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Abstract

We consider two on-line versions of the asymmetric traveling salesman problem
with triangle inequality. For the homing version, in which the salesman is required

to return in the city where it started from, we give a 3+
√

5

2
-competitive algorithm

and prove that this is best possible. For the nomadic version, the on-line analogue of
the shortest asymmetric hamiltonian path problem, we show that the competitive
ratio of any on-line algorithm depends on the amount of asymmetry of the space in
which the salesman moves. We also give bounds on the competitive ratio of on-line
algorithms that are zealous, that is, in which the salesman cannot stay idle when
some city can be served.

Key words: On-line algorithms, competitive analysis, real time vehicle routing,
asymmetric traveling salesman problem

1 Introduction

In the classical traveling salesman problem, a set of cities has to be visited in a
single tour with the objective of minimizing the total length of the tour. This is
one of the most studied problems in combinatorial optimization, together with
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its dozens of variations [11,16]. In the asymmetric version of the problem, the
distance from one point to another in a given space can be different from the
inverse distance. This variation, known as the Asymmetric Traveling Salesman
Problem (ATSP) arises in many applications; for example, one can think of
a delivery vehicle traveling through one-way streets in a city, or of gasoline
costs when traveling through mountain roads.

The ATSP has been much studied from the point of view of approximation
algorithms. However, if the condition is that every city or place has to be
visited exactly once, the problem is NPO-complete and thus essentially no
approximation is possible in polynomial time, unless P=NP [19]. Instead, in
the case where every city or place given in the input has to be visited at least

once or, equivalently, the distance function satisfies the triangular inequality,
approximation algorithms exist having a reasonable approximation factor. In
particular, the best algorithms known have an approximation ratio of O(log n)
[10,13]. The problem is also known to be APX-hard [18]. The question of
the existence of an algorithm with a constant approximation ratio for the
asymmetric case is still open after more than two decades.

Here we are interested in the on-line version of the ATSP, named OL-ATSP.
The on-line versions of a number of vehicle routing problems, including the
standard TSP, the traveling repairman problem, the quota TSP and dial-
a-ride problems have been studied recently [2,3,4,8,14,15,17]. In the on-line
TSP and ATSP, the places to visit in the space are requested over time and
a server (the salesman or vehicle) has to decide in what order to serve them,
without knowing the entire sequence of requests beforehand. The objective is
to minimize the completion time of the server. To analyze our algorithms, we
use the established framework of competitive analysis [5,9,20], where the cost
of the algorithm being studied is compared to that of an ideal optimum off-line
server, knowing in advance the entire sequence of requests (notice, however,
that even the off-line server cannot serve a request before it is released). The
ratio between the on-line and the off-line costs is called the competitive ratio

of the algorithm and is a measure of the loss of efficacy due to the absence of
information on the future. Our paper is the first to address the on-line ATSP
from the point of view of competitive analysis. Previous work, both theoretical
and experimental, has focused on the off-line version [7,10,13].

Our results are summarized in Table 1, where they are also compared with
the known results for the symmetric case. As we will see, the asymmetric TSP
is substantially harder than the normal TSP even when considered from an
on-line point of view; in other words, OL-ATSP is not a trivial extension of
OL-TSP. In fact, as Table 1 shows, most bounds on the competitive ratio are
strictly higher than the corresponding bounds for OL-TSP, and in particu-
lar in the nomadic case there cannot be on-line algorithms with a constant
competitive ratio.
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Although the algorithmic techniques we adopt in the asymmetric case come
essentially from the symmetric case, they require some adjustment in order to
attain useful competitive ratios. On the other hand, it is worth noting that
the lower bound techniques are quite different from the previously known ones
and we hope they can be of some use in future work.

We should also mention that we present our algorithms in simplified versions
that compute optimal traveling salesman tours or paths. Thus, they do not run
in polynomial time unless P=NP. However, if one is interested in polynomial
running time, it is possible to compute approximately optimal tours instead,
the competitive ratio degrading by a factor that is essentially the approxima-
tion ratio of the subroutine being used. For example, as a consequence of our
results, an O(1) approximation algorithm for the ATSP would automatically
imply an O(1)-competitive polynomial time algorithm for the OL-ATSP. We
further discuss this issue in Section 5.

