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Italy
alberto@dis.uniroma1.it

Abstract—Many multiprocessor real-time operating systems
offer the possibility to restrict the migrations of any task to a
specified subset of processors by setting affinity masks. A notion
of “strong arbitrary processor affinity scheduling” (strong APA
scheduling) has been proposed; this notion avoids schedulability
losses due to overly simple implementations of processor affinities.

Due to potential overheads, strong APA has not been imple-
mented so far in a real-time operating system. We show that,
in the special but highly relevant case of hierarchical processor
affinities (HPA), strong APA scheduling can be implemented with
a vastly improved runtime complexity. In particular, we present
a strong HPA scheduler with a runtime complexity of O(m) per
task arrival and O(logn+m2) per task departure, where m is the
number of processors and n is the number of tasks, thus improving
on the previous bounds of O(m2) and O(mn). The improved
runtime algorithms allowed us to implement support for strong
hierarchical processor affinities in LITMUSRT. We benchmarked
this implementation on a 24-core platform and observed non-
negligible, but still viable runtime overheads.

Additionally, in the case of a bilevel affinity hierarchy and
when job priorities are based on deadlines, we argue that the
performance of our strong HPA scheduler, HPA-EDF, can be
related to system optimality in the following way: any collection
of jobs that is schedulable (under any policy) on m unit-speed
processors subject to hierarchical affinity constraints is correctly
scheduled by HPA-EDF on m processors of speed 2.415.

I. INTRODUCTION

Most modern multiprocessor real-time operating systems offer
the possibility to restrict task migration with affinity masks,
which specify on a per-task basis on which processors a task
may be scheduled. The usefulness of processor affinities in
several contexts such as application performance, fault tolerance
or security is well-documented [2, 21, 22, 26, 28, 32].

More recently, the problem of scheduling real-time workloads
with arbitrary processor affinities (APAs) has been consid-
ered [5, 15, 23, 24]. To avoid schedulability losses due to overly
simple implementations of such processor affinities, two notions
of scheduling with arbitrary processor affinities, weak and
strong APA scheduling, have been identified in prior work [15].
Commonly used schedulers, such as Linux’s push-and-pull
scheduler, implement only weak APA scheduling. However,
it has been demonstrated that strong APA scheduling provides
improved schedulability, and that it can be realized by leveraging
the concept of task shifting, i.e., by allowing higher-priority
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tasks to be moved among processors in order to make room for
lower-priority tasks that are limited by affinity constraints.

Previous work has shown that strong APA scheduling can be
implemented with a runtime cost of O(m2) per task arrival and
O(mn) per task departure, where m is the number of processors
and n is the number of tasks [15]. The second bound could be
large when there many tasks. We remark that it might be difficult
to improve these bounds in general, due to the combinatorial
structure of the underlying matching problem.

However, we observe that in many practical scenarios affinity
masks are not at all arbitrary; rather, they often follow a
hierarchical structure, since affinity masks commonly mirror
the underlying hardware topology. For example, some particular
cache-sensitive, high-frequency tasks may be partitioned to a
specific processor to ensure L1-cache affinity, whereas other
tasks may be restricted to a subset of cores that share an L3
cache, while others yet may be assigned a global affinity mask
to optimize their average-case response times.

We formalize this notion of hierarchical affinities by requiring
that affinity masks follow a laminar set structure, that is, given
any two affinity masks α and β, either α is a subset of β, or vice
versa, or the two sets of processors are disjoint. This definition
reflects the tree-like structure of the memory hierarchy.

Our results. We show that for such hierarchical processor
affinities (HPAs), strong scheduling can be implemented with a
vastly improved runtime complexity. In particular, we present
a strong HPA scheduler with a runtime complexity of O(m)
per task arrival and O(log n+m2) per task departure, where
m is the number of processors and n is the number of tasks,
thus improving on the previous bounds of O(m2) and O(mn),
respectively, whenever n > m (Section III).

Additionally, in the case of a bilevel affinity hierarchy and
when job priorities are based on deadlines, we argue that the
performance of our strong HPA scheduler, HPA-EDF, can
be related to system optimality in the following way: any
collection of jobs that is schedulable (under any policy) on
m unit-speed processors with the given affinity constraints, is
correctly scheduled by HPA-EDF on m processors of speed
2.415 (Section IV).

Finally, we experimentally validate our approach by imple-
menting a version of our strong HPA scheduler in LITMUSRT [1,
9, 13], a real-time extension of the Linux kernel (Section V).
To the best of our knowledge, this is the first implementation of
a strong HPA scheduler in a real OS; the experiments confirm
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that, although the overheads are non-negligible, the proposed
scheduling approach is viable in practice.

Related work. Real-time scheduling algorithms are typically
classified based on the degree of migrations allowed: unrestricted
migrations, no migrations, or hybrid approaches with an
intermediate degree of migration. Global scheduling algorithms
allow unrestricted migration of tasks across (possibly) all
processors, while partitioned scheduling algorithms do not allow
migration at all [18]. Proposed hybrid scheduling algorithms
include clustered scheduling (see, for example, [6, 14]), semi-
partitioned scheduling (see, for example, [3, 4, 12, 27]) and
restricted-migration scheduling (see, for example, [3, 19, 30]). It
is well-known that partitioning incurs lower runtime overheads,
but produces schedules that may be unnecessarily constrained;
global scheduling, vice versa, entails higher runtime costs that
should be properly taken into account.

A simple but important observation is that APA and HPA
scheduling simultaneously generalize global, clustered, and
partitioned scheduling, since they allow to confine each task’s
migrations to a specified set of processors. An APA/HPA taskset
can thus be modeled as a global, clustered, or partitioned taskset
with an appropriate processor affinity assignment [5, 15, 23, 24].

Semi-partitioned scheduling relaxes partitioned scheduling by
allowing a small number of jobs to migrate, thereby improving
schedulability [3, 4, 12, 27]. Such tasks are called migratory, in
contrast to fixed tasks that do not migrate. One difference with
APA/HPA scheduling is that, in the latter models, if and when a
task migrates is determined dynamically “on the fly”, as under
global scheduling, whereas semi-partitioned schedulers usually
restrict tasks to migrate at pre-determined points in time (with
regard to a job’s release time) to pre-determined processors.

Clustered scheduling is another proposal that aims to alleviate
limitations of partitioned and global algorithms: tasks are
statically assigned to clusters of cores (like in partitioning),
but are globally scheduled within each cluster [6, 14]. Clusters
are disjoint and typically defined to mirror the boundaries of
shared caches at a specific level in the memory hierarchy (e.g.,
L2 or L3). The hierarchical processor affinity model considered
in this work can be interpreted as a multilevel generalization of
clustered scheduling, allowing nested cluster structures.

In restricted-migration scheduling, migrations are allowed
only at job boundaries [3, 19, 30]. This limits when a job
may migrate, whereas APA and HPA scheduling (like global,
clustered, and semi-partitioned scheduling) primarily specify
where a job may migrate to. Note, however, that both global and
semi-partitioned scheduling can be combined with restricted-
migration scheduling, and similar approaches could also be
explored in the case of APA/HPA scheduling.

Finally, if one ignores the recurrent nature of tasks, HPA
scheduling is similar to a non-real-time scheduling problem in
which a set of non-recurrent jobs is to be scheduled on a set
of restricted machines with nested affinity structure [29]. The
latter problem has recently been generalized to heterogeneous
platforms [7], but to the best of our knowledge it has never
been studied in the context of recurrent real-time task models.

