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Abstract. An effective means to reduce the inefficiency of Nash flows in non-
atomic network routing games is to impose tolls on the arcs of the network. It is
a well-known fact that marginal cost tolls induce a Nash flow that corresponds
to a minimum cost flow. However, despite their effectiveness, marginal cost tolls
suffer from two major drawbacks, namely (i) that potentially every arc of the
network is tolled, and (ii) that the imposed tolls can be arbitrarily large.

In this paper, we study the restricted network toll problem in which tolls can be
imposed on the arcs of the network but are restricted to not exceed a predefined
threshold for every arc. We show that optimal restricted tolls can be computed
efficiently for parallel-arc networks and affine latency functions. This generalizes
a previous work on taxing subnetworks to arbitrary restrictions. Our algorithm
is quite simple, but relies on solving several convex programs. The key to our
approach is a characterization of the flows that are inducible by restricted tolls
for single-commodity networks. We also derive bounds on the efficiency of re-
stricted tolls for multi-commodity networks and polynomial latency functions.
These bounds are tight even for parallel-arc networks. Our bounds show that
restricted tolls can significantly reduce the price of anarchy if the restrictions
imposed on arcs with high-degree polynomials are not too severe. Our proof is
constructive. We define tolls respecting the given thresholds and show that these
tolls lead to a reduced price of anarchy by using a (4, it )-smoothness approach.

1 Introduction

Congestion in traffic networks has several negative effects as it causes, e.g., environ-
mental pollution, waste of natural resources and time, stress on the traffic participants,
etc. With the increase in traffic in recent years, it becomes an increasingly important
issue to implement regulation means that efficiently reduce congestion in networks. In
this context, road pricing has long been recognized as being one of the most effective
regulation means. The idea is to charge traffic participants for the usage of roads by
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imposing tolls. Such negative incentives usually lead to a change in behavior in that
traffic participants, for example, travel along longer (but less congested) routes, avoid
certain parts of the network (at certain times), or do not travel at all during peak-times,
etc. Recent technological advances, in particular, in satellite technology, facilitate the
realization of such pricing schemes, e.g., by enabling to collect tolls electronically. Fur-
thermore, they open up the possibility to implement dynamic pricing schemes, in which
tolls may vary over time or depend on congestion.

In this paper, we study the problem of computing efficient pricing schemes to reduce
congestion in network applications caused by selfish behavior. In our studies we use
a well-established model of traffic routing in networks, also known as the Wardrop
model. In this model, we are given a directed graph G = (V,A) with latency functions
£:= (£4)qea on the arcs, k commodities (s1,#1), ..., (s, %) € V X V, and a non-negative
demand r; for every commodity i € [k]. The latency functions are used to model the
(flow-dependent) congestion on the arcs and are assumed to be non-negative and non-
decrasing. The demand r; of commodity i € [k] specifies the amount of flow that needs to
be routed from s; to #;. A common interpretation is that the r; units of flow represent an
(infinitely) large population of players, each controlling an infinitesimal amount of the
r; flow units. The goal of every player is to send his flow along a shortest latency path
from its source s; to its destination #;. The resulting game is also called a non-atomic
network routing game. A flow f in which no player has an incentive to unilaterally
deviate from its path is called a Nash flow (or Wardrop flow).

In general, a Nash flow can be inefficient in the sense that it does not correspond
to an optimal flow that minimizes social cost, i.e., the total average latency. The price
of anarchy [14] is a measure to quantify the efficiency loss caused by selfish behavior.
In the context of network routing games, it is defined as the worst-case ratio over all
instances between the cost of a Nash flow and the cost of an optimal flow. In a seminal
work, Roughgarden and Tardos [19] show that the price of anarchy of non-atomic net-
work routing games is unbounded in general and provide bounds for specific classes of
latency functions, e.g., polynomial latency functions.

