A Java-based System for Building Animated
Presentations over the Web *

Vincenzo Bonifaci?®, Benedetto A. Colombo P,
Camil Demetrescu?, Irene Finocchi €, Luigi Laura?

aDipartimento di Informatica e Sistemistica, Universita degli Studi di Roma “La
Sapienza”, Via Salaria 113, 00198 Roma, Italy.

b Accenture Technology Solutions, Viale del Tintoretto 200, 00142 Roma, Italy.

¢ Dipartimento di Informatica, Sistemi e Produzione, Universita degli Studi di
Roma “Tor Vergata”, Via del Politecnico 1, 00138 Roma, Italy.

Abstract

We describe Leonardo Web, a collection of tools for building animated presentations
that can be useful for teaching, disseminating, and e-learning. Presentations can be
created via the combined use of a visual editor and a Java library. The library allows
it to generate animations in a batch fashion directly from Java code according to
an imperative specification style. Batch-generated animations can then be refined
and customized using the editor. Presentations can be finally viewed with a simple
Java player, which ships both as a stand-alone application for off-line deployment
and as a Java applet embedded in a Web page. The player supports step-by-step
and continuous execution, reversibility, speed selection, and smooth animation.

Key words: Animated presentations, software visualization, e-learning, Java.

* This work has been partially supported by the IST Programme of the EU under
contract n. IST-1999-14.186 (ALCOM-FT) and by the Italian Ministry of University
and Research (Project “ALINWEB: Algorithms for Internet and the Web”).

Email addresses: Vincenzo.Bonifaci@dis.uniromal.it (Vincenzo Bonifaci),
ba.colombo@tiscali.it (Benedetto A. Colombo), demetres@dis.uniromal.it
(Camil Demetrescu), finocchi@disp.uniroma2.it (Irene Finocchi),
laura@dis.uniromal.it (Luigi Laura).

URLs: http://www.dis.uniromal.it/ demetres (Camil Demetrescu),
http://www.disp.uniroma2.it/users/finocchi/ (Irene Finocchi),
http://www.dis.uniromal.it/"laura (Luigi Laura).

Preprint submitted to Elsevier Science 23 November 2007

1 Introduction

Interactive animations are a valuable tool for teaching and learning: they can
be used by algorithm researchers who want to share and disseminate their
ideas, by lecturers to liven up lectures, to demonstrate the behavior of com-
plex systems, or to portray the dynamic aspects of some topic of interest,
and by students for individual experiments, so as to deepen the knowledge
acquired in the lectures. Realizing illustrative computer-based learning ma-
terial is usually very expensive [5,9], and the task is even more cumbersome
if one wants animations to be portable across different platforms. Instructors
who wish to prepare animated presentations are typically required to use some
commercial general-purpose tool, or even to write ad-hoc computer programs:
this might be difficult and time-consuming. For instance, using tools such as
Microsoft PowerPoint or OpenOffice Impress, which provide a flexible support
for creating animated slides, may be hard if complex animations are to be pro-
duced. On the other hand, specialized tools, such as Macromedia Flash, can
be used to create highly customized animations, but may have a steep learning
curve. Creating animated GIFs of MPEG movies might be even harder and
limits the user interaction possibilities. In this context, exploiting Web-based
technologies for education seems to be a quite natural solution [4,11,18,22].
However, as detailed in Section 2, the quest for simple, light, and easy-to-use
tools for building general-purpose animated presentations over the Web still
demands for further efforts.