II. SYSTEM MODEL AND NOTATION

We are given a set of n sporadic tasks τ = {T1, T2, . . . , Tn}
to be scheduled on a set of m processors π = {Π1, Π2, . . .,Πm}.
Each task Ti = (ci, di, pi) is characterized by a worst-case
execution time ci, a relative deadline di, and a minimum inter-
arrival time or period pi. We assume that ci, di, and pi are
integers and that the tasks have constrained deadlines, that is,
di ≤ pi. The extension of the sporadic task model considered
here (proposed in [5, 15, 23]) associates with each task Ti ∈ τ a
processor affinity mask α(Ti) ⊆ π that is the set of processors on
which the jobs of Ti are allowed to be scheduled. We abbreviate
α(Ti) as αi. We assume that the family of affinity masks is
hierarchical (or laminar), that is, for each i, k = 1, . . . , n, either
αi ⊆ αk or αk ⊆ αi or αi ∩ αk = ∅. The level of an affinity
mask α is the number of distinct affinity masks β such that
β ⊆ α. The height h of a task system is the maximum level
among all the affinity masks of the task system. Note that h ≤ m
since the affinity masks of a task system form a laminar family;
moreover, by standard combinatorial arguments [33, Theorem
3.5], there are at most 2m distinct affinity masks.

Priority assignment policies used in real-time scheduling
can be classified as task-level fixed priority (FP), job-level
fixed priority (JLFP), or job-level dynamic priority (JLDP). Our
model applies to both FP and JLFP scheduling. In the case of
FP policies, we denote by φi the priority of Ti. In the case of
JLFP policies, we denote by φi (at any time) the priority of the
unique pending job of Ti (at that time); note that if Ti has no
pending job, we will never consider φi.

Let τ(t) be the set of ready tasks at time t. We represent the
scheduler state at time t by a bipartite graph G(t) = (τ(t) ∪
π,E(t)), where arc (Ti,Πj) belongs to E(t) iff Πj ∈ αi. Hence,
finding a valid allocation of tasks in τ(t) to processors π is
equivalent to finding a matching χ(t) in G(t).

However, not all matchings are equally desirable; in particular,
one would like to maximize the number of non-idle processors
while mantaining the specified priority ordering, without causing
affinity violations. Note that in some cases, a processor may
have to idle even though tasks are waiting. Two notions have
been proposed to formalize how a correct scheduler should
behave in this context by Cerqueira et al.[15].

Definition II.1 (Weak Invariant). At any time t, for each ready
task Tb not matched by χ(t) and for each Πj ∈ αb, there exists
a task Ti such that (Ti,Πj) ∈ χ(t) and φi ≥ φb.

As discussed in [15], the above requirement does not consider
possible task shiftings that could improve schedulability without
violating the affinity constraints. To take shiftings into account,
a stronger definition is required based on alternating paths in
the graph G(t). Given a task Tb not matched to any processor
by χ(t), an alternating path (Tb = T`0 ,Πj1 , T`1 , . . . ,Πjk , T`k),
k ≥ 0, from Tb to task T`k is a path in G(t) where (T`q ,Πjq ) ∈
χ(t) and (T`q−1 ,Πjq ) ∈ E(t), for each q = 1, . . . , k. A
processor Πj is reachable from Tb according to χ(t) if there
exists an alternating path from Tb to a task T` such that Πj ∈ α`.
Let Rb(t) denote the set of processors reachable from task Tb



in G(t) with respect to the matching χ(t).

Definition II.2 (Strong Invariant). At any time t, for each ready
task Tb not matched according to χ(t) and for each Π` ∈ Rb(t),
there exists a task Ti such that (Ti,Π`) ∈ χ(t) and φi ≥ φb.

We will need Hall’s Theorem [25], a classical result on the
existence of matchings in bipartite graphs.

Theorem II.1 (Hall’s Theorem). A bipartite graph G = (X ∪
Y,E) has a complete matching from X to Y if and only if
|Γ(S)| ≥ |S| holds for every S ⊆ X , where

Γ(S) = {y ∈ Y | (x, y) ∈ E for some x ∈ S}.

III. SCHEDULING WITH HIERARCHICAL AFFINITIES

In this section we describe an algorithm for scheduling task
sets with hierarchical affinities. First we give a conceptual
description of the algorithm (Section III-A), then we prove that
the assignment produced by the algorithm satisfies the strong
APA invariant (Section III-B), and finally we show how to
implement the algorithm in an efficient way (Section III-C).

A. Admission algorithm and feasibility

The algorithm is conceptually divided into two phases. In
the first phase, we select a set τ ′ of tasks in τ(t) that will be
scheduled at time t. Tasks in τ ′ are selected in such a way
that there exists an assignment of tasks in τ ′ to processors in
π that respects the affinity masks and satisfies the strong APA
invariant. In the second phase we find a feasible assignment of
tasks in τ ′ to processors in π according to their affinity masks.

The first phase of the algorithm selects the tasks in τ ′ in a
bottom-up order, i.e., from those with the smallest affinity masks
to those with the largest one. At the beginning τ ′ = τ(t). For
each Ti ∈ τ , let MARK[i] be a boolean variable that is false

if and only if Ti ∈ τ(t) and the affinity mask αi have not
been analyzed by the algorithm. Let αi be a minimal affinity
mask that has not been analyzed by the algorithm, that is
MARK[i] = true and there is no task Tk in τ(t) such that
αk ⊂ αi and MARK[k] = false. The algorithm iteratively
applies the following procedure until all affinity masks of tasks
in τ(t) have been analyzed, that is until MARK[k] = true for
all Tk ∈ τ (note that MARK[k] = true for each Tk ∈ τ \ τ(t)):

1) Remove from τ ′ all the tasks τk that do not belong to
the |αi| highest-priority tasks among those with affinity
mask αk ⊆ αi;

2) Set MARK[k] to true, for each k such that αk = αi.

The pseudocode of the first phase is reported in Algorithm 1.
For each i = 1, 2, . . . , n, let Si be the set of tasks with an

affinity mask αk ⊆ αi that are in τ ′ at the end of the algorithm,
that is Si = {Tk ∈ τ ′ : αk ⊆ αi}.

The next lemma shows that there exists an assignment of
tasks in τ ′ to processors in π that satisfies their affinity masks.

Lemma III.1. At the end of Algorithm 1 there exists a matching
in G(t) of all the tasks in τ ′ to processors in π.

Algorithm 1: (Conceptual) Admission algorithm.

1 τ ′ ← τ(t);
2 MARK[i]← false for each i = 1, . . . , n : Ti ∈ τ(t);
3 MARK[i]← true for each i = 1, . . . , n : Ti 6∈ τ(t);
4 while ∃i : ¬MARK[i] do
5 let i : ¬MARK[i] and ∀k(αk 6⊂ αi ∨ MARK[k]);
6 S ← {Tk ∈ τ ′ : αk ⊆ αi};
7 sort S by priority;
8 let D be the |S| − |αi| lowest priority tasks in S;
9 τ ′ ← τ ′ \D;

10 MARK[k]← true, ∀k : αk = αi;

Proof. For any set S ⊆ τ of tasks, let Γ(S) be the set of
neighbors of S in the bipartite graph G(t) defined previously.
We claim that

|Γ(Si)| ≥ |Si| for every Ti ∈ τ ′. (1)

Consider the iteration relative to i. By construction |Si| ≤ |αi|
after line 8 during this iteration. Moreover, subsequent iterations
can only decrease |Si|, by removing tasks from τ ′.

Now observe that, by definition of the graph G(t), for any
S ⊆ τ , Γ(S) = ∪Tj∈SΓ({Tj}) = ∪Tj∈Sαj . In particular,
Γ(Si) ⊆ αi. On the other hand, when Ti ∈ τ ′, αi ⊆ Γ(Si)
because Ti ∈ Si. So, for Ti ∈ τ ′, Γ(Si) = αi.

