. One of the contributions of this paper is to flesh out the details of the test

2 [15] also presents a fully polynomial-time approximation scheme that trades off accuracy for computational efficiency:
given any task system and an ε > 0, it correctly decides, in polynomial time, that either the system is EDF-schedulable on m
speed-(2− 1/m+ ε) processors, or it is infeasible on m speed-1 machines.

3We will focus on those tests for which quantitative performance bounds, in the form of processor speedup factors, have
been determined.



in [15] and thereby derive a sufficient schedulability test of wider applicability and lower pessimism,
while retaining the strong theoretical properties – in particular, the optimal processor speedup factor.
This new schedulability test can be implemented to have a run-time that is pseudo-polynomial in the
representation of the task system being analyzed, and is thus efficient enough to be used in practice.

3 Model and Notation

In the remainder of this paper, we will let τ denote a system of n sporadic tasks: τ = {τ1, τ2, . . . τn},
with τi = (Ci, Di, Ti) for all i, 1 ≤ i ≤ n. Task system τ is said to be a constrained sporadic task
system if it is guaranteed that each task τi ∈ τ has its relative deadline parameter no larger than its
period: Di ≤ Ti for all τi ∈ τ . We restrict our attention here to constrained task systems.

In order to devise schedulability tests, it is necessary to quantify the cumulative execution requirement
that sequences of jobs may place on a computing platform. Given a sequence of jobs J and a specified
time-interval [ta, tf ), the demand of J over [ta, tf ) is defined to be the sum of the execution requirements
of all jobs in J with arrival times ≥ ta and deadlines ≤ tf . The demand bound function DBF(τ, t) of
a sporadic task system τ for an interval length t is then defined to be the largest demand by any legal
sequence of jobs that may be generated by τ over any interval of length t. The load LOAD(τ) of a
sporadic task system τ is defined as maxt>o DBF(τ, t)/t.

Baker and Cirinei [2] observed that some jobs arriving and/or having deadlines outside an interval
could also contribute to the cumulative execution requirement placed on the computing platform within
the interval. They introduced a notion that they call minimum demand. The minimum demand of a given
collection of jobs in any specific time interval is the minimum amount of execution that the sequence
of jobs could require within that interval in order to meet all its deadlines4. We illustrate the difference
between demand and minimum demand by a simple example.

Example 1 Consider a sequence of jobs comprised of a single job that arrives at time-instant zero, has
an execution requirement equal to 5, and a deadline at time-instant 10. The demand of this sequence of
jobs over the time-interval [0, t) is 0 for all t < 10, and 5 for all t ≥ 10. The minimum demand of this
sequence of jobs over the time-interval [0, t) is equal to

• zero, for values of t ≤ 5;

• t− 5, for t ∈ (5, 10], since the sole job must execute for at least t− 5 units over the interval if it is to meet
its deadline; and

• five, for t > 10.

The minimum demand concept is extended to sporadic tasks (and task systems) as follows. By defi-
nition, a sporadic task τi may generate infinitely many different collections of jobs. For a given interval-
length t, τi’s maxmin demand is defined to be the largest minimum demand over an interval of length t,
by any collection of jobs that could legally be generated by τi. The maxmin demand of a sporadic task
system τ for interval-length t is defined as the sum of the maxmin demands of the tasks in τ , each for
an interval-length t. The maxmin load of τ is defined as the maximum value of the maxmin demand of
τ for t, normalized by the interval length.

4An essentially identical concept was independently introduced in [15], and called the necessary demand; a related
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Figure 1. Illustrating FF-DBF(τi, t, σ).

Forced-forward demand bound function. In [15], these concepts of maxmin demand and maxmin
load were generalized to be applicable to execution on speed-σ processors, for arbitrary σ > 0. We now
discuss a modified form of these ideas from [15].

Let τi denote a sporadic task, t any positive real number, and σ any positive real number ≤ 1. The
forced-forward demand bound function FF-DBF(τi, t, σ) is defined as follows:

FF-DBF(τi, t, σ)
def
= qiCi +


Ci if ri ≥ Di

Ci − (Di − ri)σ if Di > ri ≥ Di − Ci

σ

0 otherwise
(1)

where

qi
def
=

⌊
t

Ti

⌋
and ri

def
= t mod Ti .

