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Abstract

We study the online version of the Prize-Collecting Traveling Salesman Problem
(PCTSP), a generalization of the Traveling Salesman Problem (TSP). In the TSP,
the salesman has to visit a set of cities while minimizing the length of the overall
tour. In the PCTSP, each city has a given weight and penalty, and the goal is to
collect a given quota of the weights of the cities while minimizing the length of the
tour plus the penalties of the cities not in the tour. In the online version, cities are
disclosed over time. We give a 7/3-competitive algorithm for the problem, which
compares with a lower bound of 2 on the competitive ratio of any deterministic
algorithm. We also show how our approach can be combined with an approximation
algorithm in order to obtain an O(1)-competitive algorithm that runs in polynomial
time.
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1 Introduction

In the well known Traveling Salesman Problem, a salesman has to visit a set of
cities to sell his merchandise, and his goal is to minimize the length of the tour.
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Let us consider the more general case in which each city has both a penalty
and a weight associated with it; now the commitment of the salesman is to
collect a given quota of weights, by visiting a sufficient number of cities; the
final cost will be the length of the tour plus the penalty of every city that was
not visited. This problem is known as the Prize-Collecting Traveling Salesman
Problem (PCTSP) [@]. If all the penalties are equal to zero, then the PCTSP
reduces to the special case known as the Quota Traveling Salesman Problem
|6, 8], also called sometimes the Quorum-Cast problem [9]. On the other hand,
when the quota is zero, i.e. there is no requirement to visit any city at all, the
resulting problem is knowr[?| as the Profitable Tour Problem [10]. Related to
the PCTSP is also the so called k- TSP problem, i.e. the problem of finding
a tour of minimum length which visits k cities among the given ones. Thus,
the PCTSP generalizes a number of interesting routing problems.

In this paper we address the online version of the PCTSP, in which the requests
arrive over time in a metric space and a server (the traveling salesman) has to
decide which requests to serve and in what order to serve them, without yet
knowing the whole sequence of requests; the goal is, as in the offline PCTSP,
to collect the quota while minimizing the sum of the time needed to complete
the tour and the penalties associated to the requests not in the tour. We
study the online PCTSP in the framework of competitive analysis, which was
already applied to other routing problems [3, 4]. In competitive analysis, the
performance of the online algorithm is compared to that of an offline solver
that knows all the requests ahead of time, together with their release dates,
and serves them optimally. The worst-case ratio between the costs of an online
algorithm and the optimum offline solution is called the competitive ratio of
the online algorithm.

The rest of the paper is structured as follows. We begin by providing a formal
definition of the offline problem and an overview of approximation results in
Section 2. We introduce the online model of the problem in Section 3. In
Section 4, we observe that a lower bound on the competitive ratio of any
algorithm for the online PCTSP is 2 and we give a 7/3-competitive algorithm.
In fact, we show the stronger result that given a pg-approximation algorithm
for the offline PCTSP and a p-approximation algorithm for the offline PCTSP
with release dates, we can construct a c-competitive algorithm for the online
PCTSP that runs in polynomial time, where

c=p+ + po-

p
1+2/p

2 Some authors use the name PCTSP to refer to this special case, which can be a
source of confusion.
3 This traveling salesman problem on k cities should not be confused with the

traveling salesman problem with k salesmen, which is also sometimes referred to as
k-TSP.
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Figure 1. Relations between TSP, k-TSP, Quota TSP, PTP and PCTSP.

Finally, we give further results and conclusions in Section 5.

2 The offline PCTSP

We begin by formally defining the offline PCTSP.

Definition 1 An instance of the Prize-Collecting Traveling Salesman Prob-
lem, is given by a metric d over a finite space {1,...,n}. Moreover, the
instance specifies 2n + 1 numbers Q,wq, ..., Wy, T,..., 7T, € Q. A feasi-
ble solution is given by a tour, that is a cyclic permutation ¢ on some set
S C{l,...,n} such that 1 € S and ¥ ;cqw; > Q. The cost of the solution is

c(p) = L(p) + m(p) where L(p) = Yics dip) and T(p) = > igs Ti-

Several other problems can be defined in terms of the PCTSP by restricting
some of the input parameters (the set of feasible solutions and the costs are
defined exactly as in the PCTSP):

e Profitable Tour Problem (PTP): set @ =0 and w; =0fori=1,...,n;
e Quota TSP:set m; =0fori=1,...,n;
o k-TSP:set Q=kand m; =0, w; =1fori=1,...,n.

