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Abstract. In this paper we describe the contributions made by Margherita
Piazzolla Beloch to the field of elementary geometric construction. In par-
ticular we examine her solution of the classical Greek problem of doubling
the cube via paper folding. The solution was achieved by creating a new
fold which in turn enabled Piazzolla Beloch to construct, also by paper
folding, the root of any given cubic polynomial.
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1 Introduction

Paper folding, or origami, has been known for centuries as a fine art form, a way to
transform a piece of paper into a stunning three dimensional object. In the last 30-40
years it has been understood that paper folding can also be an important scientific
and technological tool. One of the pioneers of the application of paper folding to geo-
metrical problems is Margherita Piazzolla Beloch. In her book Lezioni di matematica
complementare, la matematica elementare vista dall’alto Piazzolla Beloch devotes the
last two chapters to elementary solutions of classical geometric problems. It is proba-
ble that her deep interest in elementary mathematics, a common thread among Italian
algebraic geometers at the beginning of the ’900 (cf. [7]), is one of the main reason
in Piazzolla Beloch’s appreciation and usage of paper folding. Mainly because paper
folding is a powerful but simple tool to perform geometric constructions. Following Pi-
azzolla Beloch, see [21, p.353], we call a geometric problem a problem of third degree if
its resolution requires finding a root of a cubic polynomial irreducible over the rational
numbers. Gauss was the first one to state, even though without proof (see [6]), that
angle trisection and cube doubling are not solvable by ruler and compass. The first
published proof is due to M.L. Wantzel (cf. [30]) who actually proved that every prob-
lem of the third degree cannot be solved by ruler and compass. In her book, Piazzolla
Beloch after describing and investigating classical solutions via mechanical instruments
and higher degree curves turns her attention to a new method: paper folding.

Margherita Piazzolla Beloch’s source of information about paper folding was the book
written by Sundara Row [23] and an article of Rupp [26]. She published her reflections
about paper folding in a series of articles ([18], [19], and [20]), which appeared several



years before her lecture notes [21]. Her fundamental contribution was the discovery of
what is now often called1 Beloch’s fold: Given two point P1 and P2 and two lines r1
and r2 then, when it exists, we can fold the line reflecting P1 onto r1 and P2 onto r2.
(Fig. 1)

Fig. 1: Two instances of Piazzolla Beloch’s fold

It was this fold that enabled Piazzolla Beloch to show that by using paper folding it
is possible to double the cube and, with the aid of Lill’s graphical method, to solve
all cubic equations. As we shall see in section 7, in all the applications that Piazzolla
Beloch considered it was evident that one could perform the above fold. Nonetheless
it is interesting to establish a sufficient condition for when it is possible to execute
Piazzolla Beloch’s fold. We provide such a sufficient condition by means of (synthetic)
projective geometry, see also [8] where similar conditions are established by means of
analytic geometry.

This paper is organized as follows: section 2 contains a short biography of Margherita
Piazzolla Beloch. In section 3 we examine her writings around solutions via mechan-
ical instruments and higher degree curves of classical geometric problems. Section 4
encompasses a brief history of the application of paper folding to geometric problems.
In section 5 we introduce Piazzolla Beloch’s fold as well as the other six basic folds of
paper folding; section 6 contains our deduction of the sufficient condition for executing
Piazzolla Beloch’s fold, based on synthetic projective geometry and Bezout’s theorem.
In the last section we exhibit three different approaches (graphical, geometrical and
algebraic) to show that Piazzolla Beloch’s fold can be used to construct a solution to
any given cubic equations. The graphical approach, via Lill’s method, was the one
used originally by Piazzolla Beloch, and has been revisited several times since then.
The other two, although quite straightforward, have not received the same kind of
attention.

2 A few biographical notes about Margherita Piazzolla Beloch

The original source of information about Margherita Piazzolla Beloch life is the intro-
duction of the guide [5] describing the "Collection Montesano", a private collection of
offprints owned by Domenico Montesano which was acquired by Piazzolla Beloch on
behalf of the library of the Mathematics department of Ferrara University.

1Most authors who are native English speakers mistakenly think that Piazzolla is her middle name.



Margherita Piazzolla Beloch was born in Frascati, near Rome, in 1879. She gradu-
ated in mathematics from Sapienza Università di Roma, with "dignità di stampa"2, in
1908, under the supervision of Guido Castelnuovo. Her thesis, entitled "On birational
transformations of space", was indeed published in the Annali di Matematica Pura ed
Applicata, [17], one of the oldest math journal in Italy. Her first official academical ap-
pointment was as an assistant to the chair of "Descriptive Geometry" at the University
of Pavia, and then in Palermo. In 1927 she became full professor of geometry at the
University of Ferrara. In Ferrara she gave courses on many topics, such as descriptive
geometry, higher geometry, complementary mathematics, superior mathematics.