The rest of this paper is organized as follows. After the necessary definitions
and the discussion of the model, we study in Section 3 the homing case of
the problem, in which the server is required to finish its tour in the same
place where it started; we give a 3+

√
5

2
-competitive algorithm and show that

this is also best possible. In Section 4, we address the nomadic version, also
known as the wandering traveling salesman problem [12], in which the server
is not required to finish its tour at the origin. For this case we show that in
general an on-line algorithm with a competitive ratio independent of the space
cannot exist; indeed, we show that the competitive ratio has to be a function
of the amount of asymmetry of the space. In Section 5 we explain how our
algorithms can be combined with polynomial time approximation algorithms
in order to obtain polynomial time online algorithms. In the last section, we
give our conclusions and discuss some open problems.

2 The model

An input for the OL-ATSP consists of a space M from the class M defined
below, a distinguished point O ∈ M , called the origin, and a sequence of
requests ri = (ti, xi) where xi is a point of M and ti ∈ R+ is the time when
the request is presented. The sequence is ordered so that i < j implies ti ≤ tj .

The server is located at the origin O at time 0 and the distances are scaled so
that, without loss of generality, the server can move at most at unit speed.

We will consider two versions of the problem. In the nomadic version, the
server can end its route anywhere in the space; the objective is just to minimize
the makespan, that is, the time required to serve all presented requests. In the
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Problem Best Lower Best Upper References

Bound Bound

Homing OL-TSP 2 2 [1,3]

Homing OL-ATSP (3 +
√

5)/2 (3 +
√

5)/2

Homing OL-TSP (zealous) 2 2 [3]

Homing OL-ATSP (zealous) 3 3

Nomadic OL-TSP 2.03 1 +
√

2 [17]

Nomadic OL-ATSP
√

K 1 +
√

K + 1

Nomadic OL-TSP (zealous) 2.05 2.5 [3,17]

Nomadic OL-ATSP (zealous) (K + 1)/2 K + 2

Table 1
The competitive ratio of symmetric and asymmetric routing problems. Refer to
Section 2 for the definition of K.

homing version, the objective is to minimize the time required to serve all
presented requests and return to the origin.

An on-line algorithm for the OL-ATSP has to determine the behavior of the
server at a certain moment t as a function only of the requests (ti, xi) such
that ti ≤ t. Thus, an on-line algorithm does not have knowledge about the
number of requests or about the time when the last request is released. We
will use T to denote some tour or route over a subset of the requests; in this
case, |T | will be the length of that tour.

We will use ZOL to denote the completion time of the solution produced by
a generic on-line algorithm OL, while Z∗ will be the completion time of the
optimal off-line solution. An on-line algorithm OL is c-competitive if, for any
sequence of requests, ZOL ≤ cZ∗.

Finally, we would like to clarify the conditions that the space M should satisfy.
Usually, in the context of the on-line TSP, continuous path-metric spaces are
considered [3]. However, here the main issue is precisely asymmetry, so we
have to drop the requisite that for every x and y, d(x, y) = d(y, x). We review
here the definitions. A set M , equipped with a distance function d : M2 → R+,
is called a quasi-metric space if, for all x, y, z ∈ M :

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, z) + d(z, y).

We call a space M an admissible space if M is a quasi-metric and, for any
x, y ∈ M , there is a function f : [0, 1] → M such that f(0) = x, f(1) = y and
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f is continuous, in the following sense: d(f(a), f(b)) = (b − a)d(x, y) for any
0 ≤ a ≤ b ≤ 1. This function represents a shortest path from x to y. Notice
that every admissible space is connected.

We will use M to denote the class of admissible spaces. Notice that the discrete
metric induced by a weighted graph is not admissible if we take M to be the set
of vertices. However, we can always make such a space admissible by adding
(an infinity of) extra points “along the arcs”.

In particular, to see how a directed graph with positive weights on the arcs can
define an admissible space, consider the all-pairs shortest paths matrix of the
graph. This defines a finite quasi-metric. Now we add, for every arc a = (x, y)
of the graph, an infinity of points πa

γ , indexed by a parameter γ ∈ (0, 1). Let
πa

0 and πa
1 denote x and y respectively. We extend the distance function d so

that:
d(πa

γ , π
a
γ′) = (γ′ − γ)d(x, y) for all 0 ≤ γ < γ′ ≤ 1.

