
On March 11, 2015, a workshop on fractional calculus was held, at
the Department of Mathematics and Physics, Roma Tre University. The
purpose of this one-day event was to present few contributions by several
experts to lighten some recent advances on numerical treatment of fractional
differential equations, modelling of problems through fractional calculus, and
applications involving probabilistic approaches, special functions, and other
analytical methods.

Below, we show the Program, and then the slides of all seminars, in the
same order they were presented.

Renato Spigler

WORKSHOP ON FRACTIONAL CALCULUS
AND ITS APPLICATIONS

Roma Tre, March 11, 2015

PROGRAM

h. 9:00-11:00 am, Numerical methods:

• Diethelm, “Numerical methods for terminal value problems of fractional
order”

• Yuste: “High order adaptive methods for fractional PDEs”

• Garrappa: “Numerical methods for fractional operators involved in anoma-
lous polarization processes”

h. 11:30-13:00, Models with memory:

• Caputo: “Why new fractional derivatives?”

• Fabrizio: “Damage and fatigue by a fractional model”

• Cavallaro: “Approach to equilibrium of a sphere in a Stokes fluid”
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14:00-16:00, Anomalous diffusion and probabilistic applications:

• Beghin: “From fractional diffusion equations to fractional shift operators”

• Pagnini: “Generalized grey Brownian motion: from classical diffusion to
Erdelyi-Kober fractional diffusion”

• Agliari: “Levy flights with power-law absorption”

• Concezzi: “Numerical solution of two-dimensional fractional diffusion equa-
tions by a high-order ADI method”

16:30-17:30, Special Functions and analytical methods:

• Cesarano: “Special polynomials in the description of fractional calculus”

• Garra:“Fractional diffusions with time-varying coefficients”

• Taverna: “Overview of the Fractional Calculus of Variations and its appli-
cation to non-standard Lagragians”
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Fundamental Task

Investigation of a real process governed by fractional order
differential equation:

Dα
∗ay(t) = f (t , y(t)), t ≥ a

where

Dα
∗a = Caputo differential operator of order α with starting point a.

Frequent obstacle
State of system can only be observed at time t = b > a.
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Concrete Application Example

Fractional Maxwell model for viscoelastic material:

Dα
∗0σ(t) = τ−ασ(t) + E · Dα

∗0ε(t) (1)

Task: Find shear stress σ(t) for t ≥ 0.

Measurement:

σ(b) = σ∗ with some b > 0 (2)

Known data:
solve (1) subject to (2) on [0,b] (terminal value problem)
compute initial value σ(0) from this solution
construct initial value problem from (1) and initial condition
if desired, solve initial value problem on [0,T ] with T > b

Kai Diethelm Numerical Solution of Fractional TVPs
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Concrete Application Example

Fractional Maxwell model for viscoelastic material:

Dα
∗0σ(t) = τ−ασ(t) + E · Dα

∗0ε(t) (1)

Task: Find shear stress σ(t) for t ≥ 0.
Measurement:

σ(b) = σ∗ with some b > 0 (2)

Known data:
shear strain ε(t)
relaxation time τ
order α ∈ (0,1)
shear modulus E
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Concrete Application Example

Fractional Maxwell model for viscoelastic material:

Dα
∗0σ(t) = τ−ασ(t) + E · Dα

∗0ε(t) (1)

Task: Find shear stress σ(t) for t ≥ 0.
Measurement:

σ(b) = σ∗ with some b > 0 (2)

Approach:
solve (1) subject to (2) on [0,b] (terminal value problem)
compute initial value σ(0) from this solution
construct initial value problem from (1) and initial condition
if desired, solve initial value problem on [0,T ] with T > b

Kai Diethelm Numerical Solution of Fractional TVPs



Motivation
Fundamentals

Numerical Methods
Further Work

Table of Contents

1 Motivation

2 Fundamentals

3 Numerical Methods

4 Further Work

Kai Diethelm Numerical Solution of Fractional TVPs



Motivation
Fundamentals

Numerical Methods
Further Work

Analytical Fundamentals

Task: Find solution to fractional order terminal value problem

Dα
∗ay(t) = f (t , y(t))

y(b) = y∗

for t ∈ [a,b].

In this talk: 0 < α ≤ 1
(generalization to α > 1 requires additional terminal conditions)
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Existence and Uniqueness of Solutions

General assumptions on right-hand side of differential equation:
continuity
boundedness
Lipschitz condition w. r. t. second variable

Theorems:
Uniqueness of continuous solution to terminal value
problem.
Existence of continuous solution if interval [a,b] is
sufficiently small.

(Di. 2008, Di. & Ford 2012)

Kai Diethelm Numerical Solution of Fractional TVPs
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Existence and Uniqueness of Solutions

Corollary:
The graphs of two solutions to the same differential equation
subject to different initial or terminal conditions never meet or
cross each other.

(Di. & Ford 2012)

impossible
under our assumptions
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Integral Equation Formulation

Terminal value problem can be rewritten as Fredholm integral
equation

y(t) = y∗ +
1

Γ(α)

∫ b

a
G(t , s)f (s, y(s)) ds

with

G(t , s) =

{
−(b − s)α−1 for s > t ,
(t − s)α−1 − (b − s)α−1 for s ≤ t .

(Di. 2010)
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Shooting Methods

Rationale:
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Shooting Methods

Fundamental approach:
1 Guess initial value y(a)

2 Solve fractional differential equation (numerically) with this
initial value

3 Compare solution y(b) with required terminal value y∗:
if |y(b)− y∗| < ε then accept y as approximate solution to
terminal value problem,
if y(b)� y∗ then replace guess for initial value y(a) by
smaller number and go back to step 2,
if y(b)� y∗ then replace guess for initial value y(a) by
larger number and go back to step 2.
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Shooting Methods

Questions:
1 Good initial guess for y(a)?

Use terminal value y∗(unless additional information available)

2 Algorithm for numerical solution of initial value problem?

Use Adams-Bashforth-Moulton scheme
(Di., Ford & Freed 2002ff.; Ford, Morgado & Rebelo 2011ff.)

3 Step size?

Depends on required accuracy of final result
and on quality of starting value

4 Strategy for finding improved value for y(a)?

Bisection method (Ford, Morgado & Rebelo 2014)
or Newton iteration

Kai Diethelm Numerical Solution of Fractional TVPs
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Shooting Methods

Step size selection strategy:
1 Error of fractional initial value problem solver = εI + εN:

εI = error due to incorrectly chosen initial value
εN = error introduced by numerical approximation scheme

2 Early iterations:
approximation of correct initial value is poor
εI is large
no need to have very small εN

coarse discretization of interval suffices
reduction of computation cost

(Di. 2015)
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Shooting Methods

Step size selection strategy:
1 Error of fractional initial value problem solver = εI + εN:

εI = error due to incorrectly chosen initial value
εN = error introduced by numerical approximation scheme

2 Later iterations:
approximation of correct initial value is good
εI is small
εN should be small as well
fine discretization of interval is required
accurate solution can be achieved

(Di. 2015)
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Shooting Methods

Example problem:

Dα
∗0y(t) = Γ(2 + α)t +

1
4

(
y(t)− w − t1+α

)

Exact solution: y(t) = t1+α + w

Parameters:
α = 7/10
w = −3
b = 12 (rather long interval)
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Shooting Methods

Specific step size selection strategy:
Define number K of iterations of shooting method
Define minimal step size h (for last iteration)
Use step size hm = hK/m in mth iteration

Computational results:
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Galerkin Methods

Integral equation form of terminal value problem:

∫ b

a

[

y

G

(t)− y∗ − 1
Γ(α)

∫ b

a
G(t , s)f (s, y

G

(s)) ds

]
yj(t) dt

= 0

with

G(t , s) =

{
−(b − s)α−1 for s > t ,
(t − s)α−1 − (b − s)α−1 for s ≤ t .
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Galerkin Methods

Numerical solution yG of integral equation:∫ b

a

[
yG(t)− y∗ − 1

Γ(α)

∫ b

a
G(t , s)f (s, yG(s)) ds

]
yj(t) dt = 0

for j = 1,2, . . . ,n, where

yG(t) =
n∑

j=1

ajyj(t)
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Galerkin Methods

Well established method for boundary value problems
(1 < α < 2, one condition given at each end of [a,b])
Can be used for terminal value problems as well
Especially useful for linear problems, i. e.
f (t , y(t)) = p(t) + r(t)y(t)
Classical choice for basis functions yj :
piecewise linear functions on uniform mesh
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Detailed Analysis of Galerkin Scheme

Open questions:

Optimization of underlying mesh?
Choice of basis functions:

Higher order functions?
Combination of integer and non-integer exponents?
Globally supported functions?

“Natural” space of functions for convergence analysis?
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Generalized Problem

Terminal Value Problem

Dα
∗ay(t) = f (t , y(t)), y(b) = y∗

@
@I

Traditional assumption: Starting time a is known.

Question: What if a is unknown?

1 Existence of solution?
2 Uniqueness of solution under which additional condition?
3 Dependence of solution on a?
4 Numerical method?

Partial answers to questions 1, 2, 3 in Di. (2014)
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Thank you for your attention!

diethelm@gns-mbh.com

k.diethelm@tu-braunschweig.de
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 ''Workshop on Fractional Calculus and its Applications''  
Roma Tre University, March 11, 2015 

Santos Bravo Yuste and Joaquín Quintana-Murillo 
 Dpt. Física,  Univ. Extremadura,  Badajoz, Spain 

      
          

High order adaptive methods for fractional PDEs 

Santos B. Yuste. Dpto. Física. UEx 
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Outline 

2.   Why variable timesteps? 

3.   How to choose the size of the timesteps?  adaptive methods 

5.   A  naïve way to improve the L1 adaptive method: let’s 
use a  X  discretization scheme of higher order than L1 

1.   Very short presentation of the L1 finite difference scheme 
with non-uniform timesteps  (stability? Be aware!) 

4.   L1 adaptive method in action 

5.1   X=Cao-Xu(2013)    [as expected]  

5.2   X=Gao-Sun-Zhang(2014)   [surprise!]  

6.  Conclusions 
Santos B. Yuste. Dpto. Física. UEx 
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@u = F

  

 
 

L1 finite difference scheme  
Discretization of the FPDE 

Uj
m 

exact 

± ´ ±°t ¡K±2
x@ ´ @°

@t°
¡K

@2

@x2

@u = F ±U = F

approx. 

u(xj,tm) 

FPDE finite difference eq. 

Continuous integro-differential equation Finite difference equation 
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L1 finite difference method. 
Spatial discretization 

       

±2
xu(xj; t) =

u(xj+1; t)¡ 2u(xj ; t) + u(xj¡1; t)

(¢x)2

Discretization of the Laplacian: three point centered formula   

@2u

@x2

                  

    

£
±°t ¡K±2

x

¤
Un
j = F (xj ; tn)

·
@°

@t°
¡K

@2

@x2

¸
u(x; t) = F (x; t)
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L1 discretization of  the Caputo operator, 0<γ <1,  
 with not-fixed timesteps 

@°

@t°
y(t) ´ 1

¡(1¡ °)

Z t

0

d¿
1

(t¡ ¿)°
dy(¿)

d¿

dy

dt
¼ slope =

y(tm+1)¡ y(tm)

tm+1 ¡ tm

tm tm+1

L1 approx. of the Caputo derivative , piecewise constant approximation of
dy

dt

y(t)

tn+1 ¡ tn = ¢n = ¢

Discretization error: O
¡
¢2¡°¢

Simple idea:  we can increase the size of the steps without losing 
accuracy if we use discretizations of order higher than 2-γ 

Santos B. Yuste. Dpto. Física. UEx 
5



L1 finite difference method.  
Non-homogeneus discretization of the Caputo derivative 

                  

    

@°

@t°
y(t) ´ 1

¡(1¡ °)

Z t

0

d¿
1

(t¡ ¿)°
dy(¿)

d¿

±°t y(tn) =
1

¡(2¡ °)

n¡1X

m=0

T (°)
m;n [y(tm+1)¡ y(tm)] L1 approximation with 

variable timesteps 

straightforward 

0<γ <1 
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Sn = ¡(2¡ °)K
(tn ¡ tn¡1)

°

(¢x)2
;

¡Sn Un
j+1 + (1 + 2Sn)Un

j ¡ Sn Un
j¡1 =MUn

j + ~F (xj ; tn)

MUn
j ´ Un¡1

j ¡
n¡2X

m=0

~T (°)
m;n

£
Um+1
j ¡ Um

j

¤

£
±°t ¡K±2

x

¤
Un
j = F (xj ; tn)

±°t Un
j =

1

¡(2¡ °)

n¡1X

m=0

T (°)
m;n

£
Um+1
j ¡ Um

j

¤

±2
xu(xj; t) =

u(xj+1; t)¡ 2u(xj ; t) + u(xj¡1; t)

(¢x)2

Finite difference method: numerical scheme 

AU (n) =MU (n) + ~F (n) Tridiagonal  linear system 
(Thomas algorithm) 

Implicit 
method 

Substituting and reordering: 

Santos B. Yuste. Dpto. Física. UEx 
7



The L1 method  with variable timesteps  is 
 unconditionally stable (stable for any tm,  xj,  γ)  

(Yuste&Quintana-Murillo, Computer Physics Communications, 2012) 

°°°v(n)
°°°

2
·
°°°v(0)

°°°
2

Does the method always work? 
Stability 

It is proved there that  

always! 

bU (m)
j ¡ U

(m)
j = v

(m)
j

perturbed 
solution perturbation 

¡Sn Un
j+1 + (1 + 2Sn)Un

j ¡ Sn Un
j¡1 =MUn

j + ~F (xj ; tn)
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Outline 

2.   Why variable timesteps? 

3.   How to choose the size of the timesteps?  adaptive methods 

5.   A  naïve way to improve the L1 adaptive method: let’s 
use a  X  discretization scheme of higher order than L1 

1.   Very short presentation of the L1 finite difference scheme 
with non-uniform timesteps  (stability? Be aware!) 

4.   L1 adaptive method in action 

5.1   X=Cao-Xu(2013)  unstable not surprising 

5.2   X=Gao-Sun-Zhang(2014)  unstable!! surprise!! 

6.   Conclusions 
Santos B. Yuste. Dpto. Física. UEx 
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Difficulties 
Fractional  (sub)diffusion equation (FDE)  

 

 

 

Two main drawbacks of standard finite difference methods 

with fixed timesteps: 

  1. Slooooooooooowness 

  2. Inconsistent  accuracy  

@°

@t°
u(~r; t) = r2u(~r; t) + F (~r; t) 0 < ° < 1
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Standard  finite difference methods, fixed timestesps  

 1.   These methods become slooooooooooower as time increases 

0.1 1

0.1

1

10

 

 

CP
U

 ti
m

e
t

0.0 0.5 1.0 1.5 2.0

5
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15

20

 

 

CP
U

 ti
m

e

t

slope=2 

CPU time ~ n2 ~ t2 

                  

log-log  plot 

@°u

@t°
=

@2u

@x2
BC: u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼ IC: u(x; 0) = sin x
γ=1/4 Example: 

computational cost ~  [number of timesteps] Fact: 
2 

EXAMPLE 

Santos B. Yuste. Dpto. Física. UEx 
11



2.   The accuracy  of these methods is not consistent 

Errors of a standard  finite difference methods with fixed timestesps for the problem:  

0 1 2 3 4 5
1E-4

1E-3

0.01

 

 

er
ro

r

t

0.0376 

0.000182 

0:0376

0:000182
¼ 200

@°u

@t°
=

@2u

@x2
BC: u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼ IC: u(x; 0) = sin x
γ=1/4 

Large! 