Informally speaking, FF-DBF(τi, t, σ) can be thought of as denoting the maxmin demand of τi for
interval-length t, when execution outside the interval occurs on a speed-σ processor — see Figure 1.
Similarly, it is easy to see that the “traditional” demand bound function is a special case of FF-DBF, in
which it is assumed that execution outside the interval occurs on an infinite-speed processor:

DBF(τi, t) = FF-DBF(τi, t,∞) .

Some additional notation: for a task system τ

Utilization U(τ)
def
=
∑
τ`∈τ

C`/T` .

Maximum density δmax(τ)
def
= max

τ`∈τ
C`/D` .

concept called forced-forward demand was also introduced.
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Hyperperiod P (τ)
def
= lcmτ`∈τ{T`} .

FF-DBF(τ, t, σ)
def
=
∑
τ`∈τ

FF-DBF(τ`, t, σ) . (2)

FF-LOAD(τ, σ)
def
= max

t>0

(
FF-DBF(τ, t, σ)

t

)
. (3)

4 Sufficient schedulability conditions for EDF and DM

Both EDF and DM are work-conserving algorithms: they never idle any processor while there are
jobs awaiting execution. As we will see below, this work-conserving property implies that a deadline
miss can only follow an interval during which a considerable amount of execution must have occurred.
This property is formalized in the following discussion.

Let A denote some work-conserving algorithm that misses a deadline while scheduling some legal
collection of jobs generated by τ . Let us now examine A’s behavior on some minimal5 legal collection
of jobs of τ on which it misses a deadline. Let t0 denote the instant at which the deadline miss occurs.
Let j1 denote a job that misses its deadline at t0, and let t1 denote j1’s arrival-time. Let s denote any
constant satisfying δmax(τ) ≤ s ≤ 1. (Observe that, since s ≥ δmax(τ) and j1 has not completed
execution by t0, it has executed for strictly less than (t0 − t1) × s units over the interval [t1, t0).) We
define a sequence of jobs ji, time-instants ti, and an index k, according to the following pseudo-code
(also see Figure 2):

for i← 2, 3, . . . do
let ji denote a job that

– arrives at some time-instant ti < ti−1;
– has a deadline after ti−1;
– has not completed execution by ti−1; and
– has executed for strictly less than (ti−1 − ti)× s

units over the interval [ti, ti−1).
if there is no such job then
k ← (i− 1)
break (out of the for loop)

end if
end for

5By minimal we mean that A is able to successfully schedule every proper subset of this collection of jobs.



Let W denote the amount of execution that occurs in this schedule over the interval [tk, t0). Observa-
tion 1 derives a lower bound on W for any work-conserving algorithm A.

Observation 1
W >

(
m− (m− 1)s

)
× (t0 − tk) .

Proof: For each i, 1 ≤ i ≤ k, let Wi denote the total amount of execution that occurs over the interval
[ti, ti−1). Hence, W =

∑k
i=1 Wi.

Let xi denote the total length of the time-intervals over [ti, ti−1) during which job ji executes. By
choice of job ji, it is the case that

xi < (ti−1 − ti) · s .
By choice of job ji, it has not completed execution by time-instant ti−1. Hence over [ti, ti−1), all m
processors must be executing whenever ji is not; it follows that

Wi ≥ m(ti−1 − ti − xi) + xi

= m(ti−1 − ti)− (m− 1)xi
> m(ti−1 − ti)− (m− 1)(ti−1 − ti)s
= (m− (m− 1)s)× (ti−1 − ti) .

The observation, follows, by summing
∑k

i=1Wi.
Observation 1 above derived a lower bound on the amount of work W that is executed over [tk, t0).

In the following two observations, we will derive upper bounds on W when the scheduling algorithm is
EDF and DM respectively; necessary conditions for non-schedulability under EDF and DM will follow,
by requiring that the respective upper bounds be at least as large as the lower bound.

Observation 2 (EDF) If the work-conserving algorithm A is EDF, then

W ≤ FF-DBF(τ, (t0 − tk), s) .

Proof: Recall our assumption that we are analyzing a minimal unschedulable collection of jobs. If EDF
is the scheduling algorithm, then such a minimal unschedulable collection will not contain any job that
has its deadline > t0 (since the presence of such jobs cannot effect the scheduling of jobs with deadline
≤ t0, the collection of jobs obtained by removing all such jobs is also unschedulable by EDF.) Thus all
jobs that execute in [tk, t0) (and thereby contribute to W ) have their deadlines within the interval [tk, t0).
Some of them will also have arrived within this interval, while others may not.

