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Abstract: The approach to equilibrium in certain dynamical systems can be usefully described in
terms of information-theoretic functionals. Well-studied models of this kind are Markov processes,
chemical reaction networks, and replicator dynamics, for all of which it can be proven, under suitable
assumptions, that the relative entropy (informational divergence) of the state of the system with
respect to an equilibrium is nonincreasing over time. This work reviews another recent result of this
type, which emerged in the study of the network optimization dynamics of an acellular slime mold,
Physarum polycephalum. In this setting, not only the relative entropy of the state is nonincreasing, but
its evolution over time is crucial to the stability of the entire system, and the equilibrium towards
which the dynamics is attracted proves to be a global minimizer of the cost of the network.

Keywords: dynamical systems; network optimization; stability analysis; global attractor; relative
entropy; information geometry
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1. Introduction

Information-theoretic concepts, such as negative entropy, and the related notion of
free energy have long been recognized as relevant to natural and living systems [1–4]. It
turns out that the approach to equilibrium in some classes of dynamical systems can be
usefully studied from an information-theoretic perspective. Baez and Pollard [5] give an
excellent overview of such an approach. Consider, for example, a system modeled as a
continuous-time Markov process on K distinct states, where the probability of the state of
the system at time t being i ∈ {1, 2, . . . , K} is denoted by pi(t). Such a system is ruled by
the so-called master equation:

d
dt

p(t) = H p(t) (1)

where p(t) = (p1(t), p2(t), . . . , pK(t)) and H is an appropriate K × K matrix. Draw-
ing from information theory, one can consider the relative entropy (informational di-
vergence) between the evolving distribution p(t) and another probability distribution
q = (q1, q2, . . . , qK) on the set of states; this is defined as

D(q, p(t)) :=
K

∑
i=1

qi log
qi

pi(t)
. (2)

If one chooses q as a steady state distribution (that is,Hq = 0), then one can show that

d
dt

D(q, p(t)) ≤ 0,

and if the steady state distribution is unique, this can in turn be used to argue that p(t) is
attracted to q over time. In other words, by proving monotonicity of the relative entropy (2)
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over time, one can conclude that the steady state distribution q is also a global attractor.
This approach is not limited to continuous-time Markov processes and the linear ordinary
differential equation system (1), but extends to other types of models such as discrete-time
Markov chains, chemical reaction networks, and several models of population dynamics,
such as the replicator dynamics [5–9].

This work discusses a different, nonlinear, class of systems for which the information-
theoretic approach is successful: a family of dynamical systems modeling the network
dynamics of the slime mold Physarum polycephalum [10,11].

The slime mold Physarum polycephalum is an acellular slime mold (myxogastrid) [12].
In its plasmodium stage, it forms a tubular network that reshapes and adapts to the
environmental stimuli. The reshaping is driven by the streaming of cytoplasm through
the network; tubes not sustained by cytoplasmic streaming eventually decay and dissolve.
This reshaping mechanism has been experimentally observed to be remarkably effective
at optimizing the use of resources [13,14]. In particular, in one laboratory experiment,
the slime mold network is distributed uniformly over a maze, and two food sources are
positioned in two points A and B of the maze. Over time, the slime mold retracts all tubes
except those corresponding to the shortest path between A and B.

A mathematical model of the network dynamics of P. polycephalum’s plasmodium
has been first proposed by Tero, Kobayashi and Nakagaki [10], who also showed how
the model implied, for certain values of the parameters and for very simple networks,
convergence to the optimal equilibrium point represented by the shortest path in the
network. Subsequently, variations of this model have been proved to converge to the
optimal network configuration for arbitrary network topologies for a wide range of model
parameters [15–18]. The goal of this paper is to give a gentle introduction to Physarum
polycephalum’s network modeling and to its analysis, and to explain how such analysis can
be seen as another example of the information-theoretic approach to dynamical systems.
Thus, the significance of the results is that they widen the scope and applicability of the
information-theoretic approach in dynamical systems.

Structure of this article. Section 2 introduces one possible mathematical model for
Physarum polycephalum’s network dynamics. This model is analyzed in Section 3. Section 4
discusses related works and extensions of the model. Some conclusions are drawn in
Section 5.

2. Flow Constraints and Network Dynamics
2.1. Some Notation

For a vector x ∈ Rm, diag(x) is used to denote the m×m diagonal matrix with the
coefficients of x along the diagonal. The standard inner product of two vectors x, y ∈ Rm is
denoted by 〈x, y〉 := x>y. For a vector x ∈ Rm, ‖x‖p denotes the `p-norm of x (1 ≤ p < ∞),

that is, ‖x‖p := (xp
1 + xp

2 + . . . + xp
m)

1/p.

2.2. Cytoplasmic Flow and Kirchhoff’s Laws

In the experiments of Nakagaki et al. [10,13], P. polycephalum’s plasmodium forms an
evolving tubular network, in which the transport capacity of the edges, that is, the tubular
channels routing the cytoplasm, changes over time (see [19] for a video illustration). This
network is modeled mathematically as a connected weighted undirected graph G, with
node set N = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. Edges represent the tubular
channels, and nodes represent junctions between the tubes. Two special nodes in s0, s1 ∈ N
are distinguished; they correspond to the location of the food sources in the experiments.
Node s0 is called the source of the cytoplasmic flow, node s1 the sink; the choice of which
node is the source and which the sink is purely conventional.

