Introduzione a modelli e metodi di classificazione

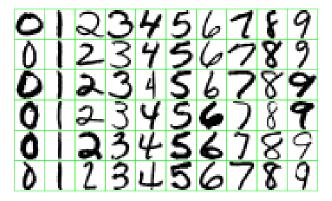
Vincenzo Bonifaci

IN550 - Machine Learning

Esempio: Riconoscimento di cifre scritte a mano

Input: immagine 28 × 28 in scala di grigi

Output: la cifra decimale (0–9) rappresentata dall'immagine



Dataset MNIST: 60,000 (training set) + 10,000 (test set) immagini etichettate

Problemi di predizione: input e output

lacksquare Spazio degli input ${\mathcal X}$

Es.: insieme delle possibili immagini 28×28

■ Spazio degli output \mathcal{Y} Es.: $\{0,1,2,\ldots,9\}$

Dopo aver visto un certo numero di esempi (x, y), vogliamo trovare una regola di predizione (o ipotesi)

$$h: \mathcal{X} \to \mathcal{Y}$$

che ricostruisca in maniera accurata la relazione ingresso-uscita

Nei problemi di regressione l'output è quantitativo

Nei problemi di classificazione l'output è qualitativo

Funzioni di costo [loss functions]

Come quantifichiamo l'accuratezza di una regola di predizione $h: \mathcal{X} \to \mathcal{Y}$ su un particolare esempio?

Una *funzione di costo* è una funzione ℓ che prende una regola di predizione h ed un esempio $(x,y) \in \mathcal{X} \times \mathcal{Y}$, e restituisce un reale nonnegativo

$$\ell(h,(x,y)) \in \mathbb{R}_+$$

Una funzione di costo per la classificazione

■ Funzione costo 0-1:

$$\ell(h,(x,y)) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{se } h(x) = y \\ 1 & \text{se } h(x) \neq y \end{cases}$$

Il *rischio empirico* diventa la frazione di esempi di training non correttamente classificati:

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, (x^{(i)}, y^{(i)})) = \frac{|\{i \in S : h(x^{(i)}) \neq y^{(i)}\}|}{|S|}$$

Il *rischio atteso* diventa la probabilità che un nuovo esempio non sia correttamente classificato (*inaccuratezza* del classificatore):

$$L_{\mathcal{D}}(h) = \Pr_{(x,y) \sim \mathcal{D}} [h(x) \neq y]$$

Classificazione Nearest-Neighbor

Classificazione Nearest Neighbor

```
Immagini di training x^{(1)}, x^{(2)}, \dots, x^{(60000)}
Etichette y^{(1)}, y^{(2)}, \dots, y^{(60000)} (numeri nel range 0–9)
```

Come classifichiamo una nuova immagine *x*? Approccio Nearest Neighbor:

- Trova l'esempio più "simile" ad x tra gli $x^{(i)}$
- Restituisci la corrispondente etichetta

Lo spazio dei dati

Come misuriamo la distanza tra immagini?

- Dimensioni 28 × 28 (784 pixel totali)
- Ogni pixel è in scala di grigi: 0-255

Un vettore 784-dimensionale per ogni immagine

- Spazio degli input $\mathcal{X} = \mathbb{R}^{784}$
- lacksquare Spazio degli output (etichette) $\mathcal{Y} = \{0,1,\ldots,9\}$

La distanza euclidea tra x e x' è $||x - x'|| = \sqrt{\sum_k (x_k - x_k')^2}$

Classificazione K-Nearest Neighbor (K-NN)

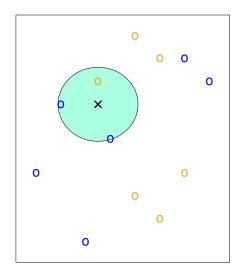
Classificazione K-Nearest Neighbor (K-NN)

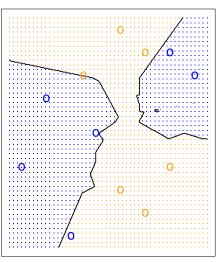
Sia $K \ge 1$ e sia x il punto di cui si vuole stimare l'etichetta

- I Identifica i K esempi $x^{(1)}, \dots, x^{(K)}$ più vicini ad x (in termini di distanza euclidea)
- **2** Restituisci l'etichetta più frequente per quegli esempi: $h(x) = \operatorname{argmax}_{y \in \mathcal{Y}} |\{i = 1, \dots, K : y^{(i)} = y\}|$