We now claim that |Γ(S)| ≥ |S| for any S ⊆ τ ′. To prove
this, we leverage the hierarchical structure of the affinity masks.
Indeed, consider any S ⊆ τ ′. As we already argued, Γ(S) =
∪Ti∈Sαi. The latter set is the union of all the affinity masks of
tasks in S. We can always rewrite such a union as α`1∪. . .∪α`q ,
where all the αs are pairwise nonintersecting; for any Ti, we
call the α`s containing αi the representative of Ti. Thus,

Γ(S) = α`1 ∪ . . . ∪ α`q = Γ(S`1) ∪ . . . ∪ Γ(S`q ),

where again the sets on the right hand side are pairwise
nonintersecting. We can now bound

|Γ(S)| = |Γ(S`1)|+ . . .+
∣∣Γ(S`q )

∣∣
≥ |S`1 |+ . . .+

∣∣S`q

∣∣
≥

∣∣S`1 ∪ . . . ∪ S`q

∣∣ ≥ |S| ,
where the first inequality is due to (1), and the third inequality
follows from the fact that the affinity mask of each task in S
is covered by its representative, that is, S ⊆ S`1 ∪ . . . ∪ S`q .

Theorem II.1, with X = τ ′, Y = π, guarantees the existence
of a valid allocation of tasks in τ ′ to the processors in π.

B. Assignment algorithm and strong APA invariant

Once the set of admitted tasks τ ′ has been determined,
Algorithm 2 constructs the assignment guaranteed to exist by
Lemma III.1 in bottom-up order, that is, it assigns the tasks
in Si to any unused processor in αi, assuming that, for each
αk ⊂ αi, all the tasks in Sk have already been assigned.

We denote by χ(t) the matching produced by Algorithm 2
in G(t). The set of matched tasks in χ(t) is τ ′. For each task
Ti ∈ τ(t)\τ ′ we denote by Ri(t) the set of reachable processors



Algorithm 2: (Conceptual) Assignment algorithm.

1 ASSIGN[i]← false for each i = 1, . . . , n : Ti ∈ τ ′;
2 ASSIGN[i]← true for each i = 1, . . . , n : Ti 6∈ τ ′;
3 while ∃i : ¬ASSIGN[i] do
4 let i : ¬ASSIGN[i] and ∀k(αk 6⊂ αi ∨ ASSIGN[k]);
5 assign Ti to any unused processor in αi;
6 ASSIGN[i]← true;

from Ti according to χ(t). For each Ti ∈ τ(t)\τ ′, let α′i be the
inclusion-wise minimal affinity mask that satisfies the following
properties:

1) αi ⊆ α′i;
2) processors in α′i are matched with jobs Tj such that

αj ⊆ α′i, that is, there are no edges (Tj ,Πk) in χ(t) such
that αj 6⊆ α′i and Πk ∈ α′i.

(In other words, α′i is the smallest affinity mask containing αi

such that all processors in α′i are assigned tasks that have masks
contained in α′i.)

Lemma III.2. For each task Ti ∈ τ(t) \ τ ′, Ri(t) = α′i.

Proof. We first show (i) that there are no alternating paths from
Ti to any Πj ∈ π\α′i and then (ii) that there exists an alternating
path from Ti to any Πj ∈ α′i. If there exists an alternating path
from Ti to some Πj ∈ π \ α′i, then in such a path there exists
a sequence (Πk, T`,Πj), for some Πk ∈ α′i and T` ∈ τ(t).
By the definition of an alternating path, Πj ∈ α` and hence
α` 6⊆ α′i, a contradiction to Condition 2 in the definition of α′i.
This proves statement (i). To prove statement (ii), let us assume
that there exists a processor Πj ∈ α′i that is not reachable from
Ti. For each task Tk such that αk = α′i, there exists an edge
(Tk,Πj) in G(t). It follows that all such tasks (if any) are not
reachable from Ti, that is, for each processor Π` ∈ α′i and
for each task Tk such that αk = α′i there is no edge (Tk,Π`)
in χ(t). This contradicts the assumption that α′i was minimal,
since the maximal set α′′i such that α′′i ⊂ α′i and αi ⊆ α′′i
would also satisfy the Conditions 1 and 2 in the definition α′i,
while being strictly contained in α′i.

Theorem III.3. The matching produced by Algorithm 2 satisfies
the Strong Invariant.

Proof. By Lemma III.2, it remains to be shown that, (i) for
each task Ti ∈ τ(t) \ τ ′ and for each task Tk matched to a
processor in α′i, φk > φi, and (ii) for each task Ti ∈ τ(t) \ τ ′
no processor in α′i is idle.

Let us consider a sequence of q iterations of Algorithm 1 and
the corresponding affinity masks αi0 , αi1 , . . . , αiq−1

considered
by these iterations, where:
• αij denotes the affinity mask considered in iteration ij , for
j = 0, 1, . . . , q − 1;

• i0 is the the iteration where Ti is removed from τ ′ (i.e.
αi0 ⊇ αi);

• αij−1
⊂ αij , for j = 1, 2, . . . , q − 1;

• for each task T` such that α` = αij−1
, S` changes at

iteration ij (i.e., there exists a task Tr such that αr ⊆ αij−1

that was not removed from τ ′ in iteration ij−1 and that is
removed in iteration ij); and

• αiq−1
= α′i.

To prove statement (i), we show by induction on iteration ij
that, for each task Tk such that αk ⊆ αij that is not removed
from τ ′ at the end of iteration ij , it holds that φk > φi.

At iteration i0, i.e., when Ti is removed from τ ′, the claim
holds since, by the algorithm, Ti is removed from τ ′ as all the
|αi0 | tasks in {Tk : αk ⊆ αi0} ∩ τ ′ that are not removed have
a higher priority than that of Ti.

Assume that the inductive claim holds for iteration ij−1.
Since for each task T` such that α` = αij−1 , S` changes at
iteration ij , there exists a task Tr such that αr ⊆ αij−1

that
was not removed from τ ′ at iteration ij−1 and that is removed
at iteration ij . By induction, φr > φi and, moreover, since Tr
is removed at the end of iteration ij , for each task Tk such that
αk ⊆ αij that is not removed from τ ′ at the end of iteration ij ,
it holds that φk > φr. Therefore, φk > φi.

To prove statement (ii), we show by induction that for each
αij , no processor in αij is idle. The basis of the induction is
that when Ti is removed from τ ′, there are |αi| tasks in τ ′ that
can only be scheduled on processors in αi; this follows from the
fact that Algorithm 1 does not remove the |αi| highest priority
tasks, but removes at least one task (namely, Ti). Similarly,
in subsequent steps, the algorithm does not remove the |αij |
highest priority tasks, but removes at least one task (namely,
the task that caused S` to change).

C. Runtime scheduling algorithm

Since the algorithm as described in the previous section has
a substantial time complexity (proportional to mn or worse), in
this section we discuss an efficient implementation of the same
algorithm. The idea is to dynamically update the data structures
that maintain the assignment of the tasks to the processors,
instead of recomputing them from scratch at each task arrival
or departure. To this end, we make use of strict Fibonacci
heaps and doubly linked lists. A strict Fibonacci heap [11] is a
heap that supports the Insert and FindMax operations in O(1)
computational time, and the Delete operation in O(logN)
time, where N is the number of elements in the heap. A doubly
linked list, with an auxiliary vector of pointers to each element,
supports the Insert and Delete operations in O(1) time, and
the FindMin operation in O(N) time [17, Chapter 10.2]. The
running time of our implementation is O(m) and O(log n+m2)
for task arrival and task departure, respectively. For n > m,
this improves over the APA algorithm from [15] that requires
O(m2) time for task arrival and O(mn) for task departure [15].

