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We study two roommate assignment problems, called Ordinal Roommate Allocation and Cardinal 
Roommate Allocation, where students have preferences over roommates, rooms have varying 
capacities, and the goal is to maximize the minimum payoff of the students (under two distinct 
notions of payoff). Both problems are 𝖭𝖯-hard when room sizes are unrestricted. In contrast, the 
Ordinal Roommate Allocation problem becomes tractable when the maximum room capacity is 
fixed, while the Cardinal Roommate Allocation problem remains 𝖭𝖯-hard even with bounded room 
capacity and number of preferences. We then analyze the problems through the lens of stability, 
considering envy-freeness and a weaker notion we call swap-resistance. Not all instances guarantee 
an envy-free outcome, and it is shown to be 𝖭𝖯-hard to determine which ones do. However, 
swap-resistance is always achievable using an efficient algorithm. We discuss connections and 
distinctions between our work and existing research about utilitarian matchings and stable 
roommate problems.

1. Introduction

Alice is a teacher organizing a schooltrip that includes an overnight stay. Thinking that it would be a nice idea, she had asked 
her students to write down who they would like to share the room with, expressing up to three preferences each. Now Alice has to 
assign the students to the hotel rooms while satisfying their preferences as much as possible, and realizes that this is no easy task: for 
instance, Angela would like to share the room with Daisy and Erika, but Daisy’s preferences are Fiona and Grace, while Erika asked 
to be with Daisy, Grace, and Helena. Additionally, some rooms can accommodate 3 students, while others can only accommodate 
2. Clearly, a criterion to be optimized is needed. In order to reduce dissatisfaction between the students, Alice adopts an egalitarian 
viewpoint, striving to maximize the satisfaction level (payoff) of the least satisfied student. Alice starts to wonder about the complexity 
of the underlying optimization problem, and she also wonders whether the students will be satisfied enough to respect the allocation 
during the night, instead of initiating a chaotic room exchange.

We consider two versions of this problem, depending on whether the preference lists of the students are (strictly) ordered or 
unordered. In the ordered version, which we call the Ordinal Roommate Allocation problem, the payoff of each student 𝑡 is defined as 
the largest integer 𝑘 such that the first 𝑘 students on 𝑡’s preference list are all assigned to the same room as 𝑡. In accordance with 
the egalitarian perspective, the goal is to maximize the payoff of the least satisfied student. In the unordered version, which we call 
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Cardinal Roommate Allocation problem, the payoff of each student 𝑡 is defined simply as the number of students from 𝑡’s list that share 
the room with 𝑡. The goal is again to maximize the lowest payoff.

We also consider the problem from the point of view of the game-theoretic stability of the given room allocation. A strong notion 
of stability of an allocation is envy-freeness, which roughly speaking means that no student would rather prefer to be in another 
student’s place. A weaker notion of stability of an allocation is that there is no way for a student to improve her payoff by swapping 
room with someone else, without negatively affecting the payoff of some other student; we call this notion swap-resistance.

1.1. Our contribution

We show that both the Ordinal and Cardinal Roommate Allocation problems are strongly 𝖭𝖯-hard when the rooms have arbitrary 
size. When the maximal capacity of rooms is constant, we show that the Ordinal Roommate Allocation problem is polynomial-time 
solvable, while the Cardinal Roommate Allocation problem remains strongly 𝖭𝖯-hard even for rooms of maximal capacity 5 and at 
most 3 preferences per student, or for rooms of maximal capacity 3 and arbitrarily many preferences. On the other hand, the Cardinal 
Roommate Allocation problem is shown to be polynomial-time solvable for rooms of capacity 2, or when both the maximal room 
capacity is constant and each student expresses only one preference.

We also consider two stability notions, envy-freeness and swap-resistance. Not all instances of the roommate problems we consider 
are guaranteed to admit an envy-free allocation; we show that recognizing which instances do is 𝖭𝖯-hard. On the other hand, we 
show swap-resistance to be always attainable by means of an efficient local search algorithm. This algorithm can be applied to any 
allocation that is optimal for the ordinal or cardinal criterion to yield an allocation that is simultaneously optimal for the same 
criterion and swap-resistant.

1.2. Related work

In the classic perfect matching problem on a graph [2], one seeks to partition the vertices of a graph into pairs in a way that respects 
the underlying graph structure; namely, each pair should correspond to an edge of the graph. As is well-known, this problem was 
one of the motivating problems behind the notion of polynomial-time complexity, and by now it has a very vast literature, see for 
example the monograph by Lovasz and Plummer [14] and references therein. Not surprisingly, there is a close connection between 
the perfect matching problem and Ordinal/Cardinal Roommate Allocation problems when each room can host two students (see for 
example Theorem 3.5 and Proposition 4.6). However, this work is focused on the more general case where rooms can accommodate 
different numbers of students, beyond just two.

An allocation problem can be approached from the optimization perspective of a central planner (such as the teacher organizing 
the rooms), or from the game-theoretic perspective of the individuals receiving allocations. In the classic Roommates problem [6,9,15], 
an even number of students wish to divide up into pairs of roommates and students have preferences on each other. A set of pairings 
is called stable if under it there are no two students who are not roommates and who prefer each other to their respective roommates. 
It was observed already by Gale and Shapley [6] that not every instance of the roommates problem admits a stable pairing. Irving 
[11] describes a polynomial-time algorithm to test whether a stable pairing exists for a given instance. Ng and Hirschberg [17] and 
Huang [10] study stability in a roommate problem when rooms have capacity 3.

