
IN550 Machine Learning
Apprendimento non supervisionato:
PCA e riduzione della dimensionalità

Vincenzo Bonifaci

Vincenzo Bonifaci IN550 Machine Learning 1 / 31



Riduzione della dimensionalità dei dati

L’array dei dati X ∈ Rm×d ha due assi: gli m esempi e le d variabili

Il clustering k-means (o in genere, la quantizzazione vettoriale) può essere
visto come un metodo per ridurre il numero di esempi (m)

I metodi di riduzione della dimensionalità hanno invece come obiettivo la
riduzione del numero di variabili (d)

Esempi:
Analisi delle componenti principali (Principal Component Analysis o
PCA)
Proiezioni casuali
Compressed sensing

Simili ai metodi di riduzione delle feature discussi nell’apprendimento
supervisionato, ma nel contesto non supervisionato
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Punti, vettori, spanning set, basi

Punti di input: x (1), x (2), . . . , x (m) ∈ Rd

Vettori c1, c2, . . . , cK : definiscono un sottospazio lineare

{x ∈ Rd : x =
K

∑
k=1

wkck per qualche w ∈ RK}

L’insieme {c1, . . . , cK} è detto uno spanning set
Se linearmente indipendenti e K = d , formano una base di Rd
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Coordinate nella base C

Se i vettori c1, c2, . . . , cd formano una base di Rd , allora per ogni
x (i) ∈ Rd esiste w (i) ∈ Rd tale che

Cw (i) = x (i)

dove C ∈ Rd×d è la matrice formata dai vettori colonna c1, . . . , cd :

C =
(
c1 c2 . . . cd

)
∈ Rd×d

Il vettore w (i) fornisce le coordinate di x (i) nella base C
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Determinazione delle coordinate w nella base C

I vettori w (i) possono essere determinati minimizzando la funzione

g(w (1),w (2), . . . ,w (m)) =
1
m

m

∑
i=1

∥∥∥Cw (i) − x (i)
∥∥∥2
2

In particolare, poiché ogni w (i) può essere scelto indipendentemente dagli
altri, annullando il gradiente di g si ottiene la condizione di ottimalità

C>Cw (i) = C>x (i)
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Codifica perfetta dei dati in una base

Esempio con C =

(
1 2
2 1

)
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Caso di una base ortonormale

Un caso particolare si ha quando i vettori c1, . . . , cd formano una base
ortonormale:

c>i cj =

{
1 se i = j

0 se i 6= j

In questo caso abbiamo C>C = CC> = I dove I è la matrice identità
d × d (cioé C è una matrice ortonormale)

Quindi la condizione C>Cw (i) = C>x (i) diventa

w (i) = C>x (i)

In altre parole, per codificare usiamo w (i) = C>x (i) e per decodificare
x (i) = Cw (i)

Formula di autocodifica [autoencoder formula]

x (i) = CC>x (i)
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Codifica imperfetta dei dati con uno spanning set
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Codifica imperfetta dei dati con uno spanning set

Se il numero di colonne di C (numero di vettori nello spanning set) è
K < d allora la codifica diventa imperfetta

Se scegliamo sempre i w (i) in modo da minimizzare la funzione g(w),
Cw (i) coincide con la proiezione di x (i) sul sottospazio generato dalle
colonne di C

Se x (i) è vicino a questo sottospazio avremo Cw (i) ≈ x (i)

La relazione di autocodifica diventa approssimata

Formula di autocodifica approssimata

x (i) ≈ CC>x (i)

L’approssimazione è buona nella misura in cui ogni Cw (i) è vicino a x (i)

� La funzione g misura la distorsione media della proiezione
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Apprendimento di uno spanning set

Come scegliamo le colonne di C?

Criterio: minimize g(W ,C ) =
1
m

m

∑
i=1

∥∥∥Cw (i) − x (i)
∥∥∥2
2

g ora è una funzione (non convessa ma biconvessa) sia di W = (w (1) . . .w (m)) che di C
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Autoencoder lineare

Aggiungendo l’assunzione che i vettori c siano ortonormali tra loro
abbiamo, come prima, w (i) = C>x (i) e quindi

g(C ) =
1
m

m

∑
i=1

∥∥∥CC>x (i) − x (i)
∥∥∥2
2

è ora esprimibile come funzione della sola matrice C

In altre parole: la scelta fondamentale è il sottospazio su cui proiettare
NB. Sebbene la matrice cercata sia ortonormale, in effetti non è necessario forzare questo
vincolo perché si può mostrare che tutti i minimizzanti di g (C ) sono ortonormali.
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Autoencoder lineare
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Componenti principali di un dataset