We assume without loss of generality that for any pair of
consecutive time slots t and t + 1, the sets τ(t) and τ(t + 1)
differ by one task Ti, that is τ(t + 1) \ τ(t) = {Ti} in the
case of task arrival and τ(t) \ τ(t+ 1) = {Ti} in the case of
task departure. We denote by τ ′(t) the set of tasks admitted to
be scheduled by Algorithm 1 at time t, and by Sk(t) the sets
Sk of tasks in τ ′(t) with affinity mask β ⊆ αk computed by
Algorithm 1 at time t, for each k = 1, 2, . . . , n.

For our algorithms, we use the following data structures:



• for each affinity mask β, s[β] is a doubly linked list that
contains tasks that are scheduled on processors in β, where,
for each Ti in s[β], αi ⊆ β; and

• for each affinity mask β, b[β] is a strict Fibonacci heap
that contains tasks that are backlogged, i.e., not scheduled,
where, for each Ti in b[β], αi = β.

At time t, for each k = 1, 2, . . . , n, we assume that: all tasks
in Sk(t) are scheduled according to their affinity masks, s[αk]
contains all the tasks in Sk(t) (i.e. s[αk] = Sk(t)), and b[αk]
contains all the tasks in τ(t) \ τ ′(t) with affinity mask αk.

1) Task Arrival: As in Section III-A, we divide the compu-
tation into two phases. In the first phase, we compute the set
τ ′(t + 1) of tasks that are admitted to be scheduled at time
t+ 1. In the second phase we assign the tasks in τ ′(t+ 1) to
processors in π according to their affinity masks.

Let us assume that a new task Ti arrives at time t+ 1, that is,
τ(t+ 1) \ τ(t) = {Ti}. In this case, the sets of tasks admitted
to be scheduled by Algorithm 1 at time t and t+ 1 differ by
at most one task, that is either τ ′(t + 1) = τ ′(t) ∪ {Ti}, or
τ ′(t+ 1) = (τ ′(t) \ {Tr})∪{Ti}, for some task Tr. To identify
the potential task Tr to be removed from τ ′, we look for an
affinity mask β such that

αi ⊆ β,
|s[β]| = |β|, (2)
β is minimal inclusion-wise.

If such an affinity mask exists, then τ ′(t+1) = (τ ′(t)\{Tr})∪
{Ti} and β is the affinity mask containing all the processors
reachable from Ti in the schedule at time t (i.e., it is equal to
α′i, see Section III-B). In fact, all the processors in β are used
and for any affinity mask γ such that αi ⊆ γ and γ ⊂ β there
exists a task Tx, with γ ⊂ αx, that is scheduled in a processor
in γ, while for all the tasks Ty scheduled in processors of β, it
holds that αy ⊆ β. If there exists an affinity mask β satisfying
condition (2), then we check whether φr < φi, where Tr is
the task having lowest priority among those in s[β]. In the
affirmative case, we remove Tr from s[γ], for each γ such that
αr ⊆ γ, insert Tr in b[αr], and insert Ti in s[γ], for each γ
such that αi ⊆ γ, otherwise we simply insert Ti into b[αi]. If
|s[β]| < |β|, for all β such that αi ⊆ β, then there are enough
processors in αi to schedule also Ti, i.e. τ ′(t+1) = τ ′(t)∪{Ti}.
In this case, Ti is added to s[γ], for each γ such that αi ⊆ γ.

Algorithm 3 presents the pseudocode of the runtime admission
algorithm. First we initialize β to αi at line 2. Then, we look
for an affinity mask β satisfying condition (2) at lines 3–5. We
insert Ti in s[γ], for each γ such that αi ⊆ γ at lines 6–7
(note that Ti can be possibly removed from such heaps later). If
|s[β]| = |β|+1 after the insertion of Ti, then |s[β]| = |β| before
the insertion (i.e., there was no idle processor in β). In this case
we must remove a task Tr. We look for Tr with the operation
FindMin() in s[β] at line 9. This operation returns the task with
the minimum priority among those in s[β] (including Ti) and
requires O(m) time. Finally, we remove Tr from s[γ], for each
γ such that αi ⊆ γ, and insert Tr in b[αr] at lines 10–12. We
return τ ′(t+ 1), which is equal to s[π] after the update process.

Theorem III.4. Algorithm 3 has time complexity O(m).

Proof. The loops at lines 3–5 and 6–7 perform at most O(h)
iterations. Since each Insert operation requires O(1) time,
each iteration requires O(1) time. The loop at lines 10–11
performs at most O(h) iterations that require an overall O(h)
time since each Delete operation requires O(1) time. The
FindMin operation at line 9 requires O(m) time. Any other
operation requires O(1) time.

Algorithm 3: (Runtime) Admission procedure at task arrival

1 Let Ti be the new task;
2 β ← αi;
3 while |s[β]| < |β| ∧ β 6= π do
4 Let γ be the minimal affinity mask such that β ⊂ γ;
5 β ← γ;

6 foreach γ : αi ⊆ γ do
7 s[γ].Insert(Ti);

8 if |s[β]| = |β|+ 1 then
9 Tr ← s[β].FindMin();

10 foreach γ : αr ⊆ γ do
11 s[γ].Delete(Tr);

12 b[αr].Insert(Tr);

13 τ ′ ← s[π];

To assign the tasks in τ(t+1) to suitable processors according
to their affinity masks, we use, for each affinity mask β, a linked
list L[β] that contains the unused processors in β. Each linked
list supports the following operations:
• add(Πi): add element Πi to the list;
• first(): returns the value of the first element in the list;
• increase(): erases the first element of the list and shift

the second element to become the first element;
• concatenate(L1, L2, . . . , Ll): concatenates the lists L1,
L2, . . . , Ll and outputs the concatenated list.

By using an implementation that maintains a pointer to the first
and the last elements of the list, the first three operations require
O(1) time, while the third operation requires O(l) time, where
l is the number of lists to be concatenated.

We assume that each task is associated with its level and that
each affinity mask α is associated with all the maximal affinity
masks β such that β ⊂ α. This information can be computed
offline as it does not depend on the currently present tasks. The
algorithm assigns the tasks to processors level by level, starting
from tasks with level-1 affinity masks. First of all we create the
list L(α) for each α at level-1. W.l.o.g. we can assume that the
union of the affinity masks at level-1 is equal to π and therefore
that the level-1 lists jointly contain all the processors in π. Note
that if there are processors that are not contained in any level-1
affinity mask, we can define dummy affinity masks containing
such processors, with no associated task.

Let us consider the assignment of tasks that have an affinity
mask at level l, assuming that all tasks with an affinity mask of



a level lower than l have been assigned to suitable processors. In
particular, for each level-l affinity mask α, we assume that there
exists a list L[α] that contains the processors in α that have
not yet been assigned to any task with affinity masks of a level
lower than l. For each task Tik with a level-l affinity mask, we
assign Tik to L[αik ].first() and invoke L[αik ].increase().
Eventually L[αik ] contains all the processors in αik that have
not yet been assigned to any task with affinity masks of a level
less than or equal to l. When all such tasks have been assigned,
we create the lists L[α], for each level-(l + 1) affinity mask α,
by concatenating all level-l lists L(β) such that β ⊂ α.