The weight of an edge of G encodes the capacity of the corresponding tubular channel,
which is directly related (as detailed below) to the radius and length of the tube. The
capacity is a dynamic quantity, since as food is absorbed by the slime mold, and cytoplasm
flows through the network, the radius of the tubular channels will respond to the flow; this
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is discussed in the next section. For now, let us focus on the situation at a specific instant
in time.

At any time, the cytoplasmic flow through the network will be entirely determined by
the capacity of the edges. Fix an arbitrary orientation of the edges, and let B ∈ RN×E be
the incidence matrix of G under this orientation, that is,

Bve :=


+1 if node vs. is the tail of edge e
−1 if node vs. is the head of edge e
0 otherwise

(v ∈ N, e ∈ E).

Let N′ = N − {s1} and let A ∈ RN′×E be obtained from B by removing the row
corresponding to the sink s1. Moreover, let b ∈ RN′ be the vector defined by

bv :=

{
0 if vs. 6= s0,
1 if v = s0,

(v ∈ N′).

A flow (flux) q is represented by a vector in RE that expresses, for each oriented edge
e ∈ E, the amount of flow along the positive direction of that edge at a given time. Any
fluid flow from the source to the sink should obey flow conservation; this is expressed by the
linear system of equations

Aq = b. (3)

This is nothing but Kirchhoff’s current law which, in words, requires that the flow has
zero divergence everywhere except at nodes s0 and s1, where it has divergence, respectively,
+1 and −1 [20] (Chapter IX).

Example 1. Consider the network of Figure 1a. It holds N = {v1, v2, v3} with source s0 = v1,
sink s1 = v3, and E = {e1, e2, e3}. If the network is oriented as in Figure 1b, then B, A and b are,
respectively,

B =

 1 0 1
−1 1 0
0 −1 −1

, A =

(
1 0 1
−1 1 0

)
, b =

(
1
0

)
.

Note that matrix A is simply matrix B with row 3 dropped (since the sink is v3). Kirch-
hoff’s current law for a flow q = (q1, q2, q3) ∈ R3 through the edges (e1, e2, e3) corresponds to
the constraints: {

q1 + q3 = 1
−q1 + q2 = 0

Two examples of valid flows in this case are q = (1, 1, 0) (all the flow goes through the upper
path) and q′ = (1/2, 1/2, 1/2) (half of the flow goes through the upper path, and half goes through
the lower path). In general, any vector q ∈ Rm such that Aq = b encodes a valid flow.

s0 s1

v2e1

e3

e2

(a) An example network.

s0 s1

v2e1

e3

e2

(b) A corresponding oriented network.

Figure 1. Example network.
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An additional assumption is that the cytoplasmic flow q satisfies Kirchhoff’s potential law
(Section II.1) [20], which says that there exist real values {pv}v∈N (the pressure potentials
at the nodes) satisfying the hydrodynamic analogue of Ohm’s law (Poiseuille’s law). For an
edge e between nodes u and v, Poiseuille’s law states that

qe =
πR4

e (t)
8η

(pu − pv)

le
, for every e = (u, v) ∈ E (4)

where Re(t) is the radius of the tube at time t, and η is a viscosity constant. Thus, if the
capacity of edge e is defined as xe(t) := πR4

e (t)/8ηle and the resistance as re := 1/xe, these
are directly related to the length and radius of the tube at time t, and one can simply write

qe = (pu − pv)xe =
pu − pv

re
, for every e = (u, v) ∈ E. (5)

It is a standard fact from electrical network theory that, given a capacity vector x ∈ RE
>0

(or equivalently, a resistance vector r ∈ RE
>0), the flow q satisfying (3) and (5) is unique

(Chapter IX) [20]; this will be called the cytoplasmic flow, and is analogous to the electrical
flow in electrical networks. In fact, such a flow is also the unique valid flow from s0 to s1 of
least dissipation, that is, the unique optimal solution to the following optimization problem:

minimize q>X−1q (6)

subject to Aq = b.

Here, X ∈ RE×E is the diagonal matrix with the capacities xe1 , . . . , xem along the main
diagonal. The quantity E := q>X−1q = ∑e∈E req2

e is called the energy of the flow q. The
energy of the flow equals the difference between the source and sink potentials, times the
value of the flow, which in the setting of this paper is unitary (Corollary IX.4) [20]:

E = b>p = (ps0 − ps1)bs0 = ps0 − ps1 . (7)

Hence, in this setting E is also the potential difference between source and sink.
An alternative, equivalent way to express the cytoplasmic flow arises from the Lapla-

cian operator of the network [21]. The (reduced) Laplacian of G is the symmetric and
positive semidefinite matrix L := AXA>. If one represents the potential vector of all nodes
except the sink by p ∈ RN′ , assuming without loss of generality ps1 = 0, then (5) can be
written in matrix form as

q = XA>p. (8)