An effective means to reduce the price of anarchy in network routing games is to
impose non-negative tolls T := (7,)4ca on the arcs. We consider both dynamic and static
tolls in this paper. In the dynamic case, the toll that is imposed on arc a € A is defined by
a (flow-dependent) toll function 7, which maps every flow value x to a non-negative toll
7,(x). In the static case, the toll on arc a € A is specified by a non-negative constant .
By traversing an arc a € A with flow value x, a player now experiences a delay of £, (x)
and additionally has to pay a toll of 7,(x). We let & > 0 be a parameter that specifies
how players value time over money. That is, the combined cost of an arc a € A with flow
value x is defined as ¢,(x) := £,(x) + o7, (x). We assume that every players’ goal is to
choose a path that minimizes his total combined cost. A stable outcome of this game is
a Nash flow with respect to the combined cost functions ¢ := (@,)ea.

A fundamental result due to Beckman, McGuire and Winsten [2] states that
marginal cost tolls induce a Nash flow that is socially optimal. That is, if we define
Ta(x) := Lx- €, (x) for every arc a € A then a Nash flow with respect to ¢ is an optimal
flow with respect to £. Even though marginal cost tolls are theoretically appealing, they
have two major drawbacks: (i) It is assumed that tolls can be imposed on every arc of



the network. (ii) The tolls imposed on the arcs can be arbitrarily large. These are severe
drawbacks that rule out the applicability of marginal cost tolls in several situations.

In this paper, we overcome these drawbacks by restricting the set of feasible tolls.
These restrictions are assumed to be given exogenously by means of threshold functions
on the arcs. That is, in a restricted network toll problem we are given an instance of
the network routing game together with some threshold functions 6 := (6,).ca that
specify an upper bound on the maximum toll chargeable on each arc. As for tolls, we
call threshold functions 68 dynamic if they are flow-dependent and static otherwise. We
call the tolls T = (7,)4ca O-restricted if for every a € A, 0 < 7,(x) < 6,(x) for all flow
values x > 0. Given O-restricted tolls 7, let f* denote a Nash flow that is induced by 7,
i.e., f7 is a Nash flow with respect to ¢ = £+ 7.

Our model incorporates several interesting special cases. For example, we can en-
force that tolls are only imposed on a subnetwork induced by a subset 7 C A of the arcs
by setting 6, = oo for every a € T and 6, = 0 otherwise. Another example is that we
can restrict the toll on each arc a € A by a (flow-independent) threshold value 6,. Yet
another example is that we can require that the toll on each arc a € A does not exceed a
certain fraction of the latency of that arc, e.g., 6,(x) = €£,(x) for some € > 0.

Given the restrictions imposed on the set of feasible tolls, the following two natural
questions arise and will be studied in this paper:

1. Can one quantify the efficiency of O-restricted tolls?
We are interested in studying the efficiency of O-restricted tolls in relation to the
cost of a socially optimal flow. To this aim, we define the efficiency of O-restricted
tolls as the minimum ratio of the cost of a Nash flow f7 inducible by 8-restricted
tolls 7 and the cost of an optimal flow. We also address the problem of computing
O-restricted tolls that guarantee a certain efficiency.

2. Can one compute (approximately) optimal @-restricted tolls?
We consider the problem of computing (approximately) optimal 6-restricted tolls.
We call O-restricted tolls T optimal if the Nash flow f7 induced by 7 has cost less
than or equal to any other Nash flow that is inducible by 0-restricted tolls. Similarly,
O-restricted tolls T are said to be A-approximate for some A > 1 if the cost of f7 is
at most A times the cost of any other Nash flow inducible by 0-restricted tolls.

Clearly, from the discussion above it follows that we obtain an efficiency of one if
6, = oo for every a € A. On the other hand, the efficiency coincides with the price of
anarchy if 8, = 0 for every a € A.

The special case that tolls can only be imposed on a subset T C A of the arcs has
recently been studied by Hoefer, Olbrich and Skopalik [12]. For this case, the authors
derive an algorithm to compute optimal 7 -restricted tolls for parallel-arc networks with
affine latency functions. They also prove that the problem of computing optimal tolls
is NP-hard, even for two-commodity networks and affine latency functions. Note that
the restricted network toll problem that we consider here is more general, and thus this
hardness result extends to our setting.