Now it may be verified that the amount of execution that jobs of any task τ` contribute toW is bounded
from above by the scenario in which a job of τ` has its deadline coincident with the end of the interval
t0, and prior jobs have arrived exactly T` time-units apart. Under this scenario, the jobs of τ` that may
contribute to W include

• at least q`
def= b(t0 − tk)/T`c jobs of τ` that lie entirely within the interval [tk, t0); and

• (perhaps) an additional job that has its deadline at time-instant tk + r`, where r`
def= (t0 − tk) mod T`.

We now consider two separate cases:



1. r` ≥ D`; i.e., the additional job with deadline at tk + r` arrives at or after tk. In this case, its contribution
is C`.

2. r` < D`; i.e., the additional job with deadline at tk + r` arrives prior to tk. From the exit condition of the
for-loop, it must be the case that this job has completed at least (D` − r`) × s units of execution prior to
time-instant tk; hence, its remaining execution is at most max(0, C` − (D` − r`)× s).

In either case, it may be seen that the upper bound on the total contribution of τ` to W is equal to
FF-DBF(τ`, t0 − tk, s) (see Equation 1). Summing over all `, we conclude that the total contribution
of all the tasks to W is bounded from above by

∑n
`=1(FF-DBF(τ`, t0 − tk, s)), which is, by definition,

FF-DBF(τ, L, s).

Observation 3 (DM) If the work-conserving algorithm A is DM, then

W ≤ FF-DBF(τ, 2(t0 − tk), s) .

Proof: Recall once again our assumption that we are analyzing a minimal unschedulable collection of
jobs. If DM is the scheduling algorithm, then such a minimal unschedulable collection will not contain
any job with relative deadline greater than the relative deadline of j1, the job that misses its deadline at
time-instant t0 (since such jobs are assigned lower priority than j1 under DM, and hence cannot effect
the ability or otherwise of j1 to meet its deadline.)

By definition of t1, the relative deadline of j1 is (t0−t1). For any job with relative deadline< (t0−t1)
to contribute toW (and hence execute prior to t0), it must have a deadline≤ (t0 +(t0−t1)), i.e., 2t0−t1.

As in the proof of Observation 2 above, it may be verified that the amount of execution that jobs
of any task τ` contribute to W is bounded from above by the scenario in which a job of τ` has its
deadline coincident with the end of the interval (i.e., at 2t0 − t1), and prior jobs have arrived exactly T`
time-units apart. Under this scenario, it follows by an argument essentially identical to the one used in
the proof of Observation 2 that the total contribution of all the tasks to W is bounded from above by
FF-DBF(τ, 2t0− t1− tk, s). But since tk ≤ t1, (2t0− t1− tk)≥ 2(t0− tk), and the observation is proved.

Lemma 1 (EDF) Suppose that constrained-deadline sporadic task system τ is not schedulable by global
EDF upon m unit-speed processors. For each s, s ≥ δmax(τ), there is an interval-length L such that

FF-DBF(τ, L, s) > (m− (m− 1)s)L .

Proof: Follows by chaining the lower bound on W of Observation 1 with the upper bound of Observa-
tion 2, with L← (t0 − tk).

Lemma 2 (DM) Suppose that constrained-deadline sporadic task system τ is not schedulable by global
DM upon m unit-speed processors. For each s, s ≥ δmax(τ), there is an interval-length L such that

FF-DBF(τ, L, s) > (m− (m− 1)s)
L

2
.

Proof: Follows by chaining the lower bound on W of Observation 1 with the upper bound of Observa-
tion 3, with L← 2(t0 − tk).



5 Determining processor speedup factor

The contrapositive of Lemma 1 above represents a global EDF schedulability condition: any task
system τ satisfying(

∃σ : σ ≥ δmax(τ) :
(
∀ ∆ : ∆ ≥ 0 :

(
FF-DBF(τ,∆, σ) ≤ (m− (m− 1)σ)×∆

)))
(4)

is EDF-schedulable upon m unit-speed processors.
Similarly, the contrapositive of Lemma 2 represents a global DM schedulability condition: any task

system τ satisfying(
∃σ : σ ≥ δmax(τ) :

(
∀ ∆ : ∆ ≥ 0 :

(
FF-DBF(τ,∆, σ) ≤ (m− (m− 1)σ)× ∆

2

)))
(5)

is DM-schedulable upon m unit-speed processors.
We now determine, in Theorems 1 and 2 below, the processor speedup factors of schedulability test

for EDF and DM respectively, based on checking these conditions. While the result in Theorem 1 is a
rederivation of the one in [15], the one in Theorem 2 is new and represents a significant improvement
over the previously best-known result in [11].