Notice that the standard Traveling Salesman Problem is a special case of both
the PTP (by letting every penalty be sufficiently high) and of the k-TSP (when
k = n). The lattice of relations between all these problems is given in Figure
1, where an arrow from problem A to problem B means that A is a special
case of B.

The best results known so far for PCTSP and its variants are summarized by
the following theorem.

Theorem 2 (|2, |6, 11, [12]) PCTSP admits an O(1)-approximation algo-
rithm. In particular,

(1) PTP admits a 2-approzimation algorithm;
(2) k-TSP admits a 2-approximation algorithm;



(3) Quota TSP admits a 10-approzimation algorithm;
(4) PCTSP admits a 12-approzimation algorithm.

PROOF. Parts (1), (2) and (3) follow from Goemans and Williamson [12],
Garg [L1] and Ausiello et al. [2] respectively. Part (4) follows from applying
the techniques of Awerbuch et al. [6] to the more recent results (1-3).

3 The online model

In this section we formally define the online PCTSP. Let M be a metric space,
with a distinguished point o called the origin. As in previous works [3], we only
consider so-called path metric spaces, in which the distance d(z,y) between
two points x and y is equal to the length of the shortest path between x
and y. We also require the space to be continuous, in the sense that for all
xz,y € M and for all @ € [0,1] there is z € M such that d(z,z) = ad(z,y)
and d(z,y) = (1 —a)d(z,y). A discrete space, like a weighted graph, can be
extended to a continuous path metric space in the natural way; the continuous
space thus obtained is said to be induced by the original space.

The input is given by a pair (@, o), where @) € Q is called the quota and o =
o1 -+ - 0, 18 a sequence of requests. Every request o; is a quadruple (7, x;, w;, 7;),
where r; € R, is the release date of the request, x; € M its location, w; € Q4
its weight and m; € Q. its penalty. We also assume that the sequence is ordered
such that ¢ < j implies r; < r;. All the information about a request, including

its existence, becomes known only at its release date. On the other hand, the
quota is revealed immediately to the algorithm.

The algorithm controls a single server (traveling salesman), initially located
at the origin. The server can move around the space at most at unit speed.
To serve a request, the server must visit the location of the request not earlier
than its release date.

A feasible solution for instance (@, o) is a schedule, that is, a sequence of
moves of the server such that the following conditions are satisfied: (1) the
server starts in the origin, (2) the total weight of the served requests is at
least @, and (3) the server ends in the origin. Let S be a schedule for (Q, o).
The time at which the server returns permanently at the origin is called the
makespan of S. The cost of a schedule S is the sum of the makespan of S and
of the penalties associated to requests not served in S.



In the following, we denote by A(Q, o) the cost incurred by an algorithm A
on input (@, o). An online algorithm A is c-competitive if, for every @ and o,

A(Q7 U) S c- OPT(Q7 U)a
where OPT(Q, o) is the cost of an optimal solution to the instance (@, o).

For a sequence o, let m(0) = 3,.c, . By 0=" we denote the subsequence of
o including all the requests having release date less than or equal to ¢, and
similarly o~ is the suffix of o consisting of all the requests having release date
strictly larger than ¢. When @) and o are clear from the context, we denote
by A(t) the total cost incurred by algorithm A over the sequence o=!, that is,
A(Q, 0="). Finally, we use Alt] to denote the schedule computed by algorithm
A on input (Q, 0=t).

4 A competitive algorithm for the online PCTSP

In this section we give lower and upper bounds on the competitive ratio of the
online PCTSP. We start with a lower bound.

Theorem 3 The competitive ratio of any deterministic online algorithm for
the online PCTSP is at least 2, even if Q =0 or if m; =0 for all requests o;.

PROOF. When Q = 0, we can give requests with arbitrarily high penalties
so that the problem becomes equivalent to the standard online TSP, for which
a lower bound of 2 is known [3].

When 7; = 0 for all requests r;, the problem is equivalent to the online Quota
TSP, for which a lower bound of 2 is also known, even for fixed @ H].