Our Results. The main contributions presented in this paper are as follows:
In Section 3 we show that optimal 6-restricted tolls can be computed efficiently in
parallel-arc networks with affine latency functions. This extends the result of Hoefer et



al. [12] to arbitrary dynamic threshold functions on the arcs. Our approach is different
from the one described in [12]. Despite its generality, our algorithm is quite simple.
The key to our approach is a characterization of the flows that are inducible by 6-
restricted tolls. Our characterization applies to single-commodity networks in general.
It allows us to determine whether a given flow is inducible by O-restricted tolls by
verifying whether there is a negative cycle in a properly constructed graph (which can
be done in polynomial time). Based on this characterization, we derive an algorithm to
compute optimal O-restricted tolls for parallel-arc networks. Our algorithm works for
general latency functions; however, we can only guarantee polynomial running time if
all latency and threshold functions are affine (in which case we need to solve a series of
convex quadratic programs).

In Section 4 we derive upper bounds on the efficiency of dynamic 6-restricted tolls
for multi-commodity networks and polynomial latency functions of degree p. Our pric-
ing scheme is a simple and natural adaptation of marginal cost tolls to the restricted
setting: for every arc a € A we charge marginal cost tolls if this does not exceed the
threshold 6,, and we charge 6, otherwise. Essentially, we show that these tolls achieve
an efficiency that depends on the degree of the polynomial and the smallest ratio be-
tween the threshold value and the latency of an arc (see Section 4 for precise state-
ments). The technique that we use to prove these bounds rests on a (A4, it )-smoothness
approach [18] that was used (implicitly) in previous works to bound the price of anarchy
of routing games (see, e.g., [1, 3, 4, 10]) and put into a more general context in [18]. We
also prove that our bounds are tight, even for parallel-arc networks. Our pricing scheme
also provides a way to compute O-restricted tolls for multi-commodity networks and
polynomial latency functions that are A-approximate, where A is equal to the estab-
lished efficiency.

Our findings support the intuition that, in order to achieve a good efficiency, it is
more important to be able to impose tolls on the arcs that are sensitive to flow changes
(high degree polynomials) than on the arcs that are relatively insensitive to flow changes
(low degree polynomials).

For the special case that all restrictions are of the form 6,(x) = €/,(x), our bound
matches exactly the price of stability of €-Nash flows shown by Christodoulou, Kout-
soupias and Spirakis [5]. Our result therefore shows that such tolls allow us to reduce
the (generally large) inefficiency of Nash flows to at least the price of stability of £-Nash
flows; the actual instance-dependent efficiency of such tolls might be better than that.

All our results mentioned above hold for dynamic threshold functions (and thus also
for static ones).

Related Work. As mentioned above, most related to our work is the recent article [12]
by Hoefer et al. who study the problem of taxing subnetworks, a special case of the
restricted toll problem that we consider here. The authors focus on the problem of com-
puting optimal tolls. They show that this problem is NP-hard for two-commodity net-
works and affine latency functions by a reduction from partition. They also derive an
algorithm to compute optimal tolls for parallel-arc networks and affine latency func-
tions. Their algorithm is sophisticated and crucially exploits that the restrictions are of
the form 6, € {0, e} for every arc a € A.



The classic result that marginal cost pricing induces optimal flows is due to Beck-
mann, McGuire and Winsten [2]. More recently, it has been shown that optimal-
inducing tolls exist even when users are heterogeneous, i.e., have different latency/toll
trade-offs: this was first shown for single-commodity networks by Cole, Dodis and
Roughgarden [6] and then extended to the multi-commodity case by Fleischer, Jain and
Mahdian [9] and independently by Karakostas and Kolliopoulos [13].

Cole et al. [7] study the setting in which the cost of each user is defined as the
latency plus the taxes paid by the user. For heterogeneous users, Fleischer [8] shows
that if there is a single commodity, then tolls that are linear in the maximum latency of
the optimal flow are sufficient to force the users to the system optimum. The question of
computing tolls that enforce particular flows has been studied in [11]. The above papers
all study the non-atomic model; tolls for heterogeneous users in the context of atomic
routing games have been considered by Swamy [20].