In [2, Theorem 2], necessary conditions for global multiprocessor schedulability were identified; these
necessary conditions generalize to our context and notation in the following manner:

Lemma 3 If FF-LOAD(τ, σ) > mσ then τ is not feasible on m speed-σ processors.

Proof: Suppose that FF-LOAD(τ, σ) > mσ. Let t0 denote a value for t that maximizes the RHS of
Equation 3, and hence determines the value of FF-LOAD(τ, σ):

FF-LOAD(τ, σ) =
(∑
τ`∈τ

FF-DBF(τ`, t0, σ)
)
/t0

By definition of FF-DBF, each task τ` can generate a sequence of jobs that together require≥ FF-DBF(τ`, t0, σ)
units of execution over some interval of length t0, when executing upon speed-σ processors. Since the
different tasks of a sporadic task system are assumed to be independent of each other, such intervals
for the different tasks can be aligned; the total execution requirement by all the tasks over the aligned
interval is

≥
∑
τ`∈τ

FF-DBF(τ`, t0, σ)

= FF-LOAD(τ, σ)× t0 (By definition of t0)

> mσt0 (Since FF-LOAD(τ, σ) is assumed to be > mσ)

But mσt0 denotes the total computing capacity over an interval of size t0 upon m speed-σ processors.
We therefore conclude that the total execution requirement by all the tasks in τ over the interval cannot
be met, and some deadline must necessarily be missed.

Lemma 4 If task system τ does not satisfy Condition 4, then it is not feasible upon a platform comprised
of m speed- m

2m−1
processors.



Proof: First, any τ not satisfying Condition 4 that has δmax(τ) > m/(2m − 1) is trivially not feasible
on speed- m

2m−1
processors.

Next, consider τ with δmax(τ) ≤ m/(2m − 1). Suppose that τ does not satisfy Condition 4: for all
values of σ > δmax(τ), there is an interval-length ∆ ≥ 0 such that FF-DBF(τ,∆, σ) > (m− (m−1)σ)×
∆.

Let us instantiate this inequality for σ ← m/(2m− 1):

∀∆ ≥ 0 : FF-DBF(τ,∆,
m

2m− 1
)

>
(
m− (m− 1)

m

2m− 1

)
×∆

⇒ FF-LOAD(τ,
m

2m− 1
) > m− (m− 1)

m

2m− 1

≡ FF-LOAD(τ,
m

2m− 1
) >

2m2 −m−m2 +m

2m− 1

≡ FF-LOAD(τ,
m

2m− 1
) > m

m

2m− 1

It therefore follows, from Lemma 3, that τ is not feasible upon a platform comprised of m speed- m
2m−1

processors.
By taking the contrapositive of Lemma 4 above and observing that 1/( m

2m−1
) is equal to (2− 1

m
), we

have

Theorem 1 The processor speedup factor of an EDF schedulability test based on checking Condition 4
has a processor speedup factor of (2− 1

m
) on an m-processor platform.

Reasoning very similar to that used in Lemma 4 and Theorem 1 above are now applied to DM schedul-
ing:

Lemma 5 If task system τ fails the DM schedulability test of Condition 5, then it is not feasible upon a
platform comprised of m speed- m

3m−1
processors.

Proof: Suppose that τ fails the schedulability test of Condition 5.
If δmax(τ) > (m/(3m− 1) then τ is trivially not feasible on a platform comprised of (any number of)

speed-(m/(3m− 1) processors, and we are done.
Assume now that δmax(τ) ≤ (m/(3m−1). Suppose that τ does not satisfy Condition 5: for all values

of σ > δmax(τ), there is an interval-length ∆ ≥ 0 such that FF-DBF(τ,∆, σ) > (m− (m− 1)σ)× ∆
2

.
Let us instantiate this inequality for σ ← m/(3m− 1):

∀∆ ≥ 0 : FF-DBF(τ,∆,
m

3m− 1
)

>
(
m− (m− 1)

m

3m− 1

)
× ∆

2

⇒ FF-LOAD(τ,
m

3m− 1
) > (m− (m− 1)

m

3m− 1
)× 1

2

≡ FF-LOAD(τ,
m

3m− 1
) >

3m2 −m−m2 +m

2(3m− 1)

≡ FF-LOAD(τ,
m

3m− 1
) > m

m

3m− 1



It therefore follows from Lemma 3 above that τ is not feasible upon a platform comprised of m
speed- m

3m−1
processors.