Note that the lower bound above is known to be tight when all penalties
are zero (there is a 2-competitive algorithm for Quota TSP |]) or when all
penalties are large enough [3].

In order to get our competitiveness result, we begin by proving a lemma on the
properties of OPT(¢) as a function of ¢. Notice that the fact that a request is
served in the optimal solution for a sequence o does not imply that the request
is served in an optimal solution for ¢=¢; this is why the following lemma is not
trivial.



Lemma 4 Consider an instance (Q,0) of the online PCTSP and let o, be a
request with mazimum release date among the requests served in an optimal
offtine solution. Then

(a) OPT(t) + w(0”") = OPT(ry,) for all t € [r;,1,);
(b) OPT(T’[) Z .

PROOF.

(a)

Since a feasible solution for o is to first serve optimally ¢<! and then pay

penalties for all successive requests, we have
OPT(r,) < OPT(t) + w(c”"). (1)

On the other hand, a feasible solution for o= is to follow the optimal offline
schedule for o, of course saving on the penalty cost of the requests released
after time ¢, so we have

OPT(t) < OPT(r,) — m(0™"). (2)

The claim follows by combining (1) and (2).
Assume by contradiction that OPT(r;) < r;. By (a),

OPT(r,) = OPT(r;) + w(c="™)
< r+m(on).

But since there is an optimal schedule for o that serves o; and no request
with a release date later than r;,

OPT(r,) > 1 + w(c”™)

which gives a contradiction.

In order to give an algorithm for the online PCTSP, we need to be able to
solve the offline PCTSP. We assume that we have black-box access to two
algorithms. The first, algorithm Ay, gives pp-approximate solutions to PCTSP
instances (as in Definition 1). A second algorithm A constructs p-approximate
solutions to the PCTSP with release dates. The next lemma shows that given
Ag, there is an A such that p < 1+ pg.

Lemma 5 Let Ay be a po-approrimation algorithm for the offline PCTSP
(without release dates). Then there is a (1 + po)-approxzimation algorithm A
for the offline PCTSP with release dates.



PROOF. On input (Q,0), where 0 = 07 - - - 0,,, A calls Ay on the n+1 inputs
(Q,€), (Q,01), (Q,0102), ..., (Q,071...0,). Let the corresponding outputs be
So, - .., Sn. For every such solution .S;, A considers the following schedule: wait
until all requests served by S; are released, then follow S;. The schedule output
by A will be the cheapest among the n + 1 schedules thus constructed.

More precisely, let r(S;) be the maximum release date of a request served in
S;. Define

J € argminr(S;) + Ag(Q, 01+ 03) + m(0ig1 - - 0n).

0<i<n

The schedule constructed by A waits until time r(S;) and then executes S;.
To see that this is a (1 + pg)-approximation, let j* be the index of the re-
quest having maximum release date among the requests that are served in the
optimal schedule. Then OPT(Q, o) > rj« > r(S;+). Also,

OPT(Q, 0') = OPT(O’l . g'j*) —+ 77'(0')»*_’_1 e Un)
by Lemma 4(a). Thus by definition of A,
A(Q? U) S T(Sj*) + AO(Q, [T O']*> —|— ’7'{'(0"7*_'_1 e O'n)
<OPT(Q,0) + poOPT(Q, 01 -+ 0j+) + (e g1+ o)
(

<OPT(Q,0) + poOPT(Q, o)
— (14 po)OPT(Q, 0).

Algorithm 1 Wait and Go with Restart (WGR)

The algorithm has two states, WAIT and GO. The initial state is WAIT.

o WAIT. Wait until a time ¢ such that A(t) € [t, pt], then enter state GO.

e GO. Let t, be the time this state was entered. Return the server to the
origin at full speed, then start following schedule Ag[t,]; when done, return
to state WAIT. Meanwhile, if a new request arrives at time ¢, compute A(t).
If A(t) > t, make a restart, that is, stop the server at its current location
and return to state WAIT.

The intuition behind our online algorithm (Algorithm 1) is the following. In
order to be competitive, the algorithm tries to guess which requests are ignored
and which are served by the optimal offline server. The condition A(t) > ¢ is
used to ensure that if a restart occurs, only a short time has elapsed, compared
to the optimal cost, while if a restart does not occur, the new requests can be
safely ignored.

To move from intuition to proof, we need the following important property of
WGR: after the algorithm restarts, it eventually enters state GO another time.



