Training, validazione e test Riduzione delle feature

Vincenzo Bonifaci

IN550 - Machine Learning

Training set e test set

Separiamo a caso i dati di esempio a nostra disposizione in due insiemi:

Training Set

Test Set

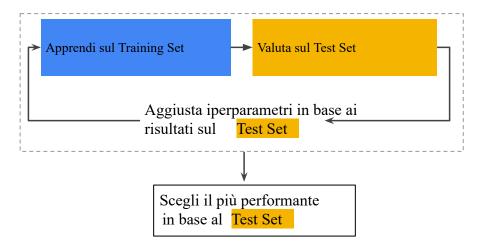
Impostazione degli iperparametri

Molti metodi di apprendimento richiedono di specificare iperparametri:

- $lacktriangleq \eta$ e T negli algoritmi basati su Gradient Descent
- K nei metodi K-Nearest Neighbor
- lacksquare λ nei metodi con regolarizzazione
- **.** . . .

Quale metodologia per selezionare i valori degli iperparametri?

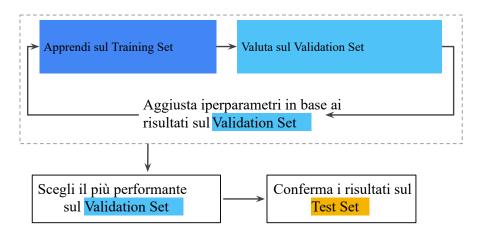
Un possibile schema di lavoro?



Il validation set

Separiamo a caso i dati di esempio a nostra disposizione in tre insiemi:

Uso di un validation set



Dimensionamento dei vari insiemi

- Validation set e test set devono essere sufficientemente grandi da poter stimare con la precisione desiderata il rischio atteso
- Compatibilmente col punto precedente, il training set deve essere il più grande possibile; sarà sempre il più grande dei tre insiemi

Dimensione del test set e stima del rischio atteso

Teorema (Dimensione del test set)

(f)

Sia h un'ipotesi e si consideri una funzione costo a valori in [0,b]. Allora per ogni $\delta \in (0,1)$, con probabilità almeno $1-\delta$ sulla scelta di un test set T di dimensione m_T si ha

$$\frac{1}{m_{\tau}} \sum_{i} \left| \left(h_{i} \left(k^{(i)} \right)^{(i)} \right) \right|^{L_{\tau}(h)} - \frac{L_{\mathcal{D}}(h)}{4} \right| \leq b \sqrt{\frac{\log(2/\delta)}{2m_{\tau}}} \qquad \qquad k_{\tau} \approx 10000$$

Interpretazione: l'errore con cui il test set stima il rischio atteso decresce con la radice quadrata della dimensione del test set

 \Rightarrow per una stima di $L_{\mathcal{D}}(h) \pm 1\%$ è sufficiente m_T dell'ordine di 10,000

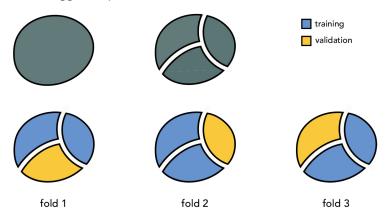
Dimensionamento dei vari insiemi in pratica

- Per dataset piccoli o medi ($\approx 100-10{,}000$ osservazioni) è spesso usata una suddivisione 70%-30% oppure 60%-20%-20%: 70% per il training set, 30% per il test set, o 60% per il training set, 20% per il validation set, 20% per il test set
- Per dataset grandi (≈ 100,000 1,000,000 osservazioni e oltre) può essere sufficiente mantenere validation set e test set intorno alle 10,000 o 100,000 osservazioni

Esempio: 1,000,000 osservazioni 98% training set, 1% validation set, 1% test set può essere accettabile

Validazione incrociata [Cross-validation]

Se i dati scarseggiano, possiamo fare a meno del validation set?



Validazione incrociata [Cross-validation]

K intero positivo (valore spesso utilizzato: K=10)

K-fold Cross Validation (K-CV)

- **1** Partiziona il training set S in K sottoinsiemi (fold) S_1, \ldots, S_K
- 2 Ripeti per $i = 1, \dots, K$:
 - Apprendi un'ipotesi h_i usando tutti i dati in S tranne quelli in S_i
 - Stima il rischio atteso di h_i usando i dati in S_i : $L_{S_i}(h_i)$
- Restituisci, come stima del rischio atteso dell'ipotesi appresa su S, il rischio medio di validazione:

$$\frac{1}{K}\sum_{i=1}^K L_{S_i}(h_i)$$

Avvertenza: la validazione incrociata è un'euristica che spesso funziona bene in pratica, ma raramente è supportata da garanzie teoriche

Validazione incrociata per la selezione di un modello

La validazione incrociata permette anche di selezionare gli iperparametri

K-CV per la selezione degli iperparametri

Input: training set S, insieme di iperparametri Θ , algoritmo A, intero K

- **1** Partiziona il training set S in K sottoinsiemi (fold) S_1, \ldots, S_K
- **2** Per ogni $\theta \in \Theta$:
 - Per i = 1, ..., K: $h_{i,\theta} = A(S \setminus S_i; \theta)$
 - \blacksquare risk $(\theta) = \frac{1}{K} \sum_{i=1}^{K} L_{S_i}(h_{i,\theta})$
- $\theta^* = \operatorname{argmin}_{\theta} \operatorname{risk}(\theta)$
- **4** $h^* = A(S; \theta^*)$

Riduzione delle feature

Perché ridurre le feature?