Small! 
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What to do? 
Variable/adaptive timestesps 

t 

u 

tm tm+1 tm-1 

Small       
timesteps 

Large 
timesteps 

A good ODE integrator should exert some adaptive control over its own progress, making frequent 
changes in its stepsize.  […] Many small steps should tiptoe through treacherous terrain, while a few 
great strides should speed through smooth uninteresting countryside. The resulting gains in efficiency 
are not mere tens of percents or factors of two; they can sometimes be factors of ten, a hundred, or more 

Adaptive methods 
more reliable:  via  thorough sampling of difficult regions 

faster :   via  sparse sampling of quiet regions 

Press,Teukolsky, Vetterling & Flannery. Numerical recipes.The Art of Scientific Computing 
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1. A finite difference method that can work with variable timesteps 

2. A method  for choosing the right size of the timesteps … according to the behaviour 
of the solution 

adaptive method 

What do we need? 

Santos B. Yuste. Dpto. Física. UEx 
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1. Finite difference method  with variable timesteps  (an example: the L1 method). 

Discretization :    temporal  L1 (Oldham-Spanier)  
              spatial   three point centred formula 

What do we need? 

Fixed timesteps: Liu, Anh & Turner (2006), Murio (2008) 

Sn = ¡(2¡ °)K
(tn ¡ tn¡1)

°

(¢x)2
;

¡Sn Un
j+1 + (1 + 2Sn)Un

j ¡ Sn Un
j¡1 =MUn

j + ~F (xj ; tn)

MUn
j ´ Un¡1

j ¡
n¡2X

m=0

~T (°)
m;n

£
Um+1
j ¡ Um

j

¤

T (°)
m;n =

(tn ¡ tm)1¡° ¡ (tn ¡ tm+1)
1¡°

tm+1 ¡ tm

AU (n) =MU (n) + ~F (n) Tridiagonal linear system Implicit 
method 

@°

@t°
u(x; t) =

@2

@x2
u(x; t) + F (x; t)

where: 

Generalization for variable timesteps SBY & Quintana-Murillo, Comput. Phys. Commun. 183 (2012) 2594  

u(xj ; tn)! Un
j
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What do we need? 

2. A method  for choosing the right size of the timesteps … according to the behaviour 
of the solution. 

adaptive method 

Santos B. Yuste. Dpto. Física. UEx 
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What do we need? 

Adaptive procedures: 

●  Predictive step-doubling algorithm 

● Trial and error step-doubling algorithm 

● ……………………………………… 

2. A method  for choosing the right size of the timesteps … according to the behaviour 
of the solution 

adaptive method 

This 
talk 

Santos B. Yuste. Dpto. Física. UEx 
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 Step-doubling technique for FDE (notation) 

m = 0; 1; ¢ ¢ ¢ ; n¡ 1

¡
tm; Um

j

¢ ¡
tn; Un

j

¢? h
tfn¡1g; U

fn¡1g
j

i

U
fn¡1g
j Un

j

n -th timestep 
Some 

definitions 

¢n

bUn
j

¢n=2
U
fn¡1g
j 2 steps 

tn¡1 + ¢n=2 tn¡1 + ¢n
tn¡1

Un¡1
j

¢n ´ tn ¡ tn¡1

 ● 
 ● 

 ● 

 ● 

bUn
j

Un
j ¯̄

¯ bU (n)
k ¡ U

(n)
k

¯̄
¯

indicator of 
truncation error 

¯̄
¯ bU (n)

k ¡ U
(n)
k

¯̄
¯ ¼ tolerance ´ ¿

Our goal 

Santos B. Yuste. Dpto. Física. UEx 
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m = 0; 1; ¢ ¢ ¢ ; n¡ 1

¡
tm; Um

j

¢ ¡
tn; Un

j

¢? h
tfn¡1g; U

fn¡1g
j

i

¢m ´ tm ¡ tm¡1
U
fn¡1g
j Un

j

m-th  timestep 
Some 

definitions 

¢n

bUn
j

¢n=2
U
fn¡1g
j 2 steps 

 Trial and error (t&e) step-doubling algorithm for FDE 

2a. True:  then                               until   
¯̄
¯ bU (n)

k ¡ U
(n)
k

¯̄
¯ < ¿ then  ¢n ! ¢n=2

2b. False: then                               until   ¢n ! 2¢n

¯̄
¯ bU (n)

k ¡ U
(n)
k

¯̄
¯ > ¿ then  

tn = tn¡1 + ¢n

tn = tn¡1 + ¢n=2

3. Repeat [i.e., n! n + 1 and go to 1]

1.   Bootstrap of step n:    ¢n = ¢n¡1 and  
¯̄
¯ bU (n)

k ¡ U
(n)
k

¯̄
¯ > tolerance ´ ¿

? 

 t&e step-doubling algorithm 
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Outline 

2.   Why variable timesteps? 

3.   How to choose the size of the timesteps?  adaptive methods 

5.   A  naïve way to improve the L1 adaptive method: let’s 
use a  X  discretization scheme of higher order than L1 

1.   Very short presentation of the L1 finite difference scheme 
with non-uniform timesteps  (stability? Be aware!) 

4.   L1 adaptive method in action 

5.1   X=Cao-Xu(2013) [as expected]  

5.2   X=Gao-Sun-Zhang(2014)  [surprise!] 

6.   Conclusions 
Santos B. Yuste. Dpto. Física. UEx 
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@°u

@t°
=

@2u

@x2
+ f(x; t)

u(x = 0; t) = u(x = ¼; t) = 0
a = p = 20

u(x; 0) = sin x

f(x; t) =

·
1 +

¡(1 + p)t°

¡(1 + p¡ °)

¸
atp sin x

t 

The method works! 

¿ = 10¡3

 t&e step-doubling algorithm 

large 
 timestep 

small 
 timesteps 

Exact solution 

21



Is the new  t&e  method an improvement over 
standard non-adaptive methods? 

1.  How fast is the t&e  method? 

2.  How are the numerical errors? 

How good is the  t&e method ? 

Santos B. Yuste. Dpto. Física. UEx 
22



How fast is the t&e method? 

¿ = 10¡4

Slope=0.2 

Slope=2 

(*) estimation 

 

 

 

γ=1/4 

○  adaptive 

   fixed timesteps 
     Δn=0.01 

1E-10 1E-7 1E-4 0.1 100

0.1

1

10

100

1000

 

 

CP
U 

tim
e

t

Really fast!! 

t 1.30 8.34 92.82 

CPU time  Δn=0.01 8 s 50 minutes ≈ 5 days  (*) 

CPU time adaptive 35 s 44 s 54 s 

Santos B. Yuste. Dpto. Física. UEx 
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γ=1/4 ¿ = 10¡3

t=1.26×103 

t=3.19×10-2 

t=1.91×10-8 

t=5.12 

CPU time: 
1 minute (adaptive) 

 vs 
 3 years (Δn=0.01) Santos B. Yuste. Dpto. Física. UEx 
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Solution at the midpoint u(¼=2; t) vs. t for ° = 1=4. The symbols are the numerical
solution. In all cases ¿ = 0:001, ¢x = ¼=40, ¢0 = 0:01. The line is the exact solution .

¿ = 10¡3γ=1/4 

5 10 15 20 25
8
6
4

2
0
2 Log10 Δn   vs   n 

Really fast!! 
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25



Size of the timesteps  

Solution at the midpoint u(¼=2; t) vs. time for ° = 1=4, º = 2¼ and a = 1=10. Solid
squares: numerical method with ¢n = 0:1; Open symbols: numerical solution with
tolerance ¿ = 10¡3; line: exact solution. In all cases ¢x = ¼=40 and ¢0 = 0:01. Inset:
detail of the solution u(¼=2; t) for short times.

@°u

@t°
=

@2u

@x2
+ f(x; t)

u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼

u(x; 0) = sin x

u(x; t) = [E°(¡t°) + a sin(ºt)] sin x

Mittag-Leffler function 

Exact solution 

f(x; t) = a [sin(ºt) + º° sin (ºt + °¼=2)] sin x

0 20 40 60 80 100 120
8

6

4

2

0

Log10 Δn   vs   n 

¿ = 10¡3γ=1/4 

No so fast!  
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Last example:  
source and sink of 

subdiffusive  particles 

@°u

@t°
=

@2u

@x2

u(x = 0; t) = 1
u(x; 0) = 0

u(x = 4; t) = 0

12 orders 
of 

magnitude! 

SOURCE 

SINK 

  No standard* method can solve this problem   

* Finite difference method with fixed timesteps  

γ=1/4 
¿ = 10¡3

Santos B. Yuste. Dpto. Física. UEx 
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1.  How fast is the t&e  method? 

2.  How are the numerical errors? 

Is the new  t&e  method an improvement over 
standard non-adaptive methods? 

Santos B. Yuste. Dpto. Física. UEx 
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1E-8 1E-6 1E-4 0.01 1 100
1E-4

1E-3

0.01

 

 

er
ro

r

t
Numerical errors at the mid-point of (i) the adaptive method with ¿ = 10¡4 and ¢0 =
0:01 (circles), and (ii) the method with constant timesteps of size ¢n = 0:01 (triangles).
In all cases ° = 1=4 and ¢x = ¼=20.

How are the errors? 

γ=1/4 

¿ = 10¡4

¢n = 0:01

Errors in the 
adaptive algorithm 

are even (great!, 
compare with 
those for fixed 

timesteps) 

 t&e step-doubling algorithm 

Homogeneous! 

Homogeneous! 

Fixed 

Adaptive 
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1E-8 1E-6 1E-4 0.01 1 1001E-4

1E-3

0.01

 

 

er
ro

r

t
Numerical errors at the mid-point of (i) the adaptive method with ¿ = 10¡4 and ¢0 =
0:01 (circles), and (ii) the method with constant timesteps of size ¢n = 0:01 (triangles).
In all cases ° = 1=4 and ¢x = ¼=20.

How are the errors? 

γ=1/4 

¿ = 10¡4

¢n = 0:01

► 

 Tolerance=10-4  
and errors have 

the same order of 
magnitude 

 t&e step-doubling algorithm 

The tolerance is a convenient indicator of truncation error ! 

Fixed 

Adaptive 
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Outline 

2.   Why variable timesteps? 

3.   How to choose the size of the timesteps?  adaptive methods 

5.   A  naïve way to improve the L1 adaptive method: let’s 
use a  X  discretization scheme of higher order than L1 

1.   Very short presentation of the L1 finite difference scheme 
with non-uniform timesteps  (stability? Be aware!) 

4.   L1 adaptive method in action 

5.1   X=Cao-Xu(2013) [as expected] 

5.2   X=Gao-Sun-Zhang(2014)  [surprise!] 

6.   Conclusions 
Santos B. Yuste. Dpto. Física. UEx 
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Program of activities: 
 
1) Select a discretization formula of order higher than L1 

 
2) Generalize this formula to variable timesteps 

 
3) Employ this formula to build finite difference schemes for the 

PDE  
 

4) Is the numerical method stable? 
 

5) Check the numerical method with some standard examples.  

A  naïve way to improve the L1 adaptive method:  
let’s use a  X  discretization scheme of higher order than L1 
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Program for the Cao-Xu (*) dicretization scheme of order   3+γ : 
 

1) Select a discretization formula of order higher than L1   
 

2) Generalize this formula to variable timesteps  
 

3) Employ this formula to build finite difference schemes for the PDE  
 

4) Is the numerical method stable? 
 

5) Check the numerical method with some standard examples.  

4) The method with fixed  timesteps  of size  Δ  is not unconditionally stable (*)    
For a given spatial discretization, the method becomes unstable for Δ  large enough   
one has to expect difficulties for the method with variable timesteps if Δn is large.    

