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Abstract

We study a popular task model for scheduling parallel real-time tasks,
where the internal parallelism of each task is modeled by a directed acyclic
graph (DAG). We show that deciding the feasibility of a set of sporadically
recurrent DAG tasks is hard for the complexity class PSPACE, thus ruling
out approaches to this problem that rely on Integer Linear Programming
or Satisfiability solvers (assuming NP 6= PSPACE).

Keywords: real-time scheduling, computational complexity, precedence con-
straints, sporadic task system, feasibility testing, parallel computing

∗vincenzo.bonifaci@uniroma3.it
†alberto@diag.uniroma1.it

1



1 Introduction

Directed Acyclic Graphs (DAGs) are widely used in parallel computing to nat-
urally model intra-parallelism and precedence constraints between tasks or pro-
cesses. In particular, many real-time systems may be modeled as a finite number
of independent recurrent DAG tasks, where a DAG task is specified in terms of
a directed acyclic graph, a minimum inter-arrival time, and a relative deadline.
In such a model, the time instant when the next invocation of a task will be re-
leased after its minimal inter-arrival time has elapsed is unknown. Thus, there
are infinitely many job sequences that conform to the system’s specification,
making the analysis of such systems challenging.

In this work, we study the (online) feasibility problem for sets of sporadic
DAG tasks: the problem of determining whether a given real-time workload
which is specified by a set of sporadic DAG tasks can be scheduled by some
online algorithm to always meet all deadlines upon a given platform of identical
processors.

The main contribution of the paper is to show that the feasibility problem
for sets of sporadic DAG tasks is highly intractable. Namely, it is proven that
determining whether a given set of sporadic DAG tasks can always be feasibly
scheduled online on a specified multiprocessor platform is hard for the com-
plexity class PSPACE. The construction proves hardness already in the case of
systems consisting of two DAG tasks, the nodes of which have unitary execution
time.

The result of the paper has implications for parallel programming and real-
time systems design. In particular, under the complexity-theoretic conjecture
NP 6= PSPACE, the result rules out the possibility of effectively using approaches
such as Integer Linear Programming (ILP) or Satisfiability (SAT) solvers to
address the feasibility problem for sporadic DAG tasks in its general form.

Related work In the precedence-constrained scheduling problem the goal
is to schedule a set of jobs with precedence constraints: jobs are represented as
nodes of a DAG and there is a directed edge from the vertex Ji to the vertex
Jj when the job Ji is an immediate predecessor of the job Jk. It is known that
even deciding the feasibility of a collection of unit-length precedence-constrained
non-recurrent jobs is i) NP-complete in the strong sense when the number of
machines is part of the input, ii) a long-standing open question if the number
of machines is a constant m, m ≥ 3 [20,33].

The (3-parameter) sporadic task model [4, 28] is a well-established model in
real-time systems to model recurrent jobs. In this model a task is represented
by a triple (J,D, T ), where J is a job, D a positive integer representing the
relative deadline of the task, and T a positive integer representing the minimum
separation time between two successive jobs of the task.

The sporadic task model allows to naturally model real-time system appli-
cations; for this reason, it is at the center of the research efforts of the real-time
systems community, see for example Davis and Burns [13] and references therein.
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Therefore, we limit ourselves to citing contributions that are most directly con-
nected to the results in this paper.

For sequential sporadic tasks, the exact problem of testing the online feasi-
bility of a task-set on a single processor is known to be NP-hard [14,15] and to
be exactly solvable in exponential time [8] in the general case.

The DAG Task model, originally proposed by Baruah et al. [3, 9], extends
the sporadic task model assuming that each task is represented by a DAG. The
model has attracted significant attention in the real time community (see [35]
and references therein). Significant effort has therefore been devoted to the
development of inexact approaches involving some form of resource augmenta-
tion, or to the study of special cases of the problem. We briefly review some
important special cases of the feasibility problem in Section 2.3. Among the
main approaches to resource augmentation are speedup bounds [9, 26, 32] and
utilization bounds or capacity augmentation bounds [11, 25,26].

From a complexity theory perspective, although there is a plethora of schedul-
ing problems that are known to be NP-hard [20, 23], natural scheduling prob-
lems that are PSPACE-hard appear to be a rather rare breed [29, 30]. Namely,
in [6] the feasibility analysis problem for Conditional Directed Acyclic Graph
model [2,27], that extends the DAG model allowing the execution of conditional
(e.g. if-then-else) constructs is proven to be PSPACE-complete.

In [21] the authors studied the complexity of checking whether a sporadic
task system is schedulable under a given scheduler; they show that the problem
is PSPACE-hard with a reduction from the universality problem for (finite state
labeled) automata, that, given a labeled automaton A asks whether A accepts
all strings. Namely, given a labeled automaton A, [21] defines a set of sporadic
tasks T and an algorithm R and proves that T is schedulable using algorithm R
if and only if automaton A verifies the universality property. Observe that the
definition of the scheduler depends on the input automaton: for two different
labeled automata A1 and A2 the reduction defines two different task sets S1, S2

and two different algorithms R1 and R2. It follows that the result does not imply
that the feasibility problem of scheduling a sporadic task system is PSPACE-
hard.

We believe DAG task feasibility is a natural problem representing an inter-
esting addition to the family of PSPACE-hard problems.

Overview of the sections In Section 2 we define the task model, infor-
mally review the relevant definitions from complexity theory, and discuss related
results and special cases. In Sections 3 and 4 we state and prove our main re-
sult, the PSPACE-hardness of the feasibility analysis problem for DAG tasks.
Finally, some open problems are suggested in Section 5.
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2 Preliminaries

2.1 Problem definition

We consider a given set S of independent DAG tasks (or simply tasks) τ1, . . . , τn.
Each task τi consists of a triple (Gi, Di, Ti) where Gi is a node-weighted directed
acyclic graph (DAG), and Di and Ti are positive integers. Each DAG Gi rep-
resents a parallel task. Each node v ∈ V (Gi) in the DAG represents a basic
sequential operation or job, and arcs represent precedence relations between
jobs. That is, if (u, v) is an arc of Gi then job v cannot be started before job u
is completed. Each job u has an associated worst-case execution time c(u); in
this work, we assume c(u) = 1 (unit-size jobs).

