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Abstract
We propose a novel differentiable reformulation of the linearly-constrained �

1
 mini-

mization problem, also known as the basis pursuit problem. The reformulation is 
inspired by the Laplacian paradigm of network theory and leads to a new family of 
gradient-based methods for the solution of �

1
 minimization problems. We analyze 

the iteration complexity of a natural solution approach to the reformulation, based 
on a multiplicative weights update scheme, as well as the iteration complexity of an 
accelerated gradient scheme. The results can be seen as bounds on the complexity of 
iteratively reweighted least squares (IRLS) type methods of basis pursuit.

Keywords �1 regression · Basis pursuit · Iteratively reweighted least squares · 
Multiplicative weights · Laplacian paradigm · Convex optimization

1 Introduction

An important primitive in the areas of signal processing and statistics is that of 
finding a minimum �1-norm solution to an underdetermined system of linear equa-
tions. Specifically, for some n ≤ m , let ŝ ∈ ℝ

m represent an unknown signal, b ∈ ℝ
n 

a measurement vector, and A ∈ ℝ
n×m a full-rank matrix such that Aŝ = b . In some 

circumstances, the unknown signal ŝ can be recovered by computing a minimum �1

-norm solution to the system As = b ; in other words, solving the following optimiza-
tion problem:

This �1-minimization problem is known as basis pursuit [20]. It is a central prob-
lem in the theory of sparse representation and arises in several applications, such 

(BP)
minimize ‖s‖1
subject to As = b, s ∈ ℝ

m.
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as compressed sensing [48], phase retrieval [30], imaging [42], and face recogni-
tion [47]. Through a standard reduction, it also captures the �1-regression prob-
lem used in statistical estimation and learning. Given its central role in the areas of 
sparse representation and statistics, the literature on the basis pursuit problem and 
�1-regression is extensive; see for example [18, 27, 40] and references therein. Sev-
eral algorithms for basis pursuit are discussed in [27, Chapter 15], [17, 48]; for an 
experimental comparison, see [47].

The convex optimization problem (BP) can be cast as a linear program and thus 
could be solved via an interior-point method. Another popular approach to �1-mini-
mization is the iteratively reweighted least squares (IRLS) method, which is based 
on iteratively solving a series of adaptively weighted �2-minimization problems. 
Various versions of IRLS schemes have been studied for a long time [31, 39]. IRLS 
methods are popular in practice, due to their simplicity, their experimental perfor-
mance, and the fact that they do not require preprocessing nor special initialization 
rules [19]. Despite this, theoretical guarantees for IRLS methods in the literature are 
not common, particularly in terms of global convergence bounds (some examples 
are [7, 23, 43]). A recent IRLS algorithm stands out in the context of this paper, 
as it applies to the basis pursuit problem and comes with a worst-case guarantee: 
a Õ(m1∕3𝜖−8∕3) iterations algorithm due to [21, Theorem  5.1], derived by further 
developing the approach of [22].

The present work contributes to developing the understanding and design of 
IRLS-type methods for basis pursuit. We propose a novel exact reformulation of 
(BP) as a differentiable convex problem over the positive orthant, which we call the 
dissipation minimization problem. A distinguishing feature of this approach is that 
it entails the solution of a single differentiable convex problem. The reformulation 
leads naturally to a new family of IRLS-type methods solving (BP).

We exemplify this approach by providing global convergence bounds for discrete 
IRLS-type algorithms for (BP). We explore two possible routes to the solution of 
the dissipation minimization problem, and thus of (BP), where we use the estab-
lished framework of first-order optimization methods to derive two provably con-
vergent iterative algorithms. We bound their iteration complexity as O(m2∕�3) and 
O(m2∕�2) , respectively, where � is the relative error parameter. These methods are 
in the IRLS family since each iteration can be reduced to the solution of a weighted 
least squares problem. Both methods are very simple to implement and the first one 
exhibits a geometric convergence rate in numerical experiments.

Our approach breaks the �−8∕3 bound for an IRLS method (at the cost of a 
worse dependency on m). We nevertheless emphasize that the goal of this work 
is not to establish the superiority of a specific algorithm, but rather to highlight a 
new approach that, already when coupled with off-the-shelf optimization methods, 
offers a principled way to derive IRLS-type algorithms with competitive theoreti-
cal performance. Subsequently to the first appearance of our results (on arXiv), an 
improved bound of Õ(m1∕3𝜖−2∕3 + 𝜖−2) iterations for a more sophisticated IRLS-type 
algorithm for (BP) has been derived by [25] (again building on the ideas of [22] and 
[21]). While this algorithm has a rather more favorable worst-case dependency on 
the parameters, in practice it requires roughly 1∕� iterations [25, Section 4]; in con-
trast, as we observe in Sect. 6, the experimental convergence rate of our approach is 
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consistent with a geometric rate, that is, the iterations required appear to be linear in 
log(1∕�) , suggesting that a much stronger theoretical bound may hold in our setting.

Our dissipation-based reformulation of (BP) is new and may be of independent 
interest. It is rooted in the Laplacian framework of network theory [22]: it general-
izes concepts such as the Laplacian matrix and the transfer matrix, which were orig-
inally developed to express the relation between electrical quantities across different 
terminals of a resistive network. (Many of our formulas have simple interpretations 
when the constraint matrix A is derived from a network matrix). In particular, the 
definition of the dissipation function is based on a generalization of the Laplacian 
potential of a network. This reinforces the idea from [21] that concepts originally 
developed for network optimization can be fruitful in the context of �1-regression.

To better motivate our algorithmic approach to the solution of the dissipation 
reformulation, in Sect. 4 we introduce dissipation-minimizing dynamics which are 
an application of the mirror descent (or natural gradient) dynamics [2, 3, 35] to 
our new objective function. Leveraging this intuition, in Sect. 5.1 we show how the 
algorithmic framework of [35] (see also [6]) can be applied to the dissipation mini-
mization problem. The improved algorithm discussed in Section 5.2 is instead based 
on Nesterov’s well-known accelerated gradient method [38].

The dynamics studied in Sections  4 and 5 bear some formal similarity to the 
so-called Physarum dynamics, studied in the context of natural computing, which 
are the network dynamics of a slime mold [10, 15, 43–45]. The fact that Physarum 
dynamics are of IRLS type was first observed in [43]. In this context, our result can 
be seen as the derivation of a Physarum-like dynamics purely from an optimization 
principle: dissipation minimization following the natural gradient. A relevant differ-
ence is that the specific dynamics we study is a gradient system, while the dynamics 
studied by [10, 43] is provably not a gradient system. This is precisely what enables 
us to apply the machinery of first-order convex optimization methods, and accelera-
tion in particular.

We finally note that a different proof of Theorem 3.1 has been independently pro-
vided by [26] in the context of the Physarum dynamics.

Notation. For a vector x ∈ ℝ
m , we use diag(x) to denote the m × m diagonal 

matrix with the coefficients of x along the diagonal. The inner product of two vectors 
x, y ∈ ℝ

m is denoted by ⟨x, y⟩ = x⊤y . The maximum (respectively, minimum) eigen-
value of a diagonalizable matrix M is denoted by �max(M) (respectively, �min(M) ). 
For a vector x ∈ ℝ

m , ‖x‖p denotes the �p-norm of x ( 1 ≤ p ≤ ∞ ), and |x| denotes the 
vector y such that yi = ||xi|| , i = 1,… ,m . Similarly, x2 denotes the vector y such that 
yi = x2

i
 , i = 1,… ,m . With a slight overlap of notation, which should nevertheless 

not cause any confusion (Table 1), we instead reserve xk with a symbolic index k to 
denote the vector produced by the kth step of an iterative algorithm.

Organization of the paper. The rest of the paper is organized as follows. In 
Sect. 2, we present the dissipation minimization reformulation of basis pursuit and 
some of its structural properties. In Sect. 3 we prove the equivalence between basis 
pursuit and dissipation minimization. In Sect. 4 we look at the continuous dynam-
ics obtained by applying mirror descent to the dissipation minimization objective 
and connect them with existing literature. In Sect.  5, we analyze a discretization 
of these dynamics that yields an iterative IRLS-type method for the solution of the 
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dissipation minimization problem and, hence, of basis pursuit; this method can be 
seen as an application of the well-known multiplicative weights update scheme, and 
its iteration complexity is O(m2∕�3) . Then, by leveraging Nesterov’s accelerated gra-
dient scheme, we present and analyze an improved IRLS-type method with iteration 
complexity O(m2∕�2) . In Sect. 6, implementations of the two methods are compared 
against existing solvers from the l1benchmark suite [47].