It can be verified that πa represents a shortest path from x to y. For γ /∈ {0, 1},
the distance from a point πa

γ to a point z not in πa is defined as d(πa
γ , z) =

d(πa
γ , y) + d(y, z); that is, the shortest path from πa

γ to z passes through y.
Vice versa, the distance from z to πa

γ is defined as d(z, πa
γ) = d(z, x)+d(x, πa

γ).
Finally,

d(πa
γ′ , πa

γ) = (1 − (γ′ − γ))d(x, y) + d(y, x) for all 0 ≤ γ < γ′ ≤ 1.

We say that such a space is induced by the original directed weighted graph.
We remark that this model, while still including the originally proposed one
[3] as a special case, can also capture the situation in which the server is not
allowed to do U-turns.

Finally, it will be useful to have a measure of the amount of asymmetry of a
space. Define as the maximum asymmetry of a space M ∈ M the value

K(M) = sup
x,y∈M

d(x, y)

d(y, x)
.

We will say that a space M has bounded asymmetry when K(M) < ∞.

3 Homing OL-ATSP

In this section we consider the homing version of the on-line ATSP, in which
the objective is to minimize the completion time required to serve all presented
requests and return to the origin. We establish a lower bound of about 2.618
and a matching upper bound. Note that in the case of symmetric on-line TSP,
the corresponding bounds are both equal to 2 [3,14].
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Figure 1. The graph used in the proof of Theorem 3.1.

Let φ denote the golden ratio, that is, the unique positive solution to x =
1 + 1/x. In closed form, φ = 1+

√
5

2
≈ 1.618.

Theorem 3.1 The competitive ratio of any on-line algorithm for homing OL-
ATSP is at least 1 + φ.

Proof. Fix any ǫ > 0. The space used in the proof is the one induced by the
graph depicted in Figure 1. The graph has 7+4n nodes, where n = 1+ ⌈φ−1

ǫ
⌉,

and the length of every arc is ǫ, except for those labeled otherwise. Observe
that the space is symmetric with respect to an imaginary vertical axis passing
through O. Thus, we can assume without loss of generality that, at time 1, no
request being released yet, the on-line server is in the left half of the space.
Then at time 1 a request is given in point A, in the other half. Now let t be
the first time at which the on-line server reaches point D or E.

If t ≥ φ, no further request is given. In this case ZOL ≥ t + 1 + 2ǫ while
Z∗ ≤ 1+3ǫ so that, when ǫ approaches zero, ZOL/Z∗ approaches 1+t ≥ 1+φ.

Otherwise, if t ∈ [1, φ], at time t, we can assume that the on-line server has just
reached E (again, by symmetry). At this time, the adversary gives a request
in Bi, where i = ⌈ t−1

ǫ
⌉. Now the on-line server has to traverse the entire arc

EC before it can go serve Bi, thus

ZOL ≥ t + 1 + 3ǫ + 1 + ǫ
⌈ t − 1

ǫ

⌉

+ 2ǫ ≥ 2t + 1 + 5ǫ.

Instead, the adversary server will have moved from O to Bi in time at most
t+2ǫ and then served Bi and A, achieving the optimal cost Z∗ ≤ t+4ǫ. Thus,
when ǫ approaches zero, ZOL/Z∗ approaches 2 + 1

t
≥ 1 + φ. 2

To prove a matching upper bound on the competitive ratio, we use a variation
of algorithm smartstart, first introduced by Ascheuer et al. [1].
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Algorithm smartstart(α)
The algorithm keeps track, at every time t, of the length of an optimal tour
T ∗(t) over the unserved requests, starting at and returning to the origin. At the
first instant t′ such that t′ ≥ α|T ∗(t′)|, the server starts following at full speed
the currently optimal tour, ignoring temporarily every new request. When the
server is back at the origin, it stops and returns monitoring the value |T ∗(t)|,
starting as before when necessary. As we will soon see, the best value of α is
α∗ = φ.

Theorem 3.2 smartstart(φ) is (1 + φ)-competitive for homing OL-ATSP.

Proof. We distinguish two cases depending on whether the last request arrives
while the server is waiting at the origin or not.