In this paper we describe Leonardo Web, a collection of Web-based tools
for creating animations that can be useful for teaching, disseminating, and
e-learning. Animated presentations can be created with a specialized visual
editor and viewed with a simple Java player, which is available both as a stand-
alone application for off-line deployment and as a Java applet. The player
supports step-by-step and continuous execution of animations, which can be
run both forward and backward at different speeds. To support visualization
of algorithmic concepts, Leonardo Web also provides a library that can be
used to generate animations directly from Java algorithm implementations
according to an imperative style, i.e., by inserting calls to graphical routines
in the points of the code where the events of interest take place. Presentations
created with Leonardo Web, which include text, 2D graphics, and bitmapped
images with smooth animation effects, ship as plain text files written in a
simple scripting language. Animation scripts are small and compact, and can
specify highly complex graphical scenes. Batch-generated animations can be
easily refined and customized using the editor. Leonardo Web is written in
Java and is made of three main components:

e The Builder: a visual editor, which can be used to build and edit animated
presentations;
e The Player: a viewer for Leonardo Web presentations, which can be used

both as a Java stand-alone application and over the Web as a Java applet;

e The Library: a Java library that supports creation of batch-generated ani-
mation scripts using Java programs as drivers. Animations created in this
way can be further refined using the Builder.

Up to date information about the Leonardo Web tools can be found at the
Web site http://www.dis.uniromal.it/~leoweb [3].

The rest of this paper is organized as follows. In Section 2 we survey the
most common approaches to creating animations over the Web and recent
related work. In Section 3 we describe the main components of Leonardo
Web, presenting their main features and the overall design of the system. The
internal architecture of the Player and of the Builder is discussed in Section 4.
In Section 5 we address different scenarios that show how Leonardo Web can
be used to create presentations for educational and dissemination purposes.
Section 6 gives concluding remarks and discusses directions for future work.

2 Related work

Despite the impressive rise of Web authoring applications in the last years,
creating animated presentations as a support for e-learning and teaching over
the Web still remains a challenging task. The most popular trend is to write
ad-hoc Java applets that display the desired animations (see, e.g., [1,15,23,29]).
With this technique, highly customized and interactive presentations can be
obtained, but preparing them may be long and boring. Creating presentations
of computer science concepts has motivated researchers to think about ways to
automate (or at least to simplify) the process of visualizing, e.g., how programs
and algorithms work. In particular, a few Web-based systems can be found in
the literature.

JEliot [13] automatically produces visualizations of Java programs by parsing
the Java code and allowing the user to choose a subset of variables to visualize
on the stage according to built-in graphical interpretations. It relieves the user
from writing any visualization code and is very easy to use, but lacks in cus-
tomization possibilities and abstraction. Thus, it is mostly useful to illustrate
basic programming concepts. JDSL [2] is a Java library of data structures that
features a visualizer for animating operations on abstract data types such as
AVL trees, heaps, and red-black trees [6]. It is well suited for educational pur-
poses, as students are allowed to write and test their own classes provided
they implement specific JDSL Java interfaces. The visualization of supported
data types, however, is embedded into the library and cannot be changed.
VEGA [14] is a C++ client/server visualization environment especially tar-
geted to portraying geometric algorithms: while the algorithm is executed on
the server, the clients runs on any Java Virtual Machine and a small band-
width communication interface guarantees good performance even on slow
networks. The end-user can visualize algorithms on-line or show saved runs

off-line, and can customize the visualization by specifying a suitable set of view
attributes. WAVE [8] is an algorithm visualization tool based on a publication-
driven approach: algorithms run on a developer’s remote server and their data
structures are published on blackboards held by the clients. Animations are
specified by attaching visualization handlers to the data structures published
on the client’s blackboard: modifications to these structures, due to the re-
mote algorithm execution, trigger the running of the corresponding handlers
on the client’s side. Other Web-based algorithm animation tools are mentioned
in [10,28].

In order to realize an animated presentation, all those systems hinge upon
the existence of an underlying running program and are tied to a specific pro-
gramming language. The Samba package [25], and its Web-based follow up
JSamba, represent a first effort towards a language-independent solution to
algorithm animation. Samba provides an interpreted front-end to the Tango
system [26] and uses a scripting-based approach: it reads an ASCII file, one
command per line, in order to acquire directions for creating an animation.
Thus, an algorithm can be easily visualized by placing print statements in
the underlying program, which can be implemented in any language. Unfortu-
nately, this often requires to take into account very low-level details about the
visualization, e.g., explicitly specifying the position of objects in the graphical
scene: wrapping the print statements into calls to methods of a more abstract
library would instead hide some of these tedious details.