Algorithm 13 shows the pseudocode of the runtime assign-
ment algorithm. At line 1, we create lists L(α) for each α at
level 1. To assign the tasks to processors level by level, we
sort the tasks in τ ′(t+ 1) in order of increasing levels of their
affinities (line 2). Let Ti1 , Ti2 , . . . , Ti|τ′| be the sorted tasks, for
each k = 1, 2, . . . , |τ ′|, we assign Tik to L[αik ].first() and
remove from L[αik ] the processor to which Tik is assigned
(lines 5–6). After processing the last task Tik of a level `, we
concatenate the lists at level ` to create the lists at level `′,
where `′ is the level of task Tik+1

(lines 8–13). Specifically,
line 8 checks whether Tik is not the last job in the list and `
is not the highest level h. In that case, if ` 6= `′ (note that in
this case `′ can be greater than or equal to ` + 1), for each
l = ` + 1, . . . , `′, the lists at level l − 1 are concatenated to
obtain lists at level l. Eventually we obtain the lists at level
`′. Since the affinity masks are laminar, each affinity mask is
concatenated at most once by the algorithm. Therefore, this
operation requires time that is proportional to the number of
distinct affinity masks in the task system.

Algorithm 4: (Runtime) Assignment algorithm

1 Initialize L(α) for each level-1 affinity mask α;
2 Sort τ ′ in increasing order according to tasks’ levels;
3 Let Ti1 , Ti2 , . . . , Tiτ′ be the sorted tasks;
4 foreach k = 1, 2, . . . , τ ′ do
5 Assign Tik to L[αik ].first();
6 L[αik ].increase();
7 Let ` be the level of Tik ;
8 if k < |τ ′| ∧ ` < h then
9 Let `′ be the level of Tik+1

;
10 if ` 6= `′ then
11 foreach l = `+ 1, . . . , `′ do
12 foreach level-l affinity mask α do
13 Concatenate lists L(β) such that β ⊂ α

and the level of β is l − 1, and assign
the concatenation to L(α);

Theorem III.5. Algorithm 13 has time complexity O(m).

Proof. Line 1 requires O(m) time since it invokes m times the
add operation. By using the counting-sort algorithm to sort the
tasks in τ ′(t+ 1), line 2 requires O(m) time [17, Chapter 8.1].

Lines 8–13 concatenate the lists at level l to obtain the lists at
level l+ 1. Each list corresponds to a distinct affinity mask and
hence this step requires an overall time that is proportional to
the number of distinct affinity masks. Since the largest affinity
mask is π and |π| = m, the number of distinct affinity masks in
the system is at most 2m (see Theorem 3.5 in [33]); therefore,
this step requires overall O(m) time.

2) Task completion: The algorithm for task completion first
removes the completed task Ti from s[γ], for each γ such that
αi ⊆ γ. Then, for each distinct affinity mask β, it invokes
the algorithm for handling task arrivals by using the highest-
priority task T` in b[β] as the new task. In the case that T` is
eventually scheduled, it is removed from b[α`]. The pseudocode
of the algorithm is given in Algorithm 5. Note that line 12 of
Algorithm 3 must be modified in order to check whether task
Tr is already present in b[αr]; this can be done in O(1) time.

Algorithm 5: (Runtime) Scheduling algorithm for task
completion

1 Let Ti be the completed task;
2 foreach γ : αi ⊆ γ do
3 s[γ].Delete(Ti);

4 foreach distinct affinity mask β do
5 T` ← b[β].FindMax();
6 Run task arrival procedure by using T` as new task;

7 Let T` be the scheduled task, if any;
8 b[α`].Delete(T`);

Theorem III.6. Algorithm 5 has time complexity O(log n+m2).

Proof. Lines 2–3 require O(h) = O(m) time. Lines 5 and 6
require O(1) and O(m) time, respectively. Since they are
invoked O(m) times (as the number of distinct affinity masks
is O(m)), they require an overall O(m2) time. Line 8 requires
O(log n) time.

IV. BILEVEL AND CLUSTERED SCHEDULING

In this section, we consider a restricted scenario in which
the hierarchy of affinity masks has only two levels. Namely,
we assume that the task set τ is partitioned into M + 1 sets
τ0, τ1, . . . , τM and the set of processors is partitioned into M
sets π1, π2, . . . , πM such that:
• τ = τ0 ∪ τ1 ∪ . . . ∪ τM and τi ∩ τj = ∅, for each i 6= j,
• π = π1 ∪ π2 ∪ . . . ∪ πM and πi ∩ πj = ∅, for each i 6= j,
• for each Ti ∈ τ0, αi = π,
• for each i = 1, 2, . . . ,M and Tk ∈ τi, αk = πi.

In other words, the affinity mask of each task Tk is:

αk =

{
πi if Tk ∈ τi, for some i > 0,
π if Tk ∈ τ0.

Table I illustrates the considered affinity masks, where an entry
in row i and column k of the table is 1 if tasks in τi can be
scheduled on processors in πk, and 0 otherwise. This scenario
models the following practically relevant cases:



TABLE I
AFFINITY MASKS FOR BILEVEL OR CLUSTERED SCHEDULING

π1 π2 · · · πM

τ0 1 1 · · · 1
τ1 1 0 · · · 0
τ2 0 1 · · · 0
...

...
...

. . .
...

τM 0 0 · · · 1

• bilevel scheduling, in which each task is either globally
scheduled, or assigned to a specific processor, or

• clustered scheduling, in which each task is either globally
scheduled, or assigned to a cluster of processors.

For each i = 1, 2, . . . ,M , we denote |πi| as mi. Moreover,
we define mmax = maxM

i=1{mi} and m0 = m. We denote by
J any possible collection of jobs generated by τ . For each
job j = (Rj , Cj , Dj) in J , we let Rj , Cj , and Dj denote the
release time, the execution time requirement, and the absolute
deadline of j, respectively. If Ti is the task that generated job
j, then Cj = ci and Dj = Rj + di. Given a time instant t, a
job is available at time t if it has been released before or at t
and has not signaled its completion. Since we are considering
constrained deadline tasks, at any time t, there exists at most
one available job for each task.

We will analyze the previously described algorithm in the
special case where each job’s priority is given by its absolute
deadline; we therefore call it Hierarchical Processor Affinities –
Earliest Deadline First (HPA-EDF).

A. Idealized schedule

Given a job collection J generated by τ that is feasible on
m unit speed processors under affinity mask constraints α, the
following idealized algorithm, A∞, is able to schedule J on
a platform of infinitely many speed-(2− 1/mmax) processors
π ∪ {Πm+1,Πm+2, . . .}, where the additional processors can
only schedule tasks in τ0:

1) for each i = 1, 2, . . . ,M , schedule the jobs of tasks in τi
on processors in πi by using (global) EDF; and

2) allocate one processor Πk, k > m, to each job of tasks
in τ0 and schedule all such jobs as early as possible.

Let us denote by S∞ the corresponding idealized schedule.
To simplify the notation, we denote (2− 1/mmax) as s′.

Lemma IV.1. At any point in time, at least as much total work
has been processed in S∞ as in any schedule which is feasible
upon platform π with unit-speed processors and subject to the
affinity mask constraints α.

Proof. By construction, at any point in time, S∞ processed at
least as much of each job generated by tasks in τ0 as any feasible
schedule. If we assume that, for some i ∈ {1, 2, . . . ,M},
schedule S∞ with speed s′ = 2 − 1/mmax ≥ 2 − 1/mi

provides less service to jobs of τi than some feasible schedule,
then we obtain a contradiction with the fact that any global
work-conserving schedule on mi speed-(2− 1/mi) processors
processes at least as much work as any unit-speed schedule on
mi processors [31, Lemma 2.6].