Multiplying both sides by A yields the discrete Poisson equation Lp = b, with solution
p = L−1b. Substituting this in (8), one gets a direct expression for the cytoplasmic flow in
terms of the network structure and edge capacities:

q = XA>L−1b. (9)

This also allows us to express each qe as a (nonlinear) function of the capacity vector
x ∈ RE

>0. Using the Laplacian matrix, the energy of the cytoplasmic flow can also be
expressed as

E = b>p = b>L−1b. (10)

Example 2. Continuing the same example from above, for a given vector x = (x1, x2, x3) ∈ R3
>0

of edge capacities, the capacity matrix X and the reduced Laplacian matrix L are, respectively,

X = diag(x) =

 x1 0 0
0 x2 0
0 0 x3

, L = AXA> =

(
x1 + x3 −x1
−x1 x1 + x2

)
,
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with the latter having determinant det(L) = x1x2 + x1x3 + x2x3. Hence,

L−1 =
1

det(L)

(
x1 + x2 x1

x1 x1 + x3

)
, p = L−1b =

1
det(L)

(
x1 + x2

x1

)
and the cytoplasmic flow is

q = XA>L−1b =
1

det(L)

 x1x2
x1x2

x1x3 + x2x3

 =
1

x1x2 + x1x3 + x2x3

 x1x2
x1x2

x1x3 + x2x3

. (11)

The energy of the cytoplasmic flow is E = ps0 − ps1 = ps0 = (x1 + x2)/ det(L).
Notice that q1 = q2 and q1 + q3 = 1, as one expects due to flow conservation. Equation (11)

also clearly shows that the cytoplasmic flow along an edge ej is a function of the capacities of the
entire network, not just of the capacity xj of the same edge.

2.3. Response Dynamics on an Edge

A dynamics on the edge capacities will now be introduced. This represents the slime
mold’s positive feedback mechanism, which relates the pressure gradient along a tubular
channel to the rate of increase or decrease of the capacity of the tube. The underlying idea
is simple: tubes along which there is a strong pressure tend to increase their capacity, while
tubes along which there is a weak pressure tend to decrease their capacity. Namely, the
following will be assumed:

ẋe = xe

(
ϕ

(
|qe|
xe

)
− 1
)

for all e ∈ E. (12)

Here, qe is (as before) the cytoplasmic flow along edge e, and ϕ : R≥0 → R≥0 is some
strictly increasing, differentiable function such that ϕ(1) = 1. This function models the
physical response of the tube to the flow. Some observations:

1. By Poiseuille’s law (5), |qe|/xe = |pu − pv|, thus the larger the potential difference
along edge e, the larger ẋe will be.

2. For a given value of the potential difference, a tube tends to expand less if it is smaller,
due to the dependency on xe in (12).

3. Because of the absolute value in (12), the actual direction of the flow has no influence
on the dynamics. In particular, exchanging the role of the source and sink nodes
(thus reversing the flow) does not alter the tubes’ dynamics. This is the reason why
one can arbitrarily select any food source as the flow source and the other one as the
flow sink.

4. A tube e ∈ E is in equilibrium if and only if |qe| = xe, that is, qe = ±xe.

In the remaining sections, the response function ϕ(z) = z2 will be assumed, which is
the mathematically most convenient. However, the qualitative evolution of the dynamics
under other response functions appears to be (and in some cases, it provably is) similar;
see the discussion in Section 4.1.

2.4. The Dynamics as an Ode

The adaptation Equation (12) can be given a natural interpretation as a local feedback
mechanism: the flow qe and the capacity xe jointly determine the rate of change of the
capacity xe of the tube.

However, as seen in Section 2.2 the amount of flow on an edge is a function of the
capacities of the entire network, due to Equation (9). This means that each qe can be
expressed as a (nonlinear) function of all the capacities of the network, that is, one can—at
least in principle—rewrite Equation (12) as

ẋ1 = F1(x1, x2, . . . , xm)
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ẋ2 = F2(x1, x2, . . . , xm)

. . .

ẋm = Fm(x1, x2, . . . , xm)

for some appropriate nonlinear functions F1, . . . , Fm. In this way, one obtains an au-
tonomous system of coupled, nonlinear ordinary differential equations, describing the
evolution of the edge capacities.

In practice, writing down explicitly the functions F1, . . . , Fm is inconvenient but for
the smallest networks, and it turns out to be unnecessary for the stability analysis. In the
following, the algebraic-differential formulation of Equations (9) and (12) will be used:

ẋe = xe

(
ϕ

(
|qe|
xe

)
− 1
)

for all e ∈ E, (13)

q = XA>(AXA>)−1b.

Note that the singularity of (13) when some xe = 0 can be removed: from the ex-
pression q = XA>(AXA>)−1b it can be seen that qe/xe = (A>(AXA>)−1b)e, a rational
function of x that is well-defined as long as the Kirchhoff polynomial det(AXA>) of the
network does not vanish (which it cannot when the edges corresponding to nonzero xe’s
form a connected graph [22]).