In many cases it would be quite useful to be able to animate high-level con-
cepts, independently of a specific algorithm, such as, e.g., rotations in balanced
binary search trees. In this scenario, starting from an underlying program may
be difficult, and a visual editor to animate these proofs of concepts would be
much useful. A recent release of the JAWAA system [20] exploits the use of an
editor to generate animation traces in a scripting language similar to that of
Samba. However, it does not support integration of the editor capabilities with
the traditional program-driven animation approach. Indeed, creating a presen-
tation may be long and boring using a visual editor only, which in turn may be
useful to refine a visualization skeleton by adding comments, explanations, and
by orchestrating the overall graphical layout. The ANIMAL system [24] was
designed to combine visual editing with batch generation. Unfortunately, the
system, which provides powerful features for creating lecture presentations,
seems to be unavailable for Web-based deployment.

3 An Overview of Leonardo Web

Leonardo Web is a collection of tools for building and viewing animated pre-
sentations. The system is written in Java and uses both stand-alone and applet
technologies, allowing users to create and view presentations off-line, and then
to easily post them over the Web for remote access. In this section we describe

the main features of the Leonardo Web tools, addressing the key aspects of
our approach.

3.1 The Builder

Presentations in Leonardo Web can be easily created using the Builder, a
visual editor for building animations. The tool allows the user to write and
maintain a sequence of key frames (or scenes), which are the backbone of the
presentation. Each frame can contain text and 2D graphical objects drawn
from a vocabulary of elementary geometric shapes, including circles, ellipses,
lines, rectangles, and arbitrary polygons. User-defined bitmapped images can
also be added to the presentation. The user can interact with the Builder’s
GUI in order to add, resize, move, hide, and delete graphical objects. The
sequence of key frames in the presentation is shown as a list of numbered
thumbnails, which provide a graphical storyboard that helps the user control
the big picture of the presentation and select individual frames for editing. We
refer to Figure 6 for a snapshot of the Builder.

Each graphical object in a frame is assigned an identification label and a set of
attributes, including size, position, color, and layer, which can be individually
modified using the object inspector toolbar. To support smooth animation,
objects by the same identification label in consecutive scenes are compared,
and attribute changes are interpolated to form a sequence of intermediate
frames. The number of intermediate frames is an attribute of the object itself,
and can be fully controlled by the user. This makes it possible to animate
graphical objects in the same scene at different speeds.

During editing, when an attribute of an object is modified in a scene, the

% Leanardo Animation Builder 1,0.0 AEH i e
Hie Edit Help

N[T i

& bubblesort.twh EEX

[bubblesortiwn i

Bubblesort Algorithm
= ¢

§2 ogEoom |

1 [

Bubblesort Algorithm

W'M""I'"" M O 0 (9t o | b |

Fig. 1. Using the Builder to prepare an animated presentation.

A1 1

2 omaoou |

Fig. 2. The Leonardo Web Player showing the Hanoi Towers Challenge.

system automatically propagates that change to the other frames: the current
strategy is to extend the propagation up to the first successive frame in which
the object had a different value for that attribute. Other possibilities might
be also contemplated, such as propagating the change for a given number of
frames or up to the end of the presentation, and we plan to add them in a
future release of the Builder.

The Builder can save a presentation as a plain text file written in a simple
scripting language, which specifies the incremental changes that lead from a
key frame to the successive one. The benefits of using scripting languages
for generating program visualizations have been pointed out by several au-
thors [20,24,25]. In particular, our language was inspired by that of Samba [25]
and JAWAA [20]. The incremental nature of our scripting language makes pre-
sentation scripts small and compact, and thus amenable to quick download
even on slow network connections.