The notion of stability adopted in the above works, called core stability in the game-theoretic literature, is based on the idea that 
any pair of students can deviate if their preferences encourage them to do so. However, when allocated resources are scarce, not 
every deviation can be enforced and therefore other notions of stability may be more natural and meaningful than core stability. 
Bogomolnaia and Jackson [1] define an abstract class of hedonic coalition formation games, where each player’s payoff is completely 
determined by the identity of other members of the coalition. Our setting can be seen as a special case and therefore we borrow their 
notion of an envy-free allocation. We note that the paper by Bogomolnaia and Jackson is not algorithmic in nature and in particular 
is not concerned with the complexity of recognizing which coalitional games admit envy-free solutions.

Boehmer and Elkind [3] discuss envy-freeness and exchange stability in the context of stable roommate allocations with diversity 
preferences. Their contribution is similar in spirit to the present paper, but the roommate problem they consider has several key 
differences; the main one being their assumptions that the agents are of two types and that the agents’ preferences depend solely on 
the fraction of agents of their own type among their roommates.

It is important to note that there is a rather different criterion that is also sometimes called egalitarian in the context of the stable 
matching and stable roommate problems [13,8,12,5]. This criterion concerns stable matchings in which the average cost incurred by 
the students is minimized – where the cost is defined as the rank of each student’s roommate in her preference list. Perhaps a more 
accurate name for this criterion would have been utilitarian stable matching according to standard economic terminology [16, Chapter 
3]. When a stable matching exists, Cseh, Irving and Manlove [5] show that finding such utilitarian stable matchings is 𝖭𝖯-hard even 
when preference lists have length at most 3.

1.3. Overview of the sections

We set up the model and notation in Section 2. The computational complexity of finding optimal egalitarian allocations is discussed 
in Section 3. Section 4 discusses the additional notions of swap-resistant and envy-free allocations and their complexity.
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2. Roommate allocations

Consider a finite set 𝑁 of 𝑛 elements, called students, and a finite set 𝑀 of 𝑚 elements, called rooms. Each room 𝑗 ∈𝑀 has an 
associated integer capacity 𝑐𝑗 ≥ 1. Let 𝑐

def
= max𝑗∈𝑀 𝑐𝑗 .

Definition 2.1. An allocation is a function 𝑎 ∶𝑁 →𝑀 such that |𝑎−1(𝑗)| ≤ 𝑐𝑗 for each room 𝑗 ∈𝑀 .

Thus, an allocation is a mapping of students to rooms that does not violate the capacity of any room. Clearly, allocations exist 
if and only if 

∑
𝑗∈𝑀 𝑐𝑗 ≥ 𝑛, that is, when total room capacity is enough to fit all the students. The set of allocation functions (for 

given 𝑁 , 𝑀 , and capacities {𝑐𝑗}) will be denoted . In the following we always assume the easily checked condition ≠ ∅ to avoid 
triviality.

Students have preferences over other students. We investigate ordinal preferences, where students rank their preferred roommates, 
and approval preferences, where students express approval over potential roommates.

Definition 2.2. An ordinal preference list 𝑝𝑖 for student 𝑖 ∈𝑁 is a nonempty ordered list of distinct elements of 𝑁 ⧵ {𝑖}.

Definition 2.3. An approval preference list 𝑝𝑖 for student 𝑖 ∈ 𝑁 is a nonempty unordered list of distinct elements of 𝑁 ⧵ {𝑖}, or 
equivalently, a nonempty subset of 𝑁 ⧵ {𝑖}.

Note that preference lists are not required to be complete; in both cases, the absence of student 𝑖′ from student 𝑖’s list signifies that 
𝑖 does not benefit from having 𝑖′ as a roommate. Let 𝑝 denote the maximum length of a preference list. We denote the 𝑘-th element 
of list 𝑝𝑖 by 𝑝𝑖[𝑘].

Definition 2.4. The ordinal payoff of student 𝑖 ∈𝑁 under an allocation 𝑎 ∈ is the largest 𝑘 ≥ 0 such that the first 𝑘 students from 
𝑖’s list are allocated to the same room as 𝑖:

𝑢𝑂
𝑖
(𝑎) = max{𝑘 ≥ 0 ∶ 𝑘 ≤ |𝑝𝑖| ∧ 𝑎(𝑝𝑖[1]) = 𝑎(𝑝𝑖[2]) =…= 𝑎(𝑝𝑖[𝑘]) = 𝑎(𝑖)}.

Definition 2.5. The cardinal payoff of student 𝑖 ∈𝑁 under an allocation 𝑎 ∈ is the largest 𝑘 ≥ 0 such that at least 𝑘 students from 
𝑖’s list are allocated to the same room as 𝑖, that is, the number of students approved by 𝑖 that end up in the same room as 𝑖:

𝑢𝐶
𝑖
(𝑎) = |𝑎−1(𝑎(𝑖)) ∩ 𝑝𝑖|.

Definition 2.6. The Ordinal Roommate Allocation (ORA) problem is to find, given room capacities and ordinal preferences, an alloca-
tion maximizing the minimum ordinal payoff:

max
𝑎∈ min

𝑖∈𝑁
𝑢𝑂
𝑖
(𝑎).