(*) Cao, J. & Xu, C. A high order schema for the numerical solution of the fractional 
ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013). 
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0 2 4 6 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9
Cao-Xu scheme 
fixed timesteps 

constant timesteps:  
Δn = Δ =0.01 

Δn = Δ =0.2 

# timesteps: 400 

# timesteps: 40 

u(1/2,t)  vs  t 

u(1/2,t)  vs  t 
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5 10 15 20 25

8

6

4

2

0

0.0 0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1.0

τ=0.001 

How does the T&E algorithm deal with the onset of instability? 

Log10 Δn   vs   n  

u(1/2,t)  vs  t 

Solution Size of the timesteps 

Cao-Xu scheme 
Variable adaptative timesteps 

STUCK! 

very small 
timesteps  
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Program for the L1-2  dicretization scheme of order   3-γ  by Gao-Sun-Zhang  (*) : 
 
1) Select a discretization formula of order higher than L1   

 
2) Generalize this formula to variable timesteps  

 
3) Employ this formula to build finite difference schemes for the PDE  

 
4) Is the numerical method stable? 

 
5) Check the numerical method with some standard examples.  

4) The method with fixed  timesteps  of size Δ  “is”  unconditionally stable  
 For a given spatial discretization, the method “is” always stable for arbitrarily large  Δ   
One does not expect difficulties for the method with variable timesteps  for any {Δn} .    

(*) Gao, G., Sun, Z. & Zhang, H. A new fractional numerical differentiation formula to 
approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 
33–50 (2014). 
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0 1 2 3 4
0

1000

2000

3000

4000

Check of   
“The L1-2 method with fixed  timesteps  is  unconditionally stable” 

Case:   γ=α=1/2,      Δn = 0.1,      Δx=1/200  

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

     

Log10 u(x=1/2,t)  vs   t  

Log10 u(x,t)  vs   x  

t=3 

t=2 

t=4 
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0 1 2 3 4 5
0

10000

20000

30000

40000

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

Check of   
“The L1-2 method with fixed  timesteps  is unconditionally stable” 

Case:   γ=α=1/2,      Δn = 0.5,      Δx=1/200  

     

Log10 u(x=1/2,t)  vs   t  

Log10 u(x,t)  vs   x  

t=3 

t=2 

t=4 
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0 1 2 3 4 5

3.0
2.5
2.0
1.5
1.0
0.5
0.0

0 1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8

@°u

@t°
=

@2u

@x2
+ f(x; t)

u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼

u(x; 0) = sin x

f(x; t) = a [sin(ºt) + º° sin (ºt + °¼=2)] sin x

Log10 errorn   vs   tn  u(π/2,t)  vs  t 

Case:   γ=1/4,      Δn = 0.02,      Δx=1/200,    a=1/10,   ω=2π  

L1-2 
fixed timesteps 

Stable 
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0 1 2 3 4 5
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

0 1 2 3 4 5 6

0.3
0.4
0.5
0.6
0.7
0.8

    

   

  

@°u

@t°
=

@2u

@x2
+ f(x; t)

u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼

u(x; 0) = sin x

f(x; t) = a [sin(ºt) + º° sin (ºt + °¼=2)] sin x

Log10 errorn   vs   tn  u(π/2,t)  vs  t 

Case:   γ=1/4,      Δn = 0.1,      Δx=1/200,    a=1/10,   ω=2π  

L1-2 
fixed timesteps 

Stable 
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0 1 2 3 4 5 6

0.3
0.4
0.5
0.6
0.7
0.8

    

   

  

2 4 6 8 10

1.80

1.75

1.70

1.65

1.60

1.55

@°u

@t°
=

@2u

@x2
+ f(x; t)

u(x = 0; t) = u(x = ¼; t) = 0

0 · x · ¼

u(x; 0) = sin x

f(x; t) = a [sin(ºt) + º° sin (ºt + °¼=2)] sin x

Log10 errorn   vs   tn  u(π/2,t)  vs  t 

Case:   γ=1/4,      Δn = 0.5,      Δx=1/200,    a=1/10,   ω=2π  

L1-2 
fixed timesteps 

Stable 
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0 2 4 6 8 10 12

4

3

2

1

0

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1.0

    

   

  

Log10 errorn   vs   tn  

u(π/2,t)  vs  t 

Case:   γ=1/4,      τ= 0.01,  
     Δx=1/200,   a=1/10,   ω=2π  

L1-2 
variable timesteps 

0 10 20 30 40 50

4

3

2

1

0

Log10 Δn   vs   n  

Size of the timesteps 

Solution 

Stable 
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0.00 0.01 0.02 0.03 0.04 0.05
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 10 20 30 40 50

8

6

4

2

0

Case:   γ=1/4,      τ= 0.001,  
     Δx=1/200,   a=1/10,   ω=2π  

Log10 Δn   vs   n  

Size of the timesteps 

0.000 0.005 0.010 0.015 0.020 0.025 0.030
4

3

2

1

0

u(π/2,t)  vs  t Solution 

Log10 errorn   vs   tn  

STUCK! 

L1-2 
variable timesteps 
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0

0 10 20 30 40 50

8

6

4

2

0

0.00 0.01 0.02 0.03 0.04 0.05
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

u(π/2,t)  vs  t 

Solution 

Log10 Δn   vs   n  

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

2

3

4
5

Log10 Δn   vs   n  

u(π/2,t)  vs  t 

Size of the timesteps 

STUCK! 

MARCHING! 

SURPRISE!!  Δn = 0.01,  

L1-2 
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1
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4
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6
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0

0.00 0.01 0.02 0.03 0.04 0.05
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

u(π/2,t)  vs  t 

Solution 

Log10 Δn   vs   n  

Log10 Δn   vs   n  

u(π/2,t)  vs  t 

Size of the timesteps 

STUCK! 

MARCHING! 

SURPRISE!!  

Δn = 0.01,  

L1-2 
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0.0 0.2 0.4 0.6 0.8 1.0
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1
0
1
2
3
4

0 10 20 30 40 50

8
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4

2

0

Solution 

u(π/2,t)  vs  t 

Size of the timesteps 

MARCHING! 

SURPRISE!!  

0 10 20 30 40 50
4

3

2

1

0
Log10 Δn   vs   n  

Fixed timestep: Δn = 0.01  

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.4
0.5
0.6
0.7
0.8
0.9
1.0

PERFECT!!  

Log10 Δn   vs   n  

             

Δn = 0.01,  

L1-2 

Large fixed timesteps can lead to better solutions than smaller variable timesteps! 

? 
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Conclusions 

   L1 adaptive method : excellent in many cases  fast and accurate   

   L1 method with variable timesteps is unconditionally stable    

   Large fixed timesteps can lead to better solutions than smaller variable 

timesteps!   

   High-order methods developed for fixed timesteps  should be use with care 

when variable timesteps are employed     
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Take away idea 

To build higher order adaptive methods is harder than one may think   

► 
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Outline

1 Introduction and motivations

2 Havriliak–Negami: a general overview

3 New formalization (of GL type) for Havriliak–Negami operators
Continuous operators
Discretized operators

4 Numerical experiments and Matlab codes

R.Garrappa (Univ. of Bari - Italy) Numerical methods for anomalous polarization Roma 2015 2 / 30



Havriliak-Negami models

Maxwell’s equations:
∇×H = ε0

∂

∂t
E +

∂

∂t
P Ampere’s law

∇× E = −µ0
∂H

∂t
Faraday’s law

E: electric field H: magnetic field

Real-world applications: antenna design, nano–optical storage devices, medical
diagnosis (MRI), cancer therapy, ...

Description of polarization (in the frequency domain)

P̂ = X̂ (ω)Ê

X̂ (ω) : dielectric response

Determined from experimental data on the basis of some suitable model !

R.Garrappa (Univ. of Bari - Italy) Numerical methods for anomalous polarization Roma 2015 3 / 30



What model for the dielectric response ?

Relaxation properties: return to equilibrium after an external force

In the frequeny domain (Fourier or Laplace transform):

Y (s) = G (s)F (s)

F (s) : external stimulation Y (s) : output of the system
G (s) : Susceptibility (s = iω) or Transfer function (s ∈ C)

In the time domain (integral or differential operators)

y(t) =

∫ t

0

g(t − u)f (u) du

Relaxation function g(t) is the (Fourier or Laplace) inverse of G (s)

g(t) difficult or no differential operators: problem for numerical simulation !
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A simple model: the Debye relaxation

G (s) =
1

s + λ

1

λ
> 0 relaxation time

From frequency–domain to time–domain

Frequency Time

Relaxation func. G (s) =
1

s + λ
g(t) = e−λt

Integral eq. Y (s) = G (s)F (s) y(t) =

∫ t

0

e−λ(t−u)f (u) du

ODE
[
G (s)

]−1
Y (s) = F (s) y ′(t) + λy(t) = f (t)

No memory in Debye relaxation: uncommon in practice!
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Introducing memory preservation

Debye :
1

s + λ
e−λt

Cole-Cole :
1

sα + λ
tα−1Eα,α(−tαλ)

Havriliak–Negami :
1

(sα + λ)γ
tαγ−1Eγα,αγ(−tαλ)

Other models: Cole–Davidson, Excess wing (Hilfer and Nigmatullin et al.), ecc.

Eαβ(z) =
∞∑
k=0

zk

Γ(αk + β)
Eγα,β(z) =

1

Γ(γ)

∞∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)

0 < α < 1, 0 < γ <
1

α
E.Capelas, F.Mainardi and J.Vaz “Models based on ML functions for anomalous

relaxation in dielectrics”. In: Eur. Phys. J. ST 193 (2013)
F.Mainardi and R.Garrappa “On complete monotonicity of the Prabhakar function

and non–Deby relaxation in dielectrics”. In: J. Comput. Phys. (2014)
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Differential operators in the time domain

Debye :
1

s + λ

(
Dt + λ

)
y(t) = f (t)

Cole-Cole :
1

sα + λ

(
0D

α
t + λ

)
y(t) = f (t)

Havriliak–Negami :
1

(sα + λ)γ
(

0D
α
t + λ

)γ
y(t) = f (t) ???

A Pseudo Fractional Differential operator
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Differential operators in the time domain

Debye :
1

s + λ

(
Dt + λ

)
y(t) = f (t)

Cole-Cole :
1

sα + λ

(
0D

α
t + λ

)
y(t) = f (t)

Havriliak–Negami :
1

(sα + λ)γ
(

0D
α
t + λ

)γ
y(t) = f (t) ???

(
0D

α
t + λ

)γ
= exp

(
−λt
α

0D
1−α
t

)
· 0D

αγ
t · exp

(
λt

α
0D

1−α
t

)
a

Useful for theoretical investigations

aR.R.Nigmatullin and Y.E.Ryabov “Cole–Davidson dielectric relaxation as a
self–similar relaxation process”. In: Physics of the Solid State 39.1 (1997)
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Differential operators in the time domain

Debye :
1

s + λ

(
Dt + λ

)
y(t) = f (t)

Cole-Cole :
1

sα + λ

(
0D

α
t + λ

)
y(t) = f (t)

Havriliak–Negami :
1

(sα + λ)γ
(

0D
α
t + λ

)γ
y(t) = f (t) ???

(
0D

α
t + λ

)γ
=
∞∑
k=0

(
γ

k

)
λk0D

α(γ−k)
t

a b

No satisfactory for error control

aV.Novikov et al. “Anomalous relaxation in dielectrics. Equations with fractional
derivatives”. In: Mater. Sci. Poland 23.4 (2005)

bP.Bia et al. “A novel FDTD formulation based on fractional derivatives for
dispersive Havriliak–Negami media”. In: Signal Processing, 107 (2015) 312–318
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An operator for Havriliak–Negami models

Y (s) =
1(

sα + λ
)γ F (s) ⇐⇒ y(t) =

∫ t

0

eγα,αγ(τ ;−λ)f (t − τ) dτ

In terms of a suitable operator:

y(t) = Eγα,αγ,−λ,0+f (t)

Eγα,β,ω,a+f (t) =

∫ t

a

eγα,β(τ ;ω)f (t − τ) dτ eγα,β(t;ω) = tβ−1Eγα,β(tαω)

Studied in :

1 Prabhakar [Yokohama Math. J., 1971]

2 Kilbas, Saigo & Saxena [Integr. Transf. Spec. Funct., 2004]

3 Garra, Gorenflo, Polito & Tomovski [Appl. Math. Comput., 2014]
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An operator for Havriliak–Negami models

y(t) = Eγα,αγ,−λ,0+f (t)

Some properties:

Bounded operator

Composition with functions and operators of fractional calculus

Left-inversion (derivative)

f (t) = Dγ
α,αγ,−λ,0+y(t) =

dm

dtm
E−γα,m−αγ,−λ,0+y(t), m = dαγe

Caputo-type derivative for Havriliak–Negami models

CDγ
α,αγ,−λ,0+y(t) = E−γα,m−αγ,−λ,0+

dm

dtm
y(t)

= Dγ
α,αγ,−λ,0+

(
y(t)−

m−1∑
k=0

tk

k!
y (k)(0+)

)
R.Garra, R.Gorenflo, F.Polito and Z.Tomovski “Hilfer-Prabhakar derivatives and

some applications”. In: Appl. Math. Comput. 242 (2014)
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Havriliak–Negami operator of Grünwald–Letnikov type

Eγα,αγ,−λ,0+f (t) = lim
h→0

∞∑
k=0

W
(γ)
k f (t − kh)

W
(γ)
k ≡W

(γ)
k (α, λ, h)

Riemann–Liouville operators

γ = 1 λ = 0 E1
α,α,0,0+ = tα−1

Γ(α) ∗ = Jα0 (RL integral)

γ = −1 λ = 0 E−1
α,−α,0,0+ = t−α−1

Γ(−α)∗ = Dα
0 (RL derivative)

Consistence with traditional Grünwald–Letnikov operators (γ = ±1 and λ = 0)

GL integral : W
(1)
k = hαω

(−α)
k

GL derivative : W
(−1)
k =

1

hα
ω

(α)
k

ω
(α)
k = (−1)k

(
α

k

)
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Havriliak–Negami operator of Grünwald–Letnikov type

Eγα,αγ,−λ,0+f (t) = lim
h→0

∞∑
k=0

W
(γ)
k f (t − kh)


W

(γ)
k =

hαγ

(1 + hαλ)γ
w

(γ)
k

w
(γ)
0 = 1, w

(γ)
k =

k∑
j=1

(
(1− γ)j

k
− 1

)
ω

(α)
j

1 + hαλ
w

(γ)
k−j

ω
(α)
j : coefficients of standard Grünwald–Letnikov operators

Consistence with standard GL operators

γ = +1 λ = 0 W
(1)
k = hαω

(−α)
k GL integral

γ = −1 λ = 0 W
(−1)
k =

1

hα
ω

(α)
k GL derivative

Why these coefficients W
(γ)
k ?
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Discretization of convolution integrals

y(tn) = Eγα,αγ,−λ,0+f (t) =

∫ tn

0

eγα,αγ(τ ;−λ)f (tn − τ) dτ Convol. integral

yn =
n∑

k=0

W
(γ)
k f (tn − kh) Convol. quadrature

Convergence : lim
h→0

∞∑
k=0

W
(γ)
k f (tn − kh) =

∫ tn

0

eγα,αγ(τ ;−λ)f (tn − τ) dτ

How to compute weights W
(γ)
k (kernel eγα,αγ(t;−λ) difficult) ?