2  Basis pursuit and the dissipation minimization problem

2.1  Assumptions on the basis pursuit problem

We make the following assumptions on (BP): 

 (A.1) the matrix A has full rank and n ≤ m;
 (A.2) the system As = b has at least one solution s′ such that s′

j
≠ 0 for each 

j = 1,… ,m.

Proposition 2.1 Any (BP) instance satisfying (A.1) can be transformed (in linear 
time) into an equivalent instance that satisfies both (A.1) and (A.2).

Proof If a basis pursuit instance (A,  b) satisfies (A.1) but not (A.2), form a new 
instance (A�, b) where A′ is obtained from A by duplicating every column. Observe 
the following about the two instances:

• A′ has full rank and n� = n ≤ m ≤ 2m = m� (hence it satisfies (A.1)).
• For any solution to (A, b), there is a solution to (A�, b) with the same cost.
• Let u = A⊤(AA⊤)−1b be the least-square solution to As = b . There is at least one 

solution to A�s� = b with s′
j
≠ 0 for each j = 1,… , 2m , given by 

 Hence, (A�, b) satisfies (A.2).
• No optimal solution to the instance (A�, b) is such that s�

2j−1
⋅ s�

2j
< 0 for some j: if 

that was the case, one could form a solution of lesser cost by replacing each of 

s�
2j−1

=

{
uj∕2 if uj ≠ 0,

+1 if uj = 0,
, s�

2j
=

{
uj∕2 if uj ≠ 0,

−1 if uj = 0,
j = 1,… ,m.

Table 1  Worst-case iteration 
complexity of some IRLS 
methods for �

1
-norm 

minimization

Algorithm Iteration complexity

Chin et al. [21] Õ(m1∕3𝜖−8∕3)

PGS—Theorem 5.2 Õ(m2𝜖−3)

AGS—Theorem 5.4 O(m2�−2)

Ene and Vladu [25] Õ(m1∕3𝜖−2∕3 + 𝜖−2)
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s�
2j−1

 and s′
2j

 with their average. Thus, any optimal solution s′ to (A�, b) can be 
transformed back into a solution s to (A,  b) by taking sj = s�

2j−1
+ s�

2j
 for each 

j = 1,… ,m . Such a solution satisfies ‖s‖1 = ‖s�‖1 and thus must be optimal for 
(A, b). Thus, the two instances have the same optimal value.

• Both the transformation of A into A′ and the transformation of an optimal solu-
tion of (A�, b) into an optimal solution of (A, b) can be carried out in time propor-
tional to the size of the data (that is, in linear time).

  ◻

Remark 2.1 A special case of (BP) is when A is derived from a network matrix. Spe-
cifically, consider a connected network with n + 1 nodes and m edges, and suppose 
edge j connects node u to node v. Define bj ∈ ℝ

m as (bj)u = 1 , (bj)v = −1 , and all 
other entries 0. The matrix B = [b1 ⋯ bm] ∈ ℝ

(n+1)×m is called the incidence matrix 
of the network. For any connected network, the incidence matrix B has rank n and, 
additionally, any row of B can be expressed as a linear combination of the remain-
ing n rows, because the sum of all rows is a zero vector. Let A be the submatrix 
of B obtained by deleting an arbitrary row. Then A satisfies assumption (A.1) and 
thus, without loss of generality, (A.2). A solution s to As = b can be interpreted as 
an assignment of flow values to each edge such that the net in-flow at every node 
v = 1,… , n matches the prescribed demand bv.

2.2  The dissipation potential

In this section we introduce the dissipation potential, which is the function on which 
our reformulation of the basis pursuit problem is based.

Definition 2.1 Given A ∈ ℝ
n×m , the Laplacian-like matrix relative to a vector 

x ∈ ℝ
m
≥0

 is the matrix L(x)
def
=AXA⊤ , where X = diag(x).

Remark 2.2 In the network setting described in Remark 2.1, a vector x ∈ ℝ
m
>0

 can be 
interpreted as a set of weights, or conductances, on the edges of the network. Let B 
be the incidence matrix of the network as defined in Remark 2.1. Then the matrix 
BXB⊤ is the weighted Laplacian of the network [29]. The matrix L(x) = AXA⊤ is 
sometimes called the reduced Laplacian.

Proposition 2.2 If x > 0 , then L(x) is positive definite.

Proof Since A has full rank, so has AX1∕2 ; hence L(x) = (AX1∕2)(AX1∕2)⊤ is positive 
definite.   ◻

The following function definition is central to our approach.

Definition 2.2 Let A ∈ ℝ
n×m , b ∈ ℝ

n be such that (A.1)–(A.2) hold. Define 
f0, f ∶ ℝ

m
→ (−∞,+∞] as
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We call f the dissipation potential. An equivalent definition of f is as the convex 
closure of f0 , which is the function whose epigraph in ℝm+1 is the closure of the epi-
graph of f0 [41, Chapter 7]. The effective domain of f is the set

The functions f and f0 differ only on the boundary of the positive orthant. We will 
show that f always achieves a minimum on ℝm

≥0
 , and hence on ℝm . One of our main 

results (Theorem 3.1) is that this minimum equals the minimum of (BP).

Remark 2.3 Consider again the case where the matrix A is derived from a network 
matrix, as in Remark 2.1. The node of the network corresponding to the row that 
was removed from the incidence matrix to form A is called the grounded node. Now 
assume that for some u = 1,… , n the vector b ∈ ℝ

n is such that bv = 0 if v ≠ u , 
bv = 1 if v = u . Then the Laplacian potential b⊤L−1(x)b yields the effective resist-
ance between the grounded node and node u when the conductances of the network 
are specified by the vector x. A standard result in network theory is that decreasing 
the conductance of any edge can only increase the effective resistance between any 
two nodes (see, for example, [28]). Thus, the minimization of the dissipation poten-
tial f involves an equilibrium between two opposing tendencies: decreasing any xj 
decreases the linear term �⊤x , but increases the Laplacian term b⊤L−1(x)b.

2.3  Basic properties of the dissipation potential

We proceed to show that the dissipation potential attains a minimum. We start with 
some basic properties of f0.

Lemma 2.1 The function f0 is positive, convex and differentiable on ℝm
>0

.

Proof Positivity follows from the positive-definiteness of L−1(x) for x ∈ ℝ
m
>0

 
(implied by Proposition 2.2). For convexity, it suffices to show that the mapping 
x ↦ b⊤L−1(x)b is convex on ℝm

>0
 . First observe that x ↦ AXA⊤ is a linear matrix-

valued function, i.e., each one of the entries of AXA⊤ is a linear function of x , since 
multiplying X on the left and right with A and A⊤ yields linear combinations of 
the elements of x . Second, the matrix to scalar function Y ↦ b⊤Y−1b is convex on 
the cone of positive definite matrices, for any b ∈ ℝ

n (see for example [16, Sec-
tion  3.1.7]). By combining the two facts above, it follows that the composition 
x ↦ b⊤(AXA⊤)−1b is convex, and hence so is f0 . Finally, since the entries of L(x) 

(2.1)f0(x)
def
=

{
�
⊤x + b⊤L−1(x)b, if x ∈ ℝ

m
>0

+∞ if x ∉ ℝ
m
>0
.

(2.2)f (x)
def
= lim inf

x�→x
f0(x

�), x ∈ ℝ
m.

dom f
def
={x ∈ ℝ

m ∶ f (x) < +∞}.
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are linear functions of x, the function f0 is a rational function with no poles in ℝm
>0

 , 
hence differentiable.   ◻

To argue that f attains a minimum, we first recall some notions from convex 
analysis [8, 41]. An extended real-valued function f ∶ ℝ

m
→ [−∞,+∞] is called 

proper if its domain is nonempty and the function never attains the value −∞ . 
It is called closed if its epigraph is closed. It is called coercive if it is proper and 
lim‖x‖→∞ f (x) = +∞.

Lemma 2.2 The function f is nonnegative, coercive, proper, closed and convex on 
ℝ

m.