Bounds on the price of anarchy and the price of stability of €-Nash flows in non-
atomic and atomic congestion games, including network congestion games, have been
derived recently by Christodoulou et al. [5].

2 Preliminaries

We provide formal definitions of the concepts introduced in the Introduction. Suppose
we are given an instance ¥ = (G, ({a)aca, (Si,t:)ici), (i)icy) of the non-atomic net-
work routing game. Let &7 denote the set of all simple directed s;,#;-paths in G and
define & := Ujcy . An outcome of the game is a flow f: & — R that is feasible,
i.e., Ypeo, fp = ri for every i € [k]. Given a flow f, the total flow on arc a € A is de-
fined as f, := Y pc ».qcp fr. We define the latency of a path P € &2 with respect to f
as Up(f) := Yaepla(fa). The total cost C(f) of f is given by its average latency, i.e.,
C(f) :=XYpew frlp(f). A flow that minimizes C(-) is called optimal and denoted by
f*. Afeasible flow f is called a Nash flow (or Wardrop flow) with respect to £ := (£4) 4ca
if and only if

Vie k], VP P, fp>0: Cp(f) <tp(f) VP €2, Q)

Throughout this paper, we assume that the latency functions are non-negative, non-
decreasing, differentiable and semi-convex, i.e., x- £,(x) is convex for every arc a € 4;
such latency functions are also called standard [16]. The cost of a Nash flow is unique
if the latency functions are standard.

In a restricted network toll problem we are given an instance .# of the network
routing game and threshold functions 0 := (6,),e4 on the arcs. In this setting, non-
negative tolls 7 := (7,)zea can be imposed on the arcs that have to obey the bounds
defined by the threshold functions (6,)4ca. In the most general setting, both tolls and
threshold functions are flow-dependent. Unless stated otherwise, we assume that both
tolls and threshold functions are non-decreasing and continuous. Given a feasible flow
S, we define the combined cost that a player experiences by traversing arc a € A as
0a(fa) = La(fa) + at4(f,). We assume that every players’ goal is to choose a path P
that minimizes the combined cost £p(f) + @tp(f), where Tp(f) := ¥ 4ep Tu(fa). For



notational convenience, we assume that o is normalized to 1. This is without loss of
generality because we can always divide all toll functions by c.

The tolls T = (7,)4ea are called O-restricted if for every arc a € A, 0 < 7,(x) < 6,(x)
for all flow values x > 0. We define .7 () as the set of all O-restricted tolls, i.e.,

T(0) :={(Ta)aca | Va € A : 0 < 1,(x) < 6,(x) Vx > 0}.

Given O-restricted tolls 7, let f* denote a Nash flow that is induced by 7, i.e., f7 is
a Nash flow with respect to ¢ = ¢+ 1. The efficiency of O-restricted tolls for a given
instance of the restricted network toll problem is defined as min;c 7(9)C(f*)/C(f*).
That is, we relate the cost of the best Nash flow f7 that is inducible by 6-restricted tolls
T to the cost of an optimal flow. Note that we account for the average latency of the
network here rather than the total disutility (latency plus toll) of the players. The reason
for that is that we are interested in characterizing the effect of tolls on the performance
(measured in terms of average latency) of the network.

Given the restrictions 8 = (6,;)4ea on the arcs, O-restricted tolls T are optimal if the
Nash flow f° induced by 7 satisfies C(f7) < C(f?) for all Nash flows f* induced by
O-restricted tolls 7. Similarly, @-restricted tolls 7 are p-approximate for some p > 1 if
C(f7) < pC(f®) for all Nash flows f7 induced by @-restricted tolls 7.

3 Computing optimal 0-restricted tolls

We first give a characterization of the flows that are inducible by 6-restricted tolls for
single-commodity networks. This characterization will be the key to derive an algorithm
that computes optimal 0-restricted tolls for parallel-arc networks. All results presented
in this section hold for flow-dependent threshold functions 6.