Definition 2.7. The Cardinal Roommate Allocation (CRA) problem is to find, given room capacities and approval preferences, an 
allocation maximizing the minimum cardinal payoff:

max
𝑎∈ min

𝑖∈𝑁
𝑢𝐶
𝑖
(𝑎).

The standard decision problems corresponding to the above optimization problems are the following.

ORDINAL ROOMMATE ALLOCATION – DECISION VERSION (ORA-D)

INSTANCE: Sets 𝑁,𝑀 , room capacities {𝑐𝑗}, ordinal preference lists {𝑝𝑖}, and an integer 𝑘 ≥ 1. 
QUESTION: Is there some allocation 𝑎 ∈ such that

min
𝑖∈𝑁

𝑢𝑂
𝑖
(𝑎) ≥ 𝑘 ?

CARDINAL ROOMMATE ALLOCATION – DECISION VERSION (CRA-D)

INSTANCE: Sets 𝑁,𝑀 , room capacities {𝑐𝑗}, cardinal preference lists {𝑝𝑖}, and an integer 𝑘 ≥ 1. 
QUESTION: Is there some allocation 𝑎 ∈ such that

min
𝑖∈𝑁

𝑢𝐶
𝑖
(𝑎) ≥ 𝑘 ?

It is useful to introduce terminology to indicate when 𝑢𝑖(𝑎) ≥ 𝑘 for a student 𝑖 ∈𝑁 .
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Definition 2.8. Under a given allocation 𝑎 for ORA-D or CRA-D and given the threshold 𝑘 ≥ 0, we say that a student 𝑖 is satisfied if 
her payoff is at least 𝑘 (that is, 𝑢𝑂

𝑖
(𝑎) ≥ 𝑘 for ORA-D, or 𝑢𝐶

𝑖
(𝑎) ≥ 𝑘 for CRA-D).

Notice that the decision problems are equivalent to asking whether an allocation exists that satisfies all students. The following 
proposition establishes some relation between the number of students 𝑛, number of rooms 𝑚, and maximal room capacity 𝑐.

Proposition 2.1. Without loss of generality, in both problems ORA-D and CRA-D one can assume:

1. 𝑚𝑐 ≥ 𝑛,

2. 𝑚 ≤ 𝑛

3. 𝑐 < 𝑛.

Proof. 1. Since 
∑

𝑗∈𝑀 𝑐𝑗 ≤ 𝑚𝑐, if 𝑚𝑐 < 𝑛, the total capacity of the rooms is less than the number of students and no allocation 
exists, contradicting the assumption that the set of allocations is nonempty.

2. If 𝑚 > 𝑛, we can remove the 𝑚 − 𝑛 rooms with the lowest capacities and obtain an equivalent smaller instance. Indeed, if an 
allocation uses any of the 𝑚 − 𝑛 lowest capacity rooms, it can be transformed into an allocation that is at least as good for each 
student by “upgrading” her room size to an equal or larger one, so that only the (at most) 𝑛 largest capacity rooms are used.

3. If 𝑐 ≥ 𝑛, by assigning all students to the same room of capacity 𝑐 we obtain an allocation that is optimal from the point of view 
of all students, as all students share the same room. □

2.1. Social digraph

A fundamental notion for our analysis will be that of the social digraph associated to an instance, which is the digraph that can 
be inferred from the students’ preferences.

Definition 2.9. The social digraph is the digraph 𝐺 = (𝑁,𝐸) where (𝑖, 𝑖′) ∈𝐸 if and only if 𝑖′ ∈ 𝑝𝑖.

Note that the social digraph has out-degree at least 1, due to the assumption that all preference lists are nonempty. The out-
neighbors of student 𝑖 in the social digraph are also called the friends of 𝑖.

When dealing with ordinal preferences, it is also useful to consider an additional digraph in which we truncate each neighborhood 
of the social digraph to the first 𝑘 preferences of the corresponding student.

Definition 2.10. Given 𝑘 ≥ 1, the truncated social digraph of level 𝑘 is the digraph 𝐺𝑘 = (𝑁,𝐸𝑘) where (𝑖, 𝑖′) ∈ 𝐸𝑘 if and only if 𝑖′ is 
among the first 𝑘 preferences in 𝑖’s list.

The following observation will be particularly useful for the Ordinal Roommates problem.

Lemma 2.2. Given an ORA-D instance, if 𝑎∈ satisfies all students, then the students corresponding to any weakly connected component 
of the truncated social digraph 𝐺𝑘 must be allocated to the same room by 𝑎.

Proof. Consider any two students 𝑖, 𝑖′ in the same weakly connected component of the truncated social digraph. Because 𝑖 and 𝑖′ are 
weakly connected, there must be a path 𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑞 in the digraph where 𝑣1 = 𝑖, 𝑣𝑞 = 𝑖′, and for any pair (𝑣𝑙, 𝑣𝑙+1), either 𝑣𝑙 is in 
𝑣𝑙+1 ’s truncated preference list or vice versa. But since all students are satisfied by 𝑎, each pair (𝑣𝑙 , 𝑣𝑙+1) is allocated by 𝑎 to the same 
room. Therefore 𝑖 and 𝑖′ are allocated to the same room. □

2.2. 3-partition, exact-cover-by-3-sets and partition into triangles

The following three problems are well-known 𝖭𝖯-complete decision problems. They can be found as problems SP15, SP2, and 
GT11, respectively, in Garey and Johnson’s list [7]. They will be used in our 𝖭𝖯-hardness proofs.