In 1955 she retired but continued to be very active publishing widely for several years.
In the mid ’60 she personally prepared for publication a selection of her works [22],
which was finally published in 1967. It consists of over 50 research papers which
were divided in the following three topics: algebraic geometry, projective topology,
and photogrammetry. The latter field was particularly dear to her. As stated in the
preface of [22] it was the Italian Society of Photogrammetry and Topography that
in 1961 proposed the publication of her selected works, to show their gratitude and
affection to the scientist. As she herself acknowledges this was her "preferred field of
study".

3 Classical problems: geometric construction and mechanical devices

Of the many geometrical problems studied by the ancient Greek only three gained
enduring fame: doubling a cube, trisecting an angle, and squaring the circle. They owe
their celebrity chiefly to the fact that they withstood every attempt to be solved by
ruler and compass for centuries, until, in the nineteenth century, it was proven that was
impossible to solve them with only ruler and compass, see [11] for a detailed account.

Piazzolla Beloch’s interest in these matters was more on the positive side so to say:
she was interested on which mechanical devices one needed to solve a particular prob-
lem or alternatively which curve of higher degree was needed to obtain the desired
construction. We now briefly review the content, relevant to our investigation, of the
two chapters of [21] dedicated to geometric construction and mechanical devices. After
giving a detailed construction of the cissoid of Diocles, the conchoid of Nicomedes,
and the Quadratrix of Hippias, she used them to solve the above mentioned classical
problems. Specifically: doubling a cube can be solved by using either the cissoid or the
conchoid, trisecting an angle is solved by the conchoid, and squaring the circle require
the use of the Quadratrix.

She also remarks that any third degree problem can be reduced, by the use of ruler and
compass, to either doubling a cube or trisecting an angle. Since both these problems
are solvable by the conchoid, she concludes that every third degree problem is solvable
by the combined use of ruler, compass and the conchoid.

Having settled these matters she takes a slightly different point of view. Suppose we fix
the set of tools we are allowed to use (where tools mean both mechanical devices and
curves). We then call the frame of problems of the given set of tools all the geometric
problems that set solves. So for example the frame of problems of ruler, compass and

2worthy of publication



conchoid of Nicomedes contains all the problem of degree less or equal to three. If two
sets of tools have the same frame of problems they are called equivalent. For example
ruler and compass is equivalent to the ruler and a fixed circle completely drawn. She
then determines the frame of problems for several mechanical (hinged) devices, with
special regard to those constructed by Alfred B. Kempe in [10].

The next set of tools she examines is paper folding. Firstly she remarks that several
geometric constructions are more readily done with paper folding than ruler and com-
pass e.g. drawing a line through a point perpendicular to a given line takes only one
fold while one has to use the compass three time and the ruler once. She then continues
showing how to bisect an angle, find the intersection of a given circle and a given line
and lastly find the intersection of two given circles by paper folding. As a consequence
paper folding can solve all the problems that ruler and compass can. She then shows
that paper folding can actually solve all third degree problems. We examine this latter
topic in greater details in sections 5, 6, and 7.

4 A few remarks on the history of geometric constructions via paper folding

As remarked by Piazzolla Beloch in [20], the first author to draw attention to the use
of paper folding in the solution of classical geometric problems was Felix Klein in [11]

Fig. 2: Klein’s reference to Wiener’s work and Sundara Row’s book

In his brief remark Klein mentions the two forefathers of the application of paper
folding to geometric problems: Herman Wiener and Sundara Row. While Wiener’s
contribution to paper folding has been largely forgotten, Sundara Row’s book has
become a classic and has enjoyed a flurry of re-printings (Fig.3)

The version of Geometric exercises in paper folding by Sundara Row that can be found
nowadays is the one edited by W.W. Beman and D.E. Smith. They also became
interested in the work of Sundara Row thanks to Klein. In fact the first sentence of
the preface of their edition of the book reads "Our attention was first attracted to
Sundara Row’s book by a reference in Klein’s Vorträge über ausgewählte Fragen der
Elementargeometrie", a text which they translated from German into English. Beman
and Smith in their edition of Sundara Row’s book added several pictures of actual
folded paper, see Fig. 4 as an example , in order to replace some of the illustrations
present in the original version, which were mere line drawings.