3.1 Characterization of inducible flows for single-commodity networks

We consider the problem of determining whether a given flow f is inducible by 0-
restricted tolls. We focus on the single-commodity case. As we will see, this problem
reduces to verifying whether there is a negative cycle in a properly constructed graph.

Suppose we are given a flow f. Recall that f is a Nash flow with respect to ¢+ T
iff for every two s,¢-paths P,P' € & with fp > 0 it holds £p(f) + Tp < Lp/(f) + Tpr.
Said differently, every flow-carrying path must be a shortest path with respect to the
combined cost ¢ := £+ 7. Subsequently, let ¢,, 7, and 6, refer to £,(f,), T,(f,) and
0,(f,), respectively. (In the discussion below, several definitions will depend on the flow
f; however, for notational convenience we often do not state this dependence explicitly.)

We use the following alternative characterization of Nash flows (see, e.g., [17]). For
every vertex u € V, let §, be the length of a shortest path from s to u with respect to
£+ 1. Define A™ as the set of arcs with positive flow, i.e., AT :={a €A : f, > 0}. Then
f is a Nash flow with respect to ¢ = £+ 7 if and only if (i) 8, < 6, + £, + 7, for every
arc a = (u,v) €A, and (ii) 8, = &, + £, + 1, for every arc a = (u,v) € A™.



We can thus express the set .% (0) of 0-restricted tolls that induce f as follows:

F(0):={(t)aea| 6= < ly+71, Ya= (u,v) €cA\AT
6 — 08, =Vl,+1, Ya=(u,v) €A" @)
o, free YueV
0< 7, <6, VacAl).

Note that the (J,),ey are unrestricted in this formulation. Alternatively, we could have
required that § = 0 and &, > 0 for every u € V. However, this is equivalent to the
formulation (2) stated above.

We define a graph G = G(f) = (V,A) with arc-costs ¢ : A — R as follows: G con-
tains all arcs @ = (u,v) € A and, additionally, for every arc a = (u,v) € A" the reversed
arc (v,u). We call the former type of arcs forward arcs and the latter type of arcs back-
ward arcs. The cost of each forward arc a = (u,v) € Ais equal to ¢, := ¢, + 6,. Every
backward arc a = (v,u) € A has a cost equal to the negative of the latency of its reversed
arc (u,v) €A, ie., c,:= —é(w).

Given some subset X of arcs and functions (g,)scx, we define g(X) as a short for
Zan 8a-

Theorem 1. Let f be an arbitrary feasible flow. Then f is inducible by O-restricted
tolls if and only if G(f) does not contain a cycle of negative cost.

Proof. Suppose G = G( /) contains a cycle C C A of negative cost. Since only backward
arcs have negative cost, at least one backward arc is part of C. Partition C into the set
F of forward arcs and the set B of backward arcs, respectively. Let B denote the set of
reversed arcs in B. Note that B C A™. We have ¢(C) = ¢(F) +c¢(B) = {(F)+ 0(F) —
{(B)<O.

Suppose for the sake of contradiction that T = (7,)ea € #(0) are feasible tolls
that induce f. By the feasibility of 7, we have for every forward arc a = (u,v) € F,
Oy — 8y < (1) + T(,) and for every backward arc a = (u,v) € B, 6, — 8, = () + T(vu)>

or equivalently, &, — 8, = —£(,,;) — T(.,)- Summing over all arcs in C, we obtain
0=Y 8-8< ¥ lunT%un— L fouw+ T
(u,v)eC (u,v)eF (u,v)eB

< U(F)+6(F) —{(B)— ©(B) < —1(B),

where the last inequality follows from the observation above. Thus 7(B) < 0 which is a
contradiction since 7, > 0 for every arc a € A.