By taking the contrapositive of Lemma 4 above and observing that 1/( m
3m−1

) is equal to (3− 1
m

), we
have

Theorem 2 The processor speedup factor of a DM schedulability test based on checking Condition 5
has a processor speedup factor of (3− 1

m
) on an m-processor platform.

6 Improved schedulability tests

Condition 4, the contrapositive of the EDF unschedulability condition of Lemma 1, asserts that in
order to show a given task system τ EDF-schedulable, it suffices to demonstrate the existence of a
σ ≥ δmax(τ) such that

FF-DBF(τ, t, σ) ≤ (m− (m− 1)σ)× t (6)

for all values of t ≥ 0. Let us refer to such a σ as a witness to the EDF-schedulability of τ . In order
to obtain a schedulability test with the optimal processor speedup factor of (2 − 1

m
), we have seen

(Theorem 1 above) that it suffices to only consider σ ← m/(2m − 1) as a potential witness, declaring
the task set not schedulable if this value of σ fails to satisfy Inequality 6 for all t ≥ 0. Indeed, this
is in essence the schedulability test presented in [15]: determine whether σ ← m/(2m − 1) satisfies
Inequality 6 for all t ≥ 0.

However, by testing only one out of all the values of σ that could bear witness to a task system’s
schedulability, this test clearly fails to make full use of the insight into EDF-schedulability that Lemma 1
affords us. In the remainder of this section, we derive an algorithm that fully exploits the insight of
Lemma 1, by correctly identifying all task systems for which any σ would cause Inequality 6 to evaluate
to true for all t ≥ 0. In other words, the algorithm we derive in this section identifies all systems
satisfying Condition 4, whereas the test in [15] only identifies those systems that satisfy this condition
instantiated with σ ← m/(2m− 1).

(A similar exercise can easily be conducted for the DM schedulability test derived from Condition 5,
the contrapositive of the DM unschedulability condition of Lemma 2. The steps are essentially identical
to the ones for EDF as described below; hence, we omit the details for DM schedulability analysis.)

Now there are infinitely many different values of σ that could potentially be witnesses to the EDF-
schedulability of a task system; for each such potential witness, there are infinitely many values of t for
which it must be validated that Inequality 6 is satisfied. Two questions must therefore now be answered:

Q1: What values of σ would we need to consider as potential witnesses to the EDF-schedulability of τ?
and

Q2: In order to determine whether a particular σ is indeed a witness or not, for which values of t do we
need to evaluate Condition 6?

We address the second of these questions first, in Section 6.1 below; the second one is addressed in
Section 6.2.



6.1 Bounding the range of time-values that must be tested

We now address Q2, the second of the questions listed above: for a given value of σ, for which values
of t must we validate Condition 6 in order to be able to conclude that it holds for all t?

Claim 1 For a given σ and τ , if Condition 6 is violated for any t then it is violated for some t in⋃
τi∈τ

{
kTi +Di, kTi +Di −min(Ci/σ,Di) | k ∈ N

}
(7)

Proof Sketch: This follows from the observation (also see Figure 1) that FF-DBF(τi, t, σ) increases with
a constant slope between kTi + Di −min(Ci/σ,Di) and kTi + Di, and remains unchanged elsewhere,
for all k ∈ N. Hence the LHS of Condition 6 increases with constant slope with increasing t between
two consecutive t’s in this set; since the RHS also increases with constant slope with increasing t, it is
guaranteed that if this condition is violated at some t̃ it will be violated at one of the two t’s in this set
that neighbor t̃.

Claim 1 above tells us that we need evaluate Condition 6 for only countably many t’s; Claims 2 and 3
below allow us to bound the actual number.

Claim 2 If Condition 6 is violated at some t for a given τ andm, and a particular σ ≤ (m−U(τ))/(m−
1), then it is violated at some t no larger than P (τ).

Proof: Recall that P (τ) denotes the hyperperiod — the least common multiple of the task period
parameters — of τ .