3-PARTITION

INSTANCE: A finite set 𝑋 of 3𝑚 elements, a bound 𝐵 ∈ ℤ+, and a “size” 𝑠(𝑥) ∈ ℤ+ for each 𝑥 ∈ 𝑋, such that each 𝑠(𝑥) satisfies 
𝐵∕4 < 𝑠(𝑥) < 𝐵∕2 and such that 

∑
𝑥∈𝑋 𝑠(𝑥) =𝑚𝐵. 

QUESTION: Can 𝑋 be partitioned into 𝑚 disjoint sets 𝑆1, 𝑆2,… , 𝑆𝑚 such that, for 1 ≤ 𝑖 ≤𝑚, 
∑

𝑥∈𝑆𝑖
𝑠(𝑥) =𝐵? 

Comment: NP-complete in the strong sense.

EXACT COVER BY 3-SETS (X3C)

INSTANCE: Set 𝑋 with |𝑋| = 3𝑞 and a collection 𝐶 of 3-element subsets of 𝑋. 
QUESTION: Does 𝐶 contain an exact cover for 𝑋, i.e., a subcollection 𝐶 ′ ⊆ 𝐶 such that every element of 𝑋 occurs in exactly one 
member of 𝐶 ′? 
Comment: Remains NP-complete if no element occurs in more than three subsets.
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PARTITION INTO TRIANGLES

INSTANCE: An undirected graph 𝐺 = (𝑉 ,𝐸), with |𝑉 | = 3𝑞 for a positive integer 𝑞. 
QUESTION: Is there a partition of 𝑉 into 𝑞 disjoint sets 𝑉1, 𝑉2,… , 𝑉𝑞 of three vertices such that, for each 𝑉𝑖 = {𝑣𝑖[1], 𝑣𝑖[2], 𝑣𝑖[3]}, the 
three edges {𝑣𝑖[1], 𝑣𝑖[2]}, {𝑣𝑖[1], 𝑣𝑖[3]}, and {𝑣𝑖[2], 𝑣𝑖[3]} all belong to 𝐸? 
Comment: Remains NP-complete if the maximum degree of the graph is 4 [4,18].

3. Optimal egalitarian allocations

In this section we consider the Ordinal and Cardinal Roommate Allocation problems (from the point of view of a centralized 
allocation authority) and study their computational complexity.

3.1. Ordinal roommate allocations

Theorem 3.1. If the maximal room capacity 𝑐 is arbitrary, ORA-D is strongly 𝖭𝖯-complete.

Proof. We describe a reduction from 3-PARTITION (recall the definition from Section 2.2). Let 𝑋 be the set of elements, 𝑠 the size 
function, and 𝐵 the limit in the 3-PARTITION instance. We assume that 𝑠(𝑥) > 1 for each 𝑥 ∈𝑋, which is without loss of generality 
(one can increase the size of every element by 1 and 𝐵 by 3 to obtain an equivalent instance that satisfies the assumption).

We construct a digraph 𝐺 on 
∑

𝑥∈𝑋 𝑠(𝑥) nodes. The digraph 𝐺 will have |𝑋| strongly connected components. For each element 
𝑥 ∈𝑋 of the 3-PARTITION instance, 𝐺 has a strongly connected component consisting of an oriented cycle of length 𝑠(𝑥). Consider 
then an instance of ORA-D having social digraph 𝐺, 𝑚 = |𝑋|∕3 rooms of capacity 𝐵, and threshold 𝑘 = 1.

Observe that to satisfy all students’ preferences, by Lemma 2.2 the students corresponding to any cycle of 𝐺 must be allocated to 
a common room, but this is also sufficient for each of those students’ payoff to be at least 1. Therefore, if a 3-PARTITION solution 
exists, the corresponding allocation satisfies all the students and is a solution to ORA-D.

Vice versa, observe that if an allocation exists satisfying all the students, then in every room there are exactly 𝐵 students. Indeed, 
the number of students in each room is at most 𝐵; moreover, by counting, if some room had less than 𝐵 students, some other room 
would have more than 𝐵, which would contradict the definition of allocation. Therefore, the partition corresponding to such an 
allocation is a solution to the 3-PARTITION instance.

Since 3-PARTITION is strongly 𝖭𝖯-hard, we can assume unary encoding for the numbers 𝑠(𝑎) without loss of generality; hence, the 
above reduction is a polynomial time reduction, and the 𝖭𝖯-hardness of ORA-D follows. Finally, membership in 𝖭𝖯 is straightforward: 
a function 𝑎 ∶ 𝑁 → 𝑀 can be represented by 𝑛 integers of length 𝑂(log𝑚), and after guessing such a function, we can efficiently 
check that it represents an allocation (by ensuring that |𝑎−1(𝑗)| ≤ 𝑐𝑗 for each 𝑗 ∈ 𝑀), evaluate the payoff of each student in time 
polynomial in 𝑛 and 𝑚, and ensure that each payoff is greater or equal than the threshold 𝑘. □

Theorem 3.2. If the maximal room capacity is constant, ORA-D is solvable in polynomial time.