Next suppose that G does not contain a negative cycle. We can then determine the
shortest path distance &, from s to every node u € V in G with respect to c. (These
distances are well-defined because G does not contain a negative cycle.) Note that for
every arc a = (u,v) € A we have §, < &, + C(u,v)- Based on these distances, we extract
tolls T := (7,)qea as follows: For every arc a = (u,v) € A, we define 7, := max{0, J, —
O, — {4 }. We show that T induces f. By definition, we have for every arc a = (u,v) € A:
8, — 8, — 7, < {,. Consider an arc a = (u,v) € AT. Then §, — §, < —¢,, or equivalently,
6, — 0y — ¥, > 0. Thus, 6, — 5, — 1, = {,. Clearly, 7, > 0 for every a € A. Moreover, for
every arc a = (u,v) € A we have 8, — 6, < £, + 6, and thus 6, — 8, — ¢, < 6,. We can
infer that 7, < 6, for every a = (u,v) € A. O



Note that the proof of the theorem also provides a way to extract the respective tolls
if f is inducible by B-restricted tolls: Given f, we compute the shortest path distance
8, with respect to ¢ from s to u for every u € V and define the toll 7, for every arc
a = (u,v) € A as in the proof of Theorem 1.

The following corollary is an immediate consequence of the above theorem and the
fact that negative cycles can be detected efficiently (e.g., by the Bellman-Ford algo-
rithm).

Corollary 1. Given a flow f, we can determine in polynomial time whether f is in-
ducible by O-restricted tolls.

3.2 Computing optimal tolls in parallel-arc networks

In light of the above characterization, the problem of computing 6-restricted tolls such
that the cost C(f7) of the induced Nash flow f7 is minimized is equivalent to the prob-
lem of computing a minimum cost flow f such that G(f) does not contain a negative
cost cycle. Once we have determined f, we can extract the optimal 6-restricted tolls
T as defined in the proof of Theorem 1. This equivalence constitutes the basis of our
algorithm to compute optimal tolls in parallel-arc networks.

Let G = (V,A) be a parallel-arc network and let f be a feasible flow. The condition
of Theorem 1 then reduces to the following property: f is inducible by O-restricted tolls
if and only if

YaeA, f,>0: La(fo) <Ly(fur)+0u(fur) Vd € A. 3)

Note that these conditions are similar to the Nash flow conditions in (1) (specialized to
parallel-arc networks) with the difference that we allow some additional slack 6, (f,)
on the right-hand side. Thus, our goal is to determine a minimum cost flow f among all
flows that satisfy (3).

Corollary 2. The problem of computing optimal 0-restricted tolls for the parallel-arc
restricted network toll problem is equivalent to computing a minimum cost flow f sat-

isfying (3).

Computing a minimum cost flow can be done efficiently by solving a convex pro-
gram. However, here we need to ensure (3) additionally and it is a-priori not clear how
to encode these constraints. Note that for Nash flows the corresponding conditions are
ensured by applying the Karush-Kuhn-Tucker conditions to a convex program with an
appropriately chosen objective function. A similar approach does not work here because
we cannot deliberately choose an objective function and because of the asymmetry in
(3) (due to the slack).

Our approach exploits the following key insight. Fix some minimum cost flow f*
satisfying (3) and suppose we knew the minimum value z = min{¢,(0) + 6,(0) | a €
A, f¥ =0} among all zero-flow arcs in f*. Let z = oo if all arcs have positive flow
in f*. We can then compute an minimum cost flow f* = (f%),ca satisfying (3) as
follows. From (3) we infer that fZ = 0O for every arc a € A with £,(0) > z. Let
A*={a € A | ¢,(0) < z} be the remaining arcs. On the arcs in A%, we compute a



Algorithm 1: Algorithm to compute a minimum cost flow satisfying (3)

1 LetZ={0,(0)+6,(0)|acA}.

2 for every z € ZU{e} do

3 Define A% :={a € A (,(0) <z}.
4

5

Set f% = 0 for every a ¢ A*.
Let (f%)qca: be an optimal solution of cost C* to the program in (4).
(Remark: (f%)qca: is undefined and C* = oo if (4) is infeasible.)
end
7 Return f = f* with C* minimum among all z € ZU {o}.