Quando $|\mathcal{Y}|=2$, l'ultimo passo equivale a restituire l'etichetta di maggioranza

K-NN: Esempio (K = 3)





Applicando 1-NN al dataset MNIST si osserva quanto segue:

■ Il rischio empirico (errore di training) di 1-NN è nullo

Applicando 1-NN al dataset MNIST si osserva quanto segue:

- Il rischio empirico (errore di training) di 1-NN è nullo
- Il rischio atteso stimato (errore di test) di 1-NN è 3.08%

Applicando 1-NN al dataset MNIST si osserva quanto segue:

- Il rischio empirico (errore di training) di 1-NN è nullo
- Il rischio atteso stimato (errore di test) di 1-NN è 3.08%
- Che rischio atteso avrebbe un classificatore totalmente aleatorio?

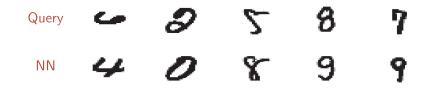
Applicando 1-NN al dataset MNIST si osserva quanto segue:

- Il rischio empirico (errore di training) di 1-NN è nullo
- II rischio atteso stimato (errore di test) di 1-NN è 3.08%
- Che rischio atteso avrebbe un classificatore totalmente aleatorio? 90%

Applicando 1-NN al dataset MNIST si osserva quanto segue:

- Il rischio empirico (errore di training) di 1-NN è nullo
- Il rischio atteso stimato (errore di test) di 1-NN è 3.08%
- Che rischio atteso avrebbe un classificatore totalmente aleatorio? 90%

Esempi di errori:



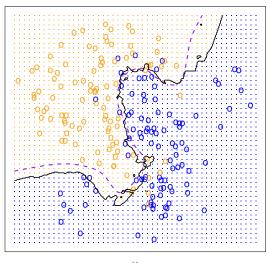
Migliorare l'accuratezza di K-NN: scelta di K

Cosa succede variando K?

K	1	3	5	7	9	11
Errore di test	3.09%	2.94%	3.13%	3.10%	3.43%	3.34%

Effetto della variazione di K

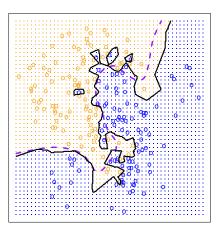
KNN: K=10



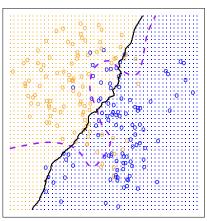
 X_1

Effetto della variazione di K

KNN: K=1



KNN: K=100



Migliorare l'accuratezza di K-NN: la funzione distanza

La distanza euclidea (ℓ_2) tra queste due immagini è molto alta!

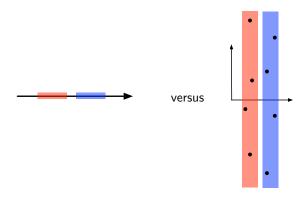
Idea migliore: usare funzioni distanza invarianti rispetto a:

- Piccole traslazioni e rotazioni: es. tangent distance
- Una classe più ampia di deformazioni naturali: es. shape context

Distanza	ℓ_2	tangent distance	shape context
Errore di test	3.09%	1.10%	0.63%

K-NN: L'impatto di variabili rumorose

Una buona *feature selection* è essenziale prima di applicare NN: anche solo una variabile poco significativa può avere effetti deleteri!



K-NN: Velocizzare la ricerca

Ricerca naïf dei K punti più vicini richiede tempo $m \cdot d$ per un dataset di taglia m su d variabili: lenta!