Convolution quadratures by Lubich [Lubich, 1988]

Use only the LT
1(

sα + λ
)γ and not eγα,αγ(t;−λ)

Based on classical linear multistep methods for ODEs
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Lubich’s convolution quadratures
Consider a k-step linear multistep method for ODEs

α0yn + α1yn−1 + · · ·+ αkyn−k = h (β0fn + β1fn−1 + · · ·+ βk fn−k)

Characteristic polynomials:

ρ(ξ) = α0 + α1ξ + · · ·+ αkξ
k

σ(ξ) = β0 + β1ξ + · · ·+ βkξ
k

Generating function: ∆(ξ) =
ρ(1/ξ)

σ(1/ξ)

∞∑
n=0

W (γ)
n ξn = G

(
∆(ξ)

h

)
=

1((
∆(ξ)
h

)α
+ λ
)γ

Theorem ([Lubich, 1988])

Let ∆(ξ) be the generating function of a linear multistep method of order p. Then∣∣y(tn)− yn
∣∣ ≤ Ctαγ−1

n hp
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Grünwald–Letnikov scheme

Implicit Euler method: yn = yn−1 + hf (tn, yn)

Generating function: ∆(ξ) =
ρ(1/ξ)

σ(1/ξ)
= 1− ξ

Application to RL fractional integrals G (s) = 1/sα

G

(
∆(ξ)

h

)
=

hα(
1− ξ

)α = hα
∞∑
n=0

ω(−α)
n ξn

Grünwald–Letnikov integral: 0J
α
t y(tn) ≈ hα

n∑
k=0

ω
(−α)
k y(tn − kh)

Grünwald–Letnikov derivative: 0D
α
t y(tn) ≈ 1

hα

n∑
k=0

ω
(α)
k y(tn − kh)
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Grünwald–Letnikov scheme for Havriliak–Negami

Generating function: ∆(ξ) =
ρ(1/ξ)

σ(1/ξ)
= 1− ξ

G (s) =
1

sα
←→ G (s) =

1(
sα + λ

)γ

Grünwald–Letnikov scheme for the Havriliak-Negami operator

G

(
∆(ξ)

h

)
=

hαγ(
(1− ξ)α + hαλ

)γ =
∞∑
n=0

W (γ)
n ξn

How to compute Wn ?
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Evaluation of convolution weights

Miller’s Formula: power β ∈ C of a Formal Power Series(
1 + a1ξ + a2ξ

2 + a3ξ
3 + . . .

)β
= v

(β)
0 + v

(β)
1 ξ + v

(β)
2 ξ2 + v

(β)
3 ξ3 + . . .

where coefficients v
(β)
n are recursively evaluated as

v
(β)
0 = 1, v (β)

n =
n∑

j=1

(
(β + 1)j

n
− 1

)
ajv

(β)
n−j .

Application to
hαγ

((1− ξ)α + hαλ)γ

1 Miller’s formula for (1− ξ)α

2 Add hαλ to the first weight

3 Miller’s formula for power −γ of the resulting series

Computational cost: N2 + 3N
Explicit recursive relationship

W
(γ)
k =

hαγ

(1 + hαλ)γ
w

(γ)
k

w
(γ)
0 = 1, w

(γ)
k =

k∑
j=1

(
(1− γ)j

k
− 1

)
ω

(α)
j

1 + hαλ
w

(γ)
k−j
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Grünwald–Letnikov operators for Havrialiak–Negami

Integral operator

y(t) = Eγα,αγ,−λ,0+f (t) = lim
h→0

∞∑
k=0

W
(γ)
k f (t − kh)

First order approx. y(tn) =
n∑

k=0

W
(γ)
k f (tn − kh)

Differential operator

D−γα,m−αγ,−λ,0+y(t) = lim
h→0

∞∑
k=0

W
(−γ)
k y(t − kh) = f (t)

First order approx.
n∑

k=0

W
(−γ)
k y(tn − kh) = f (tn)

γ → 1, λ→ 0: classic Grünwald–Letnikov operators and schemes
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Numerical experiments

y(t) = Eγα,αγ,−λ,0+ cos(2πt), t ∈ [0, 1]

α γ λ
Set 1 0.3 0.8 4.0
Set 2 0.6 0.7 4.0
Set 3 0.9 0.4 4.0

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

y(
t)

 

 

Param. set 1
Param. set 2
Param. set 3
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Numerical experiments

Errors and EOC for the test problem

y(t) = Eγα,αγ,−λ,0+ cos(2πt), t ∈ [0, 1]

Param. set 1 Param. set 2 Param. set 3
h Error EOC Error EOC Error EOC

2−4 2.63(−4) 2.94(−3) 1.49(−2)
2−5 1.73(−4) 0.601 1.34(−3) 1.133 7.45(−3) 0.998
2−6 9.70(−5) 0.837 6.37(−4) 1.075 3.72(−3) 1.001
2−7 5.09(−5) 0.929 3.09(−4) 1.044 1.86(−3) 1.004
2−8 2.59(−5) 0.975 1.51(−4) 1.031 9.21(−4) 1.011
2−9 1.29(−5) 1.005 7.38(−5) 1.033 4.53(−4) 1.023

EOC = log2

(
E (h)/E (

h

2
)
)
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Numerical experiments

y(t) = Eγα,αγ,−λ,0+

(
1 + t(1− t)

)
, t ∈ [0, 1]

α γ λ
Set 1 0.3 0.8 4.0
Set 2 0.6 0.7 4.0
Set 3 0.9 0.4 4.0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(
t)

 

 

Param. set 1
Param. set 2
Param. set 3
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Numerical experiments

Errors and EOC for the test problem

y(t) = Eγα,αγ,−λ,0+

(
1 + t(1− t)

)
, t ∈ [0, 1]

Param. set 1 Param. set 2 Param. set 3
h Error EOC Error EOC Error EOC

2−4 2.46(−4) 1.82(−3) 3.62(−3)
2−5 1.23(−4) 1.000 9.15(−4) 0.990 1.82(−3) 0.990
2−6 6.13(−5) 1.002 4.58(−4) 0.997 9.14(−4) 0.997
2−7 3.05(−5) 1.005 2.29(−4) 1.003 4.56(−4) 1.003
2−8 1.52(−5) 1.011 1.14(−4) 1.010 2.26(−4) 1.010
2−9 7.46(−6) 1.023 5.59(−5) 1.022 1.12(−4) 1.022

EOC = log2

(
E (h)/E (

h

2
)
)
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Mittag–Leffler and Prabhakar functions

Eγα,β,ω,a+f (t) =

∫ t

a

eγα,β(τ ;ω)f (t − τ) dτ

eγα,β(t;ω) Laplace transform inverse of
sαγ−β(
sα − ω

)γ
The Prabhakar function

eγα,β(t;ω) = tβ−1Eγα,β(tαω) Eγα,β(z) =
1

Γ(γ)

∞∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)

When γ = 1, Eγα,β(z) is the Mittag–Leffler function

How to compute this functions ?
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Mittag–Leffler and Prabhakar functions

Eγα,β(z) =
1

Γ(γ)

∞∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)

Use of the series expansion only for very small |z | :

Convergence is very slow

Round-off and overflow errors

Numerical inversion of the Laplace transform
sαγ−β(
sα − ω

)γ :

Deformation of the Bromwich line in a suitable contour

Application of a quadrature rule

Error analysis to choose parameters

OPC: Optimal parabolic contour
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Mittag–Leffler and Prabhakar functions
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The Prabhakar function: accuracy

Eγα,β(z) : α = 0.6 β = 0.9 γ = 1.2 arg(z) =
3

4
π

0 2 4 6 8 10 12
10

−18

10
−17

10
−16

10
−15

10
−14

|z|

er
ro
r

Reference values: Maple with variable precision arithmetic (100 digits)
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The Mittag–Leffler function: fast algorithm

Eα,β(z) : α = 0.7 β = 1.0 arg(z) = π

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

|z|

C
P
U

T
im

e
(s
ec
.)

 

 

OPC
mlf

mlf : Matlab code by Podlubny and Kacenak
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The Mittag–Leffler function: fast algorithm

Eα,β(z) : α = 0.5 β = 1.0 arg(z) =
π

2

0 2 4 6 8 10 12
10

−18

10
−16

10
−14

10
−12

10
−10

|z|

er
ro
r

 

 

OPC
mlf

Reference values: Maple with variable precision arithmetic (100 digits)
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Other codes for FDEs
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Concluding remarks

The Havriliak–Negami model:

Applications in describing polarization processes

Pseudo fractional differential operator (not well known)

The Grünwald–Letnikov scheme:

Convolution quadrature rule

Weights evaluable in an explicit way

Further developments:

Higher order methods

Different methods for computing the weights

Maxwell’s equations (FDTD, Yee algorithm)
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Workshop on Fractional Calculus and its
Applications

Rome - 11 March 2015

Why new fractional derivatives?

Michele Caputo (Accademia dei Lincei)



The title of my presentation may sound ambiguous because

is transparent to the idea that there be a need of new frac-

tional derivatives or may sound an instigation to produce

new derivatives or that there are already new fractional

derivatives.

As a matter of fact there are already new fractional deriva-

tive, what I will say of the new derivatives concerns a note

in collaboration with M. Fabrizio in the journal: Progress

in fractional calculus and applications.

I will later briefly sketch the new derivatives with some of

their properties and di↵erences relative to that commonly

used. I will say almost no math, which is available in the

note in the web, but some discussion on fractional deriva-

tives.

Let me say that I was not completely satisfied with my

derivative from the very beginning and always hoped to

take care of it, but never did because of that monster called



priority and I was attracted by more urgent matters or ap-

plications and postponed it at retirement time.

But I had also the fear that as we say ”better” is an en-

emy of ”good” and new fractional derivatives could cause

confusion.

What cause my embarrassment and needed help is that the

derivative of elementary transcend functions turning into a

series and not into a somewhat elegant closed form formula,

the singularity it has in the time domain and the consequent

singularity in the frequency domain the sometime exagger-

ate use in some problems and fields of science without a

su�cient justification some colleagues complaining that it

is too complicate handle its use in some 3D problems.

After the use of fractional derivative in problems of physics,

economy and finance, in rheology and biology. I did all this

also myself but the force for what I will say comes from

the results of the others with the deep detailed research



appeared in many excellent books, I was surprised by how
it would help in so many di↵erent fields.

Only time will say if it is an appropriate approach

It would be possible that model of the various phenomena
need a di↵erent derivative,

I am for this conclusion, it will not generate confusion,
probably a progress as when it was found that di↵usion in
1D some phenomena requires models with 2 parameters
and not only one and we are lazy to adjust to this new
reality .

We are not yet used to this. The same would be in radioac-
tive decay since impurities are always present and memory
represents them. Just as the decrease of di↵usivity in sand
is a measure of the assessment of the grains of sand and
of the quantity of fluid went through it

Is clear what I mean, in spite of what I said. But I have
more about it concerning the fractional derivative



We have a concept and translate it into a model or a for-

mula.

But we do not know which part of the concept is left out

of the formula nor what is in the formula which was not in

the concept.

Both are important, also for the fractional derivative, which

most of us are using in applications.

I must also say that perhaps Mauro and myself do not want

to have the remorse of not having reacted after our feelings.

So it is already known that the new derivatives exist and

let me sketch them to you.



Classical Fractional Derivative

D

(↵)
f(t) =

1

�(1� ↵)

Z
t

0

f

0(⌧)

(t� ⌧)↵
d⌧ , ↵ 2 (0,1)

New Fractional Derivative with a exponential
kernel

D(↵)
f(t) =

M(↵)

(1� ↵)

Z
t

0
f

0(⌧) exp(�
↵

1� ↵

(t� ⌧))d⌧ , ↵ 2 (0,1)

with M(↵) a normalization factor, such that M(0) =

M(1) = 1.

Fractional derivative of sin!t

D(↵) sin!t =
cos c

1� ↵


sin(!t+ c)� exp(�

↵

1� ↵

t) sin c

�



where

cos c =
!

✓
↵

(1�↵)2
+ !

2
◆0.5 , sin c =

↵

(1�↵)
✓

↵

(1�↵)2
+ !