Each DAG task can be activated recurrently; each activation of the task
is called a dag-job. Parameters Di and Ti represent, respectively, the relative
deadline and minimum inter-arrival time (or period) of task τi. The meaning is
that an instance (i.e., a dag-job) of τi released at time t shall be completed by
time t+Di, and no subsequent instance will be released before time t+ Ti. We
assume Di ≤ Ti (constrained deadlines). Jobs are to be scheduled by a platform
of m identical and parallel processors. Task preemptions and migrations (at
integer times) are allowed.

If A is a scheduling algorithm, a taskset is called A-schedulable on m proces-
sors if every arrival sequence of dag-jobs that can be generated by S is correctly
scheduled by algorithm A, that is, all dag-jobs are completed within their dead-
line. A taskset is (online) feasible if it is A-schedulable by some online algorithm
A. By algorithm A being online, we mean that the scheduling decisions of A
at any time t can only be based on information attached to jobs released up
to time t, and therefore cannot involve information attached to jobs that are
released after time t [10,16,34]. Algorithms that do not satisfy this requirement
are called offline, or clairvoyant, and would be unrealistic in many, if not most,
applications of real-time scheduling [1, Chapter 3].

We are concerned with the computational complexity of the following feasi-
bility problem.

Online feasibility of a set of DAG tasks
Given: a DAG taskset S = {(Gi, Di, Ti)

n
i=1} and a number of processors m ≥ 1.

Find: Whether there exists an online algorithm A such that S is A-schedulable
on m processors.

We remark that there exists a (sequential) taskset S? for which every arrival
sequence of jobs can be correctly scheduled, but for which no single online
scheduler can produce a correct schedule for every job arrival sequence [17];
therefore, S? is infeasible under our definition, as it is not A-schedulable for
any online algorithm A (while at the same time being A-schedulable for some
clairvoyant A). Therefore, if we were instead concerned with the existence of
any scheduling algorithm, whether online or clairvoyant, for a given taskset S,
the resulting feasibility problem would be distinct than the one defined above,
but less interesting from an application perspective, due to the aforementioned
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application requirement. We refer the reader to [8, Section 3.2] and [17] for a
deeper discussion of this point.

Additional useful concepts A few additional concepts are useful when
discussing the feasibility of a taskset. The depth of a job v ∈ V (Gi) is the length
of a longest path from a source node of Gi to v. The critical path length of task

τi is δi
def
= maxP

∑
u∈P c(u) where P ranges over all directed paths in Gi. The

synchronous arrival sequence of taskset S is the arrival sequence of dag-jobs
where the k-th dag-job of task τi is released at time (k − 1)Ti.

2.2 Complexity classes: P, NP, PSPACE

We recall (informally) the complexity classes referred to in this paper; we refer
to standard texts such as Papadimitriou [31] for the formal definitions.

• P is the class of problems that can be solved by algorithms with running
time polynomial in the size of their inputs.

• NP is the class of decision problems the solutions of which can be verified
by algorithms with running time polynomial in the size of their inputs,
i.e., the class of problems admitting polynomial-length certificates and a
polynomial-time verifier.

• PSPACE is the class of problems that can be solved by algorithms using an
amount of space (memory) that is polynomial in the size of their inputs.

A problem X is hard for a computational complexity class C, or C-hard, if every
problem Y ∈ C can be efficiently reduced to X. In our context, a reduction is
efficient if it has a polynomial running time. A problem X is C-complete if it
belongs to C and it is C-hard.

The Quantified Boolean Formula (QBF) problem is the canonical PSPACE-
complete problem (like the Satisfiability problem is the canonical NP-complete
problem) [31].

Quantified Boolean Formula (QBF)
Given: a fully quantified Boolean formula

F
def
= ∀y1 ∃x1 ∀y2 ∃x2 . . . , ∀yn ∃xn

m∧
k=1

(
`k,1 ∨ `k,2 ∨ `k,3

)
(1)

where the x1, x2, . . . , xn and y1, y2, . . . , yn are Boolean variables and each `k,j
is one of the xi or yi Boolean variables or its negation.
Find: Whether F is true.

The terms `k,j are called literals and the expression
(
`k,1 ∨ `k,2 ∨ `k,3

)
is

called a clause. Observe that all the variables of a quantified Boolean formula
in the above definition are bound by quantifiers; this implies that the formula is
either true or false. Note also that we adopt the convention of starting F with
a universal quantifier, as opposed to the more usual existential quantifier; this
doesn’t affect the complexity of QBF.
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Two-player games PSPACE-hardness results can often be presented by
viewing the problem under study as a game. Consider a game that involves two
players performing actions according to some specified rules. The two players
alternate their decisions: the first player starts, then the second player follows,
followed by the second action of the first player and so on, until one of the players
achieves a goal and wins the game. Well-known examples of these sequential
games include Tic-Tac-Toe, Go, Chess, Checkers, etc.

A player has a winning strategy in the game if, roughly speaking, for every
choice of actions of the opponent, the player has some actions leading to a
winning condition. Determining if a player has a winning strategy has been
shown to be PSPACE-hard for several classic games such as Checkers, Go or
Hex [31, Chapter 19].