Esistono strutture dati che, preprocessando i dati, velocizzano la ricerca:

- Locality sensitive hashing
- Ball trees
- K-d trees

Spesso supportate dalle librerie di Machine Learning

Per esempio, scikit-learn offre le strutture KDTree e BallTree

Accuratezza di NN per la classificazione binaria

Sia
$$\mathcal{X} = [0,1]^d$$
, $\mathcal{Y} = \{0,1\}$, \mathcal{D} una distribuzione su $\mathcal{X} \times \mathcal{Y}$

Teorema (Prestazioni di 1-NN)

Sia h_S^{NN} l'ipotesi costruita da 1-NN sull'insieme di training S e sia h^* l'ipotesi che minimizza il rischio atteso $L_D(h)$. Allora

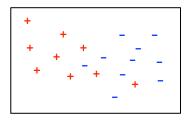
$$\mathbb{E}_{S}[L_{\mathcal{D}}(h_{S}^{NN})] \leq 2 \cdot L_{\mathcal{D}}(h^{*}) + c\sqrt{d}m^{-1/(d+1)}$$

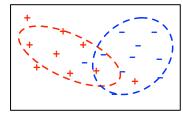
dove c è una costante che dipende solo dalla distribuzione \mathcal{D} .

Quando $m \to \infty$, il secondo termine tende a zero e quindi il rischio atteso di 1-NN tende (al più) al doppio del rischio atteso minimo

Classificazione generativa

Approccio generativo alla classificazione





Durante l'apprendimento:

■ Fai il fit di una distribuzione di probabilità per ciascuna classe

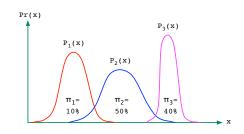
Per classificare un nuovo esempio:

■ Determina da quale distribuzione di probabilità è più verosimile che il punto sia stato generato

Modelli generativi

Esempio:

- lacksquare Spazio di input $\mathcal{X}=\mathbb{R}$
- Spazio di output $\mathcal{Y} = \{1, 2, 3\}$



Per ciascuna classe j, stimiamo:

- la probabilità a priori di quella classe, $\pi_j = \Pr(y = j)$
- la distribuzione degli input in quella classe, $P_j(x) = \Pr(x|y=j)$

Per classificare un nuovo x: scegli l'etichetta y che massimizza $\Pr(y|x)$

Generativo perché apprende una *distribuzione congiunta*: $Pr(x, y) = Pr(y) Pr(x|y) = \pi_y Pr(x|y)$, (il che permette anche di generare nuovi esempi (x, y))

Regola di Bayes

Per due eventi A e B,

$$Pr(A|B) = \frac{Pr(A) \cdot Pr(B|A)}{Pr(B)}$$

Giustificazione del criterio Bayesiano

Ricordiamo che la nostra funzione costo è:

$$\ell(h,(x,y)) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{se } h(x) = y \\ 1 & \text{se } h(x) \neq y \end{cases}$$

Il rischio atteso condizionato all'osservazione di x è

$$\mathbb{E}[\ell|x] = \Pr[h(x) \neq y|x] = 1 - \Pr[h(x) = y|x]$$

e minimizzarlo equivale a scegliere h(x) = y per y che massimizza Pr(y|x)

Classificatore Bayesiano

$$h(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \Pr(y|x)$$

Analisi del discriminante

Per ogni $x \in \mathcal{X}$ e ogni etichetta $j \in \mathcal{Y}$,

$$\Pr(y = j | x) = \frac{\Pr(y = j) \cdot \Pr(x | y = j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\Pr(x)}$$

Il termine Pr(x) non dipende da j

Dato x, l'etichetta j più verosimile è quella che massimizza $\pi_j P_j(x)$

La quantità $\delta_j(x) \stackrel{\text{def}}{=} \log(\pi_j P_j(x))$ è chiamata discriminante

Dato x, l'etichetta j più verosimile è quella che massimizza $\delta_j(x)$

Fit di un modello generativo

Esempio: dataset wine

Classificazione di bottiglie di vino in base alla cantina di provenienza

Training set: 130 bottiglie

- Cantina 1: 43 bottiglie; Cantina 2: 54 bottiglie; Cantina 3: 33 bottiglie
- Per ogni bottiglia, 13 feature: Alcool, Acido malico, Ceneri, Alcalinità delle ceneri, Magnesio, Fenoli totali, Flavonoidi, Fenoli non flavonoidi, Proantocianina, Intensità di colore, Tonalità, OD280/OD315, Prolina

Test set: 48 bottiglie

Pesi delle classi:

$$\pi_1 = 43/130 \approx 0.33$$
 $\pi_2 = 54/130 \approx 0.41$ $\pi_3 = 33/130 \approx 0.26$

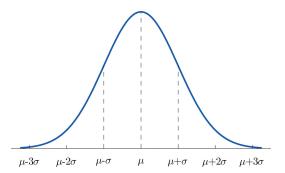
Ci servono le distribuzioni P_1, P_2, P_3