Presentations created with the Builder can be visualized with the Player, as we
will see in Section 3.2, and can be later reopened with the Builder itself, which
reconstructs the sequence of key frames, for additional editing. Interestingly,
the Builder can also open and modify presentations created in some other way
(e.g., directly writing a script or using the Library): this allows the users to
create and refine presentations via the combined use of different tools, using
the most appropriate one in different stages of the animation specification
process. The Builder, which includes an on-line help, can be downloaded from
the Leonardo Web site [3].

3.2 The Player

The Leonardo Web Player has been designed as a light and easy-to-use presen-
tation viewer. It is able to interpret text files created by the Builder, and can
be used both as a stand-alone Java application and as an applet inside a Web
page. The graphic user interface of the Player, shown in Figure 2, is clean and
simple, resembling to a standard VCR control tool. The user can start, stop,

public class Bouncing {
public static void nmain(String[] args){ ' ‘
int x=0, y=0, dx=1, dy=1; . . .
JLeoScript s = new JLeoScri pt("bouncing.|w"); . . .
s.newCircle("ball", 0, 0, 10, 200, 0, O, true);
s. newRect angl e("box", 0, 0, 400, 200. 160, 160, 160, false); [) o o
for (i=0; i<200; i++) { . .
if (x==0 && dx<0 || x==14 && dx>0) dx=-dx; . .
if (y==0 && dy<0 || y==9 && dy>0) dy=-dy;
x+=dx; y+=dy; . .
s. moveAbsol ute("bal | ", x*20, y*20, 4); . .
}
s.close();
0
) [)

Fig. 3. Program that generates a “bouncing ball” animation script.

rewind, and play the presentation both forward and backward. Playing is sup-
ported either in a step-by-step fashion, or continuously. Animated transitions
of graphical objects, including movements and color changes, are smoothly
rendered by the system by generating sequences of interpolating interframes.

To support effective on-line deployment even on slow network connections, the
Player is fully multi-threaded, allowing it to start playing a presentation even
if it has not been completely downloaded from the remote peer. Furthermore,
the applet version of the Player is just about 100KB, including GUI graphics.
This imposes a light burden on the applet startup phase, which is typically
very time-critical. The interested reader see the Player in action and download
its standalone version at the Leonardo Web site [3].

3.3 The Library

While the Builder appears to be flexible enough to support common user’s
needs, sometimes presentations include complex animations that portray some
technical aspect of a topic of interest, which might be difficult to specify vi-
sually. In this scenario, it might be easier to write a program whose execution
produces the desired animation script, rather than having to specify it di-
rectly in the Builder. Still, a script generated in this way can be later refined
and completed using the Builder. To support this scenario, which will be ad-
dressed in more depth in Section 5, Leonardo Web provides a Java library
(JLeoScript) that provides primitives for creating presentation scripts.

Available primitives supported by the class JLeoScript include adding graph-
ical objects to the scene, deleting existing graphical objects, moving and re-
sizing objects, and changing color. As an example, in Figure 3 we show a Java
program that uses the JLeoScript library to generate a simple animated pre-
sentation. The produced script simulates a ball bouncing in a box as shown in
the same figure. To achieve this goal, the program first creates a JLeoScript
object, specifying the name of the file to be created, and then adds the ball
(newCircle) and the box (newRectangle) to the scene. Those graphical ob-
jects are defined by specifying a unique name (e.g., “ball”, “box”), the coor-
dinates of the left-top corner, the dimension (radius or width and height), the

color in RGB format, and a flag telling whether the object has to be color-filled.
The program then enters a simulation loop that lets the ball bounce inside
the box (moveAbsolute). Each elementary movement of the ball is smoothly
interpolated using 4 interframes.