In particular, with the quadratic response function ϕ(z) = z2, one obtains

ẋe = xe

(
q2

e
x2

e
− 1
)

for all e ∈ E, (14)

q = XA>(AXA>)−1b.

The initial condition x(0) of the dynamics can be any point in the positive orthant Rm
>0.

System (14) will be called the quadratic-response Physarum system. The question of whether
this system has a solution x(t) defined over all t ≥ 0 is postponed until Section 3.3.

2.5. Equilibria

What are the equilibrium points of (14)? Any state x such that ẋ1 = ẋ2 = . . . = ẋm = 0
should satisfy, for each e ∈ E, either xe = 0 or qe = ±xe. It turns out that equilibrium points
are directly related to the paths connecting the source node to the sink node in the network.
Specifically, for a source-sink path P, let its characteristic vector χP ∈ RE be defined as

χP
e :=

{
1 if e ∈ P,
0 if e /∈ P.

(15)

Then one can prove the following fact.

Lemma 1. If P is any source-sink path in the network, then χP is an equilibrium point of (14).
Conversely, any equilibrium point of (14) is a convex combination of characteristic vectors of
source-sink paths. Moreover, if each source-sink path has a distinct length, then any equilibrium
point is the characteristic vector χP of some source-sink path P, and the energy of the corresponding
cytoplasmic flow equals the length of the path.

Proof. Let P be a source-sink path, and χP its characteristic vector. Consider the state
x = χP and let q be the cytoplasmic flow with respect to x. By definition of the cytoplasmic
flow Aq = b, and qe can be nonzero only when xe is nonzero (due to q = XA>L−1b). In
fact, qe = ±1 for each e ∈ P, and qe = 0 for each e /∈ P, since a unit flow is sent from source
to sink and the only path with nonzero capacity (due to the choice of x) is P. This means
that qe = ±xe for all e ∈ E, and hence x = χP is an equilibrium point.
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Conversely, consider any equilibrium point x, satisfying either xe = 0 or qe = ±xe for
all e ∈ E. By orienting the edges of E as necessary, one can assume q ≥ 0 and thus q = x.
Since q = XA>L−1b, this implies that (A>L−1b)e = 1 whenever xe > 0. In other words,
along any edge e = (u, v) with positive capacity, the potential difference pu − pv is 1 (recall
that L−1b = p, hence (A>L−1b)e is the potential difference along edge e). However, the
potential difference along any path only depends on the difference between the potentials
of the endpoints of the path. Hence, all paths with positive capacity from source to sink
have the same length, ps0 − ps1 . Since the cytoplasmic flow can only be nonzero on paths
with positive capacity, this means that q is a convex combination of characteristic vectors
of source-sink paths, all of the same length. Moreover, when each source-sink path has a
distinct length, there can be only one nonzero-flow path in the convex combination, with
length ps0 − ps1 = E by (7).

In the following, for the sake of exposition it will be assumed that different source-sink
paths have distinct length in the network. This implies a finite set of isolated equilibrium
points for the autonomous system (14), one for each source-sink path. If the assumption is
not satisfied, convergence towards the convex set of minimum-energy equilibrium points
can still be argued, although one cannot argue convergence towards a specific point of
that set.

Example 3. Let us continue the example from above. The autonomous system (14) is

ẋj = xj

(
q2

j

x2
j
− 1

)
j = 1, 2, 3,

q =
1

x1x2 + x1x3 + x2x3

 x1x2
x1x2

x1x3 + x2x3

.

In this case there are only two source-sink paths: P1 = (e1, e2), and P2 = (e3). They have
distinct lengths, hence there is one isolated equilibrium for each of P1 and P2. The first corresponds
to the vector of capacities x(1) = χP1 = (1, 1, 0) and cytoplasmic flow q(1) = (1, 1, 0). The second
corresponds to the vector of capacities x(2) = χP2 = (0, 0, 1) and cytoplasmic flow q(2) = (0, 0, 1).
Note that the energy of the first cytoplasmic flow is 2, while the energy of the second cytoplasmic
flow is 1. A linear stability analysis around each equilibrium reveals that the first equilibrium point
is unstable, while the second equilibrium point is stable.

The situation in Example 3 is not accidental: in the following, a general result will
be shown implying that the equilibrium of minimum energy attracts the entire positive
orthant, and hence all equilibria of non-minimal energy must be unstable.

3. Stability Analysis: An Optimization Perspective

Both the experimental results of Nakagaki et al. [13] and the toy example considered
above suggest that, perhaps, the stability of equilibrium points of (14) is related to the
minimality of the corresponding paths in the network. Hence, in order to study the stability
of the system (14), it might be useful to adopt an optimization perspective. In this section,
it will be shown that this is indeed the case.

3.1. The Shortest Path Problem

In particular, let us consider the shortest path problem in the given network, where one
wants to construct a source-sink path that uses as few edges as possible. Formally, the
shortest path problem can be formulated as follows:

minimize ‖ f ‖1 (16)
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subject to A f = b, f ∈ RE,

where ‖ f ‖1 := ∑e∈E | fe| = | f1|+ | f2|+ . . . + | fm|. In transportation terminology: find a
way to ship a unit of a commodity from the source to the sink, while minimizing the total
amount of commodity shipped along the edges of the network. The quantity fe encodes
the amount of commodity shipped along edge e; thus a vector f satisfying A f = b satisfies
flow conservation.