Fig. 3: A selection of covers of reprints of Sundara Row’s book

Fig. 4: Two pictures taken from the book by Sundara Row

It is only in the recent article by Michael Friedman [3] that Herman Wiener work on
paper folding is examined. As both the book of Sundara Row and the article by Wiener
on paper folding appeared in 1893, Friedman asserts that 1893 may be thought of as
the first year that saw a modern mathematical treatment of the problem of determining
what kind of object can be produced by folding paper. Wiener exhibited some paper
objects during an exhibition on mathematical tools and models in 1892 in Munich and
wrote a short note [31] for the catalogue of the exhibition, which is admittedly hard
to follow being without the illustrations which were present at the exhibition. On
the other hand, as Friedman points out, there are some interesting observation in the
paper but a general lack of mathematical rigor: for example he gives the instructions
to construct a regular pentagon by folding and knotting a strip of paper (Fig. 5), but
does not supply a proof of the regularity (a proof can be found in [15]).

It must be noted that also Piazzolla Beloch contributions went unnoticed for several
year as mathematicians generally lost interest in the subject. It was only in the late ’80
that, thanks to the efforts of Huzita Humizaki with the aid of Benedetto Scimemi, there
was a revival of interest in paper folding. The first International meeting on Origami
Science and Technology, organized by Humizaki, was held in Ferrara in December 1988
[1]. It is rather peculiar that even though the first pages of the proceeding of this



Fig. 5: The construction of a regular pentagon by Wiener

meeting host a reproduction of Piazzolla Beloch’s article on paper folding many of the
subsequent authors were not aware of her contributions. The Origami meeting have
now become a regular event, the last of which was held at Tokyo university in 2014
and its proceedings are published by the American Mathematical Society [16].

5 Margherita Piazzolla Beloch innovative folding

Margherita Piazzolla Beloch seems to have been the first one to discover that problems
of the third degree can be solved by means of paper folding. At that time the applica-
tions of paper folding to geometry were still in their infancy and a list of basic folds was
not available. We now have such a complete list of basic foldings (see 6), sometimes
improperly called axioms. It has to be noted that some foldings were discovered several
times over, see the introduction of [9] and [13], for more details.

Fig. 6: Six of the seven basic paper foldings



There is still one basic fold: Piazzolla Beloch’s fold. This fold appeared first in print in
the short note [18], an extract from the lecture notes for her course Matematiche com-
plementari containing the new result about paper folding. Let us recall its definition:
Given two point P1 and P2 and two lines r1 and r2 then, when it exists, we can fold
the line reflecting P1 onto r1 and P2 onto r2. (cf. Fig. 1). To see that, when possible,
one can actually perform this fold we quote B. Scimemi (see [28]) “taking advantage of
translucency, first superimpose P1 on r1, then let P1 run along r1 and meanwhile pay
attention to the motion of the point P2, waiting until it comes to lie on the line r2”.

The folds O1-O5 were already extensively used by Sundara Row in [23]. Fold O7
became widely known only after Koshiro Hatori announced its discovery in 2002, but
Justin (see [12]) already listed it as one of his seven basic fold, 13 years earlier.

Piazzolla Beloch introduced O6 to solve the following problem:Given two points P1 and
P2 and two lines r1 and r2 construct a square with vertices X, Y, W , and Z so that
X and Y lie on r1 and r2 and P1 (respectively P2) lies on the line joining X and Z
(respectively Y and W ) (Fig. 7):

Fig. 7: Piazzolla Beloch’s square

This square construction is the key to construct solutions of third degree problems by
paper folding. To show why fold O6 enables us to construct the square in Fig. 7, we
have to give a geometrical interpretation of fold O5 and O6. As was already known
to Sundara Row the folding line in O5 is the tangent line, in Q, to the parabola, Pr

P ,
having r has directrix and P has focus. In fact as Piazzolla Beloch remarks in [18]
one can reconstruct a parabola by folding its tangents in the following way 3: use the
bottom edge of a sheet of paper as the directrix of the parabola, and mark the focus
at a given distance from it. Then fold the paper on itself, without moving the focus
making sure that the bottom edge of the sheet passes through the focus.