4 Architecture of the System

In this section we briefly describe the internal architecture of the Player and
of the Builder. The structure of the Player is shown in Figure 4. Two threads
cooperate in playing an animation script: a language parser and an interactive
animation module. As the applet is loaded from the Leonardo Web site, the
language parser establishes a connection to the remote site that contains the
desired script, which is loaded and parsed. In the off-line application version
of the Player, the language parser retrieves the script from a local disk, rather
than from a Web site. The language parser produces an indexed sequence of
scenes, each of which consists of a list of data records describing operations on
graphical objects. The interactive animation module is activated by the user
through the buttons in the control palette. This module is able to interpret
the operations in the scene buffer according to the playback direction, incre-
mentally creating interpolating interframes for smooth animation rendering.

The main modules of the Builder are shown in Figure 5. The heart of the
builder is the editing engine, which handles the events generated by the user
while interacting with windows, menus and toolbars. The editing engine is
responsible of manipulating objects in the current scene, as well as adding
and deleting scenes. Another important module is the script/scene converter,
which is able to convert a list of scenes into a LeoWeb script, and vice-versa.

LeoWeb Site

A1 1

Fig. 4. Internal organization of the Player.

Animation Site

MMhmmM| gngt i
Bubblesort Algorithm WI ndOW appll':lcatelron L Ocal dl g(

- script
_> 4—

\

v

[z omamoow |]
Preview

]

OEsEnneDEE
l

|

[

f—— e

ﬂﬂm

Tt ‘..“||.|||1||¢.||

ﬂ%

Thumbnails

Fig. 5. Internal organization of the Builder.

5 Leonardo Web in Action

In this section we show how Leonardo Web can be used to prepare a presen-
tation and how animations can be made available over the Web.

5.1 Preparing a Presentation

We consider different usage scenarios, detailing how the different parts of the
system can be effectively exploited to achieve the desired result.

5.1.1 Using the Builder

Visual editors may be especially useful to prepare simple animations that
illustrate high-level concepts (e.g., rotations in balanced binary search trees),
as well as to refine more sophisticated presentations obtained from program
execution traces. Indeed, as noted by Brown and Hershberger, “even though
it may be easy to animate a program, it’s not so easy to produce an effective
and informative visualization” [5]. This requires adding comments, labels, and
a lot of text explanations that are typically quite boring to be realized. An
appealing graphical layout should be orchestrated, other essential graphical
features, such as text color and size, should be customized, and their meaning
explained. In this context, we believe that an integrated use of the Library
and the Builder can be very beneficial.

In the following, we briefly describe a usage example of the Builder related to
the first scenario. Let us assume that we want to illustrate the idea behind
backtracking by means of a simple toy example: a mouse in a labyrinth is
seeking for its cheese. The mouse moves along a path in the labyrinth until
either a dead-end street or the cheese is found. In case of a dead-end street,
the mouse backtracks to the nearest branching and takes a different path. An

(- | o An

HLe
File Help
‘ n ‘ 4447

Object ID

o

ONsSmDeoE-

F
R

R

]

Fig. 6. Using the Builder: the “mouse in the maze” animation.

animation like this can be easily prepared using the Builder. The labyrinth
is made up of vertical and horizontal lines, which can be added by means of
the object inspector window. Cheese and mouse can be represented using two
bitmapped images. When a scene is ready, we can commit it and then obtain
the successive one by incremental modification (i.e., we just need to reposition
the mouse). The graphical storyboard allows us to select any scene, modify it,
add a new scene or delete an existing one. For instance, if we decide to change
the structure of the labyrinth, it suffices to modify the starting scene and
propagate the change to all the successive ones. A snapshot of the Builder in
use is illustrated in Figure 6 and the animation is available from the Leonardo
Web site [3].

Similarly, the Builder can be used in order to refine an existing animation. In
this case, when an existing presentation is opened, the key frames are parsed
and appear in the graphical storyboard. Any scene can then be modified,
possibly propagating changes to a subset of the subsequent scenes, and the
new animation can then be saved and played as usual.