B. Speedup bound for HPA-EDF
We analyze HPA-EDF on m processors of speed s, for a

suitable s ≥ s′ to be determined later. By considering sufficiently
small time slots, an equivalent description of the algorithm
repeats the following procedure at each time slot:

1) consider the list of available jobs;
2) for each i = 1, 2, . . . ,M , remove from the list all jobs of

tasks in τi but the mi with the earliest deadlines;
3) sort the remaining jobs in order of non-decreasing absolute

deadlines;
4) consider the first m jobs in the obtained list, and

a) for each i = 1, 2, . . . ,M , schedule the job of a task
in τi (if any) onto an empty processor in πi;

b) schedule the remaining jobs (of τ0) onto the empty
processors.

Lemma IV.2. Consider a collection J of jobs generated by τ
and let s ≥ s′. Then at least one of the following holds:

1) All jobs in J are completed within their deadline under
HPA-EDF on m processors of speed s, or

2) J is not feasible under the speed-s′ schedule S∞, or
3) there exists an interval I such that any feasible schedule

for J must finish more than
(
sm− 2(m− 1) ss′

s+s′

)
|I|

units of work within I .

Proof. Suppose that the first two conditions do not hold, that
is, J is feasible under the idealized schedule S∞ with speed-s′

processors, but under HPA-EDF with speed s there is a job
j = (Rj , Cj , Dj) that fails to meet its deadline. We aim to
show that the third condition must then be satisfied. Let us
assume that j has been generated by a task T in τf , f ≥ 0. We
assume w.l.o.g. that J is minimal, in the sense that there are
no jobs with a deadline greater than Dj .

Let us define t∗ as the latest time instant such that:
• t∗ ≤ Rj , and
• at time t∗, for any available job, HPA-EDF with speed s

has processed at least as much of that job as A∞ with
speed s′.

Time t∗ exists because t∗ = 0 satisfies the above conditions.
Let I = [t∗, Dj ]. We partition I into the following intervals:
• Xk ⊆ [t∗, Rj ]: these are the intervals that occur before
Rj such that all the processors are busy under HPA-EDF
scheduling;

• Yk ⊆ [t∗, Rj ]: these are the intervals that occur before Rj

such that at least one processor is empty under HPA-EDF
scheduling;

• Zk ⊆ [Rj , Dj ]: if f > 0, these are the intervals that
occur after Rj such that, under HPA-EDF scheduling, at
least one processor in πf is busy only with jobs from τf
for the entire interval and at least one processor in π is
empty; otherwise, they are the intervals that occur after Rj

such that at least one processor is empty under HPA-EDF
scheduling; and

• Wk ⊆ [Rj , Dj ]: if f > 0, these are the intervals that
occur after Rj such that all the processors are busy under
HPA-EDF scheduling.



Note that, if f > 0, then the union of intervals Zk and Wk is
equal to [Rj , Dj ]. In fact, if at some time instant all processors
in πf schedule a job in τ0, then all processors in π must be
busy, otherwise a job in τ0 scheduled in πf can be moved to
an empty processor.

Fact IV.3. During each interval Yk, there are no available jobs
in τ0 that are not scheduled.

Proof. It is enough to observe that any available job in τ0 can
be scheduled on the processor that is empty in Yk.

It follows that, if t∗ < Rj , the first interval after t∗ is of type
Xk. Hence the interval [t∗, Rj ] is composed of a sequence of
intervals X0, Y0, X1, Y1, . . .

Fact IV.4. For each interval Yk, there exists a processor which
is busy for the entire interval Yk under HPA-EDF scheduling.

Proof. By contradiction, let us suppose that for each processor
there exists an interval within Yk in which it is empty. For
each i = 1, 2, . . . ,M , let us denote by tk,i the latest starting
time of an interval within Yk such that a processor in πi is
empty. At time tk,i, all the jobs in τi released before Yk have
been processed by HPA-EDF. Moreover, for jobs in τi released
within Yk, HPA-EDF and A∞ use the same priority ordering.
Therefore, at time tk,i, HPA-EDF has processed at least as many
jobs in τi as A∞. Similarly, at time t̂ = maxi tk,i all the jobs
in τ0 released before Yk have been processed by HPA-EDF and,
by Fact IV.3, all the jobs in τ0 released within Yk are processed
by HPA-EDF. Hence, at time t̂ HPA-EDF has processed at least
as many jobs in τ0 as A∞. It follows that, at time t̂, for each
available job, HPA-EDF has processed at least as much of that
job as A∞, a contradiction to the definition of t∗.

We denote by X , Y , W , and Z the total length of intervals
Xk, Yk, Wk, and Zk, respectively; we also group the sets Xk

and Yk into sequences X̄` and Ȳ` as follows.
1) Let Ȳ0 be the maximal sequence of consecutive intervals
{Y0, Y1, . . . , Yx} such that the same processor is busy in
Yk and in Yk+1 for k = 0, 1, . . . , x− 1 and let X̄0 be the
corresponding sequence {X0, X1, . . . , Xx}.

2) We remove X̄0 and Ȳ0 from {Xk} and {Yk}, respectively,
and define X̄` and Ȳ`, ` > 0, by repeating the above
procedure until {Xk} and {Yk} become empty.

Let us denote by |X̄`| and |Ȳ`| the cumulative length of
intervals in X̄` and Ȳ`, respectively.

Fact IV.5. s|Ȳ`| ≤ s′
(
|X̄`|+ |Ȳ`|

)
.

Proof. Let us denote by a < m the number of processors in
π which are busy in the entire sequence of intervals Ȳ` under
HPA-EDF scheduling, and let us denote by c the cumulative
execution requirement of the jobs scheduled by HPA-EDF in
those a processors during Ȳ`. By Fact IV.4, it follows that
sa|Ȳ`| ≤ c. Since HPA-EDF processes a jobs in parallel among
those that contribute to c, and since in the intervals Ȳ` there is
always an empty processor, A∞ can process at most a such jobs
in parallel. In fact, the jobs in τ0 that contribute to c could be
scheduled in a processor that is empty in Ȳ` by HPA-EDF, while

jobs in τi, i > 0, follow the same priorities in A∞ and HPA-EDF.
Therefore, for jobs in c, A∞ can have processed at most as′|X̄`|
amount of work during X̄`. Therefore, for any fixed δ > 0, the
maximum amount of work of c that A∞ can execute in X̄`

and after δ amount of time in Ȳ` is as′
(
|X̄`|+ δ

)
. Moreover,

after δ amount of time in Ȳ`, HPA-EDF can execute at least
saδ work of c. Hence, if δ is such that as′

(
|X̄`|+ δ

)
= saδ

(i.e. δ = s′

s−s′ |X̄`|), then after δ amount of time in Ȳ` HPA-
EDF has processed at least as much of c as A∞. It follows
that c ≤ as′

(
|X̄`|+ δ

)
, as otherwise the definition of t∗ is

contradicted. Therefore, sa|Ȳ`| ≤ as′
(
|X̄`|+ δ

)
, which implies

the statement by plugging in the above value of δ.

By summing over all `, we obtain sY ≤ s′(X + Y ).
Let af ∈ {1, 2, . . . ,mf} be the number of processors in πf

that are busy in the entire sequence of intervals {Zk} only with
jobs of τf .

Fact IV.6. If af < mf , then sZ < s′(W + Z).

Proof. Since in each Zk there exists an empty processor in π,
then, in the case that a < mf , there exists an empty processor
in πf in each Zk. Therefore, the failing job j is executed during
the entire sequence of intervals {Zk}. Moreover, job j does
not meet its deadline, so sZ < Cj . On the other hand, since
A∞ correctly schedules j and it can schedule j for at most
s′(W+Z) amount of time, one has Cj ≤ s′(W+Z). It follows
that sZ < s′(W + Z).