Proof. Recall that in order to satisfy all preferences, the students corresponding to nodes of any weakly connected component of the 
truncated social digraph must be allocated to the same room (Lemma 2.2). Observe that a partition of an integer 𝑟 ∈ {1,2,… , 𝑐} can 
be considered as a “configuration” for a room of capacity at least 𝑟, in the following sense: given a partition of 𝑟, the integers in the 
partition correspond to the sizes of the weakly connected components of the digraph allocated to the room. Since 𝑐 is constant, the 
total number of integer partitions of the numbers 1,2,… , 𝑐 is constant as well, call it 𝑓 (𝑐). Therefore, the number of potential guesses 
for the room configurations is at most (𝑚 + 1)𝑓 (𝑐) where 𝑚 is the number of rooms, as for every configuration there can be between 
0 and 𝑚 rooms in that configuration.

Given a guess of the room configurations, all that remains to do is checking whether for every size of weakly connected component 
of the social digraph there is a corresponding size in the integer partition corresponding to the guess for the room configurations. 
Namely, if the integers in the guessed room configurations are 𝑔1, 𝑔2,… and the sizes of the weakly connected components are 
𝑤1,𝑤2,…, one needs to check whether the multiset of integers 𝑤 is contained in the multiset of integers 𝑔. This can be done efficiently 
(e.g. in time 𝑂(𝑚 log𝑚)) by sorting, as each of the 𝑚 rooms has capacity at most 𝑐 =𝑂(1) and by Proposition 2.1, 𝑛≤𝑚𝑐 =𝑂(𝑚). □

We illustrate the algorithm in the proof of Theorem 3.2 with an example.

Example 3.1. Consider an ORA instance with 12 students, 3 rooms of capacity 4 each, 𝑘 = 1, and preferences yielding the truncated 
social digraph illustrated in Fig. 1. The digraph has 4 weakly connected components of size 4, 2, 2, and 4. The partitions of the 
integers from 1 to 4 are:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

3 = 2 + 1 = 1 + 1 + 1

2 = 1 + 1

1 = 1.
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Fig. 1. An example truncated social digraph of an ORA-D instance. 

Table 1
Room configuration guesses for the example in Fig. 1.

Guess 4 (2,2) 3 2 
1 3 rooms – – – 
2 – 3 rooms – – 
3 – – 3 rooms – 
4 – – – 3 rooms 
5 2 rooms 1 room – – 
6 2 rooms – 1 room – 
7 2 rooms – – 1 room 
8 1 room 2 rooms – – 
9 – 2 rooms 1 room – 
10 – 2 rooms – 1 room 
11 1 room – 2 rooms – 
12 – 1 room 2 rooms – 
13 – – 2 rooms 1 room 
14 1 room – – 2 rooms 
15 – 1 room – 2 rooms 
16 – – 1 room 2 rooms 

We can discard partitions containing any 1, as they would correspond to students that have no friends in their allocated room, which 
would be infeasible since 𝑘 = 1. Thus every room will be in one of the configurations 4, 3, 2, or (2,2). By enumerating guesses of the 
number of rooms for each of these remaining configuration (Table 1) we can see that the only feasible guess is the fifth one (row 5), 
with the rooms in configuration 4, 4, and (2,2) respectively, yielding the following satisfactory allocation:

𝑎−1(1) = {1,6,7,10}, 𝑎−1(2) = {4,8,11,12}, 𝑎−1(3) = {2,3,5,9}.

3.2. Cardinal roommate allocations

Differently from the ordinal case, the Cardinal Roommate Allocation problem is strongly 𝖭𝖯-hard even when 𝑐 is bounded above 
by a constant.

Theorem 3.3. CRA-D is strongly 𝖭𝖯-complete, even when the maximal room capacity is 5 and every student expresses at most 3 preferences.

Proof. We reduce to CRA-D the special case of the X3C problem in which every element belongs to at most three sets (Section 2.2).
Let (𝑋,𝐶) be an instance of Exact Cover by 3-Sets such that |𝑋| = 3𝑞 for some 𝑞 ≥ 1, 𝐶 is a collection of 3-element subsets of 𝑋, 

and each element of 𝑋 belongs to at most 3 subsets in 𝐶 . We construct a CRA-D instance with 2|𝐶|+ |𝑋| students, as follows:

• The first 2|𝐶| students, called set students, are denoted 𝑠+, 𝑠− for each subset 𝑠 ∈ 𝐶 . The preference list of 𝑠+ (resp., 𝑠−) consists 
solely of 𝑠− (resp., 𝑠+).

• The other |𝑋| students, called element students, are denoted by 𝑥1,… , 𝑥3𝑞 . The preference list of 𝑥𝑖 consists of all 𝑠+ such that 
𝑥𝑖 ∈ 𝑠.

• Finally, the CRA-D instance consists of 𝑞 rooms of capacity 5 and |𝐶|− 𝑞 rooms of capacity 2; the threshold 𝑘 equals 1.

Recall that a student is satisfied by an allocation if at least 𝑘 of her preferences are met by the allocation. The problem is to decide 
whether an allocation exists that is satisfactory for all students.

