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Apprendimento non supervisionato:
PCA e riduzione della dimensionalita
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Riduzione della dimensionalita dei dati

L'array dei dati X € R™*9 ha due assi: gli m esempi e le d variabili

Il clustering k-means (o in genere, la quantizzazione vettoriale) pud essere
visto come un metodo per ridurre il numero di esempi (m)

| metodi di riduzione della dimensionalita hanno invece come obiettivo la
riduzione del numero di variabili (d)
Esempi:

m Analisi delle componenti principali (Principal Component Analysis o
PCA)

m Proiezioni casuali

m Compressed sensing

Simili ai metodi di riduzione delle feature discussi nell'apprendimento
supervisionato, ma nel contesto non supervisionato

Vincenzo Bonifaci IN550 Machine Learning 2/31



Punti, vettori, spanning set, basi

Punti di input: x1), x(@ . x(m) ¢ Rd

Vettori ¢, ¢, ..., ck: definiscono un sottospazio lineare

K
{x eRY: x =Y wic per qualche w € R*}
k=1

L'insieme {c1,...,ck} & detto uno spanning set
Se linearmente indipendenti e K = d, formano una base di RY
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Coordinate nella base C

Se i vettori c1, ¢, . .., ¢q formano una base di RY, allora per ogni
x() € RY esiste w() € RY tale che

Cw() = ()
dove C € R9*9 ¢ |a matrice formata dai vettori colonna ¢, ..., cg:

C:(Cl C ... Cd)E]RdXd

Il vettore w(/) fornisce le coordinate di x() nella base C
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Determinazione delle coordinate w nella base C

| vettori w(?) possono essere determinati minimizzando la funzione

gw® w@ o wlm)y = % i HCW(;) 0 ‘2

2

In particolare, poiché ogni w'i) puo essere scelto indipendentemente dagli
altri, annullando il gradiente di g si ottiene la condizione di ottimalita

cTcw!) = cTx(
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Codifica perfetta dei dati in una base

original data encoded data
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Caso di una base ortonormale

Un caso particolare si ha quando i vettori cy, ..., cg formano una base
ortonormale:
lsei=j
CiTCj = . .
Osei#j

In questo caso abbiamo CTC = CC" = dove I & la matrice identita
d x d (cioé C é una matrice ortonormale)

Quindi la condizione CT Cw() = CTx() diventa
w) = cTx()

In altre parole, per codificare usiamo w(?) = CTx() e per decodificare
x( = cw ()

Formula di autocodifica [autoencoder formula]

x) = ccTx)
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Codifica imperfetta dei dati con uno spanning set

—

original data encoded data decoded data
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Codifica imperfetta dei dati con uno spanning set

Se il numero di colonne di C (numero di vettori nello spanning set) &
K < d allora la codifica diventa imperfetta

Se scegliamo sempre i w(’) in modo da minimizzare la funzione g(w),
Ccw() coincide con la proiezione di x() sul sottospazio generato dalle
colonne di C

Se x(1) & vicino a questo sottospazio avremo Cwl) =~ x(1)

La relazione di autocodifica diventa approssimata

Formula di autocodifica approssimata

x) ~ ccTxt)

L’approssimazione & buona nella misura in cui ogni Cw(?) ¢& vicino a x(/)
[ La funzione g misura la distorsione media della proiezione
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Apprendimento di uno spanning set

Come scegliamo le colonne di C?

original data encoded data decoded data

X2

2

Criterio: minimizeg(W, C) = EHCW — x! H2

g ora & una funzione (non convessa ma biconvessa) sia di W = (w(!) ... w(™) che di C
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Autoencoder lineare

Aggiungendo |'assunzione che i vettori ¢ siano ortonormali tra loro
abbiamo, come prima, wl) = cTx() ¢ quindi

(@) = ;i | e — 0

;

¢ ora esprimibile come funzione della sola matrice C

In altre parole: la scelta fondamentale ¢ il sottospazio su cui proiettare

NB. Sebbene la matrice cercata sia ortonormale, in effetti non é necessario forzare questo
vincolo perché si pud mostrare che tutti i minimizzanti di g(C) sono ortonormali.
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Autoencoder lineare
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Componenti principali di un dataset