Since for all τi the period Ti divides the hyperperiod P (τ), it follows from Equation 1 (also see
Figure 1) that

FF-DBF(τ, t+ P (τ), σ) = P (τ)× U(τ) + FF-DBF(τi, t, σ)
≤ P (τ)× (m− (m− 1)σ) + FF-DBF(τi, t, σ)

(since we are assuming that σ ≤ (m − (U(τ))/(m − 1)). Hence if Condition 6 is to be violated for
some tv > P (τ), it will also be violated for tv mod P (τ).

Claim 2 tells us that P (τ) is an upper bound on the values of t for which Condition 6 needs to be
evaluated. Claim 3 below provides another upper bound.

Claim 3 If Condition 6 is violated at some t for a given τ andm, and a particular σ ≤ (m−U(τ))/(m−
1), then t is no larger than ∑

τi∈τ Ci

m− (m− 1)σ − U(τ)
(8)

Proof: We first observe that it directly follows from the definition of FF-DBF (Equation 1 – also see
Figure 1) that for all t ≥ Di and for all σ,

FF-DBF(τi, t, σ) ≤
(
t

Ti
+ 1

)
Ci



Suppose that FF-DBF(τ, t, σ) >
(
m− (m− 1)σ

)
t for some t > maxτi∈τ

{
Di

}
. We then have

FF-DBF(τ, t, σ) >
(
m− (m− 1)σ

)
t

⇒
∑
τi∈τ

(
t
Ci
Ti

+ Ci

)
>
(
m− (m− 1)σ

)
t

≡ tU(τ) +
∑
τi∈τ

Ci >
(
m− (m− 1)σ

)
t

≡ t <

∑
τi∈τ Ci

m− (m− 1)σ − U(τ)

and the lemma is proved.

Testing set. For a given σ and τ , let T S(τ, σ) denote the testing set of values of t that lie in the set
defined in Equation 7 and are no larger than both P (τ) and the bound defined by Equation 8.

How large can this testing set be? As shown in Claim 2, we need not consider any t exceeding the
hyperperiod P (τ). It is easily seen that there are at most exponentially many points in the set defined in
Equation 7 not exceeding P (τ); hence, the testing set contains at most exponentially many points.

Suppose, however, that we were to enforce an additional restriction that we would not consider any σ
greater than (

m− U(τ)− ε
)
/(m− 1) (9)

where ε is an arbitrarily small positive constant. It would then follow from Inequality 8 that the upper
bound on the values in T S(τ, σ) is guaranteed to be ≤

(∑
τi∈τ Ci

)
/ε, which is pseudo-polynomial in

the representation of the task system τ . Thus, this restriction immediately yields a pseudo-polynomial
upper bound on the number of elements in T S(τ, σ).

The consequence of enforcing the restriction of Equation 9 above is that the test we develop is no
longer able to identify all task systems satisfying Condition 4: task systems that only satisfy Condition 4
for values of σ in ((m− U(τ))/(m− 1)− ε, (m− U(τ))/(m− 1)] would not be identified by our test.
In exchange for this slight loss of optimality (the degree of which can be controlled by choosing ε to be
appropriately small), we would restrict the size of the testing set to be pseudo-polynomial.

6.2 Choosing potential witnesses to test

In this section, we address Q1, the first of the two questions listed earlier in this section. That is,
we set about restricting the candidate field of σ’s that need be tested as potential witnesses to the EDF-
schedulability of τ .

Claim 4 No value of σ that is greater than (m − U(τ))/(m − 1) can possibly result in Condition 6
evaluating to true for all values of t (and hence, no such value of σ can attest to the EDF-schedulability
of τ ).

Proof: Observe that FF-DBF(τi, t, σ) asymptotically approaches t × (Ci/Ti) as t → ∞. Hence
FF-DBF(τ, t, σ) asymptotically approaches t×U(τ) with increasing t. In order to have FF-DBF(τ, t, σ) ≤



(m− (m− 1)σ)t for all t, therefore, we need

U(τ) ≤ m− (m− 1)σ

≡ σ ≤ m− U(τ)

m− 1
.

As a consequence of Claim 4 above, we can restrict the range of values for σ that are potential
witnesses to the EDF-schedulability of τ . However, there are still infinitely many distinct values in
this range, and we clearly cannot exhaustively check all these infinitely many values. Fortunately it so
happens that we can restrict the actual number of values of σ within this range that need be considered
as potential witnesses to the EDF-schedulability of τ , as we will now show.