First, we argue that in any satisfactory allocation, all rooms of size 2 are allocated to set students. Suppose this is not the case 
for some room; then either such a room contains 2 element students, in which case none of them is satisfied (all element students 
have only set students in their preferences), or it contains an element student and a set student, in which case the set student is not 
satisfied, as it is separated from her only preference. Thus, any room of capacity 2 contains a pair of set students of the form 𝑠+, 𝑠−.

There remain 2|𝐶| − 2(|𝐶| − 𝑞) = 2𝑞 set students and |𝑋| = 3𝑞 element students that are necessarily allocated to 𝑞 rooms of 
capacity 5. Notice that all these 𝑞 rooms must be used to full capacity in any satisfactory allocation.
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Now by a counting argument we argue that in each room of size 5 there are exactly 3 element students and 2 set students (and 
the latter have each other as preference). We already know that in the 𝑞 rooms of size 5 must be somehow distributed 3𝑞 element 
students and 2𝑞 set students. Hence the average number of set students per 5-room is 2. If some 5-room had fewer than the average 
number of set students, then either it has 1, who would be unsatisfied, being separated from her friend, or it has 0 set students and 
5 element students, who would be unsatisfied. If some 5-room had more than the average number of set students, obviously some 
other room would have less than the average, and one still gets a contradiction.

Therefore, in any satisfactory allocation, one of the two set students in each 5-room must be in the preference list of all the three 
element students in that room. Hence, the collection of set students 𝑠+ that are allocated in 5-rooms forms an exact cover of 𝑋.

Conversely, if an exact cover exists, let us allocate a 5-room to each set student pair 𝑠+, 𝑠− with 𝑠 in the exact cover and to the 3 
element students covered by 𝑠. All other set students are paired in the 2-rooms (each 𝑠+ with the corresponding 𝑠−). The resulting 
allocation is satisfactory. This concludes the 𝖭𝖯-hardness claim.

Finally, membership of CRA-D in 𝖭𝖯 can be argued as in the proof of Theorem 3.1, the only difference being the payoff function 
used. □

The social digraph in the proof of Theorem 3.3 is asymmetric. One might wonder whether the hardness is tied to the asymmetry, 
but the answer is negative.

Theorem 3.4. CRA-D is strongly 𝖭𝖯-complete, even when the maximal room capacity is 3, the social digraph is symmetric, and every student 
expresses at most 4 preferences.

Proof. The reduction is from PARTITION INTO TRIANGLES on graphs of maximum degree 4 [4,18] (recall Section 2.2). Given an 
instance of such problem – that is, an 𝑛-node undirected graph 𝐺 of maximum degree 4 – construct a CRA-D instance where there is 
a student for each vertex of 𝐺, the preferences of 𝑖 are given by 𝑖’s neighbors in 𝐺, and there are 𝑛∕3 rooms of size 3 (the assumption 
that 𝑛 is a multiple of 3 can be made without loss of generality, as otherwise the original instance is clearly infeasible). Let 𝑘 = 2. 
Since the graph has maximum degree 4, each student expresses at most 4 preferences.

Since all the rooms have size 3, any allocation induces a partition of the graph into subgraphs of order 3. Moreover, each student 
has payoff at least 2 if and only if 2 of her friends share the same room as her, which implies that each room can be identified with 
a triangle in 𝐺. Therefore, a partition of 𝐺 into triangles must exist whenever a satisfactory allocation exists.

Conversely, any partition of 𝐺 into triangles corresponds to an allocation where each student has payoff at least 2, and is therefore 
satisfied. The construction of the CRA-D instance can be carried out in polynomial time given 𝐺. Therefore, deciding if a satisfactory 
allocation exists is strongly 𝖭𝖯-hard. □

We end this section with two easy cases; the first one is reducible to matching, the second one to ORA-D.

Theorem 3.5. If all rooms have capacity 2, CRA-D is solvable in polynomial time.

Proof. Observe that if 𝑘 ≥ 2, no satisfactory allocation exists, as all students would need to share the room with at least two friends, 
but the rooms lack the capacity. Therefore assume 𝑘 = 1 and consider the (full) social digraph. We can also, without loss of generality, 
assume that for any pair of students (𝑖, 𝑖′), 𝑖′ ∈ 𝑝𝑖 if and only if 𝑖 ∈ 𝑝𝑖′ : namely, any arc (𝑖, 𝑖′) such that 𝑖 ∉ 𝑝𝑖′ can be safely dropped 
from the digraph, as any allocation that assigned 𝑖 and 𝑖′ to the same room would be unsatisfactory anyway (for student 𝑖′).

Thus, in this setting CRA-D is equivalent to the question of whether the social digraph (which is now symmetric without loss of 
generality) admits a perfect matching. This can be settled in polynomial time with, say, Edmonds’ algorithm [2]. □

Theorem 3.6. If the maximal room capacity is constant and every student expresses a single preference, CRA-D is solvable in polynomial 
time.

Proof. Observe that with a single preference per student, the two utility functions 𝑢𝐶
𝑖

and 𝑢𝑂
𝑖

coincide. Hence, in this case the two 
problems ORA-D and CRA-D are equivalent and the claim follows by Theorem 3.2. □

4. Swap-resistant and envy-free allocations

Section 3 is from the point of view of a central authority (the teacher) that strives to set up an allocation that is as satisfactory as 
possible. Looking at the problem from the point of view of the allocated elements (the students) suggests introducing some notion of 
whether an allocation is stable, that is, whether it has no incentives to potential deviations. In this section, we consider two notions of 
stability and investigate their complexity. Because of the room capacity constraint, we only consider deviations where two students 
are swapped.