5.1.2 Using the Library

Creating a presentation might be long and boring even using a visual editor.
This is especially true if the content is complex and technical. For instance,
creating a presentation to explain how an algorithm works on some input data
for a Computer Science class might be hard and even error-prone due to the
difficulty to capture all the aspects of the algorithm execution. A classical
approach in algorithm animation [28] consists of using an implementation of
the algorithm to be visualized as a driver, and let it emit a sequence of events

10

public class BubbleSort {
public static void main(String[] args){
int[] v={3 7 2 5 9 1, 4, 8, 6
bubbl esort (v);

I
JLeoScript s = new JLeoScri pt ("bubble.lw");

} begi .
private static void bubblesort (int[] v){ So I W5 .
bool ean fini shed: for(int i=0; i<v.length; i++

P s. newRect angl e(v[i], 20+ *20, 20, 18, 20*v[i],
do‘{ 180, 180, 180, true);
finished = true; s.end();
for (int i=0; i<v.length-1; i++)
if (vli]>v[i+1]) { s. begi n();
< s. moveRel ative(v[i], 20,0,7);
int tenp = v[i]; s. moveRel ative(v[i+1],-20,0,7);
v[i] = v[i+1]; s.end();
v[i+1] = tenp;
finished = fal se;
}
} while(!finished);
< s.close();

Fig. 7. Java implementation of the Bubblesort algorithm.

which are turned into graphical commands as the implementation runs. This is
typically achieved by annotating the algorithm implementation with suitable
calls to library routines.

To explain how this approach can be supported using Leonardo Web, let us
consider a concrete example. Suppose that an instructor has to prepare a
presentation showing the Bubblesort algorithm in action. The starting point
will be a Java implementation of the algorithm like the one shown in Figure 7.

A classical visual metaphore for portraying sorting problems displays the array
as a sequence of sticks with height proportional to the array values [28]. Swaps
of items are illustrated by exchanging the positions of the corresponding sticks,
and the final sorted array is displayed as a growing sequence of sticks. The
instructor can annotate the code using the Leonardo Web Library as shown
in the grey boxes in Figure 7. Running the annotated program produces the
desired animation script, which is shown in Figure 8.

With this approach, the same implementation can be used to prepare different

& bubble.twb Lok

& bubble.twh

: 2 ORKKDDW || (e nn[nmmnj

Fig. 8. Screenshots of the bubblesort visualization.

11

http://www.dis.uniromal.it/~leoweb/jlwCode/
jLeoWeb. JLeoWeb

<applet codebase
code

archive "jLeoWeb. jar"

width = 400

height = 470>
<param name = "file" value = "bubble.lwb">
<param name = "gui"

value = "http://www.dis.uniromal.it/~leoweb/jlwGui">
</applet>

Fig. 9. HTML tag for including the bubble.lwb presentation in a Web page.

animated presentations of the same algorithm on a variety of data sets in order
to show, for instance, the behavior of the algorithm on worst-case instances.
Of course, animations produced in this way may be further refined, e.g., by
adding labels, captions, and other information to focus specific aspects of the
algorithm execution.

5.2 Delivering a Presentation over the Web

Using the applet version of the Player, it is easy to set up Web pages that
include animations created with Leonardo Web. To explain how this can be
done, we consider again a concrete example. Suppose that the instructor wants
to create a Web page that shows the bubblesort animation described in Sec-
tion 5.1, so that students can view it. To this aim, the only thing she has to do
is to drop the animation script file bubble.lwb in her website together with
a Web page containing an html tag like the one shown in Figure 9.

When students access the page, the Player applet is loaded, and the bubblesort
animation script is automatically fetched by the applet, allowing students to
view it. Notice that the instructor does not even have to install the Player in
her Web site, since the Web browsers used by the students will fetch it directly
from our site [3].