Proof By Lemma 2.1, f0 is convex on ℝm , since it is convex on its effective domain. 
Moreover f0 is proper, since L−1(x) is positive definite and thus 0 < f0(x) < +∞ for 
any x ∈ ℝ

m
>0

 . By construction, f coincides with the closure of f0 and thus it is a closed 
proper convex function [41, Theorem 7.4]. Its nonnegativity follows from the posi-
tivity of f0 and from (2.2). To show coerciveness, note that lim‖x‖→+∞ f (x) = +∞ , 
because b⊤(AXA⊤)−1b ≥ 0 for any x ∈ dom f0 , and �⊤x → +∞ as ‖x‖ → +∞ with 
x ∈ dom f0 .   ◻

Corollary 2.1 The function f attains a minimum on ℝm
≥0

.

Proof Under the hypotheses of Lemma 2.2, a function attains a minimal value over 
any nonempty closed set intersecting its domain [8, Theorem 2.14]; in particular, f 
attains its minimal value over ℝm

≥0
 .   ◻

Since f (x) = lim infx�→x f0(x
�) , the minimum attained by f over ℝm

≥0
 equals 

infx>0 f0(x) . Note also that this minimum may be attained on the boundary of dom f .

2.4  Gradient and Hessian

In this section we derive some formulas for the gradient and Hessian of f on the inte-
rior of its domain.

Definition 2.3 Let x ∈ ℝ
m
>0

 , A ∈ ℝ
n×m , b ∈ ℝ

n , L(x) = AXA⊤ . The voltage vector at 
x is d(x)

def
=A⊤L−1(x)b ∈ ℝ

m.

Remark 2.4 In the network setting described in Remark 2.1, dj(x) expresses the volt-
age along edge j when an external current bu enters each node u = 1,… , n (and a 
balancing current −

∑
u bu enters the grounded node).

The next lemma relates the gradient ∇f (x) to the voltage vector at x.

Lemma 2.3 Let x ∈ ℝ
m
>0

 . For any j = 1,… ,m , 𝜕f (x)
𝜕xj

= 1 − (a⊤
j
L−1(x)b)2 = 1 − d2

j
(x), 

where aj stands for the jth column of A.
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Proof First observe that L(x) = AXA⊤ =
∑m

j=1
xjaja

⊤
j
 and thus 𝜕L∕𝜕xj = aja

⊤
j
 . We 

apply the following identity for the derivative of a matrix inverse [36, Section 8.4]:

We obtain

The claim follows by the definition of f.   ◻

To express the Hessian of f, in addition to the voltages we need the notion of 
transfer matrix.

Definition 2.4 Let x ∈ ℝ
m
>0

 , A ∈ ℝ
n×m , L(x) = AXA⊤ . The transfer matrix at x is 

T(x)
def
=A⊤L−1(x)A.

Remark 2.5 In the network setting described in Remark 2.1, the transfer matrix T(x) 
expresses the relation between input currents and output voltages, when the con-
ductances are given by the vector x. Namely, Tij(x) is the amount of voltage observed 
along edge i of the network when a unit external current is applied between the end-
points of edge j.

Corollary 2.2 For any x > 0 , ∇2f (x) = 2 (d(x) d(x)⊤)⊙ T(x), where ⊙ denotes the 
Schur matrix product defined by (U ⊙ V)ij = Uij ⋅ Vij.

Proof For any i, j = 1,… ,m , by Lemma 2.3 and applying once more (2.3), we get

The claim follows by Definition 2.4.   ◻

2.5  Bounds on the norms of gradient and Hessian

In this section we derive some norm bounds for the gradient and Hessian of the 
dissipation potential f; they will be used crucially to derive complexity bounds for 
the algorithms studied in Sect. 5.

Two matrices M, M′ are called congruent if there is a nonsingular matrix S 
such that M� = SMS⊤ . For the proofs in this section, the main tool we rely on is 
the following algebraic fact relating the eigenvalues of congruent matrices; see 
for example [33, Theorem 4.5.9] for a proof.

(2.3)
�L−1

�xj
= −L−1

�L

�xj
L−1.

𝜕b⊤L−1b

𝜕xj
= −b⊤L−1

𝜕L

𝜕xj
L−1b = −b⊤L−1aja

⊤
j
L−1b = −(a⊤

j
L−1b)2.

[
∇2f (x)

]
ij
= 2

(
b⊤L−1aia

⊤
i
L−1aja

⊤
j
L−1b

)
= 2 di(x)dj(x)a

⊤
i
L−1aj.
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Theorem  2.1 (Ostrowski) Let M, S ∈ ℝ
m×m be two symmetric matrices, with S 

nonsingular. For k = 1,… ,m , let �k(M) , 𝜆k(SMS⊤) denote the k-th largest eigen-
value of M and SMS⊤ , respectively. For each k = 1,… ,m there is a positive real 
number 𝜃k ∈ [𝜆min(SS

⊤), 𝜆max(SS
⊤)] such that

Lemma 2.4 Let x ∈ ℝ
m
>0

 . Each nonzero eigenvalue of T(x) belongs to 
[(maxi xi)

−1, (mini xi)
−1].

Proof Consider the matrix Π(x)
def
=X1∕2T(x)X1∕2 . By Definition 2.4,

Hence, Π(x) is the orthogonal projection matrix that projects onto the range of 
(AX1∕2)⊤ . In particular, Π(x)2 = Π(x) and each eigenvalue of Π(x) equals 0 or 1. 
Since T(x) = X−1∕2Π(x)X−1∕2 , the matrices T(x) and Π(x) are congruent. By Theo-
rem  2.1, the algebraic multiplicity of the zero eigenvalue of T(x) and Π(x) is the 
same, and each positive eigenvalue of T(x) must lie between the smallest and the 
largest eigenvalue of X−1 . These are (maxi xi)

−1 and (mini xi)
−1 , respectively.   ◻

Lemma 2.5 Let x ∈ ℝ
m
>0

 . Then ‖d(x)‖∞ ≤ (mini=1,…,m xi)
−1

⋅ ‖s‖2 , where s is any 
solution to As = b . In particular, for cA,b

def
=b⊤(AA⊤)−1b,

Additionally, if s∗ is an optimal solution to (BP),

Proof Note that d(x) = A⊤L−1(x)b = A⊤L−1(x)As = T(x)s . Hence

Since the largest eigenvalue of T(x) is at most (mini xi)
−1 by Lemma 2.4, we can 

bound ‖T(x)s‖2 ≤ (mini xi)
−1‖s‖2 , proving the first part of the claim. For the second 

part, consider the least square solution u
def
=A⊤(AA⊤)−1b . Then ‖u‖2 = c

1∕2

A,b
 , and using 

the optimality of u for the �2 norm and of s∗ for the �1 norm we derive

  ◻

Corollary 2.3 If x ∈ ℝ
m
>0

 , then

Proof Combine Lemma 2.5 with Lemma 2.3.   ◻

(2.4)𝜆k(SMS⊤) = 𝜃k𝜆k(M).

Π(x) = (AX1∕2)⊤(AXA⊤)−1(AX1∕2).

(2.5)‖d(x)‖∞ ≤ ( min
i=1,…,m

xi)
−1 (cA,b)

1∕2.

(2.6)c
1∕2

A,b
≤ ‖s∗‖1 ≤ (m ⋅ cA,b)

1∕2.

(2.7)‖d(x)‖∞ = ‖T(x)s‖∞ ≤ ‖T(x)s‖2.

cA,b = ‖u‖2
2
≤ ‖s∗‖2

2
≤ ‖s∗‖2

1
≤ ‖u‖2

1
≤ m‖u‖2

2
= m ⋅ cA,b.

(2.8)‖∇f (x)‖∞ ≤ 1 + ( min
i=1,…,m

xi)
−2 cA,b.
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Lemma 2.6 If x ∈ ℝ
m
>0

 , then the largest eigenvalue of ∇2f (x) satisfies

Proof We can use the matrix identity M ⊙ (zz⊤) = diag(z) ⋅M ⋅ diag(z) to reexpress 
Corollary 2.2 as ∇2f (x) = 2D(x)T(x)D(x), where D(x)

def
=diag(d(x)) . Hence, by Theo-

rem 2.1, the largest eigenvalue of ∇2f (x) satisfies

for some � lying between the smallest and largest eigenvalues of D(x)2 . Since by 
Lemma 2.5

combining (2.10) and (2.11) with Lemma 2.4 we get

  ◻

3  Equivalence between basis pursuit and dissipation minimization

In this section we prove the equivalence between basis pursuit and dissipation 
minimization.