Possono esistere molte matrici C che minimizzano la funzione g

Le componenti principali forniscono uno di questi minimi

X2

X1

Intuizione. La prima componente principale ¢; € la direzione lungo la
quale la varianza dei dati &€ massima

La k-esima componente principale ¢, € la direzione, tra quelle ortogonali a
€1, ..., Ck_1, lungo la quale la varianza dei dati massima
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Definizione delle componenti principali

Siano x(1), ..., x(™ degli esempi gia centrati sulla loro media (¥; x() = 0)

Se X € R™*9 ¢ la matrice dati (esempi-feature), la sua matrice di
covarianza € la matrice ¥ = %XTX € RIxd

Essendo una matrice simmetrica, essa ammette una diagonalizzazione

r=VvDV'

con V € R¥*9 matrice ortogonale e D x RY*9 matrice diagonale

| valori sulla diagonale di D (autovalori di X) quantificano la varianza dei
dati lungo ciascuna componente (colonna di V)

Le K componenti principali sono le colonne di V' (autovettori di X)
corrispondenti ai K autovalori piti grandi
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Codifica tramite componenti principali

original data encoded data

84 10.0 A
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Algoritmo PCA

Principal Components Analysis (PCA)

Dati: m vettori di input x(), ..., x(M & RY ed un intero K < d
Trova: le K componenti principali del dataset

Calcola la media: p = Ly, x()

Centra i vettori: x\) < x() —y perognii=1,...,m
Calcola la matrice di covarianza: X < %XTX
Diagonalizza la matrice di covarianza: ¥ = VDV'T

Riordina gli autovalori dix (e i corrispondenti autovettori vk) in modo
che
dii1>dn>...>2dw > ...

[@ Restituisci i vettori vq, va, ..., vk (e i corrispondenti autovalori)

Per il passo (4) si pud usare ad esempio np.linalg.eigh in NumPy
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PCA come fattorizzazione di matrici

PCA pud essere visto come la ricerca di una fattorizzazione X ~ CW
Obiettivo:

I L ; A2 1 112
minimize — Z HCW(’) — x() ‘ = — HCW - X H
cw  m= 2 m F
Vincoli:
c'c=1
Ce RdXK Y= IRKXm
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Un esempio disastroso

Attenzione: in una problema di predizione, il metodo PCA con K < d
rischia di tagliare via informazioni cruciali!

0.2

X2

-0.2

-0.5

X1

0.5

0.2

X2

-0.2

-0.5

X1

0.5

Nei problemi di predizione, & pit comune usare PCA con K = d come
forma di preprocessamento (sferificazione PCA)
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Standardizzazione vs. “sferificazione” PCA

center scale

J 1 :

center rotate scale
original cost standard-normalized cost PCA-sphered cost
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Standardizzazione vs. “sferificazione” PCA

Standardizzazione

Centra: x() < x() — i dove u & la media degli x(")

; (@)
5 (@) %

Scala: X 4 WG

j-esima variabile

dove ‘71'2 =(1/m)Y; xj(i)2 é la varianza della

Sterificazione PCA [PCA-sphering]

Centra: x() < x() — 1 dove p & la media degli x(")
Ruota: x() + v Tx()
. (@)
X; T .
Scala: xj(') — \;{Tﬂ dove dj; ¢ il j-esimo valore sulla diagonale della
matrice D (= varianza lungo la j-esima componente)
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Variante: Sparse PCA

Obiettivo:
.. 1 TII?
m|n|m|ze—HCW—X H + A€y
cCW m F
Vincoli:

Wi, <1 perj=1,2,...,K

C € R*K W ¢ RKxm

Il termine di regolarizzazione A || C||; incentiva combinazione lineari sparse

Rispetto a PCA, migliora I'interpretabilita in termini delle variabili di input
originali
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Sistemi di raccomandazione [Recommender systems]