6 Conclusions and Work in Progress

In this paper we have presented Leonardo Web, a collection of tools for creating
and viewing animated presentations. Animations generated with Leonardo
Web include both text and 2D graphics with smooth animation effects, and
ship as compact text files written in a simple scripting language. The system
is written in Java and includes a visual editor for editing presentations (the
Builder), a presentation viewer (the Player), and a Java library for creating
batch-generated animation scripts (the Library). Presentations can be easily
posted over the Web using the applet version of the Player. Leonardo Web is
freely available over the Internet at http://www.dis.uniromal.it/~leoweb.
Differently from previous Web-based systems such as JAWAA [20], Leonardo

12

Web explores integration of visual editing and batch generation. As another
relevant feature, the Player supports going back to previous animation frames.
Without this feature, which is rarely implemented, the user has to restart the
animation from the beginning if a transition of interest is passed over, strongly
limiting the effectiveness of the presentation.

Although an extensive empirical evaluation is still missing, we are currently
using Leonardo Web for realizing animations that will accompany a forthcom-
ing textbook on algorithm and data structures [7], in order to provide students
with interactive animated learning material. In addition, we have been using
the Player as a Web-based e-Learning platform both in face-to-face and in
on-line introductory courses on computer engineering subjects, including Java
Programming as well as Algorithms and Data Structures, at the universities
of Rome “La Sapienza” and “Tor Vergata”. According to these preliminary
experiments, the use of animations proved itself to be a valuable teaching and
learning aid, confirming the trend reported in more extensive studies such
as [12,16,17,19,21,27], and the system appears to be user-friendly and easy to
use.

To help lecturers and instructors realize their own animations, we plan to ex-
tend Leonardo Web in different directions. For instance, we wish to export
Leonardo Web presentations in a format readable by standard tools such as
Microsoft PowerPoint or OpenOffice Impress. We are also adding new ad-
vanced features to the Builder, such as grouping and aligning objects. Last
but not least, writing converters that generate PostScript versions of the an-
imations would be a valuable contribution for authors who wish to include
storyboards in their papers. To allow interested people to modify and extend
the system, we plan to distribute the source code of Leonardo Web under
the terms of the GNU General Public License (GPL). Up to date information
about the system can be found at the Leonardo Web site [3].

References

[1] Algorithma. Department of Computer Science, California State University,
2000. URL: http://web.csusb.edu/public/class/cs455_1/winter2000/
index.html.

[2] R.S. Baker, M. Boilen, M.T. Goodrich, R. Tamassia, and B. Stibel. Testers
and Visualizers for Teaching Data Structures. SIGCSE Bulletin (ACM Special
Interest Group on Computer Science Education), 31, 1999.

[3] V. Bonifaci, B. A. Colombo, C. Demetrescu, I. Finocchi, and L. Laura. Leonardo
Web Site, 2004. URL: http://www.dis.uniromal.it/ " leoweb.

[4] C.M. Boroni, F.W. Goosey, M.T. Grinder, and R.J. Ross. A Paradigm Shift!
The Internet, The Web, Browsers, Java, and the Future of Computer Science

13

Education. SIGCSE Bulletin: Proc. 29th SIGCSE Technical Symposium on
Computer Science Education, 30(1):145-149, 1998.

[5] M.H. Brown and J. Hershberger. Color and Sound in Algorithm Animation.
IEEE Computer, 25:52-63, 1992.

[6) T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill, 2001.

[7] C. Demetrescu, I. Finocchi, and G. F. Italiano. Algorithms and Data Structures
(in Italian), McGraw Hill, 2004, to appear.

[8] C. Demetrescu, I. Finocchi, and G. Liotta. Visualizing Algorithms over the
Web with the Publication-driven Approach. In Proc. of the 4-th Workshop on
Algorithm Engineering (WAE’00), LNCS 1982, pages 147-158, 2000.

[9] A. Diaz de Ilarraza Sanchez and I. Fernandez de Castro, editors. Proceedings of
the 8rd Int. Conference on Computer-Aided Learning and Instruction in Science
and Engineering, Spain, July 1996.

