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Abstract

The Wireless Gathering Problem is to find an interference-free schedule for data
gathering in a wireless network in minimum time. We present a 4-approximate
polynomial-time on-line algorithm for this NP-hard problem. We show that no
shortest path following algorithm can have approximation ratio better than 4.
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1 Introduction

Wireless networks are used in many areas of practical interest, such as mo-
bile phone communication, ad-hoc networks, and radio broadcasting. Recent
advances in miniaturization of computing devices equipped with short range
radios have raised strong interest in sensor networks for their practical rele-
vance (environment control, accident monitoring etc.) [1, 8, 10]. One of the
main issues concerning wireless networks is data gathering, i.e. collecting data
from multiple nodes in a central sink node, which may process the data or act
as gateway to other networks [6]. In the Wireless Gathering Problem (WGP)
that we consider here, a static wireless network with several stations (nodes)
and one sink is given. The network is modeled by an undirected, unweighted
graph, where it is assumed that the distances in the graph approximate well
the distances in the physical network. Through radio signals, stations can com-
municate to nodes within transmission radius dT , the distance over which the
signal is strong enough to send data. A typical difference with wired networks
is that in wireless networks signals can interfere. The interference radius dI

(≥ dT ) is the distance over which the radio signal is strong enough to interfere
with other radio signals. Interference causes data loss which results in lower
throughput, increased packet delays and higher energy consumption [10].

Over time data packets arrive at nodes which have to be gathered at the base
station. The problem consists of constructing a schedule without interference
which determines for each packet both route and times at which it is sent,
such as to minimize the maximum completion time of a packet.

Following earlier papers in data gathering [2, 3] we assume that stations have a
common clock, hence time can be divided into rounds. Also, each node cannot
send and receive during the same round(i.e. it is equipped with a half-duplex
interface). Typically, not all nodes are within transmission radius from each
other and the sink, so that packets have to be sent through several nodes
before being gathered at the sink; this is called multi-hop routing. We assume
that the stations are provided with the necessary information on the graph
structure, such as path distances. Such information is available in a centralized
setting, but can also be obtained in a distributed setting [9].

WGP was introduced by Bermond et al. [3] in the context of wireless access to
the Internet in villages. The authors proved that minimizing the completion
time is NP-hard and presented an algorithm with asymptotic approximation
ratio at most 4, or 3 if dI = dT . The authors do not consider the case in which
packets are released over time. Bermond et al. [4, 5] considered the so-called
uniform-WGP, which has the extra assumptions of a single packet at each node
and no release times, for which an optimal algorithm is presented in Bermond
et al. [4] if the graph is a chain with the sink at one end. In case the sink is in
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the middle of the chain they give near optimal algorithms. Bar-Yehuda et al.
[2] considered distributed algorithms for WGP. Their model is a special case
of our model, where dI = 1 and there are no release dates. Finally, Kumar
et al. [7] give distributed approximation algorithms for wireless gathering in a
different model in which the point-to-point communication is assumed to be
symmetric.

We present an on-line polynomial-time greedy algorithm which for arbitrary
release times gives a 4-approximation in general and a 3-approximation when
dI = dT . Our results improve over those of Bermond et al. [3] only slightly
when all packets are released at time 0. However, our algorithm is simple and
the approximation ratios hold for arbitrary release times. Both our algorithm
and that of [3] send all packets along a shortest path to the sink. We prove
that no shortest path following algorithm can have approximation ratio better
than 4. Thus, within this class our algorithm is best possible. Furthermore,
we prove that our algorithm is optimal on a chain when dT = 1 and the
sink is at one end of the chain. All these results are found in Section 3. The
complexity of all other variations of the problem on a chain and on a tree
is to the best of our knowledge still open. These and some other challenging
research opportunities on WGP conclude the paper in Section 4. We start by
formalizing the problem.

2 Mathematical formulation

In WGP we are given a graph G = (V, E) with |V | = n, a sink s ∈ V , and
a set of packets M = {1, 2, . . . , m}. Each j ∈ M has an origin vj ∈ V and
a release time rj ∈ Z+ at which it enters the network. The distance d(u, v)
between nodes u and v is the length of a shortest path from u to v in G (the
graph is unweighted). Also given are two positive integers dT , dI with dT ≤ dI

that model the transmission and interference radius, respectively.