Indeed, determining if a player has a winning strategy in an n-rounds game
is analogous to determining whether a quantified Boolean formula is true. If ai
are Player 1’s actions and bi are Player 2’s actions, then Player 2 has a winning
strategy in a game if

∀a1 ∃b1 ∀a2 ∃b2 . . . , ∀an ∃bn W (a1, b1, a2, b2, ...) (2)

is true, where W is Player 2’s winning condition of the game depending on the
players’ actions. (Here ai, bi do not range over Boolean values but are taken
from an appropriate domain determined by the specific game considered.)

The online feasibility problem for DAG tasks can be seen as a game where
the first player is the environment, that decides the activation times of the tasks,
and the second player is the scheduling algorithm, that decides in which order
and on which processor each job is scheduled; this idea will be further discussed
in Section 3.2.

2.3 Special cases of the feasibility problem

We review some special cases of the feasibility problem for sporadic DAG tasks
that are known or direct consequence of known results.

One DAG task, multiple processors In this special case, the problem
is polynomial-time solvable for 2 processors [12,18,19], open for a fixed number
of at least 3 processors [22], and NP-complete when the number of processors is
part of the input [24,33].

Observation 1. With a single DAG task with constrained deadline, the feasi-
bility problem is equivalent to (non-recurrent) precedence-constrained scheduling
of unit-size jobs with a common deadline.

Proof. Since D1 ≤ T1, at any time there can be only one pending dag-job (as
long as no deadline is missed). Hence a feasible schedule exists if and only if
a feasible schedule exists for the corresponding instance of non-recurrent prece-
dence constrained scheduling of unit-size jobs with deadline D1. We remark that
this special case is an offline problem: the only information that is discovered
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online is the release date of each dag-job, which is irrelevant as there is only a
single DAG task.

One processor, multiple DAG tasks In this case, the problem is coNP-
complete (i.e., the infeasibility problem is NP-complete) [7, 15]. The taskset is
feasible if and only if its synchronous arrival sequence is schedulable [4, 7].

Observation 2. With a single processor, the feasibility problem is equivalent to
sequential sporadic task scheduling with polynomially bounded execution times.

Proof. Given an instance I on DAG tasks G1, . . . , Gn, construct an instance I ′

on sequential tasks τ1, . . . , τn, where the deadline and periods of each task is the
same as in I, and the execution time is the number of nodes of the original DAG
task. A feasible schedule for I ′ can be turned into a feasible schedule for I by
transforming the processing of the j-th unit of a task τi of I ′ into the processing
of the j-th node of an arbitrary (but fixed) topological ordering of Gi. Similarly,
any feasible schedule for I can be transformed into a feasible schedule for I ′.
Note that the total length of tasks is polynomially bounded in the size of I due
to the assumption of unit-size jobs.

The opposite reduction is trivial: just associate to each task τi a chain Gi

of the same length, with the same deadline and period (in fact, in place of a
chain we could use any arbitrary DAG with the same number of nodes as the
execution time of τi).

Finally we remark that this special case too is equivalent to an offline prob-
lem, due to the property that the taskset is feasible if and only if its synchronous
arrival sequence is schedulable [4,7], and the fact that all information about the
synchronous arrival sequence is available before scheduling time.

3 A polynomial-time reduction from Quantified
Boolean Formula

The following theorem is the main result of this paper.

Theorem 1. The DAG task feasibility problem is PSPACE-hard.

In this section we detail a reduction from the Quantified Boolean Formula
(QBF) problem and we provide a high level intuition of the proof that casts
DAG task feasibility in the two-player game framework discussed in Section 2.2.
In the next section, we will prove the correctness of the reduction.

In the sequel, for any integer a ≥ 2, the symbol a in the figures denotes
a parallel nodes, each of unit execution time, with identical predecessors and
successors (Figure 1a).

Given a formula F with 2n variables (of which n are universally quantified
and n are existentially quantified) and m clauses, we define a task set I(F ) of

two sporadic DAG tasks, H and GF , to be executed on a set of m′
def
= 3+7m+3q
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(a) (b)

Figure 1: (a) Representation of sub-dag a when a = 4; (b) Illustration of DAG
task H when q = 4

identical processors, where q
def
= 10m. Without loss of generality, we assume that

n,m ≥ 2.
All nodes of H and GF have unit execution time. Task GF encodes the

formula F , while H does not depend on F (but it is used to reduce the scheduling
options for GF ).

Namely, task H consists of a source node having q successors (Figure 1b);
the relative deadline of H is 2, and its period is 8. Since the depth of H is equal
to the relative deadline of H, it follows that all nodes of H must be immediately
scheduled as soon as they are ready for execution by any correct scheduler; this
fact will influence the scheduling decisions for GF . We will see that certain
release patterns of jobs of task H can be used to model the truth assignment of
universally quantified variables of F , and will constrain the scheduling decisions
for GF .

3.1 Encoding the formula

Task GF encodes the formula F and consists of three interconnected sub-dags
A,B,C: Task GF depends on the formula F ; it has deadline D = 10n + 1,
period T = D and consists of three interconnected sub-dags A,B,C.

A high-level view of task GF is shown in Figure 2. Before entering into the
details of the construction, let us highlight the intuitive role of the sub-dags
A,B,C:

• Sub-dag A encodes the variables of F . It consist of n sequentially con-
catenated blocks A1, A2, . . . , An, one for each pair of variables xi, yi of the
QBF formula; the last block is followed by a final sink node V .

• Sub-dag B encodes the clauses of F . For each clause of F , B contains
seven chains of length D − 1; each chain will have three incoming arcs
from nodes of sub-dag A, among the arcs represented in red in Fig. 3.
The presence of these arcs (precedence constraints) might delay execution
of the chains of B. We will show that in a feasible schedule of F there
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Figure 2: High-level view of the task GF and its sub-dags A, B, C

are exactly m chains that are not delayed, one per clause, and that these
chains represent a satisfying assignment for F .