The folding line produced by fold O6 is then a common tangent to Pr1
P1

and Pr2
P2
. To

show way fold O6 enable us to construct the square of Fig. 7, we argue along the lines
of [18]: consider the parabola P1 (respectively P2) having focus in P1 (resp. P2) and
whose tangent line in the vertex is r1 (resp. r2). Then we perform fold O6 and the

3"Prendendo cioè l’orlo (rettilineo) di un foglio di carta come direttrice della parabola, e segnando
il fuoco alla data distanza da questa, basta tener fermo il fuoco e ripiegare la carta su se stessa in
modo che l’orlo ripiegato venga a passare per il fuoco." [18, p.187]



Fig. 8: Folding the tangents of a parabola

folding line, call it f , is tangent to both P1 and P1. Let X (respectively Y ) be the
intersection of f and r1 (resp. r2), see Fig. 9

Fig. 9: The underlying parabolae in Piazzolla Beloch’s square

The line passing through X (resp. Y ) and perpendicular to f passes through the focus
of P1 (resp. P2) which is P1, (resp. P2). Therefore the square having the segment XY
as an edge is the desired square.

6 Piazzolla Beloch’s fold and projective duality

As we already remarked is not always possible to perform fold O6 and most probably
Piazzolla Beloch was well aware of this. Moreover, as we shall see in the last section,
all the instance of fold O6 that she needed to perform in her investigation were clearly
possible. Even though several authors seem unaware that fold O6 can not be performed
in all cases, already in [8] there is a discussion, in terms of analytic geometry of when
it is possible, see also [2] for an approach closer to the one presented here. We would
like now to give a simple criterion for when two parabolae do have a common tangent
in terms of projective geometry and projective duality in the plane. Projective duality
was well known to Margherita Piazzolla Beloch, who extensively worked on projective
algebraic curves. We briefly recall the basic facts about projective duality, referring
the interested reader to [24].



So let A2(R) denote the (affine, real) plane and P2(R) = A2(R)∪ `∞ the projective real
plane obtained from A2(R) adjoining `∞ the “line at infinity” whose points represent
the directions of lines in A2(R). Formally points in P2(R) are represented by three
homogeneous coordinates P [X : Y : Z] and A2(R) correspond to the open subset given
by Z 6= 0. It is straightforward to check that all parabolae in the affine plane are
actually tangent to the line at infinity, the tangency point being the direction of the
symmetry axis of the parabola.

Now we come to projective duality in the plane. The dual projective plane P∗2(R) is
the set of all lines in P2(R), and points in P2(R) correspond to lines in P∗2(R). Given a
conic C∈P2(R) its dual conic C∗ is the set of all tangent lines to C. It is readily seen
that C∗ is a conic as well. Therefore the common tangents to two parabolae C1 and C2
are the point of intersections of the dual conics C∗1 and C∗2 .

By Bézout’s theorem [4, section 5.3], there are exactly 4 points of intersection if counted
with the appropriate multiplicity. In this simple case the multiplicity is one unless C∗1
and C∗2 have the same tangent line at the point of intersection, in which case the
multiplicity is 2. This means that there is a line which not only is tangent to both C1
and C2, but also that the point of tangency is the same.

Now let us go back to the problem of finding the common tangent to two given parabolae
C1 and C2. As we already remarked the line at infinity is tangent to both C1 and C2,
thus C∗1 and C∗2 always intersect in the point Q0 of P∗2(R) corresponding to the line at
infinity of P2(R). It follows that the remaining points of intersection can be found by
solving the cubic equation obtained by eliminating the appropriate variable, unless the
multiplicity of Q0 is two, which happens if and only if C1 and C2 have parallel symmetry
axes. If C1 and C2 have parallel symmetry axes we are left with a quadratic equation
which may or may not have real solutions, and both cases do happen. If C1 and C2 do
not have parallel symmetry axis then the common tangents in A2(R), different from
the line at infinity, are either 3 or 1 and both cases do happen (10).

a Three common tangents b Two common tangents c One common tangent d No common tangent

Fig. 10: Common tangents to two parabolae

7 Folding solutions of cubic equations

In this section we will show in three different ways, graphic, geometric, and algebraic,
how Margherita Piazzolla Beloch’s folding enables us to construct solution of cubic
equations by paper folding. As is clear from her writings she was aware of all of them
but only wrote down the details for the graphical one. The graphical method is based



on Lill’s method (see [14], [11]) to find real roots of polynomials (with real coefficients)
of every degree.

Lill’s method was used by Margherita Piazzolla Beloch in her original solution of cubic
equations by paper foldings in [20]. Since then, a few authors dwell on the subject,
notably Benedetto Scimemi [27] and Thomas C. Hull [9]. Therefore we will be rather
brief on Lill’s method and concentrate on the application of Piazzolla Beloch’s fold.
Being a graphical method we will relay heavily on illustrations.