This property is non-trivial, because A(t) can be a discontinuous function of
t. We formalize the property in the following lemma.

Lemma 6 Let 0, be a request with mazximum release date among the requests
served by an optimal solution. If WGR is in state WAIT at a time t,, > r; and
OPT(ty) > ty, then at some time t; > t,, WGR enters state GO.

St

PROOF. Consider the sequence o”". Since no request in c”* is served in

an optimal solution for o, by Lemma 4(a),
OPT(t) = OPT(t,) + n(c”") — w(c”")

for any t > t,,. Thus, for t > t,,, OPT(¢) cannot decrease as a function of ¢,
thus at some time ¢, it must intersect the identity function, since o has finite

length. Then OPT(¢,) =t,, and A(t,) € [t,, pt,]-

We need a last ingredient in order to prove the competitiveness of WGR.

Lemma 7 At any time t, the server controlled by WGR is at most at distance
t/(14+2/p) from the origin.

PROOF. We prove the claim by induction on the sequence of states entered
by the algorithm. The claim is trivially true at time 0. Also, by induction, it is
true while the algorithm is in state WAIT since in that state the server does
not move.

When the algorithm enters state GO, the server is, by inductive hypothesis,
at some distance d, € [0,t,/(1 +2/p)] from the origin. WGR first has to move
the server to the origin; if it changes state before arriving, then the claim is
true. Otherwise, at time ¢, + d,;, WGR starts following schedule Ayt,], which
takes time at most A(t,) < pt,, so at any later moment t, + d, + A the server
cannot be at a distance greater than min{A, pt,/2} from the origin. Now

tg +A <tg+dg+A
14+2/p— 1+42/p "~

min{A, pt,/2} <

which proves the lemma.



Theorem 8 WGR is c-competitive for online PCTSP, where

p

S sy

Po-

PROOF. Let t, be the last time state GO was entered (if state GO is never
entered, one can use Lemmas 6 and 4(b) to show that WGR is optimal). Ac-
cording to Lemma 7, the online server is at distance at most t,/(142/p) from
the origin. Then the algorithm will pay, for the sequence o=<%, at most

1
t —t Ap(t
g+1+2/pg+ 0(!])

< Alty) +

P
< .
> (ﬂ + 1x 2/p + po) OPT(tg)

Notice that this already includes the penalties of all requests in 0= that were
not served by Ag[t,]. Moreover, the request o; with latest release date among
those served by an optimal offline solution must have been released at a time
r; < t4, otherwise by Lemma 4(b) OPT(r;) > r;, implying A(r;) > r;. Thus,
WGR would have restarted and by Lemma 6 state GO would have been entered
one more time, contradicting our initial assumption.

The online server also pays the penalties of all the requests released after time
t4, but notice that these penalties are also paid by the optimal solution. More
specifically,

WGR(c) < ¢- OPT(t,) + n(c”")

while by Lemma 4(a),

OPT(0) = OPT(t,) + w(c”™").

From Theorem 8 we can easily derive the following corollaries.
Corollary 9 There is a 7/3-competitive online algorithm for the PCTSP.

Corollary 10 There is a 34/5-competitive polynomial time algorithm for the
online PTP.

PROOF. Follows from Theorem 8, the existence of a 2-approximation for
the PTP [12], and Lemma 5.



Corollary 11 There is an O(1)-competitive polynomial time algorithm for
the PCTSP.

PROOF. Follows from Theorem 8, the existence of an O(1)-approximation
for the offline PCTSP (Theorem 2), and Lemma 5.

5 Further results and conclusions

We formulated an online version of the Prize-Collecting Traveling Salesman
Problem. We gave a 7/3-competitive algorithm which is not far from best
possible, the competitive ratio of any online algorithm being at least 2. We
also discussed an O(1)-competitive algorithm running in polynomial time.

In the paper we only considered general metric spaces. For special metric
spaces, the results can be improved. For example, in the case of the real
halfline, it is possible to prove a lower bound of 1.89 and an upper bound of
2 on the competitive ratio of the problem [3].

Although some of our techniques are reminiscent of other works [, 4], to our
knowledge the idea of monitoring the optimal cost of the input sequence in
order to decide when to restart the schedule is new and may have some uses
in other online problems as well.
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