£

feasible flow (f2)seaz of minimum cost satisfying £,(f%) < z for every a € A® and
Ca(f5) < La(fa) 4 64(f5) for every a,a’ € A%. The latter can be done by solving the
program:
C*=min Yuen: fila(f3)
S.L. ZaeAZ fj =r
fe20 Ya € A* )
ba(f3) <z Va € A*
1a(f3) < Lo (f2) +60(f3) Vard €A

a/

The only remaining problem is that we do not know z. However, because there are at
most |A| + 1 different possibilities (including the case z = o), we can simply compute
a flow f* for each possible value z and finally return the best flow f that has been
encountered. The complete algorithm is summarized in Algorithm 1.

Theorem 2. Algorithm I computes a minimum cost flow f satisfying (3).

Proof. Let f = f* be the flow returned by Algorithm 1. Clearly, f is a feasible flow by
construction. We argue that f satisfies (3). Consider some a € A™. Note that f,; = 0 for
every arc a’ ¢ A% and thus a € A®. Because (f,)4ea: is a feasible solution to (4), we have
la(fa) <2< Ly (0) = Ly (fur) for every a’ ¢ A% Moreover, £y(fu) < Ly (fur) + Ou (fu)
for every a’ € A%. Thus, f satisfies (3).

Let f* be an optimal flow. We show that C(f) < C(f*). Define z as the minimum
value £, (f) + 04(f)) of azero-flow arc a € A, i.e., z=min{¢,(0) + 6,(0) |[a € A, f} =
0}. Let z = oo if all arcs have positive flow. Note that £ = 0 for every a ¢ A® and thus
C(f*) = Yucaz [ila(f). Observe that (f)seaz is a feasible solution for the program in
(4) with respect to z. Thus C(f*) < C(f*). Because C(f) < C(f*), this concludes the
proof. a

Finally, observe that the program in (4) is convex if all latency and threshold func-
tions are affine, i.e., of the form g x+ go with g1, g9 > 0. In particular, the constraints of
(4) are linear and the objective function is convex quadratic in this case, so the program
can be solved exactly in polynomial time [15].

Corollary 3. Algorithm 1 computes a minimum cost flow f satisfying (3) in polynomial
time if all latency and threshold functions are affine.

Hoefer et al. [12] derived a similar result for the special case that 6, € {0,e} for
every arc a € A.



4 General efficiency of O-restricted tolls

We provide bounds on the efficiency of O-restricted tolls for multi-commodity networks
with polynomial latency functions of degree p. Our approach is constructive: We show
how to compute O-restricted tolls for a given instance of the restricted network toll
problem that guarantee the claimed efficiency bound. The results given in this section
hold for dynamic threshold functions.

Let .2, be defined as the set of all polynomial functions g of the form g(x) =
ZZ:O gqx? with non-negative coefficients g;,d =0, ..., p. Moreover, let .#, refer to the
set of all monomial functions of the form £, (x) = g,x? with non-negative coefficient g,.
Suppose we are given an arc a € A with ¢, € .Z),. We can replace a by a sequence of
p+ 1 arcs with latency functions in .#,,...,.#, respectively, in the obvious way. We
can therefore assume without loss of generality that all latency functions (¢,)4ea of the
given instance are monomials.

The basic idea is very simple. We define toll functions (7,)4ea as follows:

To(x) := min{x- £,(x), 6,(x)}. )

That is, on each arc a € A, we impose marginal cost tolls x - £/, (x) if this does not exceed
the threshold 6,(x) and otherwise charge the maximum possible toll 6,(x). Clearly,
these tolls are O-restricted. Note that these tolls are dynamic. It is not hard to derive
tolls that are static and achieve the same efficiency (details will be given in the full
version).