Let us suppose that we have identified a particular σcur, such that we know that no σ < σcur can
possibility bear witness to the EDF-schedulability of τ . Suppose that we then test σcur, and determine
that it is not a witness to the EDF-schedulability of τ , either — tcur is a value of t that causes Condition 6
to evaluate to false when σ ← σcur. Let σnew denote the smallest value of σ > σcur such that Condition 6
evaluates to true with (σ ← σnew; t ← tcur). (We describe below, in Section 6.4, how the value of σnew

is computed.) It is clear that tcur rules out the possibility of any σ ∈ [σcur, σnew) bearing witness to the
EDF-schedulability of τ ; hence, the next value of σ that we will need to consider is σnew.

So we’ve seen how, if we know a constant σcur such that no σ ≤ σcur can be a witness to the EDF-
schedulability of τ , we can determine the next potential witness σnew that we must consider. Claim 5
below tells us that in considering σnew, we need not revisit values of T S(τ, σnew) that are ≤ tcur:

Claim 5 Suppose that τ is not EDF-schedulable. Consider some s1 and t1 such that

FF-DBF(τ, t1, s1) > (m− (m− 1)s1)× t1.

For any s2 > s1, there is a t2 ≥ t1 such that

FF-DBF(τ, t2, s2) > (m− (m− 1)s2)× t2.

Proof: This follows from the observation that the jobs j1, j2, . . . that are defined according to the
pseudo-code given in Section 4 for a given value of s (say, s ← s1), are also valid for larger values of
s (say, s ← s2). This is easily shown by induction. Assume that j1, . . . , ji−1 as defined for s ← s1 are
valid for s ← s2: this implies that ti−1 is the same when s ← s1 and s ← s2. The job ji as defined for
s ← s1 has executed for less than (ti−1 − ti)s1 prior to ti−1. But since s2 > s1, it has also executed for
less than (ti−1− ti)s2 prior to ti−1, and hence satisfies the condition to be considered as job ji for s← s2

as well.

6.3 Putting the pieces together: the EDF schedulability test

We are now ready to put the pieces together, and specify our schedulability test. This schedulability
test is a methodical quest for a value of σ for which there is no t causing Condition 6 to evaluate to false
(and which is thus a witness to the EDF-schedulability of τ ). Based on Claim 5 above, we will start out
testing a small value for σ; if this fails, we can try a larger value for σ and use the result of Claim 5 to
trim the set of potential values of t that need to be tested for this larger value of σ. In greater detail, our
algorithm is the following.



S1 Let σcur denote the value of σ currently being evaluated (i.e., the potential witness currently under
consideration). This is initialized as follows: σcur ← δmax(τ).

We will also use an additional variable tcur, initialized to zero: tcur ← 0.

S2 If σcur is larger than
(
m−U(τ)
m−1

− ε
)

where ε is an arbitrarily small positive constant that has been a
priori determined, then we exit the test, having failed to show τ is EDF-schedulable. (Here, we
are using the result shown in Claim 4, modified as discussed in Equation 9 to yield a testing set of
pseudo-polynomial size, to restrict the range of values of σ that we need test as potential witnesses
to the EDF-schedulability of τ .)

Otherwise by the results of Section 6.1, we need only evaluate Condition 6 for values of t ∈
T S(τ, σcur) to determine whether it is satisfiable or not. We begin at the smallest value in T S(τ, σcur)
that is greater than tcur, and consider the values in T S(τ, σcur) in increasing order. If no value of t
in T S(τ, σcur) causes Condition 6 to evaluate to false for this current value of σcur, then we exit the
test, having succeeded in showing that τ is EDF-schedulable.

S3 Suppose, however, that there is some value of t that causes Condition 6 to evaluate to false for this
value of σcur. Assign tcur this value of t. By Claim 5, if τ is not EDF-schedulable then for all values
of σ > σcur there is some t ≥ tcur which causes Condition 6 to evaluate to false. Let σnew denote the
smallest value of σ′ > σcur, such that

FF-DBF(τ, tcur, σ
′) ≤ (m− (m− 1)σ′)× tcur .

We compute σnew using the technique described in Section 6.4 below, assign σcur this value σnew,
and goto Step S2.