Definition 4.1. Given an allocation 𝑎 ∈, an augmenting swap for 𝑎 is a pair of distinct students 𝑖, 𝑖′ ∈𝑁 such that the allocation 
𝑏 ∈ defined by 𝑏(𝑠) = 𝑎(𝑠) for all 𝑠 ∈𝑁 ⧵ {𝑖, 𝑖′}, 𝑏(𝑖) = 𝑎(𝑖′), 𝑏(𝑖′) = 𝑎(𝑖) satisfies
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𝑢𝑠(𝑏) ≥ 𝑢𝑠(𝑎) for all 𝑠 ∈𝑁,

𝑢𝑠(𝑏) > 𝑢𝑠(𝑎) for some 𝑠 ∈𝑁.

In natural language, an augmenting swap increases the payoff of at least one student while not decreasing the payoff of any 
student.

Definition 4.2. An allocation 𝑎 ∈ is swap-resistant if there is no augmenting swap for 𝑎.

Lemma 4.1. Any allocation can be transformed into a swap-resistant allocation by at most 𝑝𝑛 augmenting swaps. A swap-resistant allocation 
can be found in polynomial time.

Proof. Whether an allocation admits an augmenting swap can be checked by enumerating all pairs of students and comparing the 
payoffs of all students before the swap with the payoffs after the swap.

As long as the current allocation 𝑎 has an augmenting swap, we apply the swap to obtain a new allocation 𝑏 and we charge it to 
one student 𝑠 such that 𝑢𝑠(𝑏) > 𝑢𝑠(𝑎). We continue in this way as long as the current allocation admits an augmenting swap. Since 
payoffs are between 0 and 𝑝, each student can be charged at most 𝑝 times; hence there will be at most 𝑝𝑛 swaps in total and the 
process will terminate. The last allocation will be swap-resistant by construction. □

The process of transforming an allocation into a swap-resistant allocation does not decrease the payoff of any student. In particular, 
the algorithm of Lemma 4.1 can be applied to any optimal allocation while preserving its optimality.

Theorem 4.2. Whenever the Ordinal (resp., Cardinal) Roommate Allocation problem is solvable in polynomial time, an optimal and swap-

resistant allocation can also be found in polynomial time.

Proof. Let 𝑎∗ be an optimal allocation for the problem at hand obtained by applying the polynomial time algorithm from the 
hypothesis. By Lemma 4.1, after applying at most 𝑝𝑛 swaps we obtain a swap-resistant allocation 𝑎 such that 𝑢𝑖(𝑎) ≥ 𝑢𝑖(𝑎∗) for all 
𝑖 ∈𝑁 . But 𝑎∗ is optimal, therefore 𝑎 must be optimal as well. □

A stronger notion than swap-resistance is that of envy-freeness.1

Definition 4.3. An allocation 𝑎 ∈ is envy-free if for all distinct 𝑖, 𝑖′ ∈𝑁 , the allocation 𝑏 ∈ defined by 𝑏(𝑠) = 𝑎(𝑠) for 𝑠 ∈𝑁 ⧵{𝑖, 𝑖′}, 
𝑏(𝑖) = 𝑎(𝑖′), 𝑏(𝑖′) = 𝑎(𝑖) satisfies

𝑢𝑖(𝑎) ≥ 𝑢𝑖(𝑏).

In natural language: after swapping any 𝑖 and 𝑖′, the new roommates of 𝑖 do not make 𝑖 more satisfied than her old roommates did.

Proposition 4.3. In the Cardinal Roommate Allocation problem, an envy-free allocation may not exist, even when the social digraph is 
symmetric. In the Ordinal Roommate Allocation problem, an envy-free allocation may not exist, even when the truncated social digraph of 
level 1 is symmetric.

Proof. We describe the proof for the Cardinal Roommate Allocation problem, as the proof for the ordinal case is essentially the same. 
Consider any connected graph 𝐺 without a perfect matching and construct a CRA instance having 𝐺 as its social digraph and where 
all rooms are double rooms. Since 𝐺 has no perfect matching, in any allocation there will be some student 𝑡 that does not share a 
room with any of her neighbors in 𝐺. This student will envy any roommate of one of 𝑡’s neighbors. □

We argue that finding an envy-free allocation is in general 𝖭𝖯-hard.

Theorem 4.4. The problem of determining whether an envy-free allocation exists for an ORA or CRA instance is strongly 𝖭𝖯-complete, even 
when each student only expresses one preference.