Note that at this point, the only obvious relation between shortest path flows f ,
which solve the shortest path problem (16), and cytoplasmic flows q, which solve the least
dissipation problem (6), is that they are both unit flows, that is, they satisfy Kirchhoff’s
current law (Aq = b, A f = b). Apart from this, in general they could be very different
vectors. For instance, in Example 3, the equilibrium flow (1, 1, 0) is a cytoplasmic flow,
but not a shortest path flow. Moreover, a cytoplasmic flow is defined only after a capacity
vector x has been specified, while in the shortest path problem (16) there are no capacities
to speak of.

3.2. A Variational Reformulation of the Shortest Path Objective

Interestingly, however, the shortest path problem can be related to a modified least
dissipation problem. To see this, first observe that for any real number a,

|a| = inf
x>0

1
2

(
a2

x
+ x
)

.

Hence, the `1-norm of any vector f ∈ Rm can be equivalently expressed as

‖ f ‖1 = inf
x∈Rm

>0

1
2

m

∑
j=1

(
f 2
j

xj
+ xj

)
. (17)

Therefore

min
f∈Rm
A f=b

‖ f ‖1 = min
f∈Rm
A f=b

inf
x∈Rm

>0

1
2

m

∑
j=1

(
f 2
j

xj
+ xj

)
(18)

= inf
x∈Rm

>0

1
2

min
f∈Rm
A f=b

f>X−1 f

+
1
2

1>x


= inf

x∈Rm
>0

(
1
2

b>L(x)−1b +
1
2

1>x
)

,

with the last identity following from (10). Let us define, for any positive vector x,

F (x) := b>L(x)−1b + 1>x. (19)

If one interprets x as a vector of capacities, then the term b>L(x)−1b is the energy of
the cytoplasmic flow induced by x. Thus, the function F is built from two terms: the first
can be interpreted as the cost of transport, which is proportional to the dissipated energy,
and the second as the cost of maintaining the transport infrastructure. For shortness, F (x)
will be called the dissipation potential of the vector x. By (18), finding a flow f minimizing
‖ f ‖1 (a shortest path flow) is equivalent to finding an assignment x of capacities to the
edges of the network that minimizes the dissipation F (x). The following can be concluded.

Theorem 1 ([16,23]). The value of the optimization problem

minimize ‖ f ‖1

subject to A f = b, f ∈ Rm
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equals the value of the optimization problem

minimize
1
2

1>x +
1
2

b>(AXA>)−1b (=
1
2
F (x))

subject to x ∈ Rm
>0

where X = diag(x).

The dissipation function F is defined on the positive orthant and, importantly,
is convex.

Lemma 2 ([23]). The dissipation function F is positive, convex and differentiable on Rm
>0.

Proof. Positivity follows from Equation (10). For convexity, it suffices to show that the
mapping x 7→ b>L−1(x)b is convex on Rm

>0. This mapping can be seen as the composition
of two other mappings: the first is the matrix-valued map x 7→ AXA>, which is linear
since each of the entries of AXA> is a linear function of x, and yields a positive definite
matrix Y = AXA> = (AX1/2)(AX1/2)>; the second is the matrix to scalar map Y 7→
b>Y−1b, which is convex on the cone of positive definite matrices, for any b ∈ Rn (see for
example [24] Section 3.1.7). It follows that the composed mapping x 7→ b>(AXA>)−1b is
convex, and hence so is F . Finally, since the entries of L(x) are linear functions of x, the
dissipation function F is a rational function with no poles in Rm

>0, hence differentiable.

The dissipation function can even be defined on the boundary of the positive orthant
by convex closure (that is, by posing F (x) = lim infx′→x F (x′) when x is on the boundary;
see [23] for details). The extension is convex on the nonnegative orthant and differentiable in
its interior, and attains its minimum, although the minimizer x∗ might lie on the boundary
of the positive orthant. Theorem 1 allows us to identify this minimizer.

Corollary 1. The minimizer of F over Rm
≥0 is the characteristic vector χP∗ of the shortest path P∗

of the network. The corresponding cytoplasmic flow is an equilibrium flow.

Proof. Let us consider the characteristic vector χP∗ and interpret it as a vector of capacities
x∗ := χP∗ . Since the capacity x∗e is zero for any edge e /∈ P∗, by Poiseuille’s law the
resulting cytoplasmic flow q = X∗A>(AX∗A>)−1b will also satisfy qe = 0 = x∗e for
all e /∈ P∗. Thus, the support of flow q is contained in the path P∗, which by the flow
constraints Aq = b implies that along any edge of P∗ there is a unit amount of flow
|qe| = 1 = x∗e . This implies that |qe| = x∗e for all edges e ∈ E. The flow q is thus an
equilibrium cytoplasmic flow, since ϕ(|qe|/x∗e ) = ϕ(1) = 1. Moreover, its energy is, by (10),
b>L−1b = q>X∗−1q = ∑m

j=1 q2
j /x∗j = ‖x∗‖1. Therefore,

1
2
F (x∗) =

1
2

b>L−1b +
1
2

1>x∗ =
1
2
‖x∗‖1 +

1
2
‖x∗‖1 = ‖x∗‖1.