Let ¢ := (¢,)qea be the combined cost, i.e., for every a € A, @,(x) := £,(x) + T, (x)
for every x > 0, and let f = f* be a Nash flow with respect to ¢. We next derive a
bound on the ratio C(f)/C(f*), where f* is an optimal flow. We adapt the (A,u)-
smoothness approach [18] (see also [3, 10]). Because f is a Nash flow with respect
to @, it satisfies the following variational inequality, i.e., for every feasible flow x,
Yaca 0a(fa)fa < Yaca 0a(fa)xq. By the definition of ¢, we have

f) < Z gtt(fu)xu+ra(fa)(xa *fa) < Z a)([ml)ﬁa(fa)fuJr)LKa(xa)xa, 6)

acA acA

where we define

(la(fa) + Ta(fa) = Ala(xa))Xa — Ta(fa) fa
w(l,,A):= su )
( ) f;,,xapzo gtl (fll)fa
We assume by convention that 0/0 = 0. Finally, let @(A) := sup,c4 © (4, A ). With this

definition, (6) implies C(f) < @(A)C(f) + AC(x). Because (1) depends on A, let A
refer to the values of A such that @(A) < 1. Then for every A € A, we obtain

C(f) <A(l- o) 'Ck). (™

The goal is to find A € A that provides the best upper bound. We omit some proofs in
this section due to space restrictions.

Lemma 1. Let ¢, € #,; and define €, := T,(f2)/la(fa). We have w(lg,A) =

(“E) (efin) " — o Moreover, o(ta, 1) < 1 for 2 = (5) (7).




We continue to study the values for @(¢,,2) and A. Observe that for every arc a € A
with ¢, € .4, there are two possibilities for &, = T,(f,)/Ca(fa): I Tu(fa) = fu- L, (f2)

then g, = d; otherwise, 7,(f,) = 0,(fa) < fa-£,(fa) and thus &, = 0,(f,)/la(fa) < d.

We thus obtain (ldff]“) (ddﬁ)d <( %) (d%l)d. Choosing A = 1 therefore satisfies
the restrictions imposed on A in the above lemma (and is tight for d = 0). Subsequently,
we fix A := 1. We need to derive an upper bound on @(¥,, 1): Note that @0 (¢,,1) de-

creases as g, increases. This motivates the following definitions:

g =min{e, |a€A, boesyy and o(d,1)=d(FE) g @®)

Corollary 4. Suppose ;= d. Then o(d,1) =0.

Observe that if we have §; = d for every d =0, ..., p then the above corollary in
combination with (7) implies that C(f) < C(x) (which actually follows readily from the
observation that in this case marginal cost tolls are O-restricted and induce an optimal
flow).

In order to state our results below, it will turn out to be convenient to define

v(d,€) = ((1+s)(1 —diﬂ(%)l/d))_l.

Theorem 3. Given an instance of the restricted network toll problem with latency func-
tions in %), the efficiency of the tolls in (5) is no worse than maxg—o,. , ¥(d,€q).

Proof. The proof follows from (7) with A = 1 (A € A as argued above). O

We give some interpretation of the above theorem. Our result suggests that it is
more important to impose large tolls on arcs with high degree latency functions than
on the ones with low degree functions. As an example, consider the following extreme
situation: Suppose the restrictions (6,),e4 are such that we can impose marginal cost
tolls on all arcs a € A with latency functions of degree larger than ¢, and no tolls on all
other arcs. The above bound then proves that the tolls in (5) achieve an efficiency no
worse than the price of anarchy for degree ¢ polynomials, i.e., ¥(z,0) (see [19]).

We next show that the bound in Theorem 3 is tight.

Theorem 4. For every p and every choice of 6 with 0 < & < p there is a parallel-arc
instance of the restricted network toll problem with latency functions in £, such that
the efficiency of the tolls in (5) is equal to y(p, 0).

The next corollary characterizes the efficiency of O-restricted tolls enforcing that
the toll on each arc does not exceed an e-fraction of the travel time along that arc. This
bound matches exactly the price of stability of e-Nash flows shown by Christodoulou,
Koutsoupias and Spirakis [5].

Corollary 5. Given an instance of the restricted network toll problem with latency
functions in £, and threshold functions of the form 6,(x) = €l,(x), the efficiency of
the tolls in (5) is no worse than 1 if € > p and no worse than y(p, €) otherwise.

Our approach can also be used to compute 0-restricted tolls that are p-approximate,
where p is the efficiency guarantee stated in Theorem 3 (details will be given in the full
version of the paper).
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