Theorem 3.1 The value of the optimization problem

is equal to the value of the optimization problem

where X = diag(x).

We call (DM) the dissipation minimization problem associated to A and b. Note 
that the objective in (DM) is exactly f0(x)∕2 , hence by (2.2) the minimum of (DM) 
equals the minimum of f(x)/2 over ℝm

≥0
 ; the fact that this minimum is achieved is 

guaranteed by Corollary 2.1.

Definition 3.1 Let x > 0 . The solution induced by x is the vector q(x)
def
=XA⊤L−1(x)b.

(2.9)�max(∇
2f (x)) ≤ 2 ( min

i=1,…,m
xi)

−3
⋅ cA,b.

(2.10)�max

(
∇2f (x)

)
= 2 � �max(T(x))

(2.11)� ≤ �max(D(x)
2) = ‖d(x)‖2

∞
≤ (min

i
xi)

−2cA,b,

�max(∇
2f (x)) ≤ 2(min

i
xi)

−3cA,b.

(BP)
minimize ‖s‖1
subject to As = b, s ∈ ℝ

m

(DM)
minimize

1

2
�
⊤x +

1

2
b⊤(AXA⊤)−1b

subject to x ∈ ℝ
m
>0
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The term “solution” is justified by the fact that Aq(x) = LL−1b = b . Induced 
solutions have the following simple characterization.

Lemma 3.1 Let x ∈ ℝ
m
>0

 . The solution induced by x, q(x), equals the unique optimal 
solution to the quadratic optimization problem:

Proof This lemma is a straightforward generalization of Thomson’s principle [12, 
Chapter 9] from electrical network theory. We adapt an existing proof [13, Lemma 
3] to the notation used in this paper. Since the objective function in (QPx ) is strictly 
convex, the problem has a unique optimal solution. Consider any solution s , and let 
r = s − q(x) . Then Ar = b − b = 0 and hence

since r⊤X−1r ≥ 0 and r⊤X−1q = r⊤A⊤L−1b = (Ar)⊤L−1b = 0 . Therefore, the objec-
tive function value of any solution s to (QPx ) is at least as large as the objective 
function value of the solution q(x) .   ◻

The value of (QPx ) is, in fact, the Laplacian potential b⊤L−1(x)b.

Corollary 3.1 The minimum of (QPx ) equals q(x)⊤X−1q(x) = b⊤L−1(x)b.

Proof We already proved that the minimum of (QPx ) is q(x)⊤X−1q(x) . Substituting 
the definition of q(x),

  ◻

Lemma 3.2 For any x > 0 , q(x) ∈ ℝ
m is such that Aq = b and ‖q(x)‖1 ≤ f (x)∕2 . 

Thus, the value of (BP) is at most that of (DM).

Proof For any x ∈ ℝ
m
>0

 , consider its induced solution q(x) = XA⊤L(x)−1b . We 
already observed that q(x) is feasible for (BP). Moreover, we can bound:

minimize s⊤X−1s (QPx)

subject to As = b, s ∈ ℝ
m.

s⊤X−1s = (q + r)⊤X−1(q + r) = q⊤X−1q + 2r⊤X−1q + r⊤X−1r ≥ q⊤X−1q,

q⊤X−1q = (b⊤L−1AX)X−1(XA⊤L−1b) = b⊤L−1LL−1b = b⊤L−1b.

‖q(x)‖1 = x⊤X−1�q�
≤ (x⊤X−1x)1∕2 ⋅ (q⊤X−1q)1∕2

= (�⊤x)1∕2 ⋅ (b⊤L−1(x)b)1∕2 (by Corollary 3.3)

≤
1

2
�
⊤x +

1

2
b⊤L−1(x)b

=
1

2
f (x),
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where the first upper bound follows from the Cauchy-Schwarz inequality, and the 
second from the Arithmetic Mean-Geometric Mean inequality.   ◻

To prove the converse of Lemma 3.2, we develop an intermediate lemma that 
relates the value of an optimal solution s∗ of (BP) to the dissipation value of a 
vector x such that x = |s| with s sufficiently close to s∗.

Lemma 3.3 Let s ∈ ℝ
m , � ∈ (0, 1) be such that As = b , sj ≠ 0 and 

(1 − �)
|||s∗j

||| ≤
|||sj
||| ≤

|||s∗j
||| + �∕m for some s∗ such that As∗ = b and each j = 1,… ,m . 

Then for x = |s|,

Proof On one hand, by the assumed upper bound |||sj
||| ≤ |s∗

j
| + �∕m , trivially

On the other hand, consider the solution q(x) induced by x and recall that q(x) is fea-
sible for (BP), since Aq = b , and optimal for (QPx ). By the assumed lower bound |||sj
||| ≥ (1 − �)

|||s∗j
||| , and by Lemma 3.1,

where the first upper bound follows from the fact that s∗ is a feasible point of(QPx ) 
by assumption, and the second follows from the hypothesis. Combining (3.3) and 
(3.3), we get

  ◻

Lemma 3.4 The value of (DM) is at most that of (BP).

Proof Consider an optimal solution s∗ ∈ ℝ
m to (BP). Let s� ∈ ℝ

m be a solution to 
As = b such that s′

j
≠ 0 for all j = 1,… ,m (such an s′ exists by assumption (A.2)). 

For any � ∈ (0, 1) , let s(�)
def
=(1 − �)s∗ + �s� and x(𝛿)

def
= |s(𝛿)| > 0 . For any � ∈ (0, 1) 

we can ensure that the hypotheses of Lemma 3.3 are satisfied by choosing a small 
enough 𝛿 > 0 . For such a value of � , Lemma 3.3 yields

(3.1)
1

2
f (x) ≤

�

2
+

1

2

�
1 +

1

1 − �

�
‖s∗‖1.

(3.2)�
⊤x = ‖s‖1 ≤ ‖s∗‖1 + 𝜖.

(3.3)

b⊤L−1(x)b = q⊤X−1q

≤ s∗⊤X−1s∗ =

m�
j=1

1
���sj
���
(s∗

j
)2

≤ (1 − 𝜖)−1
�
j

���s
∗
j

��� = (1 − 𝜖)−1‖s∗‖1,

1

2
f (x) ≤

1

2
‖s∗‖1 + �

2
+

1

2
(1 − �)−1‖s∗‖1.
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As � can be chosen arbitrarily small, and the right-hand side of (3.4) approaches 
‖s∗‖1 as � → 0 , we obtain the claim.   ◻

This concludes the proof of Theorem 3.1. Not only are the optimal values of 
(BP) and (DM) the same, but one can bound the suboptimality of any feasible 
point of (BP) in terms of the dissipation value of a corresponding vector.

Theorem  3.2 Let s ∈ ℝ
m be a feasible point of (BP) such that sj ≠ 0 

for all j = 1,… ,m , and let x = |s| , �(x)
def
=‖d(x)‖∞ . The quantity �

1 + �−1(x)
�‖s‖1 − �−1(x) ⋅ f (x) is an upper bound on the suboptimality of s.

Proof Consider the following linear formulation of (BP) (left) and its dual (right):

Given any solution s to (BP) such that x = |s| > 0 , let us take

Then ‖A⊤𝜈‖∞ ≤ 1 by definition of �(x) ; moreover, � + � = � , 𝜆 − 𝜇 + A⊤𝜈 = 0 , and 
�,� ≥ 0 . Thus, (x, s) is a primal feasible solution, (�,�, �) is a dual feasible solution, 
and by weak duality

This implies a duality gap of

  ◻

We close this section by observing that a simpler proof of Theorem 3.1 can be 
obtained by the following quadratic variational formulation of the �1-norm: for 
any s ∈ ℝ

m,

(3.4)
1

2
f (x(�)) ≤

�

2
+

1

2

�
1 +

1

1 − �

�
‖s∗‖1.

minimize �⊤x maximize b⊤𝜈

subject to x + s ≥ 0 subject to 𝜆 + 𝜇 = �

x − s ≥ 0 𝜆 − 𝜇 + A⊤𝜈 = 0

As = b 𝜆,𝜇 ≥ 0

x, s ∈ ℝ
m. 𝜆,𝜇 ∈ ℝ

m, 𝜈 ∈ ℝ
n.