2
◆0.5



By a change of variable

� =
1� ↵

↵

2 [0,1]

as a function of �, the new fractional derivative assume the

form

R(�)
f(t) =

N(�)

�

Z
t

0
f

0(⌧) exp(�
(t� ⌧)

�

)d⌧

with N(0) = N(1) = 1. For � = 0 we have

R(0)
f(t) = f

0(t)

for � = 1

R(1)
f(t) = f(t)



Related with new definition of fractional derivative, we can

introduce the distributed-order fractional derivative

a

P

(↵)
b

f(t) =
Z

b

a

g(z)dz
h
P

(↵)
f(t)

i

LT

a

P

b

f(t) = F (p)
Z

b

a

pg(z)

log(p+ z)
dz

g(z) = 1

LT

a

P

b

f(t) =

"

p log
p+ b

p+ a

#

F (p)



Fractional Gradient of ↵�order with a Gaussian

kernel

r(↵)
u(x) =

↵

(1� ↵)⇡
↵

2

Z

⌦
ru(y) exp

 

�
↵

2(x� y)2

(1� ↵)2

!

dy

Fractional Divergence of ↵�order with a
Gaussian kernel

r(↵)
u(x) =

↵

(1� ↵)⇡
↵

2

Z

⌦
r · u(y) exp

 

�
↵

2(x� y)2

(1� ↵)2

!

dy

Fractional Laplacian of ↵�order with a Gaussian
kernel

(r2)(↵)u(x) =
↵

(1� ↵)⇡
↵

2

Z

⌦
r ·ru(y) exp

 

�
↵

2(x� y)2

(1� ↵)2

!

dy



Fourier Trasnform of gradient and divergence

FT (r(↵)
u)(⇠) = ⇡

1�↵

2
FT (ru)(⇠) exp

"

�
⇡

2(1� ↵)2⇠2

↵

2

#

FT (r(↵) · u)(⇠) = ⇡

1�↵

2
FT (r · u)(⇠) exp

"

�
⇡

2(1� ↵)2⇠2

↵

2

#

Response of kernel exp(�at)

a =
↵

1� ↵

m(!) =
M

(1� ↵)

!

(!2 + a

2)0,5

which is monotonic increasing with m(0) = 0, m(1) = N

1�↵

.

In the Laplace domain, if u(0) = 0, we have



TLD(↵)
u(t) =

p

p+ a

U = (1�
a

p+ a

)U

then, by the Laplace inversion

D(↵)
u(t) = u(t)� au(t) ⇤ exp(�↵t)

In the case of old fractional derivative with module

m(!) =
!

↵

�(1� ↵)

which is monotonic increasing with m(1) = 0, m

0(0) = 1.

FT with Gaussian kernel.

U = !


⇡

1�↵

↵

�
exp(�

⇡

2
!

2(1� ↵)2

↵

2
)



!

m

=
↵

2⇡(1� ↵)
, !

f

=
3↵

2⇡(1� ↵)

where !

m

is frequency of maximum and !

f

is frequency of

inflection. Which is bed shape m(0) = 0, m(1) = 0,

m

0(0) = ⇡

a

.

!

f

= 3!
m

U(!
f

)

U(!
m

)
= 3exp(�2)



It could include rheology with the work of Kornig and Muller
for the postglacial rebound and underground nuclear explo-
sions.

It could be used as Bagley and Torvik who at the Wright
Patterson Air Force Institute of Technology successfully
tested 143 materials for the blades of the rotors of the
jets and for the vibration abatement

Wenn v = z wir haben classic Cole and Cole often used for
Maxwell equations.

Deeper studies and experimental data may say which is best
to use in the single cases.

But most important the second principle of thermodynam-
ics is always included, which is a matter of substance.

It could be used for the evolution of he planetary systems
as for the evolution of our planet with Moon

The fractional derivative is now spreading also in economy
which in quiet period could evolve following the entropy rule
of physical systems.
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Fatigue and damage in the material science are conse-
quence to loading and unloading processes, which produces
a gradual and progressive damage e↵ects, involving crack
nucleation, creep rupture and then rapid fracture . Since
during damage processes, we observe a change of the in-
ternal structure. So we describe such structural variation
by an order parameter denoted by ↵ 2 [0,1].

It is well known that inside the fractional models, a linear
viscoelastic body B, can be defined by

�̃(x, t) = A(x)C
t0
D

↵

t

"(x, t) , ↵ 2 [0,1] (1)

where �(x, t) and "(x, t) are the stress and strain tensors
respectively. The operator C

t0
D

↵

t

denotes the Caputo deriva-
tive of ↵�order)

Fatigue and damage can be described by a variation of the
coe�cient ↵(x, t) of the fractional derivative. In this frame-
work, the virgin material, supposed as an elastic body, is
described by the coe�cient ↵ = 0. Then, fatigue con-
sequence of loading and unloading processes, produces an
increase of damage and of coe�cient ↵(x, t) accordingly.



Therefore, the material show viscous e↵ects, which will in-
crease with the increments of ↵, until reaching a limit value
↵c(x) < 1, wherein the stress goes to zero, with the sub-
sequent fracture. Then in this pattern, the fraction ↵ is
a function of (x, t) able to represent the evolution of the
material system. For this reason, in addition to the equa-
tion of motion, we have to consider a new equation for the
↵(x, t) variable.

Here, the stress is given by

�(t) = (↵c � ↵(t))2A(x)C
t0
D

↵

t

"(x, t). (2)

The coe�cient ↵c < 1 is such that 0  ↵(t)  ↵c, when
↵(t) = ↵c we have fracture. Moreover, the function F(t)
that describes fatigue, is defined by

F("(t0), P[0,t))) =
Z

t

t0
(↵c � ↵(⌧))A(x)C

t0
D

↵

t

"(x, ⌧) · "̇(x, ⌧)d⌧

(3)
here "(t0) denotes the initial virgin state and P[0,t) the pro-
cess restricted to the interval [0, t) .



The di↵erential system describing fatigue phenomenon is
given by the motion equation

⇢0(x)v̇(x, t) = r · �(x, t) + ⇢0(x)b(x, t) (4)

where v is the velocity, ⇢0 the density and b the external
source.

Now we introduce the Ginzburg-Landau (G-L) equation,
which is able to describe the material structural variations
by a phase field or order parameter, given by the field ↵(x, t).

Then, we consider the functions

F (↵) = ↵c � ↵̆ , G(↵) = 8↵c(↵̆2 �
3

4
↵̆

4) (5)

where the variable ↵̆ is given by

↵̆ =

8
><

>:

0 if ↵ < 0
↵ if 0  ↵  ↵c
↵c if ↵ > ↵c

For this purpose, we use a modified representation of the
Ginzburg-Landau equation,



⇢0(x)↵̇(x, t) = �(x)r2
↵(x, t) + F0(x)G

0(↵(x, t))

(6)

�F(s(x, t0), P[0,t)(x))F
0(↵(x, t))

where � is a positive coe�cient.

For the study of damage and fatigue is crucial that the
system satisfies the dissipation restrictions and admits the
existence of a free energy with features and properties in
agreement with the laws of thermodynamics. Because, we
are working with isothermal processes, the thermodynamic
restrictions are given by the Dissipation Principle, which
is obtained from the Second Law of the Thermodynamics
with constant temperature.

Dissipation Principle

On any pair (�, P ), there exists a state function  (·), called
free energy, such that

⇢0(x) ̇(x, t)  Pi

m

(x, t) + Pi

s

(x, t) (7)



where Pi

m

(x, t) denotes the internal mechanical power and
Pi

s

(x, t) the internal structural power.

By the use of the equations (4) and (6) we have

Pi

m

(x, t) = �(x, t) · "̇(x, t) =

(8)

(↵c � ↵(x, t))2A(x)CD↵

t0
"(x, t) · "̇(x, t)

Pi

s

(x, t) = ⇢0(x)↵̇
2(x, t) + �(x)r↵(x, t) ·r↵̇(x, t)�

(9)

F(s(x, t0), P[0,t)(x))↵(x, t) + F0(x)Ġ(↵(x, t))

From (7), (8) and (9) we obtain

⇢0 ̇(t)  (↵c � ↵(t))2AC

D

↵

t0
"(t) · "̇(t) + ⇢0↵̇

2(t)+

�r↵(t) ·r↵̇(t)� F(s(t0), P[0,t)))Ḟ (↵(t)) + F0Ġ(↵(t))

So, if we suppose that �̃(t) is the stress defined in (1), we
have

⇢0 ̇(t)  (↵c � ↵(t))
@

@t

Z
t

t0
(↵c � ↵(⌧))�̃(⌧) · "̇(⌧)d⌧+



+F0Ġ(↵(t) +
�

2

@

@t

(r↵(t))2 + Ḟ (↵(t))F(s(t0), P[0,t))) (10)

=
@

@t

(F (↵(t))F(s(t0), P[0,t)) +
�

2
(r↵(t))2 + F0G(↵(t)))

The two terms �

2(r↵(t))
2 and F0G(↵(t)) of the inequal-

ity (10) are conservative quantities and belong to the free
energy  .

For the study of simulation processes, fixed a time t

⇤
> 0,

we introduce the potential

V

t

⇤(↵(t)) = F (↵(t))F(t⇤) + F0G(↵(t))

for an assigned fatigue value F(t⇤) = F(s(t0), P[0,t⇤)) for all
t � t

⇤
. It is evident, that the behavior of the phase field ↵(t)

depends on the function V

0
t

⇤(↵(t)), because

⇢0(x)↵̇(x, t) = � (x))r2
↵(x, t)� V

0
t

⇤(↵(t)) (11)

So that, for understand the evolution of ↵(t) is crucial to
study the behavior of the function V

0
t

⇤(↵(t)) for di↵erent val-
ues of t⇤. Therefore, in the Fig.1 and 2, we have represented
the behavior of V

t

⇤(↵(t) at di↵erent values of fatigue.



Fig.1. The first graphic, in the space (↵, V ), describes the
behavior of the function V

t

⇤(↵(0)) at the initial time t = 0,
corresponding to virgin state, so fatigue F(t = 0) is zero.
In the second graphic, fatigue occurs at the time t1, for
which F(t1) > 0.

Fig. 2. These graphics (V
t

⇤
,↵) describe the behavior of

V

t

⇤(↵(t)) corresponding at the time t2 < t3 < t4, for which
F(t2) < F(t3) < F(t4) and such that t2 > t1 and F(t2) >

F(t1).



Now, we study the behavior with the potential V

t

⇤(↵(t))
related to the functions F and G defined with di↵erent
coe�cients. By the simulations represented in the Fig. 3,
we confirm a more rapid damage process as a function of
fatigue behavior. While for small fatigue values we observe
a greater material tenacity.

Fig. 3. The graphics of V

t

⇤(↵) show material tenacity in
the first part of the fatigue process.

Fig. 4. The graphics of V

t

⇤(↵) show the rapid damage
process in the final part of the fatigue process.



Maximum theorem

The maximum theorem for the damage variable ↵ is crucial
in order to describe a natural fatigue problem. For the
proof, we start from a di↵erential system defined by the
equations (4), (6), and (5) in a smooth domain ⌦ ⇢ R3 and
time interval I = [0, T ] ⇢ R, with the initial and boundary
conditions

u(x,0) = u0(x) , v(x,0) = v0(x) , ↵(x,0) = ↵0(x) (12)

u(x, t)|
@⌦ = 0 , r↵(x, t)|

@⌦ = 0 (13)

where u(x, t) is the displacement, so that u̇(x, t) = v(x, t).

Theorem. Any solution of the equation (6), with initial
conditions (12) such that 0  ↵0(x)  ↵c, with boundary
conditions (13), satisfies the restriction

0  ↵(x, t)  ↵c , for all t > 0 and a.e. x 2 ⌦ (14)

then using ↵ ↵

t

= �↵ ↵

t

and r↵ · r↵ = �r↵ · r↵ we
have

Z
T

0

Z

⌦
⇢↵ (t)↵

t

(t) + �(r↵ (t))2+



+↵ (t)F0

*

2↵(t)�
↵

2

2
(t)

+

dxdt � 0

so by the initial conditions we obtain
Z

⌦

1

2
⇢ (↵ (T ))2+ (15)

+
Z

T

0

"

� (r↵ (t))2 � ↵ (t)F0

*

2↵(t)�
↵

2

2
(t)

+#

dtdx  0

because
Z

T

0

Z

⌦
↵ (t)F0

*

2↵(t)�
↵

2

2
(t)

+

dxdt = 0

then from (15), ↵ (x, T ) = 0 for any T 2 [0,1] and a.e.
x 2 ⌦. Hence, it is satisfied the restriction that ↵(x, t) � 0..

To show that ↵(x, t)  ↵c, let us to consider the function

(↵� ↵c)+ =

(
↵� ↵c 8↵ > ↵c
0 8↵  ↵c

and suppose that ↵(x, t) > 1.

Thus, multiplying (6) by (↵�↵c)+, after an integration on



⌦, we have
Z

⌦

h
⇢(↵� ↵c)+↵

t

+ �r(↵� ↵c)+ ·r↵

+(↵� ↵c)+F0

*

2↵�
↵

2

2

+#

dx

= �
Z

⌦
h�1i (↵� ↵c)+

Z
t

0
[1� ↵(⌧)]Aru(⌧) ·ru̇(⌧)d⌧dx

then because
Z

⌦
h�1i (↵� ↵c)+

Z
t

0
[1� ↵(⌧)]Aru(⌧) ·ru̇(⌧)d⌧dx = 0

after a time integration on [0, T ], we obtain
Z

T

0

Z

⌦

h
⇢(↵� ↵c)+(↵� ↵c)

t

+ �r(↵� ↵c)+ ·r(↵� 1)

+(↵� 1)F0

*

2↵�
↵

2

2

+#

dxdt = 0

So,
Z

⌦

(
1

2
⇢

h
(↵� ↵c)+(T )

i2
+ �

Z
T

0

h
r(↵� ↵c)+(t)

i2
dt +

(16)

(↵� ↵c)+F0

*

2↵�
↵

2

2

+

dt

)

dx = 0,



because we have the sum of three positive quantities, it
follows that (↵�↵c)+(x, T ) = 0, r(↵�↵c)+(t) = 0 and (↵�
↵c)+(x, t) = 0 for any T 2 [0,1] . Therefore, the hypothesis
↵(x, t) > ↵c is inconsistent, from which the restriction (14)
is proved.