In the first case, let t be the release time of the last request. If the server
starts immediately at time t, it will follow a tour of length |T ∗(t)| ≤ t/α,
ending at time at most (1 + 1/α)t, while the adversary pays at least t, so the
competitive ratio is at most 1+1/α. Otherwise, the server will start at a time
t′ > t such that t′ = α|T ∗(t)| (since T ∗ does not change after time t) and pay
(1 + α)|T ∗(t)|, so the competitive ratio is at most 1 + α.

In the second case, let T ∗(t) be the tour that the server is following while the
last request arrives; that is, we take t to be the starting time of that tour. Let
T ′(t) be an optimal tour over the requests released after time t. If the server
has time to wait at the origin when it finishes following T ∗(t), the analysis is
the same as in the first case. Otherwise, the completion time of smartstart

is t + |T ∗(t)|+ |T ′(t)|. Since smartstart has started following T ∗(t) at time
t, we have t ≥ α|T ∗(t)|. Then

t + |T ∗(t)| ≤ (1 + 1/α)t.

Also, if rf = (tf , xf ) is the first request served by the adversary having release
time at least t, we have that |T ′(t)| ≤ d(O, xf) + Z∗ − t (recall that Z∗ is the
off-line cost), since a possibility for T ′ is to go to xf and then do the same as
the adversary (subtracting t from the cost since we are computing a length,
not a completion time, and on the other hand the adversary will not serve rf

at a time earlier than t).

By putting everything together, we have that smartstart pays at most

(1 + 1/α)t + d(O, xf) + Z∗ − t

and since two obvious lower bounds on Z∗ are t and d(O, xf), this is easily
seen to be at most (2 + 1/α)Z∗.

Now max{1 + α, 2 + 1

α
} is minimum when α = α∗ = φ. For this value of the

parameter the competitive ratio is 1 + φ. 2
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3.1 Zealous algorithms

In the previous section we have seen that the optimum performance is achieved
by an algorithm that, before starting to serve requests, waits until a convenient
starting time is reached. In this section we consider instead the performance
that can be achieved by zealous algorithms [4]. A zealous algorithm does not
change the direction of its server unless a new request becomes known, or the
server is at the origin or at a request that has just been served; furthermore,
a zealous algorithm moves its server always at full (that is, unit) speed when
there are unserved requests.

We show that, for zealous algorithms, the competitive ratio has to be at least
3 and, on the other hand, we give a matching upper bound.

Theorem 3.3 The competitive ratio of any zealous on-line algorithm for hom-

ing OL-ATSP is at least 3.

Proof. We use the same space used in the lower bound for general algorithms
(Figure 1). At time 1, the server has to be at the origin and the adversary
gives a request in A. Thus, at time 1 + ǫ the server will have reached wlog E
(by symmetry) and the adversary gives a request in B0. The completion time
of the on-line algorithm is at least 3+6ǫ, while Z∗ ≤ 1+3ǫ. The result follows
by taking a sufficiently small ǫ. 2

The following algorithm is best possible among the zealous algorithms for
homing OL-ATSP.

Algorithm plan at home

When the server is at the origin and there are unserved requests, the algorithm
computes an optimal tour over the set of unserved requests and the server
starts following it, ignoring temporarily every new request, until it finishes its
tour at the origin. Then it waits at the origin as before.

Theorem 3.4 plan at home is zealous and 3-competitive for homing OL-
ATSP.

Proof. Let t be the release time of the last request. If p(t) is the position of
plan at home at time t and T is the tour it was following at that time, we
have that plan at home finishes following T at time t′ ≤ t + |T |. At that
time, it will eventually start again following a tour over the requests which
remain unserved at time t′. Let us call T ′ this other tour. The total cost payed
by plan at home will be then at most t + |T | + |T ′|. But t ≤ Z∗, since
even the off-line adversary cannot serve the last request before it is released,
and on the other hand both T and T ′ have length at most Z∗, since the
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Figure 2. The graph used in the proof of Theorem 4.1.

off-line adversary has to serve all of the requests served in T and T ′. Thus,
t + |T | + |T ′| ≤ 3Z∗. 2

4 Nomadic OL-ATSP

In this section we consider the nomadic version of the on-line ATSP, in which
the server can end its route anywhere in the space. We show that no on-line
algorithm can have a constant competitive ratio (that is, independent of the
underlying space). Then we show, for spaces with a maximum asymmetry K,
a lower bound

√
K and an upper bound 1 +

√
K + 1. Note that in the case

of symmetric nomadic on-line TSP, the best lower and upper bounds are 2.03
and 1 +

√
2, respectively [17].