• Sub-dag C will be defined to globally control the number of available
processors, constraining the scheduling decisions for the rest of the system.

Representing the variables Sub-dag A encodes the variables of F and
is formed by a chain of blocks Ai, i = 1, 2, . . . , n; each block has a source
and a sink and there is a directed arc from the sink of Ai to the source of
Ai+1; the sink of An is connected to a special node V that is the sink of A.
It follows that the schedule of block Ai must start after the schedule of block
Ai−1 is completed. Block Ai, shown in Fig. 3, consists of two parts: Ai,y, that
encodes the truth values of variable yi, and Ai,x that encodes the truth value
of xi. Since the critical path of each block Ai is 10, it follows that the critical
path of A is 10n + 1 = D. Figure 3 shows four distinguished nodes in block
Ai: Xi,¬Xi, Yi,¬Yi; these nodes have directed arcs (shown in red) to nodes of
sub-dag B that we detail below, in the paragraph “Representing the clauses”.

Intuition Before completing the presentation of GF we motivate the def-
inition of blocks Ai, i = 1, 2, . . . , n. Informally speaking the intended inter-
pretation is that assigning True (False respectively) to the boolean variable xi
corresponds to having completed the scheduling of vertex Xi (¬Xi respectively)
by a certain point in time; a similar correspondence applies to the boolean
variables Yi and ¬Yi.

Since GF is released at time 0 and the critical path of A is equal to the
deadline, it follows that in any correct scheduling of GF block Ai must be
executed over the interval [10(i − 1), 10i) for each i, i = 1, 2, . . . , n. Moreover,
both nodes Yi and ¬Yi must complete in the interval [10(i−1)+4, 10(i−1)+5)
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Figure 3: Block Ai; the red arcs connect to nodes of sub-dag B

and both nodes Xi and ¬Xi must complete in the interval [10(i− 1) + 8, 10(i−
1) + 9).

We will ensure (see Section 4 for a formal proof) that in any feasible schedule:

1. Only one node between Yi and ¬Yi may complete by time 10(i − 1) + 4
and the other one completes by time 10(i − 1) + 5. Which of the two
completes earlier may be forced by the release date of a job of Dag task
H: if a job of H is released at time 10(i− 1) (resp., 10(i− 1) + 1) then in
order to correctly schedule this job, only ¬Yi (resp., Yi) can complete by
time 10(i− 1) + 4. See Figures 4 and 5.

2. Only one node between Xi and ¬Xi may complete by time 10(i− 1) + 8
and the other completes by time 10(i−1)+9. Which of the two completes
earlier is a decision of the scheduler.

Representing the clauses Sub-dag B encodes the clauses of F . The
definition of B exploits an observation by Ullman [33] in his proof to show that
the (non-recurrent) DAG scheduling problem is NP-complete even when all
nodes have unit execution time. A clause with three literals (`k,1 ∨ `k,2 ∨ `k,3)
can be satisfied by seven out of the eight possible truth assignments of the three
variables involved. Ullman [33] observed that this is equivalent to asserting that
in any satisfying assignment, one and only one of the following seven conjuncts
evaluates to true: (i)

(
`k,1∧¬`k,2∧¬`k,3

)
, (ii)

(
¬`k,1∧`k,2∧¬`k,3

)
, (iii)

(
¬`k,1∧

¬`k,2 ∧ `k,3
)
, (iv)

(
`k,1 ∧ `k,2 ∧ ¬`k,3

)
, (v)

(
`k,1 ∧ ¬`k,2 ∧ `k,3

)
, (vi)

(
¬`k,1 ∧

`k,2 ∧ `k,3
)
, and (vii)

(
`k,1 ∧ `k,2 ∧ `k,3

)
. Therefore, a CNF formula with m

clauses is satisfiable if and only if it admits a truth assignment that satisfies
exactly m conjuncts (one per clause).

For each clause Cj in formula F , we define seven chains, Bj,k, k = 1, 2, . . . , 7;
each chain has D−1 nodes. Similarly to [5], each chain has three incoming arcs
from sub-dag A in correspondence to the three nodes representing the literals
occurring in k-th conjunct of clause j. Namely,
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Figure 4: Case in which task H is released at time 10(i− 1)

Figure 5: Case in which task H is released at time 10(i− 1) + 1
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• if literal xi (respectively, ¬xi) occurs in Bj,k then there is an arc from
node Xi (resp., ¬Xi) of Ai to the 10(i− 1) + 9 node of Bj,k;

• if literal yi (resp., ¬yi) occurs in Bj,k then there is an arc from node Yi
(resp., ¬Yi) of Ai to the 10(i− 1) + 5 node of Bj,k.

It follows that the number of outgoing arcs from node Yi (resp., ¬Yi, Xi,¬Xi)
is equal to the number of occurrences of literal yi (resp., ¬yi, xi,¬xi) in F .

In the next section we will show how these arcs influence scheduling of B;
namely, scheduling of nodes Xi, ¬Xi, Yi and ¬Yi might delay execution of the
chains of B. We will show that in a feasible schedule of F there are exactly
m chains that are not delayed, and that these chains represent a satisfying
assignment for F .

Controlling processor availability In order to control the properties of
feasible schedules over each interval [10(i− 1), 10i), we will restrict the number
of available processors for executing subdag Ai. We achieve this goal by defining
a sub-dag C that reduces processor availability at each time step in the interval
[0, 10n+ 1).

Subgraph C is a layered graph, with each layer fully connected to the next;
the number of layers of C is D = 10n+1. Namely, nodes of C can be partitioned
into disjoint subsets C1, C2, . . . , CD such that there is an edge form any node in
Ck to any node of Ck+1, for each k, k = 1, 2, . . . D. Since D is by definition the
relative deadline of GF , the layers of C will have to be executed in lock-step if
the deadline of GF has to be met.