Some simulations of fatigue and stress

Finally, we study the behavior of fatigue and stress submit
to processes of loading and unloading on the strain, which
confirm the results of the paper.

So that, the simulations represented in Fig 5, 6, 7 and 8
correspond to several selections of the critical threshold ↵c
of order parameter, frequency ! and process time T , which
plot fatigue and stress of the equations (2) and (3), corre-
sponding to periodic processes with the same amplitude.



Fig.5. In the pictures (F , t) and (�, t), the behavior of fa-
tigue F(t) and stress �(t) as a funtion of t are respec-
tively plotted corresponding to the following values of or-
der parameter ↵c = ⇡

6, frequency ! = 3, and process time
T = 20⇡

!

,

Fig.6. The behavior of fatigue F(t) and stress �(t) are
respectively plotted corresponding to the following values
of order parameter ↵c = ⇡

12.



Fig.7. The behavior of fatigue F(t) and stress �(t) are
respectively plotted corresponding to the following values
of order parameter ↵c = ⇡

22.

Fig. 8. The behavior of fatigue F(t) and stress �(t) are
respectively plotted corresponding to the following values
of order parameter ↵c = ⇡

36.



Thank you for your attention
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We consider a fluid governed by the Navier-Stokes equation, which
in dimensionless form is{

∂~u
∂t + Re(~u · ∇)~u = −∇p + ∆~u
div~u = 0

where ~u(~x , t) is the velocity field of the fluid, p(~x , t) is the
pressure,

Re =
ρLV

µ
Reynolds number.

The approximation Re = 0 is the so called Stokes approximation,
which gives origin to the Stokes equation.

Guido Cavallaro Approach to equilibrium of a sphere in a Stokes fluid



The first solution to the Stokes equation in case of a sphere moving
at constant velocity V was obtained by Stokes (1851), and it gives
a drag force of the medium expressed by the well known formula

F = 6πµRV

with R radius of the sphere.

Guido Cavallaro Approach to equilibrium of a sphere in a Stokes fluid



It can be obtained by the following steps:
• we put in the reference frame in which the sphere is at rest,
hence the stationary equation to be solved is

−∇p + µ∆~u = 0, div~u = 0, ~u = −V x̂ at infinity

• we impose on the surface of the sphere: ~u = 0
• we then obtain the velocity field ~u and the pressure field p.
• we compute the force per unit area on the sphere, to be
integrated over the whole surface of the sphere:

Pi = −σiknk = p ni − σ′iknk

with σik stress tensor. In the first term it appears the ordinary
pressure, the second term (σ′ik) includes the friction effects due to
viscosity.

Guido Cavallaro Approach to equilibrium of a sphere in a Stokes fluid



For a sphere forced to oscillate at given frequency ω, the Stokes
equation can be solved exactly, giving a hydrodynamical drag force

F = 6πµR

(
1 +

R

δ

)
V (t) + 3πR2ρδ

(
1 +

2R

9δ

)
dV

dt
(1)

where δ =
√

2µ
ωρ
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Let us obtain by the last formula the force acting on a sphere with
arbitrary velocity V (t). We represent V (t) as a Fourier integral

V (t) =

∫ ∞
−∞

Vωe−iωtdω, Vω =
1

2π

∫ ∞
−∞

V (τ)e iωτdτ.

Since the equations are linear, the total force can be written as the
integral over the forces which are the Fourier components Vωe−iωt

(putting ν = µ
ρ ):

πρR3Vωe−iωt

{
6ν

R2
− 2iω

3
+

3
√

2ν

R
(1− i)

√
ω

}
.

Noting that
(

dV
dt

)
ω

= −iωVω, we can rewrite it as

πρR3e−iωt

{
6ν

R2
Vω +

2

3

(
V̇
)
ω

+
3
√

2ν

R

(
V̇
)
ω

1 + i√
ω

}
.
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Integrating over all the frequences ω, the first and second term
give respectively V (t) and V̇ (t). To integrate the third term, we
note that for ω < 0 this term must be substituted by the complex
conjugate, putting (1−i)√

|ω|
in place of (1+i)√

ω
; this because the

equation (1) has been obtained for a velocity A e−iωt with ω > 0,
and for a velocity A e iωt we have to obtain the complex conjugate.
Instead of an integral from ω = −∞ to +∞, we can take twice
the real part of the integral from ω = 0 to +∞.
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We have then

2<

(1 + i)

∫ ∞
0

(
V̇
)
ω

e−iωt

√
ω

dω


=

1

π
<

{
(1 + i)

∫ ∞
−∞

∫ ∞
0

V̇ (τ)e iω(τ−t)

√
ω

dωdτ

}

=
1

π
<

{
(1 + i)

∫ t

−∞

∫ ∞
0

V̇ (τ)e−iω(t−τ)

√
ω

dωdτ

+ (1 + i)

∫ ∞
t

∫ ∞
0

V̇ (τ)e iω(τ−t)

√
ω

dωdτ

}

=

√
2

π
<

{∫ t

−∞

V̇ (τ)√
(t − τ)

dτ + i

∫ ∞
t

V̇ (τ)√
(τ − t)

dτ

}

=

√
2

π

∫ t

−∞

V̇ (τ)√
(t − τ)

dτ.
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Hence we get for the force on a sphere moving with arbitrary
velocity

Fdrag = 6πµR V (t) +
1

2
Mf

dV

dt

+ 6πR2

√
µ

πρ

∫ t

−∞

V̇ (s)√
t − s

ds

1◦ term: stationary force term
2◦ term: added mass term (force due to accelerate the surrounding
fluid)
3◦ term: Basset memory term.
The solution for a sphere immersed in a Stokes fluid and also
subjected to its own weight is well known

Ms V̇ (t) = Msg − Fdrag (t)
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the solution can be explicitly computed via Laplace transform. The
equation of motion is

V̇ (t) + V (t) + α

∫ t

0

V̇ (s)√
t − s

ds = 1

V (0) = 0

L{V }(s) =
1

s(s + α
√

s + 1)

V (t) = 1 +
α

λ1 − λ2

{
eλ1tErfc

√
λ1t√

λ1
− eλ2tErfc

√
λ2t√

λ2

}

|V (t)− V∞| ≈
C√

t
for t →∞

moreover V (t) turns out to be monotone.
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In this setting we have analyzed the approach to equilibrium of an
harmonic oscillator immersed in a Stokes fluid:

Ms Ẍ (t) = −K X (t)− Fdrag (t)

which in dimensionless form looks like

Ẍ (t) + Ẋ (t) + K X (t) + α

∫ t

0

Ẍ (s)√
t − s

ds = 0

X (0) = X0, Ẋ (0) = V0, α =

√
9ρ

2ρs + ρ

assuming the following integral equal zero∫ 0

−∞

Ẍ (s)√
t − s

ds = 0 (2)

(if the system has been prepared in a stationary state)
G. C. and C. Marchioro, On the approach to equilibrium for
a pendulum immersed in a Stokes fluid, Math. Models Methods
Appl. Sci. 20, 1999–2019 (2010).
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By applying the Laplace transform we get

L{Ẋ}(s) =
V0s + αV0

√
s − KX0

s(s + α
√

s + 1) + K

which cannot be (easily) anti-transformed. We have to perform an
asymptotic study to established the law with which X (t)→ 0 for
t →∞. The result is

X (t) ∼ C

tγ
for t →∞

with γ = 3/2 if V0 = 0 and X0 6= 0, γ = 1/2 if V0 6= 0 for any X0.

Guido Cavallaro Approach to equilibrium of a sphere in a Stokes fluid



We give a sketch of the proof.
The main difficulty is to exclude that X (t) performs infinitely
many oscillations, situation in which we can say nothing about the
rate of decay. It turns out that this is not the case, X (t) turns out
to be monotone for large times.
We transform the IDE into an ODE (thanks to “Abel Theorem”):

X ′′′′ + (2− πα2)X ′′′ + (2K + 1)X ′′ + 2KX ′ + K 2X

= − α

2t3/2
(KX0 + V0) + Kα

V0

t1/2

def
= f (t)

whose solution is

X (t) =
4∑

i=1

Ci eλi t +

∫ t

t0

K (t − s) f (s) ds

where K (t − s) =
4∑

j=1

Fj({λi}) eλj (t−s)
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A priori the characteristic polynomial could have roots λi with
<(λi ) > 0, anyway X (t) behaves, for t →∞, as f (t).
This can be seen by plugging X (t), obtained as a solution of the
ODE, into the original IDE, and deducing some conditions on the
coefficients Ci , which assure that X (t) is also a solution of the IDE.
Such conditions assure that the behavior of X (t), for t →∞, is
the same as f (t).
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In case that the system is prepared, for t < 0, in such a way that∫ 0

−∞

Ẍ (s)√
t − s

ds 6= 0 (3)

the asymptotic behavior of the solution is affected.
If the system (fluid + sphere) is prepared for t < 0 in such a way
that the sphere is brought from rest up to the velocity Ẋ (0) in a
finite time interval, then

X (t) ∼ C

t3/2
per t →∞ (4)

if this happens in the interval (−∞, 0] then

C1

t3/2
≤ X (t) ≤ C2√

t
per t →∞ (5)

with any possible behavior between t−3/2 and t−1/2.
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Let us consider now a rotating sphere in a Stokes fluid. If the
sphere rotates with angular velocity of the form

Ω0e−iωt (6)

then the fluid exerts on the sphere a torque of the form

M = −8π

3
µR3Ω0e−iωtA(ω), (7)

with

A(ω) = 3 +
2ω [
√
ω − i(

√
ω + 1)]

1 + 2
√
ω + 2ω

. (8)

For a sphere rotating with arbitrary angular velocity Ω(t), we
obtain via Fourier transform the resulting torque

M = −8πµR3

(
Ω(t) +

2

3π

∫ ∞
−∞

Ω̇(τ)F (t − τ) dτ

)
,

Guido Cavallaro Approach to equilibrium of a sphere in a Stokes fluid



with

F (t − τ) =

∫ ∞
0

cos (ω(t − τ))

√
ω + 1

1 + 2
√
ω + 2ω

dω

+

∫ ∞
0

sin (ω(t − τ))

√
ω

1 + 2
√
ω + 2ω

dω.

It’s not trivial to notice that the two integrals, for (t − τ) > 0, are
equal and their value is

√
2π

4
√

t
− π

4
et/2Erfc

√
t/2

on the contrary for (t − τ) < 0 they are opposite in sign, whence
F (t − τ) = 0 and the torque M takes the form

M = −8πµR3

(
Ω(t) +

2

3π

∫ t

−∞
Ω̇(τ)F (t − τ) dτ

)
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The equation of motion

I Ω̇(t) = M

in dimensionless form is

Ω̇(t) + Ω(t) +

∫ t

0
Ω̇(s) F (t − s) ds = 0, (9)

with Ω(s) = Ω0 for s ≤ 0. Equation (9) has the same structure of
the equation for the rectilinear case, with a more complicated
convolution kernel, which prevent to transform the IDE into an
ODE.
The asymptotic behavior of the solution to (9) is

Ω0

√
π√

2 t3/2
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We proceed by applying the Laplace transform to the IDE (9)

L{Ω} (s) =
Ω0 + Ω0L{F}(s)

s + sL{F}(s) + 1
(10)

which explicitely reads

L{Ω} (s) = Ω0

√
2
√

s + 1 + π√
2s
√

s + (1 + π)s +
√

2
√

s + 1

and it can be decomposed by simple fractions

Ω0

(
A1√

s + B1
+

A2√
s + B2

+
A3√

s + B3

)
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with 
B1 + B2 + B3 = 1+π√

2

B1B2 + B1B3 + B2B3 = 1
B1B2B3 = 1√

2
,

A1 + A2 + A3 = 0
A1(B2 + B3) + A2(B1 + B3) + A3(B1 + B2) = 1
A1(B2B3) + A2(B1B3) + A3(B1B2) = 1+π√

2
.
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In order to determine the asymptotic behavior of the solution
Ω(t) = L−1 {Ω} (t) we use the result

L−1

{
1√

s + a

}
(t) =

1√
πt
− a ea2t Erfc(a

√
t)

t→∞∼ 1

2a2
√
π t3/2

,

keeping into account the asymptotic expansion of Erfc

ez2
Erfc z

z→∞∼ 1√
π z

[
1 +

∞∑
m=1

(−1)m 1 · 3 · · · (2m − 1)

(2z2)m

]
.
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Hence, for t →∞, Ω(t) results equal to

Ω0

(
A1

2B2
1

√
π t3/2

+
A2

2B2
2

√
π t3/2

+
A3

2B2
3

√
π t3/2

)
= Ω0

A1B2
2 B2

3 + A2B2
1 B2

3 + A3B2
1 B2

2

2B2
1 B2

2 B2
3

√
π t3/2

= Ω0

√
π√

2 t3/2
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In case that the rotating sphere is also subjected to an external
torque of the form −K θ (torsion pendulum) the equation of
motion takes the form

θ̈(t) + θ̇(t) + Kθ(t) +

∫ t

0
θ̈(s) F (t − s) ds = 0,

with θ(0) = θ0, θ̇(0) = Ω0.
The solution θ(t) has the asymptotic behavior

C̄

t3/2
, (11)

(with a constant C̄ 6= 0), if Ω0 6= 0, otherwise the asymptotic
behavior turns out to be

C̃

t5/2
, (12)

(with a constant C̃ 6= 0), if Ω0 = 0 and θ0 6= 0.
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From fractional diffusion equations to fractional shift operators

Some notation

Shift (or translation) operator

ecDx f (x) :=
∞∑
n=0

cnDn
x

n!
f (x) = f (x + c),

for any analytic function f : R→ R and c ∈ R, where
Dn
x := dn/dxn, for any n ∈ N.