𝜈 = 𝜌−1(x)(AXA⊤)−1b,

𝜆 = (� − A⊤𝜈)∕2,

𝜇 = (� + A⊤𝜈)∕2.

�
⊤x ≥ b⊤𝜈 = 𝜌−1(x)b⊤(AXA⊤)−1b.

�
⊤x − 𝜌−1(x)b⊤L−1(x)b = �

⊤x − 𝜌−1(x)(f (x) − �
⊤x)

=
�
1 + 𝜌−1(x)

�‖s‖1 − 2𝜌−1(x) ⋅
1

2
f (x).
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see, for example, [4, Sect. 1.4.2]. Therefore

where the last identity follows from Corollary 3.1. However, the full strength of 
Lemma 3.2 and Lemma 3.4 is crucial to be able to constructively transform feasible 
points for (DM) into feasible points for (BP) and vice versa.

4  Continuous dynamics for dissipation minimization

Theorem 3.1 readily suggests an approach to the solution of the basis pursuit prob-
lem. Namely, the solution of the non-smooth, equality constrained formulation (BP) 
is reduced to the solution of the differentiable formulation (DM) on the positive ort-
hant. In this section, we describe a continuous dynamics whose trajectories provably 
converge to the optimal solution of (DM); the resulting dynamical system inspires 
the discrete algorithms for (DM) that we rigorously analyze in Section 5. We also 
clarify the relation with a related but distinct dynamics that has already been studied 
in the literature.

Mirror descent dynamics. To solve (DM), it is natural to adopt methods for differ-
entiable constrained optimization that are designed for simple constraints. Suppose 
we want to minimize a generic convex function f over the positive orthant. To this 
end, consider the following set of ordinary differential equations, aimed at solving 
inf {f (x) | x > 0}:

with initial condition x(0) = x0 for some x0 > 0 . The intuition behind (4.1) is simple: 
to approach a global minimum, one should follow the (negative) gradient of f, but 
one should slow down the rate of change of the j-th component the smaller xj is, in 
order not to violate the constraint xj > 0.

‖s‖1 = inf
x∈ℝm

>0

1

2

m�
j=1

�
s2
j

xj
+ xj

�
,

min
s ∈ ℝ

m

As = b

‖s‖1 = min
s ∈ ℝ

m

As = b

inf
x∈ℝm

>0

1

2

�
s2
j

xj
+ xj

�

= inf
x∈ℝm

>0

⎛
⎜⎜⎜⎜⎝

1

2

⎛
⎜⎜⎜⎜⎝

min
s ∈ ℝ

m

As = b

s⊤X−1s

⎞
⎟⎟⎟⎟⎠
+

1

2
�
⊤x

⎞
⎟⎟⎟⎟⎠

= inf
x∈ℝm

>0

�
1

2
b⊤L−1(x)b +

1

2
�
⊤x
�
,

(4.1)ẋj = −xj
𝜕f (x)

𝜕xj
, j = 1,… ,m,
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When f is the dissipation potential, by Lemma 2.3 this yields the explicit 
dynamics

The dynamical system (4.1) is a nonlinear Lotka-Volterra type system of differential 
equations, of a kind that is common in population dynamics [32], where the rate 
of growth of a population is proportional to the size of the population. It is also an 
example of a Hessian gradient flow [1]: it can be expressed in the form

where H(x) = ∇2h(x) is the Hessian of a convex function h; namely, here 
H(x) = X−1 , and h ∶ ℝ

m
>0

→ ℝ is the negative entropy function

System (4.3) can also be expressed as d

dt

�h(x)

�xj
= −

�f (x)

�xj
, j = 1,… ,m, or more 

succinctly,

which is known as the mirror descent dynamics or natural gradient flow [2]. The 
well-posedness of (4.3) has been considered, for example, in [1]. The mirror descent 
dynamics is well-studied and, in particular, convergence results are available, as we 
next recall. In fact, due to its generality, the mirror descent approach has been pro-
posed as a very useful “meta-algorithm” for optimization and learning [3].

Convergence of the dynamics. The fact that the solution of the mirror descent 
dynamics (4.3) converges to a minimizer of a convex function f with rate 1/t is a 
well-known result; see, for example, [1, 46]. We include a streamlined proof for 
completeness, beginning with a straightforward lemma showing that f is mono-
tonically nonincreasing along the trajectories of the dynamical system.

Lemma 4.1 The values f(x(t)) with x(t) given by (4.1) are nonincreasing in t.

Proof We compute

  ◻

A key role in the analysis of the mirror descent dynamics is played by the 
Bregman divergence of the function h. This measures the difference between the 

(4.2)ẋj = xj(d
2
j
(x) − 1) = xj((a

⊤

j
(AXA⊤)−1b)2 − 1), j = 1,… ,m.

(4.3)ẋ = −H−1(x)∇f (x)

(4.4)h(x)
def
=

m∑
j=1

xj ln xj −

m∑
j=1

xj.

(4.5)
d

dt
∇h(x) = −∇f (x),

d

dt
f (x(t)) =

m∑
j=1

�f

�xj
(x)

dxj

dt
(x) = −

m∑
j=1

xj

(
�f

�xj
(x)

)2

≤ 0.
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true value of the function at a point x, and the approximate value at x predicted by 
a linear model of the function constructed at another point y.

Definition 4.1 The Bregman divergence of a convex function h ∶ ℝ
m
→ (−∞,+∞] 

is defined by Dh(x, y)
def
=h(x) − h(y) − ⟨∇h(y), x − y⟩.

Convexity of h implies the nonnegativity of Dh(x, y) . When h is the negative 
entropy, Dh is the relative entropy function (also known as Kullback-Leibler 
divergence), for which Dh(x, y) = 0 if and only if x = y.

Using the notion of Bregman divergence, one can prove that the trajectories of 
the mirror descent dynamics converge to a minimizer of the function.

Theorem 4.1 [1, 46] Let x∗ ∈ ℝ
m
≥0

 be a minimizer of f. As t → ∞ , the values f(x(t)) 
with x(t) given by (4.1) converge to f (x∗).

In particular,

Proof In the following, to shorten notation we often write x in place 
of x(t). Since (d∕dt)∇h(x) + ∇f (x) = 0 by (4.3), for any y we have 
⟨(d∕dt)∇h(x) + ∇f (x), x − y⟩ = 0 . This is equivalent to

On the other hand, since (d∕dt)h(x) = ⟨∇h(x), ẋ⟩ , a simple calculation shows

Combining (4.6) and (4.7), and plugging in y = x∗,

The proof is concluded by a potential function argument [5, 46]. Consider the 
function

Its time derivative is, by (4.8),

where the last summand is nonpositive by Lemma 4.1 and the other terms equal, by 
definition, −Df (x

∗, x) ≤ 0 . Hence, E(t) ≤ E(0) for all t ≥ 0 , which is equivalent to

f (x(t)) − f (x∗) ≤
1

t
Dh(x

∗, x(0)) = O
(
1

t

)
.

(4.6)⟨ d
dt
∇h(x), x − y⟩ + ⟨∇f (x), x − y⟩ = 0.

(4.7)
d

dt
Dh(y, x) = ⟨ d

dt
∇h(x), x − y⟩.

(4.8)
d

dt
Dh(x

∗, x) = −⟨∇f (x), x − x∗⟩.

E(t)
def
=Dh(x

∗, x) + t(f (x) − f (x∗)).

d

dt
E(t) = −⟨∇f (x), x − x∗⟩ + f (x) − f (x∗) + t

d

dt
f (x),
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proving the claim.   ◻

Physarum dynamics. A previously studied dynamics that is formally similar to 
(4.2) is the Physarum dynamics [10, 15, 43–45], namely,

Differently from (4.2), the dynamics (4.9) is not a gradient flow, that is, there is no 
function f that allows to write the dynamics in the form (4.3) or (4.5) (with h the neg-
ative entropy). Still, from a qualitative point of view, the behavior of (4.9) appears to 
be rather similar to that of (4.2): namely, the trajectories still converge to an optimal 
solution of the associated (BP) problem (see, for example, [10, Theorem 2.9]).