Let r = 2 + q + 7m; the number of nodes in each layer of C is defined so
that the number of remaining available processors after processing all nodes of
C that are ready for execution is, at time 10(i − 1) + t, i = 1, 2, . . . , n, after a
release of GF as per the following table:

t 0 1 2 3 4 5 6 7 8 9
available r − 1 r r r r r r + 2q r + 2q r r − 1
processors

See Fig. 6 for an illustration of how these available processors compare with
each blockAi. These remaining processors can be used for the execution of nodes
of sub-dags A, B and of task H. Additionally, the first layer of C includes the
source of block A1.

The last layer of C is defined so that the number of remaining processors in
[D−1, D) is 1+ q+6m; we will see that, in a feasible schedule, these processors
will execute node V (the sink of sub-dag A), q nodes of task H (if necessary),
and the final nodes of 6m (out of 7m) of the chains Bj,k.

3.2 Scheduling recurrent DAG task sets as a two-player
game

Before formally presenting the proof, we present a high level view of the re-
duction as a two player game between the environment and the scheduler. A
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Figure 6: Count of the available processors while each block Ai is pending: (a)
available processors after sub-dag C is accounted; (b) remaining processors after
sub-dag B and C are accounted

dag-job of GF is released (without loss of generality) at time 0: the scheduler
wins if it is able to schedule GF (along with all instances of H) within the dead-
line, while the goal of the environment is to release dag-jobs of task H in such
a way as to make it impossible to meet all deadlines. Decisions on release dates
of H are taken online by the environment as the schedule of GF proceeds.

The first move of Player 1 (the environment) is to decide the release date
of the first instance of H relative to the release of GF . We will show that only
two possibilities are relevant for the environment player, in the sense that all
others can easily be accommodated by the scheduler. Namely, the environment
can decide which node between Y1 and ¬Y1 may complete by time 4, depending
on whether a job of H is released at time 0 or at time 1. These two possibilities
fix the schedule of block A1,y in two different ways, and correspond to setting
the universally quantified variable y1 of F either true or false.

After the environment has constrained the schedule of block A1,y, Player
2 (the scheduler) decides how to schedule block A1,x. Namely, the scheduler
has to decide which node between X1 and ¬X1 may complete by time 8. This
decision of the scheduler cannot be influenced by the environment; these two
possibilities fix the schedule of block A1,x in two different ways and correspond
to setting the truth value of the variable x1 one way or the other.

The game continues in a similar fashion until sub-dag A is completed: the
environment decides the release date of a job in [10(i − 1), 10i), i = 1, . . . , n,
thus constraining the schedule of Ai,y, and the scheduler decides how to schedule
block Ai,x (as in the case i = 0, any release outside one of these intervals can
be easily accomodated by the scheduler).

In the proof we will show that the schedule of A influences the schedule
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of sub-dag B. Namely, the scheduling of Ai,y and Ai,x will possibly delay
executions of chains of sub-dag B. Intuitively, the goal of the scheduler (of the
environment) is to limit (to increase) the number of delayed chains of sub-dag
B.

We will see that at time 10n = D − 1 there are two possibilities:

1. exactly m chains of B are not delayed by the schedule of sub-dag A. We
will show that in this case F is true and GF can be feasibly scheduled
within the deadline independently of release dates of the jobs of task H;

2. at least m+ 1 chains of B are delayed. In this case we will show that if a
job of H is released at time D − 1 then F is not true and GF misses the
deadline.

The scheduler has a winning strategy if and only if it can complete the sched-
ule of GF (along with all instances of H) irrespectively of the online decisions
of the environment.

4 PSPACE-hardness of sporadic DAG tasks

Correctness of the reduction – and therefore, Theorem 1 – follows from two
implications: (i) if formula F is true, then the sporadic taskset I(F ) is feasible,
and (ii) vice versa, if the sporadic task set is feasible, then the formula is true.
We now detail each of these.

4.1 If F is true then the sporadic task set I(F ) is feasible

Lemma 2. If F is true, then every arrival sequence from I(F ) is schedulable.

Proof. Assume F is true; we define a run-time scheduling algorithm that com-
pletes all jobs within their deadline for any compliant arrival sequence of dag-
jobs. We first discuss priorities of the scheduling policy among jobs that are
eligible for execution.

We first observe that dag-jobs of task H have both depth and deadline equal
to 2; it follows that nodes of these jobs must be executed without interruption
as soon as they are eligible for execution. Therefore, we let nodes of H have
higher priority with respect nodes of GF .

We now observe that GF (the only other task) has period (equal to the
deadline) that is greater than the period of dag task H. Therefore, it is sufficient
to prove that, if the formula F is true, then each individual dag-job J of GF

can be feasibly scheduled for all possible arrival patterns of jobs of H interfering
with J .

In the sequel, wlog we assume that dag-job J of task GF is released at time
0; it follows that dag-jobs of task H that might interfere with job J might be
released in the interval [−1, D]; we will see (Claim 5) that a dag-job of H can
cause delay of other dag-jobs only when it is released either at time 10(i− 1) or
at time 10(i− 1) + 1 for some integer i = 1, 2, . . . , n.
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Since the relative deadline of GF is 10n+ 1, it follows that nodes of sub-dag
C must be executed without interruption, thus directly limiting the number of
processors available for the other sub-dags of GF . We therefore let the nodes of
C (together with nodes of H) have highest priority. Finally, our algorithm will
give higher priorities to nodes of sub-dag B than to nodes of A.

Therefore, we will use the following priority order: first nodes of C, followed
by nodes of H, B and A in this order.

Processor availability and the observation that there are no arcs from nodes
of sub-dags A and B to nodes of C immediately implies the following claim.

Claim 3. Since dag-jobs of H and sub-dags C have higher priority, they always
complete execution by their deadline.

