9.5 Notes, References, and Problems 217

up to 2K, is there a subset that adds up to exactly K? This is known as the PAR-
TITION problem, not to be confused with the k-PARTITION problem above. (Start
from KNAPSACK, and add appropriate new items.)

(b) INTEGER KNAPSACK is this problem: We are given n integers and a goal K. We
are asked whether we can choose zero, one, or more copies of each number so that the
resulting multiset of integers adds up to K. Show that this problem is NP-complete.
(Modify an instance of the ordinary KNAPSACK problem so that each item can be
used at most once.)

9.5.34 Linear and integer programming. INTEGER PROGRAMMING is the
problem of deciding whether a given system of linear equations has a nonnegative
integer solution. It is of course NP-complete, as just about all NP-complete problems
easily reduce to it... Actually, the difficult part here is showing that it is in NP; but
it can be done, see

o C. H. Papadimitriou “On the complexity of integer programming”, J.ACM, 28,
2, pp. 765-769, 1981.

In fact, in the paper above it is also shown that there is a pseudopolynomial al-
gorithm for INTEGER PROGRAMMING when the number of equations is bounded
by a constant, thus generalizing Proposition 9.4. (Naturally, the general INTEGER
PROGRAMMING problem is strongly NP-complete.)

A different but equivalent formulation of INTEGER PROGRAMMING is in terms
of a system of inequalities instead of equalities, and variables unrestricted in sign. For
this form we have a more dramatic result: When the number of variables is bounded
by a constant, there is a polynomial-time algorithm for the problem, based on the
important basis reduction technique; see

o A. K. Lenstra, H. W. Lenstra, and L. Lovész “Factoring polynomials with ratio-
nal coefficients,” Math. Ann, 261, pp. 515-534, 1982, and

o M. Grotschel, L. Lovédsz, and A. Schrijver Geometric Algorithms and Combina-
torial Optimization, Springer, Berlin, 1988.

In contrast, linear programming (the version in which we are allowed to have fractional
solutions), is much easier: Despite the fact that the classical, empirically successful,
and influential simplex method, see

o G. B. Dantzig Linear Programming and Extensions, Princeton Univ. Press,
Princeton, N.J., 1963,

is exponential in the worst-case, polynomial-time algorithms have been discovered.
The first polynomial algorithm for linear programming was the ellipsoid method

o L. G. Khachiyan “A polynomial algorithm for linear programming,” Dokl. Akad.
Nauk SSSR, 244, pp. 1093-1096, 1979. English Translation Soviet Math. Doklad
20, pp. 191-194, 1979;

while a more recent algorithm seems to be much more promising in practice:

o N. Karmarkar “A new polynomial-time algorithm for linear programming,” Com-
binatorica, 4, pp. 373-395, 1984.

See also the books



218 Chapter 9: NP-COMPLETE PROBLEMS

o A. Schrijver Theory of Linear and Integer Programming, Wiley, New York, 1986,
and
o C. H. Papadimitriou and K. Steiglitz Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
Problem: (a) Show that any instance of SAT can be expressed very easily as an
instance of INTEGER PROGRAMMING with inequalities. Conclude that INTEGER
PROGRAMMING is NP-complete even if the inequalities are known to have a frac-
tional solution. (Start with an instance of SAT with at least two distinct literals per
clause.)
(b) Express the existence of an integer flow of value K in a network with integer
capacities as a set of linear inequalities.
(c) Is the MAX FLOW problem a special case of linear, or of integer programming?
(On the surface it appears to be a special case of integer programming, since in-
teger flows are required; but a little thought shows that the optimum solution will
always be integer anyway—assuming all capacities are. So, the integrality constraint
is superfluous.)