Possono esistere molte matrici C che minimizzano la funzione g

Le componenti principali forniscono uno di questi minimi

Intuizione. La prima componente principale c1 è la direzione lungo la
quale la varianza dei dati è massima

La k-esima componente principale ck è la direzione, tra quelle ortogonali a
c1, . . . , ck−1, lungo la quale la varianza dei dati massima
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Definizione delle componenti principali

Siano x (1), . . . , x (m) degli esempi già centrati sulla loro media (∑i x
(i) = 0)

Se X ∈ Rm×d è la matrice dati (esempi-feature), la sua matrice di
covarianza è la matrice Σ = 1

mX>X ∈ Rd×d

Essendo una matrice simmetrica, essa ammette una diagonalizzazione

Σ = V D V>

con V ∈ Rd×d matrice ortogonale e D ×Rd×d matrice diagonale

I valori sulla diagonale di D (autovalori di Σ) quantificano la varianza dei
dati lungo ciascuna componente (colonna di V )

Le K componenti principali sono le colonne di V (autovettori di Σ)
corrispondenti ai K autovalori più grandi
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Codifica tramite componenti principali

Vincenzo Bonifaci IN550 Machine Learning 15 / 31



Algoritmo PCA

Principal Components Analysis (PCA)

Dati: m vettori di input x (1), . . . , x (m) ∈ Rd ed un intero K ≤ d
Trova: le K componenti principali del dataset

1 Calcola la media: µ = 1
m ∑m

i=1 x
(i)

2 Centra i vettori: x (i) ← x (i) − µ, per ogni i = 1, . . . ,m
3 Calcola la matrice di covarianza: Σ← 1

mX>X

4 Diagonalizza la matrice di covarianza: Σ = VDV>

5 Riordina gli autovalori dkk (e i corrispondenti autovettori vk) in modo
che

d11 ≥ d22 ≥ . . . ≥ dkk ≥ . . .

6 Restituisci i vettori v1, v2, . . . , vK (e i corrispondenti autovalori)

Per il passo (4) si può usare ad esempio np.linalg.eigh in NumPy

Vincenzo Bonifaci IN550 Machine Learning 16 / 31



PCA come fattorizzazione di matrici

PCA può essere visto come la ricerca di una fattorizzazione X> ≈ CW

Obiettivo:

minimize
C ,W

1
m

m

∑
i=1

∥∥∥Cw (i) − x (i)
∥∥∥2
2
=

1
m

∥∥∥CW − X>
∥∥∥2
F

Vincoli:
C>C = I

C ∈ Rd×K ,W ∈ RK×m
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Un esempio disastroso

Attenzione: in una problema di predizione, il metodo PCA con K < d
rischia di tagliare via informazioni cruciali!

Nei problemi di predizione, è più comune usare PCA con K = d come
forma di preprocessamento (sferificazione PCA)
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Standardizzazione vs. “sferificazione” PCA
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Standardizzazione vs. “sferificazione” PCA

Standardizzazione

1 Centra: x (i) ← x (i) − µ dove µ è la media degli x (i)

2 Scala: x (i)j ←
x
(i)
j√
σ2
j

dove σ2
j = (1/m)∑i x

(i)2
j è la varianza della

j-esima variabile

Sferificazione PCA [PCA-sphering]

1 Centra: x (i) ← x (i) − µ dove µ è la media degli x (i)

2 Ruota: x (i) ← V>x (i)

3 Scala: x (i)j ←
x
(i)
j√
djj

dove djj è il j-esimo valore sulla diagonale della

matrice D (≡ varianza lungo la j-esima componente)
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Variante: Sparse PCA

Obiettivo:
minimize

C ,W

1
m

∥∥∥CW − X>
∥∥∥2
F
+ λ ‖C‖1

Vincoli:
‖Wj‖2 ≤ 1 per j = 1, 2, . . . ,K

C ∈ Rd×K ,W ∈ RK×m

Il termine di regolarizzazione λ ‖C‖1 incentiva combinazione lineari sparse

Rispetto a PCA, migliora l’interpretabilità in termini delle variabili di input
originali
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Sistemi di raccomandazione [Recommender systems]

Scenario applicativo: matrice di voti film–utenti
Come stimiamo i voti mancanti?