We assume that time is discrete; we call a time unit a round. The rounds are
numbered 0, 1, . . .. During each round a node may either be sending a packet,
be receiving a packet or be inactive. If d(u, v) ≤ dT then u can send some
packet j to v during a round. If node u sends packet j to v in some round,
then the pair (u, v) is called a call of j during that round. Two calls (u, v) and
(u′, v′) interfere if d(u′, v) ≤ dI or d(u, v′) ≤ dI ; otherwise they are compatible.
We assume that packets cannot be aggregated. Notice that since there is a
single destination node, there is no need to maintain more than one copy of a
packet; in particular, without loss of generality a sender node can delete the
packet after a successful transmission to a neighbor.

The solution of WGP is a schedule of compatible calls such that all packets
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arrive at the sink. Given a schedule, let vt
j be the node of packet j at time t.

The quantity Cj := min{t : vt
j = s} is the completion time of packet j. The

objective is minimizing maxj Cj (makespan).

In the off-line version all packet information is known at time 0, in the on-line
version information about a packet becomes known only at its release time.
The off-line WGP is equivalent to a one-to-many personalized broadcast prob-
lem: a time reverse gathering schedule provides a one-to-many personalized
broadcast schedule. We introduce some extra notation. Let δj :=

⌈

d(vj ,s)

dT

⌉

, the
minimum number of calls required for packet j to reach s. The critical radius
R∗ is the greatest integer R such that no two nodes at distance at most R
from s can receive a message in the same round. It is not hard to see that
R∗ ≥

⌊

dI−dT

2

⌋

(see e.g. [3]). The critical region is the set {v ∈ V | d(s, v) ≤ R∗}.

Finally we define γ := 1 +
⌈

dI+1
dT

⌉

, and γ∗ :=
⌈

R∗+1
dT

⌉

≥ 1. Roughly stated, γ
gives a bound on the number of rounds during which a packet needs to be
forwarded before a new packet can be safely forwarded from the same origin.
On the other hand, γ∗ gives the number of rounds during which each packet
has to move inside the critical region. These parameters will play an important
role in our analysis.

3 A greedy algorithm

We present a greedy algorithm which assigns packets to calls according to
some priority ordering. We specify the ordering later, since our first results
hold for any priority ordering.

Algorithm 1 (Priority Greedy (PG)) In every round, consider the avail-
able messages in order of decreasing priority, and send each message as far
as possible along a (possibly prefixed) shortest path from its current node to s,
without creating interference with any higher-priority message.

We analyze the worst-case approximation ratio of PG. Packet j is said to be
blocked in round t if, in round t, j is not sent over distance dT , or if j is not
sent to s if d(vt−1

j , s) ≤ dT . We define the following blocking relation on a PG
schedule: k ≺ j if in the last round in which j is blocked by the transmission of
higher order packets in that round, k is amongst these packets the one closest
to j (ties broken arbitrarily).

The blocking relation induces a directed graph F = (M, A) on M with an arc
(k, j) for each k, j ∈ M such that k ≺ j. Observe that for any PG schedule F
is a directed forest and the root of each tree of F is a message which is never
blocked. For each j let T (j) ⊆ F be the tree of F containing j, b(j) ∈ M the
root of T (j), and P (j) the path in F from b(j) to j. Let h(j) be the length of
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P (j), πj = min{δj , γ
∗}, and Rj = rj + δj − πj . We derive an upper bound on

the completion time Cj in a PG schedule.

Lemma 1 For each packet j ∈ M , Cj ≤ Rb(j) +
∑

i∈P (j) min{δi, γ}.

PROOF. The proof is by induction on h(j). Any packet j with h(j) = 0 is
never blocked, hence b(j) = j, and the lemma is obviously true. Otherwise,
let t be the last round in which j is blocked by packet k, k ≺ j. By definition
of the blocking relation we have d(vt

j, v
t
k) ≤ dT + dI . If d(vt

j, v
t
k) > dI + 1

then j, although blocked, is sent to vt+1
j with d(vt+1

j , vt
k) = dI + 1. Also,

d(vt
k, s) ≤ (Ck − t)dT , otherwise k would not reach s by time Ck. From time

t + 1 on, j is forwarded to s over distance dT each round, reaching s at time

Cj ≤ t + 1 +

⌈

d(vt
k, s) + d(vt+1

j , vt
k)

dT

⌉

≤ t + 1 + Ck − t +

⌈

dI + 1

dT

⌉

= Ck + 1 +

⌈

dI + 1

dT

⌉

= Ck + γ.