Supponiamo di avere d variabili di input e m osservazioni

Ridurre il numero di predittori (d) può essere importante per:

- Tenere sotto controllo la varianza (specialmente quando d > m)
- Migliorare l'interpretabilità del modello

Metodi di riduzione delle feature

- Selezione: selezioniamo un sottoinsieme di d' < d predittori
- Shrinkage (regolarizzazione): penalizziamo modelli in cui tanti predittori hanno grande influenza sulla predizione
- Proiezione: proiettiamo i d predittori su un sottospazio d'-dimensionale con d' < d

NB. Qui illustreremo i metodi nel contesto della regressione lineare, ma i principi sono generali

Metodi di selezione

Selezione: Best Subset Selection

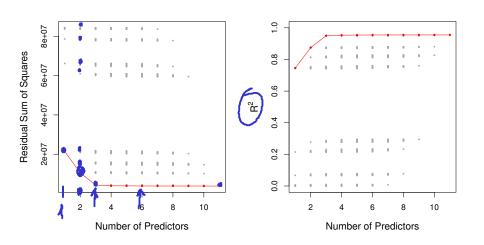
Best Subset Selection

I h₀ ← miglior ipotesi costante, cioé con 0 predittori Per esempio, nella regressione lineare,

$$h_0(x) = \frac{1}{m} \sum_{i=1}^m y^{(i)}$$

- 2 Per k = 1, 2, ..., d,
 - Apprendi tutte le $\binom{d}{k}$ ipotesi consistenti di k predittori
 - h_k ← ipotesi col miglior rischio empirico tra queste
- **3** Restituisci l'ipotesi $h \in \{h_0, h_1, \dots, h_d\}$ col minimo rischio atteso stimato sul validation set (o con la validazione incrociata)

Esempio di Best Subset Selection



Best Subset vs. selezione passo-passo

- Il numero totale di ipotesi considerate è 2^d : inapplicabile se d è molto grande
- Se *d* è grande, lo spazio di ricerca è enorme e può dare luogo ad overfitting
- Per questo motivo, un'alternativa è costituita dai metodi di *selezione* passo-passo

Selezione passo-passo in avanti

- Inizia con un'ipotesi senza predittori
- Aggiungi un predittore alla volta: quello che fornisce il massimo incremento della qualità del fit (mass, decrem, del nischio emp.)
- Restituisci l'ipotesi col minimo rischio atteso stimato (sul validation set) tra tutte le d+1 ipotesi costruite

Selezione passo-passo in avanti

Forward Stepwise Selection

- **1** $h_0 \leftarrow \text{miglior ipotesi costante, con 0 predittori}$
 - Per k = 0, ..., d 1, considera tutte le d k ipotesi con un predittore in più di h_k
 - h_k ← ipotesi col miglior rischio empirico tra queste
- **2** Restituisci l'ipotesi $h \in \{h_0, h_1, \dots, h_d\}$ col minimo rischio atteso stimato sul validation set (o con la validazione incrociata)

Vantaggi e svantaggi di Forward Stepwise Selection

- Ipotesi esplorate: (d+1) anziché (2^d)
- Non garantisce il miglior modello tra i 2^d possibili

Esempio: Credit dataset

	k	Best Subset		Forward Stepwise
{		rating	student	rating
Į	2	rating, income		rating, income
L	3	rating, income,		rating, income, student
	4	cards, income,		rating, income,
		student, limit		student, limit

Metodi di shrinkage e regolarizzazione

Regolarizzazione

Come cercare automaticamente un equilibrio tra bias e varianza?

Una funzione di regolarizzazione è una funzione $R:\mathcal{H} \to \mathbb{R}_+$

R(h) è una qualche misura di complessità dell'ipotesi h

Regularized Loss Minimization (RLM)

Dato un insieme di esempi S, cerca una regola di predizione h che minimizzi il rischio empirico di h su S, più R(h):

$$\min_{h\in\mathcal{H}} L_{\mathcal{S}}(h) + R(h)$$

Se l'ipotesi h è codificata dai coefficienti $w \in \mathbb{R}^{d+1}$, scriveremo anche R(w) (in tal caso R è vista come funzione definita su \mathbb{R}^{d+1} anziché su \mathcal{H})

Regressione Ridge

$$w = (w_0, w_1, \dots, w_d)$$
 include il termine costante w_0
 $\omega = (w_1, w_2, \dots, w_d)$ non lo include