Supponiamole gaussiane e proviamo a basarle su un'unica feature: Alcool

La Gaussiana univariata

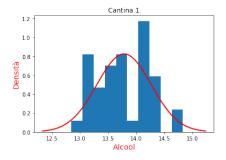
La Gaussiana $N(\mu, \sigma^2)$ ha media μ , varianza σ^2 , e densità di probabilità

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



Distribuzione per la Cantina 1

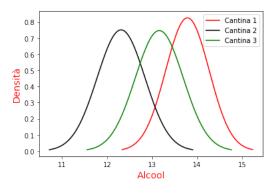
Unica feature che utilizziamo: Alcool



Media	$\mathbb{E} x$	Media stimata	$(1/m)\sum_{i}x^{(i)}$
Varianza	$\mathbb{E}(x-\mu)^2$	Var. stimata	$(1/m)\sum_{i}(x^{(i)}-\mu)^{2}$

Nell'esempio: media stimata $\mu \approx 13.78$, varianza stimata $\sigma^2 \approx 0.23$

Analisi del discriminante unidimensionale



$$\pi_1 = 0.33, P_1 = N(13.78, 0.23)$$

 $\pi_2 = 0.41, P_2 = N(12.31, 0.28)$
 $\pi_3 = 0.26, P_3 = N(13.15, 0.28)$

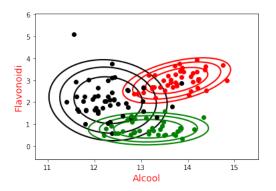
Per classificare x: determina l'etichetta j che massimizza $\pi_i P_i(x)$

Errore di test: $17/48 \approx 35\%$

Aggiunta di feature

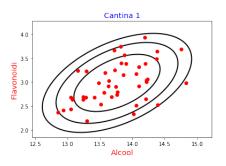
Più feature permettono una maggiore separazione tra le classi

Aggiungiamo la variabile Flavonoidi



Errore di test diventa $3/48 \approx 6\%$

La Gaussiana bivariata



Modelliamo la classe 1 con una Gaussiana bivariata:

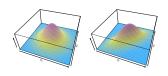
media
$$\mu = \left(\begin{array}{c} 13.7 \\ 2.98 \end{array} \right)$$

matrice di covarianza
$$\Sigma = \begin{pmatrix} 0.22 & 0.09 \\ 0.09 & 0.17 \end{pmatrix}$$

$$\mu_i = \mathbb{E} x_i$$

$$\Sigma_{ij} = \text{Cov}(x_i, x_j) = \mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)]$$

Densità della Gaussiana bivariata



- lacksquare Media $\mu=(\mu_1,\mu_2)\in\mathbb{R}^2$
- $\blacksquare \ \, \mathsf{Matrice} \,\, \mathsf{di} \,\, \mathsf{covarianza} \,\, \Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right] \in \mathbb{R}^{2 \times 2}$

$$p(x) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

■ $|\Sigma|$ qui indica il *determinante* di Σ

La Gaussiana multivariata

 $N(\mu, \Sigma)$: Gaussiana in \mathbb{R}^d

lacktriangle media: $\mu \in \mathbb{R}^d$

lacksquare covarianza: $\Sigma \in \mathbb{R}^{d \times d}$

 \blacksquare μ è il vettore delle medie:

$$\mu_1 = \mathbb{E} x_1, \mu_2 = \mathbb{E} x_2, \dots, \mu_d = \mathbb{E} x_d$$

 \blacksquare Σ è la matrice di covarianza:

$$\Sigma_{ij} = \operatorname{Cov}(x_i, x_j)$$

Densità:

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Analisi del discriminante quadratica (QDA)

Analisi del discriminante quadratica (QDA)

- **1** Calcola le probabilità a priori π_i per ogni classe j
- **2** Fai il fit di una gaussiana multivariata $P_i(x)$ per ogni classe j:
 - lacktriangle Calcola il vettore di media empirica $\mu^{(j)}$
 - lacktriangle Calcola la matrice di covarianza empirica $\Sigma^{(j)}$
- 3 Dato x, restituisci j che massimizza $\pi_j P_j(x)$ (equivalentemente: che massimizza $\delta_j(x)$)

Analisi discriminante quadratica (QDA)