Also, Cj ≤ Ck + δj , since after k reaches s, j will need no more than δj rounds
to reach s. Thus Cj ≤ Ck +min{δj , γ} and the lemma follows by applying the
induction hypothesis to Ck. 2

Now we derive lower bounds on the optimal cost. Let C∗

j denote the completion
time of packet j in an optimal solution.

Lemma 2 For any S ⊆ M , S 6= ∅, there is k ∈ S such that maxj∈S C∗

j ≥
Rk +

∑

j∈S πj.

PROOF. Since in every round at most one packet can move inside the critical
region, any feasible solution to WGP gives a feasible solution to a preemptive
single machine scheduling problem in which the release time of job j (corre-
sponding to packet j) is Rj and its processing time is πj. Ignoring interference
outside the critical region can only decrease the optimum cost, thus a lower
bound on the scheduling cost is also a lower bound on the gathering cost.

Let k be the first packet in S entering or being released in the critical region
in the optimal schedule. In the scheduling relaxation, the makespan is at least
the time at which the first job starts processing plus the sum of the processing
times which is precisely what is stated in the lemma. 2
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Lemmas 1 and 2 hold for any priority ordering of the packets. Now we analyze
the approximation ratio for PG with priority based on Rj : if Rj < Rk then j
will have higher priority than k (ties can be broken arbitrarily). We call this
algorithm PGR. Notice that PGR is an on-line polynomial time algorithm.

Theorem 3 PGR is a γ/γ∗-approximation algorithm for WGP.

PROOF. Let j be the packet having maximum Cj . Applying Lemma 2 with
S = T (j), the tree containing j in the blocking relation induced forest, yields

max
i∈T (j)

C∗

i ≥ Rk +
∑

i∈T (j)

πi (1)

where k is some packet in T (j). On the other hand, by using Lemma 1,

Cj ≤Rb(j) +
∑

i∈P (j)

min{δi, γ} ≤ Rb(j) +
γ

γ∗

∑

i∈P (j)

πi ≤ Rk +
γ

γ∗

∑

i∈P (j)

πi (2)

since Rb(j) ≤ Ri ∀i ∈ T (j), b(j) being the root of T (j). The theorem follows
by direct comparison of (1) and (2). 2

Corollary 4 PGR is 4-approximate for general WGP and 3-approximate if
dI = dT .

PROOF. We distinguish several cases:
Case 1: If dI ≤ 2dT − 1 then γ = 3 while γ∗ ≥ 1, which in particular proves
the 3-approximation in case dI = dT .
Case 2: dI ≤ 3dT − 1. Then γ ≤ 4 and γ∗ ≥ 1.
Case 3: ℓdT ≤ dI ≤ (ℓ+2)dT −1 for any odd integer ℓ ≥ 3. Then γ ≤ ℓ+3 and
as R∗ ≥ ⌊dI−dT

2
⌋ we have γ∗ ≥ (ℓ + 1)/2, and γ/γ∗ ≤ 2(ℓ + 3)/(ℓ+ 1) ≤ 3. 2

The analysis shows that the ratio γ/γ∗ = 4 only if dI/dT ∈ [2, 3) and the ratio
approaches 2 if dI/dT tends to infinity.

Corollary 5 PGR is optimal if G is a chain with s as an extreme and dT = 1.

PROOF. If G is a chain and s an extreme, then the critical radius is dI + 1.
Thus, for dT = 1 we have γ∗ = dI + 2. The claim follows since γ = dI + 2 for
dT = 1. 2
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PGR sends packets over shortest paths. We show that no algorithm which
sends each packet j over a shortest path from vj to s can be better than 3-
approximate if dI = dT and 4-approximate if dI > dT . This means that to find
algorithms with lower approximation ratios than PGR, packets need to be
diverged from their shortest path to the sink if this path becomes congested.

First, consider the example of Figure 1 with dI = dT = 1. Nodes u1, u2, u3 have
m/3 packets each. Any shortest paths following algorithm sends all packets
via u, yielding maxj Cj = 3m. On the other hand a solution with no packet
passing u has maxj C∗

j ≤ 3 + m. The example can easily be extended for
arbitrary dI = dT .

su
u1

u2

u3

Figure 1. dI = dT = 1.