Scenario applicativo: matrice di voti film—utenti
Come stimiamo i voti mancanti?
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Si pud utilizzare una generalizzazione di PCA a matrici “incomplete”
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Sistemi di raccomandazione [Recommender systems]

Nella PCA minimizzavamo

:

0= & p o=,

Ora perd solo un sottoinsieme Q); degli elementi di x(/) & accessibile:
QO; = {(, )| I'utente i ha dato un voto al film j}

per cui minimizziamo

-4 £ lcw s

cioé teniamo conto solo delle componenti di Cw() — x(7) che ricadono
nell'insieme ;. Il prodotto Cw() stimera anche i voti mancanti di i.
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Sistemi di raccomandazione [Recommender systems]

Come minimizzare
1y @ _ oy |I® 2
g(W,C):m;_lu{cW _ }|Q,_H2 ;

Non si pud pid forzare I'ortonormalita di C come in PCA. Ma g(-, C) &
convessa per C fissata e g(W, -) & convessa per W fissata. Si pud quindi
usare uno schema di minimizzazione alternata del seguente tipo:

m Ripetipert=1,2,...
m Fissa C, trova W col metodo del gradiente per minimizzare g(-, C)
m Fissa W, trova C col metodo del gradiente per minimizzare g(W, -)
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Sistemi di raccomandazione e fattorizzazione di matrici

Anche il problema dei sistemi di raccomandazione pud essere interpretato
come una fattorizzazione di matrici, con |'obiettivo

g(W, C) = —H{CW XT}QH
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PCA in scikit-learn

Moduli: sklearn.decomposition

Interfaccia
Iperparametri | scikit-learn
PCA K PCA (n_components)
Kernel PCA | K, kernel KernelPCA(n_components, kernel)
Sparse PCA | K, « SparsePCA(n_components, alpha)

& & un iperparametro che controlla la sparsita delle componenti ricostruite:
una maggiore sparsita favorisce una maggior quantita di coordinate nulle

Vincenzo Bonifaci

IN550 Machine Learning 26 /31



Sistemi di raccomandazione nella libreria surprise

Moduli: surprise.prediction_algorithms.matrix_factorization

Interfaccia
Iperparametri | surprise

Sistema di raccomandazione | K SVD(n_factors,biased=False)
(algoritmo SVD)
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Decomposizione di segnali

Dati C € RY*K, x() € RY: risolvere Cw() = x() per w() € RK

weights

atoms signal

VAR

dictionary

Se K < d il sistema é sovradeterminato e non ha soluzione esatta
In tal caso si cerca di soddisfare Cw!() ~ x(7)
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Sparse dictionary learning (sparse coding)

Obiettivo: . ,
minimize—HCW—XTH + AWl
C,W m F
Vincoli:
1Gll, <1 perj=12....K

C GRdXK, w eRKXm

Il termine di regolarizzazione A || W/||; incentiva codifiche sparse

Cerca simultaneamente il dizionario (C) e i pesi (codifiche dei dati) (W)
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Metodi di fattorizzazione di matrici

Tutti i seguenti metodi cercano fattorizzazioni XT ~ CW, ma con vincoli
diversi:

Problema Vincoli su C e W
PCA C ortonormale (implica W = CT)
Sparse PCA Ogni colonna di C é sparsa

Sistemi di raccomandazione | Nessun vincolo su C o W

X & solo parzialmente nota

Clustering k-means Ogni colonna di W & un vettore canonico
Sparse dictionary learning Ogni colonna di W é sparsa
Fattorizzazione nonnegativa | C e W sono nonnegative
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Altri metodi di fattorizzazione in scikit-learn

Moduli: sklearn.decomposition

Interfaccia

Iperparametri | scikit-learn
Dictionary Learning K, a DictionaryLearning(n_components, alpha)
(batch)
Dictionary Learning K, o MiniBatchDictionaryLearning(n_components,
(mini-batch) alpha)
Fattorizzazione nonnegativa | K NMF (n_components)
(batch)
Fattorizzazione nonnegativa | K MiniBatchNMF (n_components)

(mini-batch)

« & un iperparametro che controlla la sparsita delle codifiche
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