Since by construction x∗ was chosen to minimize ‖x∗‖1, by Theorem 1 it also mini-
mizes F (x∗).

3.3. Physarum Dynamics as a Hessian Gradient Flow

Let us set aside Physarum’s autonomous system (14) for a moment, and consider how
one could set up a dynamical system in Rm

>0, the solutions of which converge, over time, to
the characteristic vector of the shortest path. Given Corollary 1, one possibility is to aim at
minimizing the differentiable convex function F over the positive orthant. To minimize a
generic differentiable convex function F over the positive orthant, one might set up the
following set of ordinary differential equations:
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ẋj = −xj
∂F (x)

∂xj
, j = 1, . . . , m, (20)

with initial condition x(0) = x0 for some x0 ∈ Rm
>0. This is an instance of the mirror descent

dynamics, a well-studied dynamics in convex optimization theory [25,26]. The intuition
behind (20) is simple: to approach a global minimum, one should follow the (negative)
gradient of F , but the rate of change of the j-th component should be reduced the smaller
xj is, in order not to violate the constraint xj ≥ 0.

When F is the dissipation potential (19), what does one get from (20)? Let us compute
the gradient of the dissipation potential.

Lemma 3 ([23]). Let x ∈ Rm
>0. For any j = 1, . . . , m,

∂F (x)
∂xj

= 1− (a>j L−1(x)b)2 = 1−
q2

j

x2
j

,

where aj stands for the jth column of matrix A.

Proof. Let us start by observing that, by definition, L(x) = AXA> = ∑m
j=1 xjaja>j and thus

∂L/∂xj = aja>j . Applying the following identity for the derivative of a matrix inverse
(Section 8.4) [27]:

∂L−1

∂xj
= −L−1 ∂L

∂xj
L−1, (21)

yielding

∂b>L−1b
∂xj

= −b>L−1 ∂L
∂xj

L−1b = −b>L−1aja>j L−1b = −(a>j L−1b)2.

By (9), a>j L−1b = qj/xj. The claim now follows by the definition of F , (19), since

∂(1>x)/∂xj = 1.

Plugging Lemma 3 into (20) yields the dynamics

ẋj = xj

(
q2

j

x2
j
− 1

)
, j = 1, . . . , m, (22)

which is nothing but the Physarum system (14)!
In other words, the quadratic-response Physarum system (14) can be reformulated as

a Hessian gradient flow [28]: it can be written in the form

ẋ = −H−1(x)∇F (x) (23)

where H(x) = ∇2h(x) is the Hessian of a convex function h; namely, here H(x) = X−1,
and h : Rm

>0 → R is the negative entropy function

h(x) :=
m

∑
j=1

xj log xj −
m

∑
j=1

xj. (24)

The Hessian gradient form immediately implies the existence of a solution to system (14)
for all t ≥ 0, using standard arguments [28].

System (23) can also be expressed as

d
dt

∂h(x)
∂xj

= −∂F (x)
∂xj

, j = 1, . . . , m,
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or more succinctly,
d
dt
∇h(x) = −∇F (x), (25)

another form of the mirror descent dynamics, also known as natural gradient flow [29].
The equivalent formulations (23) and (25) of the Physarum dynamics (14) show that

the dynamics follows the gradient of the dissipation function F , under the geometry
dictated by the negative entropy function h, defined by (24). It is thus reasonable to expect
convergence to the minimum of the dissipation function, i.e., to an equilibrium point where
the resulting cytoplasmic flow is the shortest path flow. To rigorously prove this, thanks to
Corollary 1 it is sufficient to show that the solutions of system (23) indeed converge to a
minimizer of the convex function F .

3.4. Basin of Attraction

The fact that any solution of the mirror descent dynamics (20) with initial condition in
Rm
>0 converges to a minimizer of a convex function F is, in fact, a result already established

in the optimization literature [28,30]. A self-contained proof is presented here. Let us start
with a straightforward lemma showing that F is monotonically nonincreasing along the
trajectories of the dynamical system.

Lemma 4. The values F (x(t)) with x(t) a solution of (20) are nonincreasing in t.

Proof. By the multivariable chain rule and (20),

d
dt
F (x(t)) =

m

∑
j=1

∂F
∂xj

(x) ẋj = −
m

∑
j=1

xj

(
∂F
∂xj

(x)

)2

≤ 0.

A key role in the analysis of the mirror descent dynamics is played by the notion of
Bregman divergence of a convex function h. This measures the distance between the value
of h at a point x, and the approximate value of h at x predicted by a linear model of the
function constructed at another point y; see Figure 2 for an illustration.

Figure 2. Illustration of the Bregman divergence Dh(x, y).

Definition 1. The Bregman divergence of a convex function h : Rm → (−∞,+∞] is defined
by Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉.