Proof. After accounting for sub-dag C, by construction there are always at least
1 + q + 6m processors available at any time step (in fact, at least 1 + q + 7m
except at the very last time step [D− 1, D)) to schedule dag-jobs of H, sub-dag
A. The maximum parallelism of H is q, hence dag-jobs of H will be processed
without delays and complete execution by their deadline.

As far as the execution of sub-dag B we observe that, after nodes of H and
C have been scheduled in [0, D − 1], there are at least 1 + q + 7m available
processors. Since nodes of B have higher priority than nodes of A, there are
always enough processors to execute all nodes of Bj,k, j = 1, 2, . . . ,m, k =
1, 2, . . . , 7 in [0, D − 1]; therefore, at time D all nodes of sub-dag B that are
eligible for execution are processed.

We will see in the sequel that

• the execution of nodes Yi,¬Yi, Xi,¬Xi of Ai (i = 1, 2, . . . , n) might be
delayed by the release of jobs of H and by the scheduler decisions

• the above delay might delay the execution of nodes of B.

However we will prove that if F is true then exactly m chains of B are not
delayed and remaining 6m chains are delayed by one time unit. Therefore, all
chains of B complete by D and there exists a schedule that completes GF within
the deadline.

We now analyse the relationships between the schedule of Ai and the release
times of dag-jobs of task H.

Claim 4. The number of processors available at each time step and the higher
priorities given to nodes of H and of sub-dags C and B with respect to priorities
of nodes of Ai, i, i = 1, 2, . . . , n, imply the following:

1. if a dag-job of task H is released at time 10(i − 1) then node ¬Yi of Ai

completes execution at time 10(i−1)+4 and Yi cannot complete execution
either at time 10(i−1)+4 but can complete execution at time 10(i−1)+5;

2. if a dag-job of task H is released at time 10(i− 1) + 1 then node Yi of Ai

completes execution at time 10(i−1)+4 and ¬Yi cannot complete execution
at time 10(i− 1) + 4 but can complete execution at time 10(i− 1) + 5;
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3. otherwise (i.e. if a job of task H is not released at time 10(i − 1) + 1
or 10(i − 1)), the release of the job does not delay the completion of any
other node of Ai. Therefore, both ¬Yi and Yi complete execution at time
10(i− 1) + 4.

Proof. 1) After taking into account the resources dedicated to C and B, the
remaining available processors for H and Ai during time 10(i− 1) + t are as per
the following table:

t 0 1 2 3 4 5 6 7 8 9
proc. q + 1 q + 2 q + 2 q + 2 q + 2 q + 2 3q + 2 3q + 2 q + 2 q + 1

See Figure 6 for reference. If a dag-job of H is released at time 10(i − 1),
since q + q/2 > q + 2 at time 10(i − 1) + 1 there are not enough processors
to complete block di, hence Yi cannot complete by time 10(i − 1) + 4. On
the other hand, by delaying only block di by one time unit there are enough
resources to complete ¬Yi by time 10(i − 1) + 4 and Yi by time 10(i − 1) + 5,
since q + 2 + 2(q/2) + 1 = 2q + 3 < 2(q + 2). (See also Figure 4).

2) The proof is similar to point 1), except that now block di can be processed
with no delay, while block ei has to be delayed by one time unit. (See also Figure
5).

3) The only times at which H could be released and cause interference with
Ai are 10(i− 1) and 10(i− 1) + 1 (which we already covered in points 1) and 2)
above), or possibly 10(i−1) +5. For the latter case, note that of the two blocks
fi and gi only one can be completed without delay anyway, since 2q+2q > 3q+2.
Hence, since 2q+q+1 < 3q+2, it is possible to process without delay a dag-job
of H released at time 10(i − 1) + 5 without delaying any additional node of
Ai.

Claim 5. Processor availability implies that, independently of the release of a
dag-job of task H, only one node between Xi and ¬Xi can complete by time
10(i− 1) + 8, and both can complete at time 10(i− 1) + 9. Furthermore, which
node between Xi and ¬Xi completes first is a decision of the scheduler.

Proof. Only one node between Xi and ¬Xi can complete without delay by time
10(i− 1) + 8 because only one between fi and gi can complete without delay as
we already argued. On the other hand, there are enough resources to complete
both Xi and ¬Xi by time 10(i−1)+9 because 1+q+1+2q+2q+3 ≤ 2(3q+2).
Due to the symmetry of Xi and ¬Xi in block Ai, which node to complete first
is a decision of the scheduler (note however that this decision may impact the
completion of other parts of GF , namely of sub-dag B).

Claims 4 and 5 show that release of jobs of task H can delay the execution
of nodes Yi,¬Yi, Xi,¬Xi by at most one time unit. Since these nodes are not
on a critical path, the following claim immediately follows.

Claim 6. 1. For all i, i = 1, 2, . . . , n, block Ai starts execution at time 10(i−
1) and completes execution at time 10i.
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2. If at most 6m processors are used for sub-dag B during [D − 1, D), then
node V (and hence the entire sub-dag A) completes execution by the dead-
line.

Claims 3 and 6 imply that DAG jobs of H and subdags C and A can be
feasibly scheduled. It remains to show that if F is true then one can fix the
remaining scheduling decisions so that also all nodes of sub-dag B and the final
node V of A complete within the deadline for all possible release dates of dag-
jobs of task H. We also observe that Claims 4 and 5 imply that it is sufficient to
prove that GF can be feasibly scheduled when dag-jobs of H cause the maximum
interference with the job of GF , i.e. when a dag-job of H is released either at
time 10(i− 1) or at time 10(i− 1) + 1, i = 1, 2, . . . , n.