Symbol of pseudo-differential operator
A pseudo-differential operator A, w.r.t. x ∈ R, is defined
through its Fourier representation, i.e.

F{Af (x); ξ} =

+∞∫
−∞

e ixξAf (x)dx = Ã(ξ)f̃ (ξ), ξ ∈ R,

where Ã(ξ) is the symbol of A.
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Right-sided R.L. fractional derivative

Dα
+,xu(x) := 1

Γ(1−α)
d
dx

∫ x
−∞

u(s)
(x−s)α ds, for 0 < α < 1, with

symbol
D̃α

+,x(ξ) = (−iξ)α = |ξ|αe−iπα signξ/2

Left-sided R.L. fractional derivative

Dα
−,xu(x) := 1

Γ(m−α)

(
− d

dx

)m ∫ +∞
x

u(s)
(s−x)1+α−m ds, for x > 0

and bαc = m, with symbol

D̃α
−,x(ξ) = (iξ)α = |ξ|αe iπα signξ/2
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Riesz-Feller fractional derivative

Dαx ,θ defined by

F
{
Dαx ,θu(x); ξ

}
= ψαθ (ξ)F {u(x); ξ} , α ∈ (0, 2],

with symbol

ψαθ (ξ) := −|ξ|αe i signξ θπα/2, θ = arctan [−β tanπα/2]

which coincides with the Lévy exponent of an α-stable r.v. Sβα
with asymmetry parameter β.

Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. (2014),Mittag-Leffler
Functions, Related Topics and Applications, Springer.
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Well-known result (Mainardi et al. (2001)): for α ∈ (0, 2],
ν ∈ (0, 1], 

Dν
+,tu(x , t) = cDαx ,θu(x , t)

u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0, if α > 1

(1)

with x ∈ R, t ≥ 0.

α = 2, ν = 1: (standard diffusion eq.) ⇒ W (t) Brownian
motion
α ∈ (0, 2), ν = 1: (space-fractional diffusion eq.) ⇒ Sθα(t)
α-stable process
α = 2, ν ∈ (0, 1): (time-fractional diffusion eq.) ⇒ W (Lν(t))
Brownian motion time-changed by the inverse of the ν-stable
subordinator Lν .

Mainardi F., Luchko Y., Pagnini G. (2001), The fundamental solution of
the space-time fractional diffusion equation, Fract. Calc. Appl. Analysis, 4 (2),
153-192.
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First extension
Eq. (1) for ν > 1: ”Higher-order fractional diffusion” with
α ∈ (0, 2]: 

Dν
−,tu(x , t) = cDαx ,θu(x , t)

u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0, if α > 1

with x ∈ R, t ≥ 0.

We obtain the subordinated stable process Sθα(A1/ν(t)).

Lévy process (infinitely divisible for any t, stochastically
continuous, stationary and independent increments) with
symbol [ψαθ (ξ)]1/ν

Infinite variance, even for α = 2

For α = 2 ⇒ W (A1/ν(t)) subordinated Brownian motion
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The proof is based on the following result (B.- D’Ovidio (2014)):
the transition density of the stable process, i.e. h1/ν , is solution to
the equation {

Dν
−, th1/ν(x , t) = ∂

∂x h1/ν(x , t)
h1/ν(x , 0) = δ(x)

,

for x , t ≥ 0, ν ≥ 1.

B.-D’Ovidio (2014), Poisson processes with random drift, Electr. J.
Probab., 19 (122), 1-26.
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Further extensions

What happens if we consider eq. (1)

adding the pseudo-differential operator eD
α
x,θ?

or

replacing the time-fractional derivatives Dν
+,t or Dν

−,t with the

fractional shift operator eD
ν
+,t (for ν ∈ (0, 1)) or eD

ν
−,t (for

ν ≥ 1) respectively?
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Definition

Fractional shift operators (FCO’s)
Let f : R+ → R be a continuous function, c ∈ R, then

ecD
ν
+,x f (x) :=

∞∑
n=0

cn

n!
Dν

+,x ...D
ν
+,x︸ ︷︷ ︸

n−times

f (x),

for ν ∈ (0, 1], while

e−cD
ν
−,x f (x) :=

∞∑
n=0

(−c)n

n!
Dν
−,x ...D

ν
−,x︸ ︷︷ ︸

n−times

f (x),

for ν ≥ 1, provided that the series converge.

For ν = 1 ⇒ standard shift operator.

B.- Fractional Gamma and Gamma-subordinated processes, arXiv (2014).
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Properties of the FCO’s

The operators ecD
ν
x and e−cD

ν
−,x are well-defined in the class

of ν-analytic functions, for which the fractional Taylor’s
expansion holds:

g(x) =
∞∑
j=0

cjx
(j+1)ν−1

Γ(ν(j + 1))
,

where ν ∈ (0, 1], cj = Γ(ν)[x1−νD jν
x g(x)] and D jν

x is the

sequential fractional derivative defined as D jν
x := Dν

x ...D
ν
x︸ ︷︷ ︸

j−times

.

Trujillo J. J., Rivero M., Bonilla, B. (1999), On a Riemann–Liouville
generalized Taylor’s formula, J. Math. Anal. Appl., 231, 255–265.
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Symbols of FSO’s

Since
F{ecDνx g(x); θ} = ec(−iθ)ν g̃(θ),

and
F{e−cD

ν
−,xg(x); θ} = e−c(iθ)ν g̃(θ),

for a ”sufficiently good function” g . Thus the symbols are

ẽD
ν
±,x (ξ) = e(∓iξ)ν
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Comparison with ”generalized shift operators”
The fractional generalization of the shift operator is defined as
follows: for an analytic function g ,

ec(∂/∂x)νg(x) =
∞∑
n=0

anH
(ν)
n (x , c), ν > 0 (2)

where an are the coefficients of the usual series expansion

g(x) =
∑∞

n=0 anx
n and H

(ν)
n are the Hermite-Kampé de Fériet

polynomial of fractional order ν defined as

H
(ν)
n (x , c) = n!

∞∑
r=0

c rxn−νr

Γ(n − νr + 1)r !
.

In the special case of an integer order ν the operator in (2)
coincides with the fractional shift operators defined here.

Dattoli G, Ricci P.E., Sacchetti D. (2003), Generalized shift operators and
pseudo-polynomials of fractional order, Appl. Math. Comput., 141, 215-224.
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Eigenfunctions of ecD
ν
+,x and e−cD

ν
−,x

Let Eν(−λx) =
∑∞

j=0
x j

Γ(νj+1) be the Mittag-Leffler function.

For ν ∈ (0, 1], Eν(−λxν) is the eigenfunction of ecD
ν
+,x with

scaling factor e−cλ, i.e.

ecD
ν
+,xEν(−λxν) = e−cλEν(−λxν).

On the other hand, for ν > 1, the eigenfunction of e−cD
ν
−,x

(with scaling factor e−cλ) is represented by e−xλ
1/ν
, i.e.

e−cD
ν
−,x e−xλ

1/ν
= e−cλe−xλ

1/ν
.
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For α ∈ (0, 1], an alternative definition of FSO is given in
D’Ovidio-Garra (2014), as follows:

e−cD
α
x f (x) =

∫ +∞

0
f (x − s)hα(s, c)ds, t, c, x > 0,

where Dα
x is the Caputo fractional derivative and hα is the

transition density of an α-stable subordinator.

D’Ovidio M., Garra R. (2014), Multidimensional fractional
advection-dispersion equations and related stochastic processes, Electr. J.
Probab., 19, n.61, 1-31.
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In the Riesz-Feller case

Definition

Fractional R.-F. shift operator
Let f : R+ → R be a continuous function, then

ecD
α
x,θ f (x) :=

∞∑
n=0

cn

n!
Dαx ,θ...Dαx ,θ︸ ︷︷ ︸

n−times

f (x),

for α ∈ (0, 2], provided that the series converges.

The symbol of eD
α
x,θ is eψ

α
θ (ξ) and thus coincides with the Fourier

transform of the α-stable r.v.
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Second extension of eq. (1)
Dν

+,tu(x , t) = [Dαx ,θ−λ(I − eD
α
x,θ)]u(x , t)

u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0, if α > 1

with x ∈ R, t ≥ 0.

α ∈ (0, 2], ν = 1: (space-fractional) ⇒ Sθα(t+N(t)) α-stable
process with drifted Poisson time

α = 2, ν ∈ (0, 1]: (time-fractional) ⇒ W (Lν(t)+N(Lν(t)))
Brownian motion with randomly-drifted Poisson time.

For λ = 0 we obtain eq. (1): ⇒ Sθα(Lν(t)).
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Definition

Poisson process with drift
Let, for any a > 0 and t ≥ 0,

N(t) + at

be the process with the following transition semigroup, for λ > 0
and x ≥ at,

Pt f (x) = Ef (x − N(t)− at) = e−λt
∞∑
k=0

(λt)k

k!
f (x − k − at),

with initial datum f ∈ L1(R+).

for a = 0⇒ standard homogeneous Poisson process
non-decreasing (a.s.) Lévy process ⇒ subordinator.

B.-D’Ovidio (2014), Poisson processes with random drift, Electr.J.Prob.,
19 (122), 1-26.
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Figure: Poisson process with drift
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For α ∈ (0, 2], ν = 1: Sθα(t + N(t)) is a Lévy process with
symbol

ψαθ (ξ)− λ(1− eψ
α
θ (ξ))

while the Lévy measure is given by

M(dx) = λpθα(x , 1)dx+
P

x1+α
1(0,+∞)(dx)+

Q

|x |1+α
1(−∞,0)(dx),

where pθα(x , t) is the transition density of the stable process
Sθα.
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Third extension of eq. (1)
[I − ec1Dν±,t ]u(x , t) = c2Dαx ,θu(x , t)

u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0, if α > 1

(3)

with x ∈ R, t ≥ 0, ci ∈ R, for i = 1, 2, α ∈ (0, 2] and ec1Dν+,t when
ν ∈ (0, 1), while ec1Dν−,t , when ν ≥ 1.

α ∈ (0, 2], ν = 1: (space-fractional) ⇒ GSθα(t) Geometric
stable process

α ∈ (0, 2], ν ∈ (0, 1): (time and space-fractional) ⇒ GSν,θα (t)
fractional Geometric stable process

α = 2, ν ∈ (0, 1): (time-fractional) ⇒ VG ν(t) fractional
Variance Gamma process.
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For α ∈ (0, 2], ν = 1: (space-fractional) ⇒ GSθα(t) :

Geometric stable process

large class including Linnik, Laplace, Mittag-Leffler
distributions

weak limit of geometric compound sums of i.i.d. r.v.’s

one-to-one correspondence with stable law:
Ee iξGSθα = 1

1−logEe iξSθα

Lévy process

heavy tails, unboundedness at zero: useful in modelling
financial data (especially in cases of extreme changes of the
fundamentals of a financial asset and market crashes).
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For α ∈ (0, 2], ν ∈ (0, 1): (time and space-fractional) ⇒ GSν,θα (t)

Definition

Fractional Geometric Stable process
Let Γ(t), t > 0 be the Gamma subordinator, then we define
Sθα(Γν(t)), t ≥ 0, for α ∈ (0, 2] and θ ≤ min[α, 2− α], where{

Γν(t) := Γ(Lν(t)), 0 < ν < 1,
Γν(t) := Γ(A1/ν(t)), ν > 1,

for Lν and A1/ν independent of Γ.

Its transition density is solution to eq. (3).

B.(2014), Geometric stable processes and related fractional differential
equations, Electron. Commun. Probab. 19, no. 13, 114.
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For α = 2, ν ∈ (0, 1): (time-fractional) ⇒ VG ν(t)

Definition

Fractional Variance Gamma process
Let Γ(t), t > 0 be the Gamma subordinator, then we define
VG ν(t) := W (Γν(t)), t ≥ 0, θ ≤ min[α, 2− α] where{

Γν(t) := Γ(Lν(t)), 0 < ν < 1,
Γν(t) := Γ(A1/ν(t)), ν > 1,

for Lν and A1/ν independent of Γ.

Its transition density is solution to
[I − ec1Dν±,t ]u(x , t) = c2

∂2

∂x2 u(x , t)
u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0,
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Important feature for applications (to model the logarithm of stock
prices):

VG ν(t)
d
= Γν(t)Z , for ν < 1 and VG ν(t)

d
= Γν(t)Z , for ν > 1,

where Z is a standard normal r.v. independent of Γν and
d
=

denotes equality of f.d.d.’s. Thus VG ν(t) is suitable to represent
the stochastic variance or volatility, in financial models.

Alternative definition of fractional VG process (Kozubowski et al.
(2006)): as BH(Γ(t)) (where BH is the fractional Brownian
motion), for H = 1/2.

Kozubowski T.J., Meerschaert M.M., Podgorski K. (2006), Fractional
Laplace motion, Adv. Appl. Probab., 38, 451-464.
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Figure: Variance Gamma process



From fractional diffusion equations to fractional shift operators

Last extension:

Definition

Let f : R+ → R be a continuous function, then

Pα,θx f (x) :=
∞∑
n=1

1

n
Dαx ,θ, ...,Dαx ,θ︸ ︷︷ ︸

n−times

f (x),

for α ∈ (0, 2], θ ≤ min[α, 2− α], provided that the series
converges.