Fact IV.7. If af = mf , then sZ < s′(|I| − Y ).

Proof. Let c be the cumulative execution requirement of the
jobs scheduled by HPA-EDF in πf during {Zk} plus job j (if
it is not scheduled during {Zk}), minus the amount of work
processed by HPA-EDF for these jobs before Rj . During the
sequence of intervals {Zk}, HPA-EDF schedules smfZ amount
of work of jobs of c and, since j fails, smfZ < c. On the other
hand, since A∞ correctly schedules all the jobs of c and it can
schedule them for at most mfs

′(|I| − Y ) amount of time, we
have c ≤ mfs

′(|I| − Y ). It follows that sZ < s′(|I| − Y ).

By the definitions of X and W , all processors are busy in
such intervals, and hence HPA-EDF executes sm(X+W ) units
of work. By Fact IV.4, for each interval Yk, there exists a
processor which is busy for the entire interval Yk under HPA-
EDF scheduling and then HPA-EDF executes at least sY units
of work. Finally, for each interval Zk, there exists at least one
processor in πf that is busy for the entire interval and then,
HPA-EDF executes at least sZ units of work. Overall, in the
interval I , HPA-EDF executes at least sm(X +W ) + s(Y +Z)
units of work. The following cases may arise.

1) If af < mf , then by Facts IV.5 and IV.6 it follows that:

sm(X +W ) + s(Y + Z)
= sm(|I| − Y − Z) + sY + sZ
= sm|I| − sY (m− 1)− sZ(m− 1)
> sm|I| − s′(X + Y )(m− 1)− s′(W + Z)(m− 1)
= (sm− s′(m− 1)) |I|.



2) If af = mf , let b ∈ [0, 1), then we have two subcases.

a) If X +W ≤ b|I|, Facts IV.5 and IV.7 imply that:

sm(X +W ) + s(Y + Z)
= sm|I| − (m− 1)(sY + sZ)
> sm|I| − s′(m− 1)(X + Y + |I| − Y )
≥ sm|I| − s′(m− 1)(b+ 1)|I|.

b) If X +W > b|I|, then

sm(X +W ) + s(Y + Z)
= sm(X +W ) + s(|I| −X −W )
> sb(m− 1)|I|+ s|I|.

The first obtained lower bound decreases with b, while the
second one increases with b. It follows that, for the value of b
for which they are equal, we obtain the maximum lower bound
for any value of b. The value of b for which the two lower
bounds are equal is b = s−s′

s+s′ and the obtained lower bound is(
sm− 2(m− 1) ss′

s+s′

)
|I|.

Since s ≥ s′, the lower bound given in case 1 is always
greater than that given in case 2. This proves the statement
of the lemma. In fact, since HPA-EDF executes more than(
sm− 2(m− 1) ss′

s+s′

)
|I| units of work, by the definition of

I , A∞ with speed s′ executes at least the same amount of
work during I . By Lemma IV.1, any feasible schedule of J
cannot process more than A∞ with speed s′ before I and hence
it must execute more than

(
sm− 2(m− 1) ss′

s+s′

)
|I| units of

work within I .

Theorem IV.8. Any collection of jobs J generated by τ that
is feasible on m unit-speed processors under affinity mask
constraints α is schedulable by HPA-EDF on m processors
with speed s < 3.562, and speed s < 2.415 if mmax = 1.

Proof. Since J is feasible on m unit speed processors under
affinity mask constraints α, then at any interval I a feasible
schedule can execute at most m|I| units of work. If s = s′+1

2 −
s′

m +

√
(2s′−m(s′+1))2+4s′m2

2m , then
(
sm− 2(m− 1) ss′

s+s′

)
|I| =

m|I|. By Lemma IV.2, it follows that HPA-EDF correctly
schedules J with speed s.

Since s′ ≤ 2, then s ≤ 3
2 −

2
m +

√
(4−3m)2+8m2

2m < 3.562;
if mmax = 1, i.e. |πi| = 1 for each i > 0, then s′ = 1 and
s = 1− 1

m +
√
2m2−2m+1

m ≤ 1 +
√

2− 1
m < 2.415.

V. IMPLEMENTATION AND EVALUATION

From the point of view of an RTOS developer, it is not
obvious that the runtime algorithm presented in Section III-C
lends itself to implementation in a real OS. To investigate the
algorithm’s viability in practice and to explore implementation
choices, we implemented a prototype in LITMUSRT [1, 9, 13], a
real-time extension of the Linux kernel, and conducted overhead
measurements on a 24-core Intel Xeon platform.

A. Maintaining processor locality

One needed practical tweak pertains to Algorithm 13, which
maps scheduled tasks to processors without any consideration
for processor locality: in line 5 of Algorithm 13, each task
is assigned simply to the first available processor, irrespective
of where the task was scheduled previously. As a result, tasks
may incur superfluous migrations. In practice, task migrations
are costly, both due to the required OS and processor state
updates (runqueue management, context switches, etc.) and due
to the potential loss of cache affinity. Migrations should thus
be avoided to the extent possible.

Fortunately, Algorithm 13 can be augmented to re-assign
tasks to the last-used processor, provided this is possible without
violating the strong APA invariant. Suppose we maintain for
each processor a link to the list element used to enqueue it in
the list L[·] (lines 1 and 13 in Algorithm 13), and for each task
a link to the last-used processor. It is then possible to change
line 5 of Algorithm 13 as follows: first check whether Tik ’s
last-used processor is still available (i.e., enqueued in L[αik ]),
and if so, remove the processor from the list and re-assign Tik
to it. Assuming L[·] is realized as a doubly-linked list, this
additional check and re-assignment can be carried out in O(1)
time, thus preserving the overall complexity.

However, even with this modification, Algorithm 13 is still
oblivious as to when a task used a processor last, which can
be problematic if multiple tasks arrive that previously executed
on the same processor (at different times). We hence instead
implemented Algorithm 6, which favors later-scheduled tasks.

Algorithm 6 first initializes an array of task pointers to record
each task’s preferred processor (lines 6–10), resolving conflicts
based on where and when a task was last scheduled (denoted as
Ti.last cpu and Ti.last t, respectively). In the second step,
each task is assigned to its preferred processor (lines 13–14),
unless the processor was claimed by a more-recently scheduled
task. If a task’s locality cannot be maintained, the algorithm first
attempts to assign it to an unclaimed processor (lines 16–17),
to avoid interfering with the preferences of other tasks. Finally,
if this is not possible, any remaining unassigned processor in
αik may be used (lines 18–19).

Algorithm 6 uses sets instead of lists to keep track of both
unallocated and reserved processors. While this choice increases
the algorithm’s time complexity, it can be implemented more
efficiently in practice because the number of processors is
typically a small constant, which allows sets of processors to
be represented as word-sized bitmaps that support (effectively)
constant-time operations.

B. Implementation in LITMUSRT

We implemented a prototype fixed-priority scheduler based on
Algorithms 3, 5, and 6 in LITMUSRT version 2015.1 [1, 9, 13],
which in turn is based on Linux 4.1.