To fix the remaining scheduling decisions, we proceed as follows: we use
release times of dag-jobs of task H to define a truth assignment Sy of universally
quantified variables, use the truth of F to derive corresponding existentially
quantified variables, and use the existentially quantified variables to complete
the schedule (in particular, to fix the priorities between Xi and ¬Xi).

We define an assignment of universally quantified variables yi, i = 1, 2, . . . , n,
of F based on the arrival time of dag-jobs of H. Namely,

1. if a dag-job of H is released at time 10(i− 1), we take yi = true;

2. if a dag-job of H is released at time 10(i− 1) + 1, we take yi = false;

3. if no dag-job of H is released at time 10(i − 1) or at time 10(i − 1) + 1,
we choose an arbitrary truth value for variable yi .

Let Sy be the obtained truth assignment of universally quantified variables of F .
Since F is true, there must exist a truth assignment Sx of existentially quantified
variables x1, . . . , xn when universally quantified variables have values as defined
in Sy that satisfies all clauses. We use these values to determine the scheduler
decisions on which node between Xi and ¬Xi completes first. Namely,

• if the truth value of xi is true, then execution of block fi and node Xi

has higher priority than execution of block gi and node ¬Xi;

• if the truth value of xi is false, then execution of block gi and node ¬Xi

has higher priority than execution of block fi and node Xi;

It follows that, if the truth value of xi is true (false), then node Xi (¬Xi)
completes at time 10(i−1)+8 and ¬Xi (Xi) completes at time 10(i−1)+9. Note
that the decisions of the scheduler are compliant with the order of quantifiers
of F , that is, xi can be set based only on y1, . . . , yi and x1, . . . , xi−1.

We complete the proof of the lemma by showing that the above defined
scheduling decisions allow to complete execution of all nodes of sub-dag B and
of the final node V within the deadline. Namely, we show that the scheduling
of nodes of Bj,k, j = 1, 2, . . . ,m, k = 1, 2, . . . , 7, only depends on the eligibility
of nodes for processing that is determined by the truth values of variables of F .
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Observe that a chain of B can complete at time D − 1 if and only if its
execution is never delayed. We will show that exactly m chains of B are never
delayed (and therefore complete by time D − 1), while the remaining 6m are
delayed one time unit (and therefore complete by time D and are not so many
as to interfere with V ). Note that this is sufficient to ensure feasibility, since
1 + q + 6m processors are available during [D − 1, D), and node V and nodes
from H (if there are any pending) require together 1 + q processors.

Observe that if literal yi (¬yi, respectively) belongs to chain Bk,j for some
k and j, then there is an edge from the node labeled Yi (¬Yi, resp.) of Ai to
the 10(i − 1) + 5 node of Bk,j . Claim 4.1 asserts that if this node Yi (¬Yi,
resp.) does not complete by time-instant 10(i− 1) + 4 it will complete at time
10(i − 1) + 5, thus delaying execution of Bk,j for one time unit. Analogously
if literal xi (¬xi, resp.) belongs to Bk,j for some k and j, then there is an
edge from the node labeled Xi (¬Xi, resp.) of Ai to the 10(i − 1) + 9 node of
Bk,j . Claim 5 asserts that if node Xi (¬Xi, respectively) does not complete by
time-instant 10(i − 1) + 8 it will complete by time-instant 10(i − 1) + 9, thus
delaying execution of Bk,j for one time unit.

Consider clause Cj ; since the assignments Sy and Sx satisfy F , there must

exist k̂ such that conjunct associated to chain Bj,k̂ is true. Hence the above
defined scheduling claims 4, 5 and 6 imply that chain Bj,k̂ is never delayed

in [0, 10n] and, therefore, Bj,k̂ is eligible for completion by time D − 1. Since
at most one conjunct per clause can be true and all clauses of F are satisfied
it follows that exactly m chains complete by time D − 1. Claims 4, 5 imply
that any other chain is delayed by one time unit; therefore, 6m chains Bj,k can
complete by time D. This completes the proof of the lemma.

4.2 If the sporadic task set I(F ) is feasible then F is true

We complete the proof by showing that if GF is schedulable for all release se-
quences then F is satisfiable for all possible assignments of universally quantified
variables. Namely, assume that a dag-job of task GF is released at time 0 and
consider Sy, one of the 2n possible truth assignments of universally quantified
variables.

We define an instance I(Sy) of the scheduling problem by defining a sequence
of n time arrivals of dag-jobs of task H that we put in one-to-one correspondence
with truth values of Sy. We then use the feasible schedule of I(Sy) to define a
truth assignment Sx of existentially quantified variables.

We will first show that scheduling decisions for I(Sy) are compliant with
the order of existentially quantified variables of F . We complete the proof by
showing that the existence of a feasible schedule of I(Sy) implies that F is true
when the truth value of variables is specified as in Sy and Sx.

Namely, given a truth assignment Sy for the y-variables of F , we define an
instance I(Sy) of the DAG task scheduling problem as follows: a dag-job of GF

is released at time 0. The release time of dag-jobs of H depends on the truth
values of universally quantified variables; for all i, i = 1, 2, . . . , n we have
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1. if yi = true then a dag-job of task H is released at time 10(i− 1) + 1,

2. if yi = false then a dag-job of task H is released at time 10(i− 1).

Finally, a dag-job of task H is released at time D − 2, irrespectively of the
truth assignment Sy. Note that the resulting arrival sequence is legal, since H’s
interarrival time is 8.

Lemma 7. If every arrival sequence from I(F ) is schedulable, then F is true.

Proof. By assumption, every arrival sequence from I(F ) is schedulable, so in
particular the arrival sequence defined by I(Sy) (with Sy defined above) admits
a feasible schedule. We first define properties of this feasible schedule.