5  Algorithms for dissipation minimization

We now turn to the problem of designing IRLS-type algorithms for (DM) (and 
thus (BP)) with provably bounded iteration complexity. Two technical obstacles 
in the setup of a first-order method for formulation (DM) are: 1) that the positive 
orthant is not a closed set, and 2) that the gradients of f may not be uniformly 
bounded on the positive orthant. There is a way to deal with both issues at once: 
instead of solving infx>0 f (x) , for an appropriately small 𝛿 > 0 one can minimize f 
over

This is established by the next lemma.

Lemma 5.1 Let x∗ be a minimizer of f. Then f (x∗) ≤ minx∈Ω�
f (x) ≤ f (x∗) + �m.

Proof The first inequality is trivial. As for the second, recall that 
f (x) = �

⊤x + b⊤L−1(x)b for any x > 0 , and that in the latter sum, the second term is 
non-increasing with x (by Lemma 2.3). Thus, for any x > 0,

In other words, for any x > 0 , there is y ≥ �� (namely, y = x + �� ) such that 
f (y) ≤ f (x) + �m .   ◻

In the following, we let �
def
=� c

1∕2

A,b
∕(2m) , where � is the desired error fac-

tor and cA,b is as defined in Lemma 2.5; this, by Lemma 2.5 and Theorem  3.1, 
ensures that the additional error incurred by restricting solutions to Ω� is at most 
(�∕2)‖s∗‖1 = (�∕4)f (x∗).

Dh(x
∗, x) + t(f (x) − f (x∗)) ≤ Dh(x

∗, x(0)),

(4.9)ẋj = xj(
|||dj(x)

||| − 1) = xj(
|||a

⊤
j
(AXA⊤)−1b

||| − 1), j = 1,… ,m.

Ω�

def
={x ∈ ℝ

m ∶ �� ≤ x}.

f (x + 𝛿�) = �
⊤(x + 𝛿�) + b⊤L−1(x + 𝛿�)b ≤ 𝛿m + f (x).
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5.1  Primal gradient scheme

Guided by (4.5), we might consider its forward Euler discretization

where xk ∈ Ω� denotes the kth iterate, and 𝜂 ∈ ℝ>0 an appropriate step size. Indeed, 
the update (5.1) falls within a well-studied methodology for first-order convex opti-
mization [9, 35]. We adapt this framework to the solution of (DM).

The primal gradient scheme is a first-order method for minimizing a differenti-
able convex function f over a closed convex set Q. This scheme, which is defined 
with respect to a reference function h, proceeds as follows [6, 35]: 

1. Initialize x0 ∈ Q . Let 𝛽 > 0 be a parameter.
2. At iteration k = 0, 1,… , compute ∇f (xk) and set 

We apply the scheme with h as defined in (4.4) and with Q = Ω� . Then, the minimi-
zation in (5.2) can be carried out analytically; it reduces to

Update (5.3) is straightforward to implement as long as one can compute ∇f (xk) . 
This computation is discussed in Section 5.3.

Convergence of the primal gradient scheme. As shown in [35], the primal gradi-
ent scheme achieves an absolute error bounded by O(�∕k) after k iterations provided 
that the function f is �-smooth relative to h. In our case, where both f and h are 
twice-differentiable on Q, relative �-smoothness is defined as

Theorem 5.1 [35] If f is �-smooth relative to h, then for all k ≥ 1 , the updates (5.2) 
satisfy

where x∗|Qdef
= argmin x∈Qf (x).

To apply Theorem 5.1 in our setting, we need to bound the smoothness parameter 
� . We do this by leveraging the bounds derived in Section 2.5.

Lemma 5.2 Equation (5.4) holds for � = 8m2∕�2.

Proof Condition (5.4) is equivalent to the condition that the largest eigenvalue of the 
matrix

(5.1)∇h(xk+1) − ∇h(xk) = −�∇f (xk),

(5.2)xk+1 ← argmin x∈Q{⟨∇f (xk), x − xk⟩ + �Dh(x, x
k)}.

(5.3)xk+1
j

= max{�, xk
j
⋅ exp(−�−1[∇f (xk)]j)}, j = 1,… ,m.

(5.4)�max(∇
2f (x)) ≤ � ⋅ �max(∇

2h(x)) for all x ∈ Q.

f (xk) − f (x∗|Q) ≤ �

k
Dh(x

∗|Q, x0).
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be at most � (see [33, Theorem  7.7.3]). The matrix X∇2f (x) is similar to 
X1∕2∇2f (x)X1∕2 , hence it suffices to bound the eigenvalues of the latter. Since 
∇2f (x) = 2D(x)T(x)D(x) with D(x) = diag(d(x)),

where we used the fact that X and D(x) are diagonal. By the proof of Lemma 2.4, the 
eigenvalues of Π(x) are all 0 or 1. Hence, using again the relation between the eigen-
values of congruent matrices (Theorem 2.1), we conclude that the largest eigenvalue 
of X1∕2∇2f (x)X1∕2 is bounded by that of 2D(x)2 . Since D(x) = diag(d(x)) , the latter 
equals 2‖d(x)‖2

∞
 , which is 2cA,b∕�2 = 8m2∕�2 by Lemma 2.5 and the definitions of 

Ω� and � .   ◻

Theorem  5.2 The primal gradient scheme (5.3) applied to the dissipa-
tion minimization problem (DM) achieves relative error at most � after 
96m2 log(m∕𝜖)∕𝜖3 = Õ(m2∕𝜖3) iterations.

Proof By Theorem 5.1 and Lemma 5.2, after k iterations it holds that

where R
def
=Dh(x

∗|Q, x0) . Since f (x∗|Q) ≤ (1 + �∕4)f (x∗) (by Lemma 5.1, since 
Q = Ω� ), this implies

Thus, f (xk) − f (x∗) ≤ �f (x∗) if we take k = ⌈32Rm2∕(3�3f (x∗))⌉ . We complete the 
proof by bounding R∕f (x∗) in terms of log(m∕�) . Let

Observe that since x0 ∈ Q,

with the last inequality following from (2.6). Thus,

[
∇2h(x)

]−1
∇2f (x) = X∇2f (x)

X1∕2∇2f (x)X1∕2 = 2X1∕2DTDX1∕2 = 2DX1∕2TX1∕2D = 2DΠD,

(5.5)f (xk) − f (x∗|Q) ≤ 8Rm2∕(k�2),

(5.6)f (xk) − f (x∗) ≤ 8Rm2∕(k�2) +
�

4
f (x∗).

�
def
= max

j=1,…,m

x∗
j
|Q
x0
j

� ≤
1

�
max

j
x∗
j
|Q ≤

2m

�c
1∕2

A,b

f (x∗|Q) ≤ 2m3∕2

�(mcA,b)
1∕2

(1 + �∕4)f (x∗) ≤
8m3∕2

�f (x∗)
f (x∗)

R =

m∑
j=1

x∗
j
|Q log

x∗
j
|Q
x0
j

≤ (log�) f (x∗|Q) ≤ (log�)(1 + �∕4)f (x∗)

≤ 2 log

(
8m3∕2

�

)
f (x∗) ≤ 9 log

(
m

�

)
f (x∗).
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Hence, k = ⌈96m2 log(m∕�)∕�3⌉ iterations suffice to achieve relative error � .   ◻

5.2  Accelerated gradient scheme

The second optimization scheme that we consider is the accelerated gradient method 
of [38]. This can be summarized as follows: 

1. Initialize x0 ∈ Q . Let 𝛽 > 0 be a parameter.
2. At iteration k = 0, 1,… , compute ∇f (xk) and set �k = 1∕2(k + 1) , �k = 2∕(k + 3) 

and 

In our application of the scheme, Q = Ω� and the minimization in (5.7) and (5.8) can 
be carried out analytically; explicitly, they become

To implement (5.10)–(5.11), it is enough to be able to access the gradient ∇f (xk) and 
the cumulative gradient 

∑
i �i∇f (x

i) ; the latter can be maintained with one additional 
update at each iteration.

Convergence of the accelerated gradient scheme. The well-known result by [38] 
shows that the accelerated gradient scheme achieves an absolute error bounded by 
O(�∕k2) after k iterations provided that the gradient of the function f is �-Lipschitz-
continuous over Q. In our case, where f is twice-differentiable on Q, this means

Theorem  5.3 [38] If ∇f  is �-Lipschitz-continuous over Q, then for all k ≥ 1 , the 
updates (5.7)–(5.9) satisfy

(5.7)yk ← argmin x∈Q

�
�

2
‖x − xk‖2

2
+ ⟨∇f (xk), x − xk⟩

�

(5.8)zk ← argmin x∈Q

�
�

2
‖x − x0‖2

2
+

k�
i=0

�i⟨∇f (xi), x − xi⟩
�

(5.9)xk+1 ← �kz
k + (1 − �k)y

k.