To allow the scheduler to scale to large multicore platforms,
we adopted a design based on message passing [16] in which
the system is split into a single dedicated system management
(or service) processor (DSP), which handles all interrupts and



Algorithm 6: Locality-aware assignment algorithm

1 Let available denote the set of all processors;
2 Let reserved denote an initially empty set of processors;
3 Let pref denote an array of task pointers of length m;
4 Sort τ ′ in increasing order according to tasks’ levels;
5 Let Ti1 , Ti2 , . . . , Ti|τ′| be the sorted tasks;
6 foreach k = 1, 2, . . . , |τ ′| do
7 Let Tx = pref [Tik .last cpu];
8 if Tx = NIL ∨ Tx.last t < Tik .last t then
9 pref [Tik .last cpu]← Tik ;

10 add Tik .last cpu to reserved ;

11 foreach k = 1, 2, . . . , |τ ′| do
12 Let valid = available ∩ αik ;
13 if Tik .last cpu ∈ valid ∧ pref [Tik .last cpu] = Tik

then
14 re-assign Tik to processor Tik .last cpu and

remove Tik .last cpu from available;

15 else
16 if valid \ reserved 6= ∅ then
17 assign Tik to any processor in valid \ reserved

and remove the processor from available;

18 else
19 assign Tik to any processor in valid and

remove the processor from available;

makes all scheduling decisions, and the remaining application
processors (AP), which actually execute the real-time workload.

The DSP is notified of job arrivals by local interrupts and of
job departures by APs via an efficient wait-free message queue.
In response, the DSP makes a scheduling decision (according to
Algorithms 3, 5, and 6) and assigns each AP a job to execute.

Each AP runs a simple, policy-free dispatcher that simply
context-switches to the currently assigned job (if any) or
executes non-real-time background work (if no job is assigned).
Whenever the DSP changes an AP’s assignment, it sends an
inter-processor interrupt (IPI) to invoke the AP’s dispatcher.

Cerqueira et al. [16] pioneered this scheduler design for
global schedulers and showed it to scale much better (in terms
of worst-case overheads) than Linux’s native push-and-pull
scheduler (which enforces the weak APA invariant); we hence
use Cerqueira et al.’s global scheduler as our baseline.

While we refer to Cerqueira et al. [16] for an in-depth
discussion of the approach’s advantages and disadvantages, two
aspects are of particular relevance: since only the DSP makes
scheduling decisions, there is no need to explicitly synchronize
access to scheduler data structures (i.e., the per-affinity lists
of scheduled tasks and queues of backlogged jobs), and all
scheduler data structures remain cache-local to the DSP.

Finally, instead of a strict Fibonacci heap as assumed in
Algorithms 3 and 5, we used an array of linked lists (one
per priority level) with an associated bitmap to indicate non-
empty queues, which is the standard approach for implementing

fixed-priority schedulers. Given that RTOSs typically implement
only a limited number of distinct priority levels (e.g., 512 in
LITMUSRT), this enables (effectively) O(1) queue operations
with much lower constant factors than strict Fibonacci heaps.

To the best of our knowledge, this is the first implementation
of a strong APA scheduler in a real OS.

C. Experimental Evaluation

While some extra overhead can be expected—compared to
the global baseline, an APA scheduler must consider additional
constraints at runtime, which does not come for free—it is
difficult to anticipate the magnitude of such additional costs,
which could range from negligible to crippling. To investigate
the system’s overheads in a practical setting, we ran the baseline
and the proposed schedulers on an Intel Xeon E7-8857 platform
using two sockets with twelve cores each. Each core has private
L1 and L2 caches (32 KiB and 256 KiB, respectively), and
shares an L3 cache (30 MiB) local to its socket.

We generated 100 task sets with Emberson et al.’s task set
generator [20], each with a total utilization of either 75% or 85%,
periods in the range [1ms, 1000ms] drawn from a log-uniform
distribution, and a number of tasks ranging from 2m = 48
to 10m = 240 in steps of 2m. We considered three levels of
affinities: global (i.e., all APs), socket-local (i.e., all APs sharing
an L3 cache), or partitioned (i.e., just a single AP, which ensures
L2 affinity). For each task, we selected uniformly at random
a level (i.e., global, socket-local, or partitioned), and in the
latter two cases then selected uniformly at random a socket
or partition, respectively. Each task set was guaranteed to be
feasible [5], and each ci parameter was ensured to exceed 500µs
to filter impractically small parameters. Finally, we assigned all
tasks rate-monotonic priorities.

Each task set was executed under both schedulers for 60
seconds each. Overheads were collected with the Feather-Trace
instrumentation toolkit [10] included in LITMUSRT. In total,
we recorded more than 34 GiB of trace data containing more
than 700,000,000 valid overhead samples.

We focus here on the high-level scheduling overheads incurred
on the DSP (i.e., Algorithms 3, 5, and 6) and the low-level
dispatcher overheads incurred on the APs (i.e., dispatcher invoca-
tion and context-switching costs), as these two overhead sources
exhibit the most telling differences, and omit a discussion of
other system overheads due to space constraints. The relevant
observed overhead data is summarized in Fig. 1.
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Fig. 1. Measured DSP and AP dispatcher overheads (in microseconds) under
the global baseline scheduler and the proposed HPA scheduler.



Because the memory hierarchy and the general design of
commodity x86 platforms is decidedly not real-time friendly,
the maximum overheads are affected by spurious outliers that
exceed average and median overheads by a factor of 20x to 50x.
Since such rare, but extreme outliers affect both the baseline
and the HPA scheduler, they obscure a meaningful comparison.

Hence, we instead report 99.9th percentile overheads, which
are not obscured by outliers, and which we anyway consider to
be more relevant for the “firm” real-time systems that can be
expected to be deployed on commodity multicore platforms in
the foreseeable future. For additional context, we also report
99th percentile, 95th percentile, median, and average overheads,
which may be more relevant to soft real-time systems.

As expected, the results show the APA scheduler to incur
higher overheads. In particular, the 99.9th percentile DSP
overhead increased from 5.79µs to 10.62µs , and this increase
is reflected also in the median and average DSP overhead.
However, while this is a substantial increase, it is important to
note that these overheads are still within the range of a few
microseconds, which is likely acceptable for tasks with a period
in the range of a few to a few hundred milliseconds.

Interestingly, our data indicates that APs also experience
increased dispatcher overheads, which may be surprising at first
given that, under both schedulers, the AP dispatcher simply
enacts the DSP’s assignments. We attribute this increase in
costs to a difference in how tasks migrate: whereas under
global scheduling tasks migrate typically only after having been
backlogged for some time, strong APA scheduling sometimes
requires shifting migrations [23], where a task that is scheduled
on one processor must continue its execution immediately on
another processor. Such migrations are more costly as they
require careful coordination among the involved processors.

Overall, our prototype implementation shows the proposed
scheduler to be practical: while overheads are indeed higher,
they remain in a feasible range. Whether or not the capability
to impose APAs is worth the extra costs is ultimately a design
tradeoff that is best assessed in an application-specific context.

VI. CONCLUSION

We have studied hierarchical (i.e., laminar) affinity masks in
the context of strong APA scheduling. For this important special
case, which arises naturally in practice if affinity masks mirror
a system’s hardware topology, we have devised a new scheduler
that is substantially more efficient (whenever n > m) than
the best-known general-case strong APA scheduler [15]: our
scheduler improves the per-arrival cost from O(m2) to O(m),
and the per-departure cost from O(mn) to O(log n+m2).

In combination with EDF and assuming bilevel or clustered
affinities, we have related our scheduler to an optimal system
in the following way: any collection of jobs that is schedulable
(under any policy) on m unit-speed processors subject to
hierarchical affinity constraints is correctly scheduled by our
scheduler on m processors of speed 2.415.

Finally, we have shown the proposed scheduler to be practi-
cally viable with a fixed-priority prototype implementation in an

actual RTOS, namely LITMUSRT, and overhead measurements
on a 24-core Intel Xeon platform.
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