Convexity of h implies the nonnegativity of Dh(x, y). When h is the negative entropy,
Dh is the relative entropy:

Dh(x, y) =
m

∑
j=1

xj log
xj

yj
−

m

∑
j=1

(xj − yj),
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which boils down to (2) when x and y are probability distributions (since ∑j xj = ∑j yj = 1).
The relative entropy satisfies Dh(x, y) = 0 if and only if x = y [29].

Using the notion of Bregman divergence, let us prove that the solutions of the mirror
descent dynamics converge to the minimizer of the convex function F .

Theorem 2. Let x(0) ∈ Rm
>0 and let x∗ ∈ Rm

≥0 be the minimizer of F (assumed unique). Then
any solution x(t) of (20) satisfies, for all t ≥ 0,

F (x(t))−F (x∗) ≤ 1
t

Dh(x∗, x(0)). (26)

In particular, as t→ ∞, the values F (x(t)) converge to F (x∗) and hence x(t) converges to x∗.

Proof. A proof will be given that streamlines that in [30]. In the following, to shorten
notation let us write x in place of x(t). Since (d/dt)∇h(x) +∇F (x) = 0 by (25), for any y
one has 〈(d/dt)∇h(x) +∇F (x), x− y〉 = 0. This is equivalent to

〈 d
dt
∇h(x), x− y〉+ 〈∇F (x), x− y〉 = 0. (27)

On the other hand, since (d/dt)h(x) = 〈∇h(x), ẋ〉, Definition 1 yields

d
dt

Dh(y, x) = − d
dt

h(x) +
d
dt
〈∇h(x), x− y〉 (28)

= −〈∇h(x), ẋ〉+ 〈 d
dt
∇h(x), x− y〉+ 〈∇h(x), ẋ〉

= 〈 d
dt
∇h(x), x− y〉.

Combining (27) and (28), and plugging in y = x∗,

d
dt

Dh(x∗, x) = −〈∇F (x), x− x∗〉. (29)

The proof is concluded by a Lyapunov argument. Define Φ : [0, ∞)→ R by

Φ(t) := Dh(x∗, x) + t(F (x)−F (x∗)).

Its time derivative is, by (29),

d
dt

Φ(t) = −〈∇F (x), x− x∗〉+F (x)−F (x∗) + t
d
dt
F (x),

where the last summand is nonpositive by Lemma 4 and the other terms sum to, by
definition, −DF (x∗, x) ≤ 0 (by the convexity of F , Lemma 2. Hence, Φ(t) ≤ Φ(0) for all
t ≥ 0, which is equivalent to

Dh(x∗, x) + t(F (x)−F (x∗)) ≤ Dh(x∗, x(0)),

proving (26) since Dh(x∗, x) ≥ 0.
Because x(0) ∈ Rm

>0 by assumption, the divergence Dh(x∗, x(0)) is a finite constant
and (26) implies convergence of F (x(t)) to F (x∗). Convergence of x(t) to x∗ follows from
the uniqueness of the minimizer x∗.

Corollary 2. In the quadratic-response Physarum system (14), the basin of attraction of the shortest
path equilibrium x∗ = χP∗ contains Rm

>0.

Proof. It was already argued in Section 3.3 that the Physarum system (14) can be written
in the mirror descent form (20). The minimizer x∗ is unique because of the assumption
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that each source-sink path has a distinct length. Thus, for any x(0) ∈ Rm
>0, Theorem 2

guarantees attraction to x∗.

Note that, with essentially the same proof, Theorem 2 can be partially extended
to the case where there is more than one minimizer of F , in the following sense: as
t→ ∞, the values F (x(t)) converge to the minimum of F over Rm

≥0. However, when the
minimizer is no longer unique, one cannot directly conclude that x(t) converges against
any specific minimizer.

4. Related Work and Generalizations of the Model
4.1. Beyond the Quadratic Response Function

Going back to the general formulation of the Physarum system (13), it is natural to
ask whether the stability result of Corollary 2 can be extended to other response functions,
beyond the quadratic response ϕ(z) = z2.

Indeed, initial work on the Physarum dynamics considered the linear response
ϕ(z) = z. Tero et al. [10] were the first to introduce such a model, and proved an analogue
of Corollary 2 when the network is a simple cycle, with two nodes and two edges of different
lengths. The analysis of the linear-response Physarum system was later extended to certain
planar networks [31], and ultimately to all networks [15]. The latter stability proofs are
substantially more involved than in the case of the quadratic response, because the system
cannot in those cases be expressed as a Hessian gradient system, as it was done in (23).
Nevertheless, Lyapunov arguments are still the essential ingredients of the stability proofs.

Tero et al. [10] also considered nonlinear response functions, but in a formulation
that is somewhat different from (13); they assume that the tubular response of edge e is
controlled by the sheer amount of flow |qe|, as opposed to the pressure |qe|/xe:

ẋe = ϕ(|qe|)− xe. (30)

When the response is linear, that is, ϕ(z) = z, formulation (30) by Tero et al. is
equivalent to (13). However, when the response is not linear, the two models are qualita-
tively different. In particular, the model by Tero et al. has multiple stable equilibria when
ϕ(z) = zµ with µ > 1. In contrast, the model (13) has a unique stable equilibrium even in
those cases [11].