(5.10)yk
j
= max{�, xk

j
− �−1[∇f (xk)]j}, j = 1,… ,m

(5.11)zk
j
= max{�, x0

j
− �−1[

k∑
i=0

�i∇f (x
i)]j}, j = 1,… ,m.

(5.12)�max(∇
2f (x)) ≤ � for all x ∈ Q.

f (yk) − f (x∗�Q) ≤ 2�

(k + 1)2
‖x∗�Q − x0‖2

2
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where x∗|Qdef
= argmin x∈Qf (x).

Again, to apply Theorem 5.3 in our setting, we need to bound the smoothness 
parameter � . We do this by exploiting Lemma 2.6.

Lemma 5.3 Equation (5.12) holds for � = 16m3∕(�3c
1∕2

A,b
).

Proof Immediate from Lemma 2.6, the fact that Q = Ω� and the definition of Ω� . 
Recall that � = �c

1∕2

A,b
∕(2m) .   ◻

Theorem 5.4 If x0 = |u| where u
def
=A⊤(AA⊤)−1b is the least square solution to As = b , 

the accelerated gradient scheme (5.7)–(5.9) applied to the dissipation minimization 
problem (DM) achieves relative error at most � after 24m2∕�2 iterations.

Proof By Theorem 5.3 and Lemma 5.3, after k iterations it holds that

Since f (x∗|Q) ≤ (1 + �∕4)f (x∗) by Lemma 5.1, this implies

Thus, f (yk) − f (x∗) ≤ (𝜖∕4)f (x∗) + (𝜖∕2)c
1∕2

A,b
< 𝜖f (x∗) if the number of iterations k 

is at least

We complete the proof by bounding (R∕cA,b)1∕2 = ‖x∗�Q − x0‖2∕c1∕2A,b
 in terms of 

m. Observe that R1∕2 = ‖x∗�Q − x0‖2 ≤ ‖x∗�Q‖2 + ‖x0‖2 . By the assumption that 
x0 = |u| where u is the least square solution to As = b , ‖x0‖2 = ‖u‖2 = c

1∕2

A,b
 (recall 

the definition of cA,b in Lemma 2.5). Moreover,

Hence (R∕cA,b)1∕2 ≤ 3m1∕2 and substitution in (5.15) yields the theorem.   ◻

5.3  Implementing the iterations

We conclude this section by commenting on a few implementations details 
and in particular on how each iteration of (5.3) and (5.7)–(5.9) could be imple-
mented. A notable point is that each iteration can be reduced to a series of oper-
ations that access the matrix A only through the solution of a system of the form 

(5.13)f (yk) − f (x∗|Q) ≤ 32Rm3∕(k2�3c
1∕2

A,b
).

(5.14)f (yk) − f (x∗) ≤ (�∕4)f (x∗) + 32Rm3∕(k2�3c
1∕2

A,b
).

(5.15)8m3∕2

�2

(
R

cA,b

)1∕2

.

‖x∗�Q‖2 ≤ ‖x∗�Q‖1 ≤ 1

2
f (x∗�Q) ≤ 1

2
f (x∗) +

𝜖

2
c
1∕2

A,b

≤ (mcA,b)
1∕2 + c

1∕2

A,b
< 2m1∕2c

1∕2

A,b
.
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AWA⊤p = b , for some diagonal matrix W, or through matrix-vector multiplica-
tions of the form Av or A⊤v.

Main computational steps. The major computational steps required to imple-
ment an iteration of (5.3) and (5.7)–(5.9) are: 

1. Computation of the Laplacian-like matrix L(x) = AXA⊤ : since X = diag(x) is 
diagonal, L(x) can be computed via the matrix-matrix product (AX)A⊤.

2. Solution of the symmetric linear system L(x)p = b for p, i.e. 1 linear system solve; 
note that since L(x) = AXA⊤ , the system L(x)p = b is a symmetric linear system 
with a positive definite constraint matrix.

3. Computation of the gradient: by Lemma 2.3, computing the vector 
d(x) = A⊤L−1(x)b is enough to compute the gradient at x, since ∇f (x) = � − d2(x) . 
To compute d(x) , it is enough to premultiply the solution p of the linear system 
L(x)p = b with A⊤.

Hence, the computational cost is of 1 matrix-matrix product, 1 linear system 
solve, and 1 matrix-vector product. The remaining operations involve single-
vector operations, and thus are of lower order cost.

Warm start. Heuristically, the solution of the system L(xk+1)p = b , which is 
required to compute the gradient at iteration k + 1 , can be expected to be close to 
that of the system L(xk)p = b when xk+1 is close to xk . Hence, one possibility in 
practice is to use the solution obtained at step k to warm-start the linear equation 
solver at step k + 1 , with a possible substantial reduction in the computational 
cost of each iteration.

Initial point and exit criterion. We assumed the starting point is the least 
square solution in Theorem 5.4, but this was only to optimize the worst-case iter-
ation bound. In fact, Theorem 5.2 and Eq. (5.15) always apply and the schemes 
we discussed do not require a special initialization apart from membership into 
Ω� ; hence, any point that is not too close to the boundary of the positive orthant 
is a suitable starting point. We can stop the schemes after the number of itera-
tions k is large enough to ensure the error guarantees of Theorems 5.2 and 5.4 
(or Eq. (5.15)), or when the condition number of the linear system L(x)p = b 
becomes too large. Alternatively, a natural exit criterion in practice can be based 
on the duality gap provided by Theorem 3.2.

Obtaining feasible iterates for (BP). The algorithms as described above pro-
duce iterates in the positive orthant, that is, iterates that are feasible for (DM), 
but after all, our goal was to obtain feasible iterates of (BP). By using the ideas 
of Lemma 3.2, we can easily associate with any iterate xk ∈ ℝ

m
>0

 an iterate sk 
that is feasible for (BP), and the cost of which is not larger than the dissipation 
cost of xk : namely, take sk = q(xk) = XkA⊤L(xk)−1b . By the proof of Lemma 3.2, 
we know that ‖sk‖1 ≤ f (xk)∕2 . Thus, the error bounds for f (xk) can be directly 
translated into error bounds for ‖sk‖1 . Note that sk can be computed essentially 
for free, since sk = Xkd(xk) and d(xk) is a byproduct of the gradient computation 
at iteration k.
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6  Numerical comparison with other algorithms for �
1
‑minimization

We include in this section a numerical comparison of our schemes to other well-
known algorithms for �1-minimization. The results suggest that both the primal 
scheme and a slightly revised accelerated scheme may converge at a geometric rate, 
that is, much faster than what our theoretical analysis guarantees. This suggests the 
open problem of improving the quality of our error bounds.

To compare our approaches to other algorithms for �1-minimization, we imple-
mented them in MATLAB [14]1 and ran the l1benchmark suite by [47], which 
includes implementations of several other �1-minimization solvers.

In the benchmark by Yang et  al., problem instances are generated as follows 
according to three parameters m (the number of variables), n (the number of obser-
vations), and k (the number of nonzero entries in a reference sparse signal): 

1. the matrix A ∈ ℝ
n×m is generated with independent standard Gaussian entries; 

then, each column of A is normalized to have unit �2-norm;
2. a reference sparse signal ŝ ∈ ℝ

m is generated with k of its m components, ran-
domly selected, being nonzero entries uniformly distributed in [−10, 10] , and all 
remaining entries being zero;

3. the vector b ∈ ℝ
n is generated as b = Aŝ.

With probability 1 over the randomness of A, such reference ŝ is the sparsest solution 
to As = b , as long as k < n∕2 [24, Lemma 2.1]. Moreover, there exists 𝜌 > 0 such 
that when k ≤ � n , ŝ is also guaranteed (with overwhelming probability as n grows) 
to be the unique optimal solution of (BP) [24, Theorem 2.4]. Thus, in the benchmark 
the iterates produced by the algorithms are compared against the signal ŝ.