Theorem 4.1 For every L > 0, there is a space M ∈ M such that the

competitive ratio of any on-line algorithm for nomadic OL-ATSP on M is at

least L.

Proof. Let ǫ ≤ 1/(2L+1), and consider the space induced by a directed cycle
on n = ⌈L

ǫ
⌉ nodes, where every arc has length ǫ (Figure 2). At time 0 a request

is given in node A3. Let t be the first time the on-line algorithm reaches node
A2.

Now if t ≥ 1, the adversary does not release any other request so that Z∗ = 2ǫ,
ZOL ≥ 1 + ǫ and ZOL/Z∗ ≥ 1

2ǫ
+ 1

2
≥ L.

Otherwise, if t ≤ 1, at time t the adversary releases a request at the origin. It
is easily seen that Z∗ ≤ t + 2ǫ and ZOL ≥ t + ǫ(⌈L

ǫ
⌉ − 1) ≥ t + 2ǫ + L − 3ǫ so
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that

ZOL/Z∗ ≥ 1 +
L − 3ǫ

t + 2ǫ
≥ 1 +

L − 3ǫ

1 + 2ǫ
≥ L.

2

Corollary 4.2 There is no on-line algorithm for nomadic OL-ATSP on all

spaces M ∈ M with a constant competitive ratio.

We also observe that the same lower bound can be used when the objective
function is the sum of completion times.

Thus, we cannot hope for an on-line algorithm which is competitive for all
spaces in M. Indeed, we will now show that the amount of asymmetry of
a space is related to the competitive ratio of any on-line algorithm for that
space.

Theorem 4.3 For every K ≥ 1, there is a space M ∈ M with maximum

asymmetry K such that any on-line algorithm for nomadic OL-ATSP on M
has competitive ratio at least

√
K.

Proof. Consider a set of points M = {xγ : γ ∈ [0, 1]} with a distance function

d(xγ, xγ′) =











γ′ − γ if γ ≤ γ′

K(γ − γ′) if γ ≥ γ′.

The origin is x0. The adversary releases a request at time 1 in point x1. Let
t be the time the on-line algorithm serves this request. If t ≥

√
K, no more

requests are released and ZOL ≥
√

K, Z∗ = 1, ZOL/Z∗ ≥
√

K.

Otherwise, if t ≤
√

K, at time t a request is given at the origin. Now ZOL ≥
t + K, Z∗ ≤ t + 1 and

ZOL/Z∗ ≥ t + K

t + 1
= 1 +

K − 1

t + 1
≥ 1 +

K − 1√
K + 1

=
√

K.

2

A natural algorithm, on the lines of the best known algorithm for the sym-
metric version of the problem [17], gives a competitive ratio which is asymp-
totically the same as that of this lower bound.

Algorithm return home(β)
At any moment at which a new request is released, the server returns to
the origin via the shortest path. Once at the origin at time t, it computes
an optimal route T over all requests presented up to time t and then starts
following T at the highest possible speed ensuring that d(O, s(t′)) ≤ βt′ at
any time t′ (here s(t′) is the position of the server at time t′).
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Theorem 4.4 For every space M ∈ M with maximum asymmetry K, there

is a value of β such that return home(β) is (1 +
√

K + 1)-competitive on

M .

Proof. There are two cases to consider. In the first case return home does
not need to reduce its speed after the last request is released. In this case, if
t is the release time of the last request, we have

ZRH ≤ t + Kβt + |T | ≤ Z∗ + KβZ∗ + Z∗ = (2 + Kβ)Z∗.

In the second case, let t be the last time return home is moving at reduced
speed. At that time, return home has to be serving some request; let x
be the location of that request. Since return home is moving at reduced
speed we must have d(O, x) = βt; afterwards return home will follow the
remaining part Tx of the route at full speed. Thus

ZRH ≤ t + |Tx| = (1/β)d(O, x) + |Tx|.

On the other hand, Z∗ ≥ |T | ≥ d(O, x)+ |Tx|. Thus, in this case, the compet-
itive ratio is at most 1/β.