Formulation (13) was first proposed in [11], where it was shown that on a network
topology consisting of parallel links, the analogue of Corollary 2 holds for all strictly
increasing, differentiable functions ϕ : R≥0 → R≥0 such that ϕ(1) = 1. In fact, such a
result holds even when each edge e of the network has a distinct response function ϕe. This
result was later extended to all network topologies by Karrenbauer, Kolev and Mehlhorn
(Theorem 3) [17], under the following additional assumption for the response functions:

ϕe(z) ≥ 1 + αe(z− 1) for some αe > 0 and all z ≥ 0. (31)

Condition (31) is satisfied, in particular, by all convex increasing functions (to see this,
take αe = ϕ′e(1)). As mentioned in [17], it is an open problem whether condition (31) can
be relaxed.

4.2. Beyond the Network Setting

Although the Physarum dynamics (13) and (30) originated in the context of math-
ematical biology, as seen in Section 3 it can also be understood from an optimization
perspective. From such a more abstract view, the same dynamics can be shown to converge
to the solution of optimization problems that substantially generalize the shortest path
problem (16).

Namely, if instead of defining the constraint matrix A in terms of a network, one allows
any full-rank matrix A ∈ Rn′×m, then the dynamics (13) is still well-defined, and under
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mild technical conditions it converges to an optimal solution of the following `1-norm
minimization problem:

min ‖ f ‖1 (32)

s.t. A f = b, f ∈ Rm.

This looks formally the same as the shortest path formulation (16), but represents a
more general problem, since A is not restricted to be a network matrix and b can be an
arbitrary vector in Rn′ . Problem (32) is sometimes called basis pursuit and is an important
problem in signal processing and statistics: it can yield sparse signals ( f ) that explain the
observations (b) from a set of linear measurements (A) (see for example [32]). This abstract
viewpoint on the Physarum dynamics has been explored in several works of the networks
and optimization community [16,18,23,33].

4.3. Multiple Sources of Food

Finally, let us note that food-foraging experiments have been carried out in which the
slime mold is provided with more than two sources of food [14]. Instead of collapsing into
a path, the slime mold in this case eventually connects the sources of food into a complex
network structure. One can ask how such a scenario could be modeled effectively, and
what functional (if any) is optimized by the network adaptation process in this case.

In this context, a key modeling issue is to strike a balance between tractability and
plausibility of the proposed model. In particular, in order for the model to be biologically
plausible, it should preserve the symmetry between the sources of food. In the case of two
sources of food, this symmetry is guaranteed by the absolute value in Equation (12), which
makes the dynamics oblivious to the direction of the flow. In the case of more than two
sources, however, it is unclear how to guarantee the same property with a conceptually
simple model; the original proposal by Tero et al. [14], for example, involves a periodic
random selection of the flow sink node, which seems rather challenging to analyze formally.

The formal model (13) can certainly be extended by allowing the cytoplasmic flow to
have multiple sources s1, . . . , sk and sinks t1, . . . , tl , each with a different supply/demand
of flow; interestingly, in this case, the functional optimized is the so-called transshipment
cost [33,34], yielding a connection with optimal transport theory [35,36]. However, symme-
try with respect to the food locations is lost: exchanging the role of a source si with that of
a sink tj will generally result in a different set of dynamical equations, with incompatible
solutions. Therefore, such a model does not appear to be plausible from a biological point
of view, despite certainly being interesting from an optimization perspective. All in all,
development of a plausible, yet tractable, mathematical model of P. polycephalum’s network
dynamics with multiple sources of food remains a challenging problem for future research.

5. Conclusions

A mathematical model of the network dynamics of P. polycephalum was presented
that exhibits, from a qualitative standpoint, a behavior compatible with that observed in
the laboratory food foraging experiments. The analysis of the model reveals at least two
interesting aspects.

The first is the fact that the stable equilibrium point of the dynamics provably min-
imizes a combination of the infrastructural cost of the network—the term 1>x in (19),
which corresponds to the total capacity of the network—and of the transport cost–the
term b>L−1(x)b in (19), which corresponds to the energy of the cytoplasmic flow. The fact
that an organism like P. polycephalum achieves a convenient tradeoff between transport
efficiency and infrastructural cost of the network should not be surprising, since after
all it presumably yields an evolutive advantage. Nevertheless, it is somewhat remark-
able that this optimization objective emerges so clearly from the simple positive feedback
response (12) of the tubular channels to the flow.
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A second remarkable fact is the central role of information-theoretic concepts in the
stability analysis. It was shown that the quadratic-response dynamics can be interpreted
as a gradient descent in the non-Euclidean geometry dictated by the negative entropy
function h(x), and that the corresponding relative entropy Dh(x∗, x) plays a crucial role
in the stability proof, as it is able to track the symmetry breaking from (for example) an
initially uniform configuration towards the optimal network configuration. In fact, even for
response functions that are not quadratic, relative entropy makes an appearance, whether
implicitly or explicitly, in all known stability proofs. Thus, information-theoretic concepts
emerge as very relevant, and perhaps indispensable, mathematical tools in this context.
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