A representative comparison is shown in Fig. 1.
The figure plots the relative error2 of the algorithms as a function of computation 

time, averaged on 20 randomly generated instances (with m = 1000 , n = 800 , and 
k = n∕4 nonzeros in the reference solution ŝ ). The implementations based on our 
approaches are:

• the Primal Gradient Scheme of Sect. 5.1 (PGS, with � = 4 , � = 10−15),
• the Accelerated Gradient Scheme of Sect.  5.2 (AGS, with � = 3.5 , � = 10−15 , 

�k = 2∕(k + 3)),
• a revised Accelerated Gradient Scheme, which we formulate below (AGS2, with 

� = 1.1 , � = 10−15 , �k = 10−15).

Other algorithms measured in the experiment are the Homotopy method, the primal 
and dual augmented Lagrangian methods (PALM, DALM), the primal-dual interior 
point method (PDIPA), and the approximate message passing method (AMP). We 
refer the reader to [47] for definition and discussion of these other methods.

1 Experiments used MATLAB R2020b on a PC with Intel i5-8600K CPU at 3.6 GHz and 16 Gb RAM.
2 The relative error of a point s is defined as (‖s‖

1
− ‖ŝ‖

1
)∕‖ŝ‖

1
.
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A full set of experiments with different values of m and n is reported in Tables 2, 
3, 4, 5, 6 and 7. Note that for a fixed number of variables m, instances get harder as 
n decreases, as this corresponds to a reconstruction problem with a smaller number 
of observations. As we varied both m and n, we held the sparsity parameter k fixed, 
to n/4. The tables report the relative error, the time and the number of iterations of 
each algorithm, averaged on 20 randomly generated instances. They also report the 
relative distance of the algorithm’s final point s, which is defined as ‖s − ŝ‖2∕‖ŝ‖2 
where ŝ is the reference signal. We have emphasized in italics the lowest relative 
error and relative distance in each table.

We remark that the computation time can be shorter than the timeout for methods 
that have additional stopping criteria, which are often intrinsic to the method. In 
particular, for PDIPA, PGS, AGS and AGS2, the method is terminated early if the 
condition number of the linear system solved at each iteration rises above a certain 
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Fig. 1  Results of the l1benchmark benchmark. Parameters: m = 1000 , n = 800 , k = 200

Table 2  Results for m = 1000 , 
n = 400 , with a timeout of 
3 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 8.00e−17 8.23e−16 0.127 242
PALM 3.85e−17 1.92e−16 3 9296
DALM 8.66e−16 5.09e−16 3 32121
PDIPA 1.59e−06 4.16e−06 0.268 25
AMP 1.76e−03 8.23e−03 3 61739
PGS 4.37e−15 1.41e−14 1.81 454
AGS 2.40e−02 6.31e−02 3 757
AGS2 3.96e−15 4.78e−15 3 793
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Table 3  Results for m = 1000 , 
n = 800 , with a timeout of 
3 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 1.01e−16 8.59e−16 0.369 315
PALM 5.03e−17 2.31e−16 3 4955
DALM 1.59e−15 1.10e−15 3 6362
PDIPA 1.68e−06 1.96e−06 0.44 18
AMP 7.32e−16 8.21e−16 3 32628
PGS 3.01e−14 3.60e−14 2.33 180
AGS 5.49e−04 6.63e−04 3 236
AGS2 9.53e−15 8.50e−15 3 235

Table 4  Results for m = 1500 , 
n = 600 , with a timeout of 
5 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 1.01e−16 9.81e−16 0.449 363
PALM 2.36e−17 2.17e−16 5 4720
DALM 8.91e−16 6.13e−16 5 11599
PDIPA 1.19e−06 3.16e−06 0.702 27
AMP 5.22e−16 9.56e−16 5 41036
PGS 4.24e−15 1.02e−14 3.92 433
AGS 2.47e−02 6.63e−02 5 551
AGS2 2.99e−15 3.89e−15 5 547

Table 5  Results for m = 1500 , 
n = 1200 , with a timeout of 
5 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 5.40e−17 9.59e−16 1.44 482
PALM 5.43e−17 2.63e−16 5 3020
DALM 1.80e−15 1.29e−15 5 3739
PDIPA 2.29e−06 2.70e−06 1.36 19
AMP 7.52e−16 9.30e−16 5 7832
PGS 4.32e−12 5.70e−12 5 127
AGS 1.21e−03 1.44e−03 5 128
AGS2 8.81e−−15 7.66e−15 5 127
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threshold ( 1014 for PDIPA, 1024 for PGS/AGS/AGS2). For the Homotopy method, 
early termination will occurr if the regularization coefficient drops below 10−6 (see 
[47] for an empirical justification).

In the experiments, PGS exhibited a geometric convergence rate, which is much 
better than what Theorem 5.2 guarantees, strongly suggesting that an improved theo-
retical analysis may be possible. Over time, PGS essentially reaches the machine 
precision barrier ( ≈ 10−15 ), in contrast with other methods, notably the interior point 
method (PDIPA).

AGS, on the other hand, appears to be rather inaccurate in practice and does not 
exhibit a substantially better behavior than what is guaranteed by Theorem 5.4. This 
suggests that the entropic form of the updates – used in PGS but not in AGS – might 
have a high impact in practice. Therefore, we also benchmark a revised algorithm 
(AGS2) obtained by adopting an entropic form of the AGS updates (5.10)–(5.11), as 
follows (colored terms are new):

(6.1)yk
j
= max

{
�, xk

j
− xk

j
⋅ �−1

[
∇f (xk)

]
j

}

Table 6  Results for m = 2000 , 
n = 800 , with a timeout of 
7 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 6.92e−17 8.50e−16 1.02 474
PALM 4.56e−17 2.32e−16 7 3199
DALM 8.63e−16 6.88e−16 7 6959
PDIPA 2.04e−06 5.28e−06 1.53 27
AMP 3.48e−03 1.16e−02 7 12824
PGS 5.83e−15 1.45e−14 6.41 335
AGS 2.47e−02 6.65e−02 7 371
AGS2 3.39e−15 4.56e−15 7 368

Table 7  Results for m = 2000 , 
n = 1600 , with a timeout of 
12 seconds, averaged on 20 
instances

The lowest relative error and relative distance are given in italics

Method Average Average Average Average
rel. error rel. distance time (s) iterations

Homotopy 7.91e−17 1.44e−15 3.47 649
PALM 2.85e−17 3.01e−16 12 3979
DALM 1.97e−15 1.47e−15 12 4837
PDIPA 3.22e−06 3.78e−06 2.87 19
AMP 7.75e−16 1.05e−15 12 7840
PGS 3.82e−14 4.69e−14 11.7 142
AGS 9.97e−04 1.18e−03 12 145
AGS2 9.34e−15 8.30e−15 12 145
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The resulting scheme AGS2 is seen in Fig.  1 to exhibit a geometric convergence 
rate and to be competitive against some of the best results in the benchmark, such as 
those of the primal augmented Lagrangian method (PALM).

7  Conclusions

We proposed a novel exact reformulation of the basis pursuit problem, which leads 
to a new family of gradient-based, IRLS-type methods for its solution. We then 
analyzed the iteration complexity of a natural optimization approach to the refor-
mulation, based on the mirror descent scheme, as well as the iteration complexity 
of an accelerated gradient method. The first scheme can be seen as the discretiza-
tion of a Hessian gradient flow and also as a variant on the Physarum dynamics, 
derived purely from optimization principles. The accelerated method, on the other 
hand, improves the error dependency for IRLS-type methods for basis pursuit, from 
�−8∕3 to �−2 . The experimental behavior of the first scheme, as well as that of a sim-
ple variant the second scheme, is consistent with a geometric convergence rate. We 
interpret this as evidence that the dissipation minimization perspective may stimu-
late even more approaches to the design and analysis of efficient and practical IRLS-
type methods.

An interesting open problem is whether the proposed approach can solve gen-
eralizations of the �1-norm minimization problem, such as the graphical lasso 
(GLASSO) problem [11, 34, 37].

Funding Open access funding provided by Università degli Studi Roma Tre within the CRUI-CARE 
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

(6.2)zk
j
= max

⎧
⎪⎨⎪⎩
�, x0

j
− x0

j
⋅ �−1

��
i

�i∇f (x
i)

�

j

⎫
⎪⎬⎪⎭

(6.3)xk+1 = �kz
k + (1 − �k)y

k.
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