Lill’s method, which we describe here only for cubic polynomials, goes as follows (we
use the convention of [27]): given a cubic polynomial P (X) = a3x

3 + a2x
2 + a1x + a0

we construct a 4 edge polygonal chain OA3A2A1A0, with only right angles, where the
starting point is the origin O, the length of the segment ending in Ai is |ai| and in Ai

the turn is made clockwise if aiai−1 ≥ 0 and counterclockwise if aiai−1 ≤ 0. As usual
a picture is worth a thousand words so we refer the reader to Fig. 11. To find a root
Lill proceeds as follows: draw a line from the origin, forming an angle of θ radiants
with the x-axis and whenever it hits a edge of the Lill’s polygon, or its continuation,
it bounces off on the line orthogonal to r, choosing the direction that ensures that it
will hit the next edge of the Lill’s polygon (or its continuation). Since we are in degree
3, the Lill’s polygon has at most 4 edges and we have to perform only two reflections.
If after the second reflection we end up with a line which passes through the point P0

then tan(θ) is a root of the cubic polynomial associated to the polygon. Also in this
case it is much more illuminating to look at a picture so we refer the reader to Fig. 11.

a tan(θ) = 2 is a root of 3x3 − 5x2 − 3x+ 2 b tan(θ) = 1
2 is a root of 2x3 − 3x2 + 3x− 1

Fig. 11: Finding roots of cubic polynomials via Lill’s polygons

Piazzola Beloch’s square construction shows that we can always find, by paper folding,
such an angle θ. To see this suppose first that all the coefficients of P (x) are not
zero. Then we can apply Piazzola Beloch square construction to the points O and A0

and the lines r1 joining A3 and A2, and r2 joining A2 and A1. Since r1 and r2 are
perpendicular, hence not parallel, we are sure that we can perform Piazzolla Beloch’s
fold and construct a square with O on one edge or on its continuation, A0 on the
parallel edge and two vertices on r1 and r2. Therefore the line passing trough the
origin on which the edge of the square lies is the line required to find the root of the
cubic polynomial by Lill’s method.



a α = 1 b α = −2 c α = 1
2

Fig. 12: Piazzolla Beoch’ s squares correspondig to the three real roots of x3− x2

2
+ 5

2
x+1

It is possible to apply Piazzolla Beloch’s construction also if some of the coefficients
vanishes, one has just to be careful in the choice of the lines r1 and r2. Namely one
line will be the one connecting the two vertices of the polygon and the other one has
to be choose perpendicular to the previous one passing to the vertex corresponding to
the coefficient preceding the missing one. One argues similarly if there are two missing
coefficients. Note that we only need to deal with polynomials of the following form
x3 + a2x

2 + a0, x
3 + a1x+ a0 and x3 + a0. As before, everything is clearer if one looks

at a picture and so we refer the reader to Fig. 13.

a P (x) = x3 + 7
3x

2 − 4
3 b P (x) = x3 − 13

4 x−
3
2 c P (x) = x3 − 2

Fig. 13: Piazzolla Beloch’s square construction for polynomials with missing terms

It has to be noticed that in order to construct the cubic root of a given number, one does
not need Lill’s method but it is enough to use Piazzolla Beloch’s square construction
directly as shown in [18].

Next we turn to geometry. Let P (x) = a0 + a1x+ a2x
2 + x3 be a generic monic cubic

polynomial. It suffices to show that we can find its real roots via paper folding. To
do so we have to exhibit two parabolae whose common tangents have slopes that are
precisely the real roots of P (x). Piazzolla Beloch’s square construction suggests that
should be enough to search among parabolae that have symmetry axis either horizontal
or vertical. So we consider the following two families of parabolae

Pc : y = x2 + c Pa,b : x = ay2 + b.



A straightforward computation shows that the slopes of the lines that are common
tangents to Pc and Pa,b are the roots of t3 − 4bt2 − 4ct+ 1

a
. The self-evident choice of

a, b, c shows that we can recover the polynomial P (x).

We come at last to the algebraic approach. Our construction is based on Cardano’s
formula for solving the cubic equations. First of all a general cubic polynomial P (x) =
a0 + a1x + a2x

2 + x3 can be reduced, by a linear change of variable, to a polynomial
of the form x3 + px + q. Next Cardano’s formula gives us a real root for this type of
polynomials. Namely:

x =
3

√
−q
2
+

√
q2

4
+
p3

27
+

3

√
−q
2
−

√
q2

4
+
p3

27
.

Since it is possible by paper folding to construct, without the aid of Lill’s polygon,
both the square root and the cubic root of a given quantity, it follows, again, that by
using paper folding we can construct the root of cubic polynomial.
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