Si può utilizzare una generalizzazione di PCA a matrici “incomplete”
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Sistemi di raccomandazione [Recommender systems]

Nella PCA minimizzavamo

g(W ,C ) =
1
m

m

∑
i=1

∥∥∥Cw (i) − x (i)
∥∥∥2
2

Ora però solo un sottoinsieme Ωi degli elementi di x (i) è accessibile:

Ωi = {(j , i) | l’utente i ha dato un voto al film j}

per cui minimizziamo

g(W ,C ) =
1
m

m

∑
i=1

∥∥∥{Cw (i) − x (i)}|Ωi

∥∥∥2
2

cioé teniamo conto solo delle componenti di Cw (i) − x (i) che ricadono
nell’insieme Ωi . Il prodotto Cw (i) stimerà anche i voti mancanti di i .
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Sistemi di raccomandazione [Recommender systems]

Come minimizzare

g(W ,C ) =
1
m

m

∑
i=1

∥∥∥{Cw (i) − x (i)}|Ωi

∥∥∥2
2
?

Non si può più forzare l’ortonormalità di C come in PCA. Ma g(·,C ) è
convessa per C fissata e g(W , ·) è convessa per W fissata. Si può quindi
usare uno schema di minimizzazione alternata del seguente tipo:

Ripeti per t = 1, 2, . . .:
Fissa C , trova W col metodo del gradiente per minimizzare g(·,C )
Fissa W , trova C col metodo del gradiente per minimizzare g(W , ·)
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Sistemi di raccomandazione e fattorizzazione di matrici

Anche il problema dei sistemi di raccomandazione può essere interpretato
come una fattorizzazione di matrici, con l’obiettivo

g(W ,C ) =
1
m

∥∥∥{CW − X>}Ω

∥∥∥2
F
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PCA in scikit-learn

Moduli: sklearn.decomposition

Interfaccia
Iperparametri scikit-learn

PCA K PCA(n_components)
Kernel PCA K , kernel KernelPCA(n_components, kernel)
Sparse PCA K , α SparsePCA(n_components, alpha)

α è un iperparametro che controlla la sparsità delle componenti ricostruite:
una maggiore sparsità favorisce una maggior quantità di coordinate nulle
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Sistemi di raccomandazione nella libreria surprise

Moduli: surprise.prediction_algorithms.matrix_factorization

Interfaccia
Iperparametri surprise

Sistema di raccomandazione K SVD(n_factors,biased=False)
(algoritmo SVD)
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Decomposizione di segnali

Dati C ∈ Rd×K , x (i) ∈ Rd : risolvere Cw (i) = x (i) per w (i) ∈ RK

· =

A x b· =

atoms signal

weights

dictionary

Se K < d il sistema è sovradeterminato e non ha soluzione esatta
In tal caso si cerca di soddisfare Cw (i) ≈ x (i)
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Sparse dictionary learning (sparse coding)

Obiettivo:
minimize

C ,W

1
m

∥∥∥CW − X>
∥∥∥2
F
+ λ ‖W ‖1

Vincoli:
‖Cj‖2 ≤ 1 per j = 1, 2, . . . ,K

C ∈ Rd×K ,W ∈ RK×m

Il termine di regolarizzazione λ ‖W ‖1 incentiva codifiche sparse

Cerca simultaneamente il dizionario (C ) e i pesi (codifiche dei dati) (W )
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Metodi di fattorizzazione di matrici

Tutti i seguenti metodi cercano fattorizzazioni X> ≈ CW , ma con vincoli
diversi:

Problema Vincoli su C e W

PCA C ortonormale (implica W = C>)
Sparse PCA Ogni colonna di C è sparsa
Sistemi di raccomandazione Nessun vincolo su C o W

X è solo parzialmente nota
Clustering k-means Ogni colonna di W è un vettore canonico
Sparse dictionary learning Ogni colonna di W è sparsa
Fattorizzazione nonnegativa C e W sono nonnegative
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Altri metodi di fattorizzazione in scikit-learn

Moduli: sklearn.decomposition

Interfaccia
Iperparametri scikit-learn

Dictionary Learning K , α DictionaryLearning(n_components, alpha)
(batch)
Dictionary Learning K , α MiniBatchDictionaryLearning(n_components,
(mini-batch) alpha)
Fattorizzazione nonnegativa K NMF(n_components)
(batch)
Fattorizzazione nonnegativa K MiniBatchNMF(n_components)
(mini-batch)

α è un iperparametro che controlla la sparsità delle codifiche
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