Proof. Consider the family of ORA instances where each student only expresses one preference, the social digraph is a set of directed 
cycles, and all rooms have capacity at least 2. In any such instance, the only way for a student to not be envious is to be allocated to 
the same room as her only preference – as otherwise she would envy her preference’s roommate. In other words, the set of envy-free 
allocations is a subset of the set of satisfying allocations, and the converse holds as well, as no student can ever have a payoff larger 

1 Our definition can be seen as a special case of the notion of envy-freeness is used by Bogomolnaia and Jackson [1, Footnote 20] in the context of coalition 
formation.
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than 1 in this setting. Therefore, determining whether an envy-free allocation exists is strongly 𝖭𝖯-hard by the same reasoning as in 
the proof of Theorem 3.1. Membership in 𝖭𝖯 follows from the fact that, after guessing a function 𝑎 ∶𝑁 →𝑀 , it only remains to: 1) 
check that 𝑎 is an allocation, by computing the number of students assigned to each room; 2) compute the payoff of each student 
under allocation 𝑎; 3) check that 𝑎 is envy-free by computing the payoff of each student in every allocation 𝑏 that only differs from 
𝑎 by the swap of two students, as per Definition 4.3. As there are 𝑂(𝑛2) possible swaps, these steps can be carried out in polynomial 
time.

The proof for CRA instances is the same as for ORA instances, since when only one preference is expressed, the ordinal and cardinal 
payoff functions coincide. □

In the construction used in the proof of Theorem 4.4, the maximal room capacity might be large (non-constant). But at least for 
the Cardinal Roommate Allocation problem, finding an envy-free allocation is 𝖭𝖯-hard even when all rooms have capacity 3.

Theorem 4.5. The problem of determining whether an envy-free allocation exists for a CRA instance is strongly 𝖭𝖯-hard, even when all 
rooms have capacity 3.

Proof. We reduce from PARTITION INTO TRIANGLES. Let 𝐺 be an instance of PARTITION INTO TRIANGLES with 3𝑞 vertices. We 
construct a CRA instance as follows. As in the proof of Theorem 3.4, for each vertex from 𝐺, we add a student which has all its 
neighbors in 𝐺 in her preference list. Further, we add three students 𝑠1 , 𝑠2, 𝑠3 which are included in the preference list of every 
agent; thus, 𝑠1, 𝑠2, and 𝑠3 list precisely the other two agents from {𝑠1, 𝑠2, 𝑠3} except for themselves in their preferences, while for 
each student from 𝐺 the preferences include 𝑠1, 𝑠2, 𝑠3, and her neighbors in 𝐺. Finally, there are 𝑞 + 1 rooms, each having capacity 
3. Now 𝑠1, 𝑠2, and 𝑠3 must be allocated to the same room, as otherwise one of them, say 𝑠1 , is in a room without 𝑠2 and 𝑠3 and thus 
envies any student in the same room as 𝑠2 . This implies that the minimum satisfaction of every student is at least two, as a student 
with lower satisfaction would envy 𝑠1. Consequently, an envy-free allocation corresponds to a partition of 𝐺 into triangles.

Vice versa, to any partition of 𝐺 into triangles we associate the allocation obtained by replicating the partition on 𝑞 of the rooms 
and additionally allocating 𝑠1, 𝑠2, 𝑠3 into the (𝑞 + 1)-th room. This allocation is envy-free, as every student shares the room with 
exactly two of her preferences and there is no margin of improvement (as all rooms have capacity 3). □

On the other hand, for double rooms and a symmetric social digraph, envy-free allocations can be efficiently detected via reductions 
to perfect matching.

Proposition 4.6. In the Cardinal Roommate Allocation problem, if all room capacities equal 2 and the social digraph 𝐺 is symmetric, an 
envy-free allocation exists if and only if 𝐺 has a perfect matching. In the Ordinal Roommate Allocation problem, if all room capacities equal 
2 and the truncated social digraph of level 1, 𝐺1, is symmetric, an envy-free allocation exists if and only if 𝐺1 has a perfect matching.

Proof. One direction follows from the proof of Proposition 4.3: when 𝐺 (respectively, 𝐺1 for the ordinal case) does not admit a perfect 
matching, in any allocation there must be some student that does not share the room with any of her neighbors, and is therefore 
envious of someone else. For the other direction, if 𝐺 (resp., 𝐺1) has a perfect matching consider the corresponding allocation (where 
each matched pair is allocated to a separate room) and observe that the payoff of every student under this allocation is equal to 
1. Hence, no student 𝑖 can improve her payoff after swapping with some other student 𝑗, as the largest payoff achievable in any 
allocation is also equal to 1 (due to capacities). □

5. Conclusions

In this work we have considered egalitarian roommate allocations under two notions of payoffs: ordinal payoffs, which are suitable 
when preferences are ordered, and cardinal payoffs, which are more suitable for approval preferences. One implication of our results 
is that when optimal allocations are sought, approval preferences can be harder to deal with than ordered preferences.

The ordinal (ORA) model has the advantage of being tractable when the maximal room capacity is constant. On the other hand, 
the optimality property in ORA is rather strong, as the ordinal payoff for a student 𝑠 is the maximum 𝑘 such that 𝑠 shares a room with 
their first 𝑘 choices. So, for example, if 𝑠 shares a room 𝑅 of capacity 4 with their 1st, 99th and 100th choices, 𝑠 obtains a payoff of 1, 
whereas if 𝑠 shares 𝑅 with their 2nd, 3rd and 4th choices, 𝑠 obtains a payoff of 0. This may be too restrictive in certain applications, 
and it could be more interesting to consider a more flexible interpretation of an allocation based on 𝑠’s ordinal preference list.

We have also studied the complexity of finding envy-free allocations or swap-resistant allocations under several scenarios. One 
interesting case that we did not settle is the complexity of finding envy-free allocations under ordinal payoffs when the maximal room 
capacity is constant; we leave this as an open problem.
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