Regolarizzazione ℓ_2 (di Tikhonov)

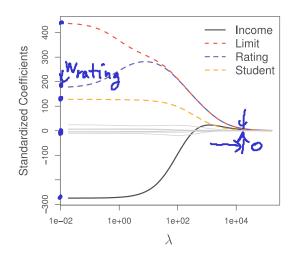
$$R(w) = \lambda(w_1^2 + w_2^2 + \ldots + w_d^2) = \lambda \|\omega\|_2^2 \qquad (\lambda \ge 0)$$

⇒ Regressione Ridge

$$\min_{w \in \mathbb{R}^{d+1}} L_{S}(h_{w}) + \lambda \|\omega\|^{2} = \min_{w \in \mathbb{R}^{d+1}} \frac{1}{m} \|Xw - y\|^{2} + \lambda \|\omega\|^{2}$$

- \blacksquare Per $\lambda=$ 0, coincide con il metodo dei minimi quadrati
- Per $\lambda \to \infty$, i coefficienti w_k tendono a 0
- Ammette soluzione in forma chiusa: $w^* = (X^\top X + \lambda m \cdot I_0)^{-1} X^\top y$

Regressione Ridge



Valori dei coefficienti di una regressione ridge in funzione di λ

Regressione regolarizzata e standardizzazione delle variabili

Nella regressione regolarizzata è importante *standardizzare* i predittori, centrandoli sulla media e scalandoli per la deviazione standard:

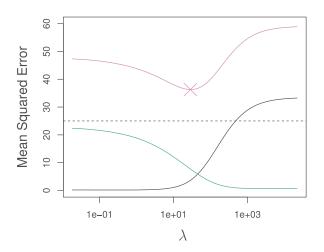
Standardizzazione di una variabile

Se v è un predittore, con esempi di valore v_1, \ldots, v_m e media \bar{v} , poniamo

$$v \leftarrow \frac{v - \overline{v}}{\sqrt{\frac{1}{m} \sum_{i=1}^{m} (v_i - \overline{v})^2}}$$

Questo non era necessario nella regressione lineare, perché $\mathbb N$ i coefficienti erano *equivarianti* rispetto alla scala: moltiplicare v per c scalava il coefficiente corrispondente di 1/c

Regressione Ridge



Bias 2 (nero), varianza (verde) e MSE di test (viola) per una regressione ridge in funzione di λ

Regressione LASSO

Regolarizzazione ℓ_1

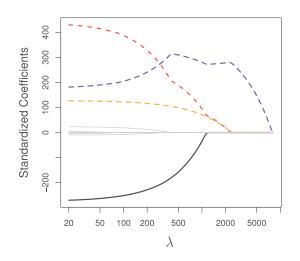
$$R(w) = \lambda(|w_1| + |w_2| + \ldots + |w_d|) = \lambda ||\omega||_1 \qquad (\lambda \ge 0)$$

⇒ Regressione LASSO

$$\min_{w \in \mathbb{R}^{d+1}} L_{\mathcal{S}}(h_w) + \lambda \left\| \omega \right\|_1 = \min_{w \in \mathbb{R}^{d+1}} \frac{1}{m} \left\| Xw - y \right\|^2 + \lambda \left\| \omega \right\|_1$$

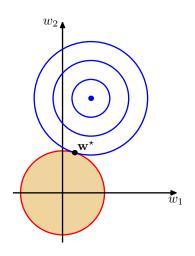
- Per $\lambda = 0$, coincide con il metodo dei minimi quadrati
- Per $\lambda \to \infty$, i coefficienti w_k tendono a 0
- Per λ crescente, alcuni coefficienti diventano esattamente pari a 0 (\Rightarrow incentiva modelli *sparsi*)

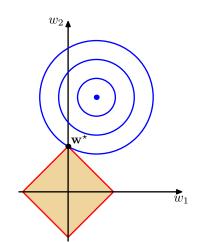
Regressione LASSO



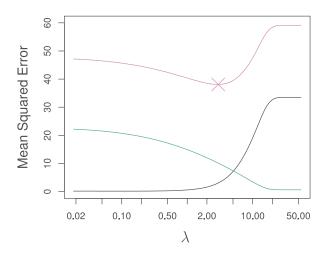
Valori dei coefficienti di una regressione LASSO in funzione di λ

Ridge $(\lambda \|w\|_2^2)$ vs. LASSO $(\lambda \|w\|_1)$





Regressione LASSO



Bias 2 (nero), varianza (verde) e MSE di test (viola) per una regressione LASSO in funzione di λ

Metodi di regressione regolarizzata in scikit-learn

		Interfaccia
	Iperparametri	scikit-learn
Ridge (diretto)	λ	Ridge
Ridge (SGD)	η, T, λ	SGDRegressor(penalty='12')
LASSO (SGD)	η, T, λ	SGDRegressor(penalty='11')

Metodi di proiezione

Parleremo dei metodi di proiezione nel contesto dell'apprendimento non supervisionato

Esempio tipico: Principal Component Analysis