Obviously, we can choose β in order to minimize max{2 + Kβ, 1/β}. This

gives a value of β∗ =
√

K+1−1

K
, for which we obtain the competitive ratio of the

theorem. 2

4.1 Zealous algorithms

Also in the case of the nomadic version of the on-line ATSP, we wish to con-
sider the performance of zealous algorithms. Of course, no zealous algorithm
will be competitive for spaces with unbounded asymmetry. Here we show that
the gap between non-zealous and zealous algorithms is much higher than in
the homing case, the competitive ratio increasing from Θ(

√
K) to Θ(K).

Theorem 4.5 For every K ≥ 1, there is a space M ∈ M with maximum

asymmetry K such that the competitive ratio of any zealous on-line algorithm

for nomadic OL-ATSP on M is at least 1

2
(K + 1).

Proof. We use the same space used in the proof of Theorem 4.3. At time 0,
the adversary releases a request in point x1. The on-line server will be at point
x1 exactly at time 1. Then, at time 1, the adversary releases a request in point
x0. It is easy to see that ZOL ≥ 1 + K, while Z∗ = 2. 2

We finally observe that return home(1) is a zealous algorithm for nomadic
OL-ATSP and, by the proof of Theorem 4.4, it has competitive ratio K + 2.

11



Problem Algorithm Competitive ratio

Homing OL-ATSP smartstart(α∗
ρ) (1 + 2ρ +

√
1 + 4ρ)/2

plan at home 1 + 2ρ

Nomadic OL-ATSP return home(β∗
ρ) (1 + ρ +

√

(1 + ρ)2 + 4K)/2

return home(1) 1 + ρ + K

Table 2
The competitive ratio as a function of ρ and K.

5 Polynomial time algorithms

None of the algorithms that we have proposed in the previous sections runs
in polynomial time, since all of them need to compute optimal tours on some
subsets of the requests. On the other hand, a polynomial time on-line algo-
rithm with a constant competitive ratio could be used as an approximation
algorithm for the ATSP, and thus we do not expect to find one easily. However,
our algorithms use off-line optimization as a black box and thus can use ap-
proximation algorithms as subroutines in order to give polynomial time on-line
algorithms, the competitive ratio depending of course on the approximation
ratio. In particular, in the homing version we need to solve instances of the
off-line ATSP. The best polynomial time algorithm known for this problem
has an approximation ratio of 0.842 log n [13]. For the nomadic version, the
corresponding off-line problem is the shortest asymmetric hamiltonian path,
which also admits O(log n) approximation in polynomial time [6].

We do not repeat here the proofs of our theorems taking into account the
approximation ratio of the off-line solvers, since they are quite straightforward.
However, we give the competitive ratio of our algorithms as a function of ρ,
the approximation ratio, and K, the maximum asymmetry of the space, in
Table 2. Note that, with respect to the values in Table 1, the competitive
ratio becomes worse by a factor that is strictly less than the approximation
ratio. In the case of smartstart and return home, this is also due to the
fact that the algorithms can adapt to the approximation ratio by suitably
choosing the parameters α and β. For smartstart, the optimal choice is

α∗
ρ =

1

2ρ

(

1 +
√

1 + 4ρ
)

,

while for return home it is

β∗
ρ =

1

2K

[

√

(1 + ρ)2 + 4K − (1 + ρ)
]

.
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6 Conclusions

We have examined several on-line variations of the asymmetric traveling sales-
man problem. Our results confirm that these asymmetric variations are indeed
strictly harder than their symmetric counterparts.

The main conclusion is that, as usual in on-line vehicle routing when minimiz-
ing the completion time, waiting can improve the competitive ratio substan-
tially. This is particularly evident in the case of nomadic ATSP on spaces with
bounded asymmetry, where zealous algorithms have competitive ratio Ω(K)
while return home is O(

√
K)-competitive.

We expect the competitive ratio of the homing OL-ATSP to be somewhat
lower than 1+φ when the space has bounded asymmetry. Also, since the proof
that no on-line algorithm can have a constant competitive ratio in the nomadic
case also applies when the objective function is the sum of completion times
(the traveling repairman problem [15]), it would be interesting to investigate
this last problem in spaces with bounded asymmetry.

Finally, we remark that the existence of polynomial time O(1)-competitive
algorithms for the homing version is indissolubly tied to the existence of an
O(1)-approximation algorithm for the off-line ATSP.
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