Densità di una Gaussiana:

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

L'argomento dell'esponenziale è una funzione quadratica di x:

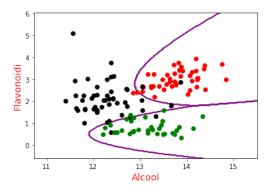
$$\log p(x) = \text{costante (in x)} - \frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)$$

Il discriminante di ogni classe j è una funzione quadratica di x:

$$\begin{split} \delta_j(x) &= \log(\pi_j P_j(x)) \\ &= \log \pi_j + \text{costante} - \frac{1}{2} \log |\Sigma^{(j)}| - \frac{1}{2} (x - \mu^{(j)})^\top (\Sigma^{(j)})^{-1} (x - \mu^{(j)}) \end{split}$$

 \Rightarrow Le frontiere di decisione sono determinate da equazioni quadratiche in x

QDA per il dataset wine



Considerando tutte e 13 le feature, l'errore di test diventa zero

Analisi discriminante lineare (LDA)

Se la matrice di covarianza è la stessa per tutte le classi, $\Sigma^{(1)} = \Sigma^{(2)} = \ldots = \Sigma$, sviluppando i prodotti abbiamo:

$$T_{j} \in \mathbb{R}$$

$$\mu^{(j)} \in \mathbb{R}^{d}$$

$$\Sigma^{(j)} \in \mathbb{R}^{d \times d}$$

$$\delta_{j}(x) = \log \pi_{j} + \text{costante} - \frac{1}{2} x^{\top} \Sigma^{-1} x + x^{\top} \Sigma^{-1} \mu^{(j)} - \frac{1}{2} \mu^{(j)^{\top}} \Sigma^{-1} \mu^{(j)}$$

$$= \log \pi_{j} + c(x) + x^{\top} \Sigma^{-1} \mu^{(j)} - \frac{1}{2} \mu^{(j)^{\top}} \Sigma^{-1} \mu^{(j)}$$

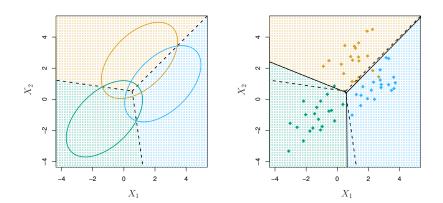
dove c(x) non dipende da j (e quindi è irrilevante per i confronti)

 \Rightarrow Le frontiere di decisione sono determinate da equazioni lineari in x

L'analisi discriminante lineare assume che la matrice di covarianza Σ sia comune a tutte le classi (anche se empiricamente si osservano matrici $\Sigma^{(j)}$ distinte):

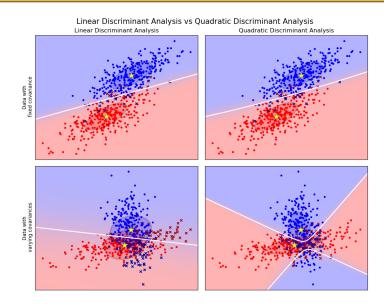
Per stimare Σ utilizziamo la formula $\sum_i \pi_j \Sigma^{(j)}$

LDA: Esempio



- Sinistra: ellissi contenenti il 95% di probabilità per ciascuna delle tre classi
- Destra: le frontiere di decisione determinate da 20 osservazioni

LDA vs. QDA



Modellazione generativa con altre distribuzioni

La modellazione generativa non è ristretta all'uso di distribuzioni Gaussiane

Altre possibilità (tutti esempi di famiglie esponenziali):

- Distribuzione Gamma (supporto positivo)
- Distribuzione di Poisson (supporto numerabile)
- Distribuzione categorica (supporto finito)

Tutte le distribuzioni di famiglie esponenziali possono essere stimate con relativa facilità

Naive Bayes

Se il numero di variabili d è molto alto, l'elaborazione delle matrici di covarianza (matrici $d \times d$) diventa impraticabile

Il metodo Naive Bayes offre una alternativa più rozza ma efficiente

Naive Bayes

I Fai il fit di una distribuzione condizionata Pr_i per ciascuna variabile x_i , indipendentemente una dall'altra