Computational complexity. Observe that the values assigned to the variable tcur during the above
algorithm are monotonically increasing — once we assign tcur a particular value, we never assign it a
smaller value even after we have changed the value assigned to σcur. This observation can be used to
show that the total number of values assigned to tcur is no more than the cardinality of T S(τ, σ), for the
largest value of σ that is tested. And we have seen in Section 6.1 that this number is pseudo-polynomially
bounded in the representation of the task system τ . We will see in Section 6.4 below that σnew can be
computed in polynomial time, while the rest of the processing above for a given value of tcur is easily
seen to also take polynomial time. This yields the following result:

Theorem 3 This EDF-schedulability test has pseudo-polynomial time complexity.

6.4 Computing σnew

Given fixed values for tcur and σcur such that

FF-DBF(τ, tcur, σcur) > (m− (m− 1)σcur)× tcur ,

our objective is to compute σnew, the smallest σ′ > σcur such that

FF-DBF(τ, tcur, σ
′) ≤ (m− (m− 1)σ′)× tcur .



Let us examine how FF-DBF(τi, tcur, σ) changes as σ is increased in the neighborhood of σcur, while
the task τi and the interval-length tcur are kept unchanged. From Equation 1, we know that FF-DBF(τi, tcur, σ)
depends on qi and ri, where qi = btcur/Tic and ri = tcur mod Ti. Notice that the values of qi and ri do
not depend on σ. Hence,

(a) FF-DBF(τi, tcur, σ) does not vary with σ if ri ≥ Di (the first case in Equation 1).

(b) It varies linearly with σ while Di > ri ≥ Di − Ci

σ
. That is, if ri < Di then FF-DBF(τi, tcur, σ)

decreases linearly with increasing σ while σ ≤ Ci/(Di − ri). This is the second case in Equation 1.

(c) Once σ increases such that it is > Ci/(Di − ri), FF-DBF(τi, tcur, σ) remains unchanged with further
increase in the value of σ. This is the third case in Equation 1.

In order to compute σnew given values for tcur and σcur, we would therefore

L1 Classify each task τi as being either in class (a), (b), or (c) according to the above classification.
That is, a task τi for which ri ≥ Di would be classified as being in class (a); one with ri < Di and
ri ≥ Di − Ci

σcur
would be classified as being in class (b); while one with ri < Di − Ci

σcur
would be

classified as being in class (c).

For each task τi in class (b), let σ̂i
def
= Ci/(Di − ri). Increasing σ to become greater than σ̂i would

cause τi to no longer be a class (b) task.

L2 Observing that only tasks in class (b) have their FF-DBF’s change –linearly– with changing σ, we
can set up and solve a linear equation to determine σo, the smallest σ′ > σcur for which

FF-DBF(τ, tcur, σo) = (m− (m− 1)σo)× tcur .

L3 If this computed value of σo is ≤ σ̂i for all tasks τi in class (b), then we have computed the desired
value for σnew. Else,

(a) assign σcur the value of the smallest σ̂i from among all those computed for tasks in class (b),
and

(b) repeat from step L1 above.

Computational complexity. It is not difficult to see that σnew can be computed in time polynomial in
the representation of τ . This follows from the observations that

• Steps L1, L2, and L3 above each take polynomial time.

• During each iteration of the 3-step process L1-L3 either (i) we determine the value of σnew and
exit; or (ii) at least one task that was in class (b) will henceforth be placed in class (c) in the
subsequent iteration, whereas no additional tasks become class (b) tasks. Thus, the number of
iterations of L1-L3 is bounded from above by the number of tasks initially in class (b), which is,
of course, itself bounded by the number of tasks in τ .



7 Summary and conclusions

Recently, Bonifaci et al. have obtained [15] a speedup-optimal global EDF schedulability test for
sporadic task systems implemented upon identical multiprocessor platforms. In this paper, we have
generalized the technique so that it is applicable to the analysis of any work-conserving global scheduling
algorithm. We have used this generalization to come up with a schedulability test for global DM which
has a speedup factor superior to any previously known.

Although the speedup optimality property makes the EDF schedulability condition in [15] very sig-
nificant from a conceptual perspective, its applicability in the analysis of actual real-time systems is
somewhat limited. We have built upon the theoretical foundations provided by the [15] test, to obtain
a sufficient EDF schedulability test of wider applicability and lower pessimism that retains the optimal
processor speedup factor. We have shown that this schedulability test can be implemented to have a
run-time that is pseudo-polynomial in the representation of the task system being analyzed. Since many
algorithms that are currently used in the analysis of real-time systems are of similar computational com-
plexity, this suggests that our schedulability test is efficient enough to be of use in the design and analysis
of actual multiprocessor real-time application systems.
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