[10] S. Diehl, editor. Software Visualization. LNCS 2269. Springer Verlag, 2001.

[11] J. Domingue and P. Mulholland. = An Effective Web Based Software
Visualization Learning Environment. Journal of Visual Languages and
Computing, 9(5):485-508, 1998.

[12] I. Finocchi and R. Petreschi. Hands on Algorithms: an Experience with
Algorithm Animation in Advanced Computer Science Classes. In Proc. of the
2nd Program Visualization Workshop (PVW’02), pages 93-102, 2002.

[13] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T. Terasvirta, and P. Vanninen.
Animation of User Algorithms on the Web. In Proc. of the 13th IEEE
International Symposium on Visual Languages (VL’97), pages 360-367, 1997.

[14] C.A. Hipke and S. Schuierer. VEGA: A User Centered Approach to
the Distributed Visualization of Geometric Algorithms. In Proc. of the
7-th International Conference in Central FEurope on Computer Graphics,
Visualization and Interactive Digital Media (WSCG’99), pages 110-117, 1999.

[15] L. Kucera homepage. URL: http://www.ms.mff.cuni.cz/acad/kam/kucera.

[16] A.W. Lawrence. Empirical Studies of the Value of Algorithm Animation in
Algorithm Understanding. PhD thesis, Georgia Institute of Technology, Atlanta,
1993.

[17] A.W. Lawrence, A.N. Badre, and J.T. Stasko. Empirically Evaluating the Use
of Animations to Teach Algorithms. In Proc. of the 10th IEEE International
Symposium on Visual Languages (VL’94), pages 48-54, 1994.

[18] T. Naps. Algorithm Visualization Served Off the World Wide Web: Why and
How. ACM SIGCSE Bulletin, 28:66-71, 1996.

14

[19] S. Palmiter and J. Elkerton. An Evaluation of Animated Demonstrations for
Learning Computer-based Tasks. In Proc. of the ACM SIGCHI’91 Conference
on Human Factors in Computing Systems, pages 257-263, 1991.

[20] W.C. Pierson and S.H. Rodger. Web-based Animations of Data Structures
Using JAWAA. In Proc. 29th SIGCSE Technical Symposium on Computer
Science Education, pages 267271, 1998.

[21] L.P. Rieber, M.J. Boyce, and C. Assad. The Effects of Computer Animation on
Adult Learning and Retrieval Tasks. Journal of Computer Based Instruction,
17(2):46-52, 1990.

[22] R.J. Ross and M.T. Grinder. Hypertextbooks: Animated, Active Learning,
Comprehensive Teaching and Learning Resources for the Web. In S. Diehl,
editor, Software Visualization, LNCS 2269, pages 269-284. Springer Verlag,
2001.

[23] G. RoBling. Collection of Animations. URL: http://www.animal.ahrgr.de/.

[24] G. RoBling, M. Schiiler, and B. Freisleben. The Animal Algorithm Animation
Tool. In Proc. of the 5th Annual SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education (ITiCSE 2000), pages 3740,
2000.

[25] J.T. Stasko. Algorithm Animation Research at GVU. http://www.cc.gatech.
edu/gvu/softviz/algoanim/.

[26] J.T. Stasko. TANGO: A Framework and System for Algorithm Animation.
IEEE Computer, 23:27-39, 1990.

[27] J.T. Stasko. Using Student-Built Algorithm Animation as Learning Aids. In
Proc. of the ACM SIGCSE Conference, pages 25—29, 1997.

[28] J.T. Stasko, J. Domingue, M.H. Brown, and B.A. Price. Software Visualization:
Programming as a Multimedia Experience. MIT Press, Cambridge, MA, 1997.

[29] M. Syrjakow, J. Berdux, and H. Szczerbicka. Interactive Web-based Animations
for Teaching and Learning. In Proc. of the 32nd Winter Simulation Conference,
pages 1651-1659. Society for Computer Simulation International, 2000.

15