Assumi
$$\Pr(x|y) = \Pr_1(x_1|y) \cdot \Pr_2(x_2|y) \dots \cdot \Pr_d(x_d|y)$$

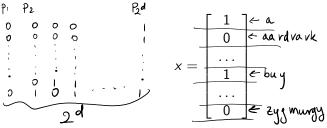
Dato x, restituisci j che massimizza $\pi_j \Pr(x|y=j)$ $\Pr(y=j|x) \propto \pi_j \Pr(x|y=j)$

Attenzione: L'assunzione di indipendenza porta tipicamente ad una stima inaccurata delle probabilità

Ciononostante, la qualità della classificazione può essere adeguata e il risparmio computazionale è notevole

Dizionario:
$$D = \{$$
 a, aardvark, ..., buy, ..., zygmurgy $\}$ Dimensione: $d = |D| = 5000$ 50000

Rappresentiamo un messaggio con un vettore $x \in \{0,1\}^d$:



dove $x_k = 1 \Leftrightarrow \mathsf{il}$ messaggio contiene la k-esima parola di D

$$y \in \{1 \text{ (spam)}, 0 \text{ (no spam)}\}$$

Un modello generativo esplicito per una Pr(x|y) categorica richiederebbe $\frac{2^d-1}{2^d}$ parametri!

Usando l'assunzione Naive Bayes:

$$\Pr(x|y) = \Pr(x_1, \dots, x_d|y) = \prod_{k=1}^{d} \Pr_k(x_k|y)$$

dove ciascuna Prk è specificata dai due parametri

$$\phi_{k|y=1} = \Pr(x_k = 1|y = 1), \quad \phi_{k|y=0} = \Pr(x_k = 1|y = 0)$$

(K = 1...d)

Inoltre modelliamo le probabilità a priori delle classi:

$$\underbrace{\pi_1} = \Pr(y = 1), \quad \Rightarrow \pi_0 = \Pr(y = 0) = 1 - \pi_1$$

In questo caso i parametri sono solo 2d+1

La Maximum Likelihood Estimation fornisce le seguenti stime:

$$\hat{\phi}_{k|y=1} = \frac{|\{i=1,\ldots,m: x_k^{(i)}=1, y^{(i)}=1\}|}{|\{i=1,\ldots,m: y^{(i)}=1\}|} = \frac{\# \text{mess. span contrain parolek}}{\# \text{messagn spann}} \sup_{\substack{parolek \\ \# \text{mess. non spann}\\ \# \text{mess. non spann}}} \\ \hat{\phi}_{k|y=0} = \frac{|\{i=1,\ldots,m: x_k^{(i)}=1, y^{(i)}=0\}|}{|\{i=1,\ldots,m: y^{(i)}=0\}|} = \frac{\# \text{mess. non spann}}{\# \text{mess. non spann}}$$

$$\hat{\pi}_0 = 1 - \hat{\pi}_1 \qquad \hat{\pi}_1 = \frac{|\{i=1,\ldots,m: y^{(i)}=1\}|}{m} = \frac{\# \text{mess. spann}}{\# \text{mess. spann}} \sup_{\substack{parolek \\ \# \text{mess. spann}\\ \# \text{mess. spann}}} \sup_{\substack{parolek \\ \# \text{mess. spann}\\ \# \text{mess. spann}}}$$

facili da calcolare con un'unica passata sul dataset

Per classificare x, restituiamo come al solito

$$\underset{j}{\operatorname{argmax}} \Pr(y = j | x) = \underset{j}{\operatorname{argmax}} \underbrace{\Pr(x | y = j)}_{j}]$$

In alternativa agli stimatori MLE, si utilizza talvolta una loro variante (bayesiana), detta *Laplace smoothing*:

$$\phi_{k|y=1} = \frac{1 + |\{i = 1, \dots, m : x_k^{(i)} = 1, y^{(i)} = 1\}|}{2 + |\{i = 1, \dots, m : y^{(i)} = 1\}|}$$

$$\phi_{k|y=0} = \frac{1 + |\{i = 1, \dots, m : x_k^{(i)} = 1, y^{(i)} = 0\}|}{2 + |\{i = 1, \dots, m : y^{(i)} = 0\}|}$$

$$\Rightarrow \pi_1 = \frac{1 + |\{i = 1, \dots, m : y^{(i)} = 1\}|}{2 + m}$$

Questo attenua il problema dei "cigni neri" (ad es. una parola del dizionario mai osservata nei messaggi di training)