In case dI > dT consider Figure 2 with dI = 2 and dT = 1. The nodes
u1, . . . , um each have 1 packet. Any shortest paths following algorithm sends
all packets via u, yielding maxj Cj = 4m. A solution with no packet passing
u has maxj C∗

j ≤ 4 + m. The example can easily be extended for arbitrary
dI = 2dT .

u s
u1

. . .

um

Figure 2. dI = 2, dT = 1.

In these examples the optimal schedule sends each packet over a path of length
exceeding the length of its shortest path by at most 1. This may suggest to
consider algorithms which send packets over paths whose length does not
exceed their shortest path length by some constant k. However, as can easily
be verified, for each constant k we could change the length of the paths in the
examples above, such that the optimal schedule sends each packet over a path
whose length exceeds the shortest path length by k + 1.

Improvement on the approximation ratio should come from algorithms that
avoid congested paths. One such idea is to use not only the shortest path but
the k shortest paths, whichever of them is least congested. However, again
it is not difficult to adapt Figure 2, to show that in case dI > dT choosing
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any of k shortest paths, for fixed k, leaves the lower bound of 4 on the ratio
unchanged.

s u1u2u3 u′

3

Figure 3. PG is not optimal on a chain if the sink is not at an extreme.

PGR can be non-optimal on a chain if the sink is not at an extreme node of
the chain. Consider the instance given by the graph in Figure 3. Let dT = 1
and dI = 2 and assume packets are released in u1, u2 and u3 at time 0. PGR

would first send the packet in u1 to the sink, and then send the packet in u2 to
the sink, resulting in a makespan of 7, while in an optimal solution the packets
in u2 and u3 are forwarded until the packet of u2 reaches the sink at time 2,
then the packets of u3 and u1 are forwarded simultaneously, yielding a cost of
6. Note that if the third packet would have been released at node u′

3 instead of
at node u3 then PGR would have been optimal. This shows that any optimal
algorithm for the problem on a chain should take into account the position of
the other packets when deciding which of the two packets nearest to the sink
to send first. The complexity of the problem on a chain remains open.

4 Open Problems

In this paper we designed a greedy algorithm PGR for data gathering in wire-
less networks and proved it to be 4-approximate when minimizing maximum
completion time. We also showed that PGR has a best possible approximation
ratio within the class of algorithms in which each packet is sent over a shortest
path to the sink. It is a beautiful challenge to design algorithms that avoid
congested paths, which have approximation ratios strictly less than 4 (or 3 if
dI = dT ). Our examples at the end of the previous section show that this is
not so trivial. Observing the proof of Corollary 4, one could concentrate on
the subclass of problems with dI/dT ∈ [2, 3) to improve on the ratio of 4, since
in all other cases PGR has ratio at most 3.

In fact, PGR is an on-line algorithm, and thus gives a competitive ratio of
4. However, there is a significant gap between this upper bound and a sim-
ple lower bound on the competitive ratio of any deterministic algorithm: we
have constructed rather simple examples, that we omit here, which give lower
bounds of 7/5 for dI > dT and 4/3 for dI = dT .

All our results apply to general graphs; we have not considered specific graphs
in depth. Specifically, the complexity of WGP on chains or trees is open, apart
from the restricted case in Corollary 5. We believe that these problems are
easy as well, but PGR is not optimal on a chain for dT = 1 and dI = 2 as we
have shown at the end of the previous section. The example there can easily
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be extended to any combination of dI and dT , except dI = dT , for which PGR

might in fact be optimal.

PGR can be implemented using only local information, i.e. each node requires
only information of nodes within interference radius. It is a challenge to study
truly distributed algorithms, which use only information available at a node.
As interference can not always be detected a priori in this model, algorithms
should be able to accommodate for retransmissions of lost data. Bar-Yehuda
et al. [2] designed such distributed randomized algorithms for WGP with dT =
dI = 1 without release times (thus in an off-line setting). They derive bounds
on the expected number of rounds required to gather all packets at the sink.
It would be interesting to exploit ideas in this paper to design (randomized)
distributed on-line algorithms with satisfactory competitive ratios.
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