Claim 8. In any feasible schedule for I(Sy), at most one node between Yi and
¬Yi, i = 1, 2, . . . , n, may complete by time 10(i − 1) + 4. More precisely: if a
job of dag H arrives at time 10(i − 1) + 1 (resp., 10(i − 1)) then only node Yi
(resp., ¬Yi) can complete by time 10(i− 1) + 4.

Proof. Assume that a dag-job of H is released at time 10(i − 1) + 1; clearly
this dag-job must complete by time 10(i − 1) + 3. Note that during interval
[10(i− 1) + 2, 10(i− 1) + 3), after nodes of sub-dag C are accounted for, there
are r = 2+q+7m available processors. Some of these processors, namely q+7m,
must be used to process q nodes of the released dag-job of task H (otherwise
the dag-job of H misses its deadline) and 7m nodes of chains Bj,k (otherwise
GF misses its deadline due to some chain of B); after taking that into account,
there are two remaining processors that have to be used to schedule two nodes
of Ai: ci and the predecessor of Yi. Note in particular that it is not possible to
schedule all q/2 nodes of block ei (refer to Fig. 3) during that time step. The
proof in case a dag-job of task H is released at time 10(i− 1) is similar and is
omitted.

Claim 9. In any feasible schedule for I(Sy) and for all i, i = 1, 2, . . . , n, at
most one node between Xi,¬Xi can complete by time 10(i−1)+8 (this is under
the decision of the scheduler).

Proof. During interval [10(i − 1) + 6, 10(i − 1) + 8), after taking into account
sub-dag C, there are r + 2q = 2 + 3q + 7m available processors for each time
unit. Since q = 10m, there are not enough processors to complete execution of
both nodes fi and gi of Ai by time 10(i−1)+7, and hence at most one between
Xi,¬Xi can complete by time 10(i− 1) + 8.

We now define a truth assignment of existentially quantified variables as
follows:

1. if node Xi of Ai completes by time 10(i− 1) + 8, then set xi = true;

2. if node ¬Xi of Ai completes by time 10(i− 1) + 8, then set xi = false;
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3. if neither node ¬Xi nor node Xi of Ai complete by time 10(i − 1) + 8,
then arbitrarily assign a value to variable xi.

Note that the truth assignment is well-defined due to Claim 9. We now observe
that the order in which truth assignments Sy and Sx are constructed is compliant
with the order of quantifiers of F , and that all clauses of the quantified Boolean
formula F are satisfied.

Claim 10. Sy and Sx define a truth assignment to variables of F that is com-
pliant with the order of quantifiers of F .

Proof. Scheduling decisions concerning which node between Xi and ¬Xi com-
pletes by time 10(i−1)+4 are based only on release times of dag-jobs of task H
until time 10(i− 1) + 1, and on previous scheduling decisions. Note that these
release times of H are in one-to-one relationship with the truth values of uni-
versally quantified variables yj , j = 1, 2, . . . , i. The relevant previous scheduling
decisions are in one-to-one relationship with xj , j = 1, 2, . . . , i − 1. The claim
follows.

The following claims show that the truth assignment Sy together with the
derived truth assignment of existentially quantified variables Sx make F true.

Claim 11. Let j = 1, 2, . . .m. If, in the feasible schedule for sequence I(Sy),
there exists k∗ = 1, . . . , 7 such that chain Bj,k∗ completes by time D − 1, then
clause Cj is satisfied by truth assignment (Sy, Sx).

Proof. For chain Bj,k∗ to complete by time D− 1, since the length of the chain
is also D − 1, all of its nodes must be executed in lock-step, without delay.
However, due to the incoming arcs from sub-dag A, this requires that nodes
corresponding to any literal occurring in Bj,k∗ should also be executed without
delay. By Claims 8 and 9 and by definition of the truth assignments, this
implies that the literal `j,· corresponding to Bj,k∗ is true. Hence, one of the
seven conjuncts (namely, the k∗-th one) associated to clause Cj is true, and
clause Cj is satisfied.

Claim 12. In the feasible schedule for sequence I(Sy),

1. exactly m chains Bj,k complete by time D − 1;

2. for each j, j = 1, 2, . . .m, there exists k∗ s.t. chain Bj,k∗ completes by
time D − 1.

Proof. For point (i), if less than m chains of B complete by time D − 1, then
at time D− 1 there would be 2 + q+ 6m pending nodes: 6m+ 1 or more nodes
from B still requiring processing, together with the additional node V (the sink
of A, which cannot have been scheduled before D−1 due to its depth) and with
q nodes of the dag-job of H released at time D − 2, against only 1 + q + 6m
available processors; this would contradict the feasibility of the schedule. On
the other hand, the chains of B that are completed by time D − 1 cannot be
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more then m, since for each clause exactly one of the 7 conjuncts is true and
thus only one of the 7 chains can be completed by time D−1 due to the proof of
Claim 11. The latter fact also implies point (ii), i.e., since exactly one conjunct
for each clause Cj is true, for each j there is k∗ s.t. chain Bj,k∗ completes by
time D − 1.

By Claim 12, the hypothesis of Claim 11 is satisfied for all j = 1, 2, . . . ,m,
hence all clauses are satisfied by truth assignment (Sy, Sx). This completes the
proof of the lemma.

Theorem 1 now follows from Lemma 2, Lemma 7, and the PSPACE-hardness
of QBF.

5 Open problems

We have shown that deciding the online feasibility of a set of sporadic parallel
tasks on a multiprocessor platform is a PSPACE-hard problem. Beyond the
obvious question of pinpointing the exact computational complexity of the online
feasibility problem for DAG tasks, our results suggest a couple of questions:

1. Characterize the complexity when the number of processors is constant.

2. Show whether the feasibility problem belongs to the class PSPACE.

3. Show positive complexity results when the scheduling algorithm is fixed.

Finally, we remark that even for sequential sporadic tasksets, the exact com-
plexity of the online feasibility problem on multiprocessor platforms is still open.
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