For α = 1 and θ = 0 ⇒ P1,0
x f (x) = −log(1− f (x)).

The symbol of Pα,θx is given by P̃α,θx (ξ) = −log(1− ψαθ (ξ)), for
|ξ| ≤ 1.
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Then we consider the equation:
∂
∂t u(x , t) = Dαx ,θu(x , t)+Pα,θx u(x , t)

u(x , 0) = δ(x)
lim|x |→∞ u(x , t) = 0
∂
∂t u(x , t)

∣∣
t=0

= 0.

The solution is the transition density of the process

Sθα(t+Γ(t)), t ≥ 0,

where Γ is independent from Sθα.
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Lévy flights  
with absorption  

and collisions in combs 

Workshop on Fractional Calculus and its Applications



Simple random walks 
Interacting random walks

in “complex graphs"

fractional calculus...

Zii =
VX

j=1

Aij

An introductory statement



Type problem: determining whether a RW, embedded in a given structure, 
is certain to eventually visit a given site

The type problem and its extension

Two particle Type problem: determining whether two RWs, embedded in a 
given structure, are certain to eventually meet

Number of phenomena described as encounters 
between entities performing random motion on 
an appropriate structure (e.g., prey-predator, 
chemical reaction kinetics, foraging) 

Number of phenomena triggered by a diffusive 
particle reaching a reaction center, or a random 
observable reaching a threshold 



Homogeneous structures 
one-particle problem ⬌ two-particle problem

d ≤2 ➙ certain return to origin  
              ➙ certain meeting  
                   ➙ recurrent 
!
d≥3 ➙ finite probability to never return to origin  
             ➙ finite probability never meet  
                  ➙ transient

There exist a wide class of structures (ubiquitous in nature) 
where different strategies bear qualitatively different results

➙ the likelihood of a reaction is independent of whether 
both reactants are moving or only one



There exist a wide class of structures (ubiquitous in nature) 
where different strategies bear qualitatively different results

Prey-predator interaction

Chemical reaction kinetics

Foraging

Pharmacokinetics

➙ Prey more likely to survive if 
keep moving

➙ Drugs affect mobile and static traps 
differently

➙ Reactions favored when either of 
the reagents is immobilized

➙ Possible dynamic of food resource 
affects animal’s fitness 

One-particle recurrent & Two-particle transient



General results on multiple random walks

Very few rigorous results available

Graph:

Simple Random Walk (RW) on     :

G = (V,L)
V

L 2 V ⇥ V Set of unoriented links between the vertices

Collection of vertices

Probability to move from v to v’ in t steps 
p: one step transition probability matrix

Two RWs starting in v e w 
Joint probability in t steps 

If v’=w’ ➙probability that the two 
walkers meet at time t

Markov chain that jumps from 
one vertex to a neighbor 
isotropically

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G



First-encounter Probability

f̃(�) =
1X

t=0

f(t)�t

Generating function

Recall one-particle problem

P̃v!v0(�) = F̃v!v0(�)P̃v0!v0(�) + �vv0

F̃vv0(1) = 1 , P̃vv0(1) = 1

A walk is recurrent (transient) iff  
(any) site is visited an infinite (finite) number of times



First-encounter Probability

➙ Matricial relation between      and

f̃(�) =
1X

t=0

f(t)�t

Generating function

F̃P̃

Recall one-particle problem

P̃v!v0(�) = F̃v!v0(�)P̃v0!v0(�) + �vv0

F̃vv0(1) = 1 , P̃vv0(1) = 1

A walk is recurrent (transient) iff  
(any) site is visited an infinite (finite) number of times

Two-particle problem...



First-encounter Probability

➙ Matricial relation between      and

Definition. A graph is two-particle recurrent if the probability that 
two particles will ever meet is 1, i.e.

Should the graph not satisfy this condition ➙  two-particle transient

Two-particle type problem

8(v, w) 2 V

f̃(�) =
1X

t=0

f(t)�t

Generating function

F̃P̃



Special case: homogeneous infinite graphs

Recurrent graph is two-particle recurrent 
Transient graph is two-particle transient

There exist graphs 
one-particle recurrent  
but two-particle transient

Transient graph with bounded degree ⇒ Finite probability that 
two independent walkers never meet  

General case



Definition. A graph has the finite collision property if the probability 
that two random walkers will meet only a finite number of times is 1.

[0-1 Law:                                       ] 

Finite Collision property

finite collision property 
infinite collision property

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

P(vw)(N =�) ⇥ {0, 1}



Definition. A graph has the finite collision property if the probability 
that two random walkers will meet only a finite number of times is 1.

[0-1 Law:                                       ] 

Finite Collision property

finite collision property 
infinite collision property

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

P(vw)(N =�) ⇥ {0, 1}

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

infinite collision property
P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

8(v, w) 2 V

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G two-particle recurrent

⟺

one-particle recurrent

⇑P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

X

v02V
F̃(vw)!v0 = 1

Th. A graph has the infinite collision property iff it is two-particle 
recurrent.



Definition. A graph has the finite collision property if the probability 
that two random walkers will meet only a finite number of times is 1.

[0-1 Law:                                       ] 

Finite Collision property

finite collision property 
infinite collision property

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

P(vw)(N =�) ⇥ {0, 1}

Th. A graph has the infinite collision property iff it is two-particle 
recurrent.

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

infinite collision property
P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

8(v, w) 2 V

P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G two-particle recurrent

⟺

one-particle recurrent

⇑P(vw)(N <⇥) = 1, ⌅v, w ⇤ V � G
P(vw)(N =⇥) = 1, ⌅v, w ⇤ V � G

two-particle 
 recurrence

⇑
X

v02V
F̃(vw)!v0 = 1

one-particle  
recurrence



Comb lattices

Definition. Given a graph G, let the Comb(G) be the graph with 
vertex set V(G)xZ and edge set 

!
!

➙ we attach a copy of Z at each vertex of the graph G. 

Let G be any recurrent infinite graph with constant vertex 
degree. Then Comb(G) has the finite collision property

Brush Comb



Comb(Z) has the finite collision property 
!
Z ⊂ Comb(Z) ⊂ Z2 
both Z and Z2 have infinite collision property  
⇒ infinite collision property not simply monotone

➙ Probing  
subgraphs of Comb(Z)...

2. Let f: Z → R+. It induces a wedge comb Comb(Z, f), with 
V = {(x, y) : x, y ∈ Z,−f(x) ≤ y ≤ f(x)}    vertex set 
{[(x, n), (x,m)] : |m − n| = 1} ∪ {[(x, 0), (y, 0)] : |x − y| = 1}    edge set 
Let α > 0 and f(n) = |n|α, for each n  
Comb(Z, f) infinite collision property ⇔ α≤ 1



Comb lattices
2d-comb

3d-comb

Spectral dimension for the 
d-dimensional comb

Eg: 2d, asymptotics of the vertical 
component coincide (to leading order)  
with the corresponding  
estimates for the simple  
random walk on Z

Inhomogeneity ➙ qualitative different 
behaviors along different dimensions

Eg: Splitting of local spectral dimension (3/2) and 
average spectral dimension (1)



(a) A chemical structure and schematic of a comb 
polymer with poly(styrene) arms. (b) A comb 
block copolymer with a schematic of its structure.

Realizations
Comb polymers: Molecules consisting of a 
main chain with branch points and linear 
side chains. If arms are identical ➙ regular

(c) Nanowire combs are the products of spontaneous self-organization. 
One grows needles of zinc oxide, which are decorated with dendritic 
side-branches regularly spaced

c

(e) Empuriabrava (Spain)

e ... Possibility of producing quantum devices, 
e.g. arrays of Josephson junctions, etc.

d

(d) Spiny dendrites are dendrites with lateral small 
protrusions (dendritic spines) located on the surface. 
They can be found on the dendrites of most principal 
neurons in the brain and their physiological role is still 
unclear although key elements in neuronal information 
processing and plasticity



First-encounter probability in finite-size systems
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t1<t  
Still memory of initial 

positions 
!

t1<t<t2  
Probability distribution 
decays as a power laws, 

as expected for an 
infinite structure  

!
t>t2  

Exponential decay, finite 
size effects emerge 

!
!

Envelope  
Estimate for Fc(t): grows 

with rate scaling as 1/
√logt and saturation 

value <1

First-encounter probability in finite-size systems
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#steps for the two CTRWs to first share the same tooth ➙ L 
Time taken for each step ➙ L 
!
Probability for the two RWs to first meet before one escapes on 
the backbone ➙ 
!
⇒ #trials for the event to occur ➙ L/log(L)

⌧ ⇠ L3/ logL

Sketch for C2

⌧ ⇠ Ld+1/ logL

⇣ ⇠ Ld

Mean first-encounter time on Cd

Mean first-passage time on Cd

Slow encounters of particle pairs



Mean first-encounter time

d-dimensional lattices

d-dimensional combs

L is linear size 
Square  

lattice/comb 
PBC or OBC

FC
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On comb there is a correction due to inhomogeneous 
distribution of encounter sites  

➙ tau diverges superlinearly with volume

⌧ ⇠ V
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Mapping:

 ✽ Dx and Dy relative distance between the RWs along x e y direction 
 ✽ Xcm and Ycm coordinate for the center of mass 
 ✽ Exploit translation symmetry along x direction ➙ 3 variables 
 ✽ Encounter corresponds to red line  
 ✽ Dx=0 ➙ RW on the same tooth ➙  
 ✽ Probability to visit the red line before leaving the plane Dx=0

two RWs in     ➙ one RW in C M

h(|Dy|) ⇠ |Dy|�3/2

a(|Dy|) ⇠ 1/|Dy|➙



Finite Probability of never crossing the red line  
➙ Finite collision property

Dy = ±2Ycm

Y
cm

D
x

= D
y

= 0

Effective description in terms of  
1d Levy flight with  
power-law absorption 

Finite Survival probability  
➙  Finite collision property 

h(|Dy|) ⇠ |Dy|�3/2

a(|Dy|) ⇠ 1/|Dy| ) ↵ = 1

) µ = 1/2 From scaling/intuitive arguments 
we expect 
to avoid certainty of absorption 

µ < 1 & ↵ > µ

p(x) ⇠ 1

|x|1+µ



Numerical evidence



The RW in       has a finite 
probability of never 
crossing the red line  
➙ finite encounter 
probability

M

Lévy flight problem possibly extended to higher dimension lattices

Extension to 
* Random combs 
* Particles with different  
    velocities ➙ (different slope  

                   for red line) 
* “Inverse problem”



Conclusions and Perspectives

Extend to the case of more than 2 RWs

There exist signatures of the finite collision property also on 
finite-size structures ➙ slowing down of reaction

Extend to other structures 
(e.g., percolation clusters, hierarchical combs)

➙ New strategy to control reaction kinetics  
While in order to increase the survival probability of a species one usually increases the 
spatial dimension, by adding sites, links or volume to a given structure, in many cases it is 
possible to obtain a similar or stronger effect by judiciously deleting elements, i.e. by 
sparing material instead of wasting it.

How far is two-particle transience 
independent of local details and 
disorder?
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Main Goal of the Research

Normal diffusion↔ Gaussian process, stationary increments

- Brownian motion or Wiener process
- Standard Random Walk, CTRW with exponential WTs

fractional (anomalous) diffusion↔ stochastic process based
on a Gaussian process with stationary increments ?

- Time-fractional diffusion↔ grey Brownian motion
(Schneider 1990, 1992)

- Erdélyi–Kober fractional diffusion↔ generalized grey
Brownian motion (Mura 2008, Pagnini 2012)

- Space-time fractional diffusion↔ ???
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The Space-Time Fractional Diffusion Equation

tDβ∗ K θ
α,β(x ; t) = xDαθ K θ

α,β(x ; t) , K θ
α,β(x ; 0) = δ(x) , (1)

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , (2a)

0 < β ≤ 1 or 1 < β ≤ α ≤ 2 . (2b)

xDαθ : Riesz–Feller space-fractional derivative

x̂Dαθ (κ)̂f (κ) = F {xDαθ f (x);κ} = −|κ|α ei(signκ)θπ/2 f̂ (κ) . (3)

tDβ∗ : Caputo time-fractional derivative

L
{

tDβ∗ f (t); s
}

= sβ f̃ (s)−
m−1∑
j=0

sβ−1−j f (j)(0+) , (4)

with m − 1 < β ≤ m and m ∈ N.
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The Green Function K θ
α,β(x ; t)

Self-similarity

K θ
α,β(x ; t) = t−β/α K θ

α,β

( x
tβ/α

)
. (5)

Symmetry relation

K θ
α,β(−x ; t) = K−θα,β(x ; t) , (6)

which allows the restriction to x ≥ 0.

Mellin–Barnes integral representation

K θ
α,β(x ; t) =

1
αx

1
2πi

∫ c+i∞

c−i∞

Γ( q
α)Γ(1− q

α)Γ(1− q)

Γ(1− β
αq)Γ(ρq)Γ(1− ρq)

( x
tβ/α

)q
dq , (7)

where ρ = (α− θ)/(2α) and c is a suitable real constant.

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001
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Special Cases: x > 0

K 0
2,1(x ; t) =

1√
4πt

e−x2/(4t) = G(x ; t) = t−1/2G
( x

t1/2

)
, (8)

K θ
α,1(x ; t) = Lθα(x ; t) = t−1/αLθα

( x
t1/α

)
, (9)

K 0
2,β(x ; t) =

1
2

Mβ/2(x ; t) =
1
2

t−β/2Mβ/2

( x
tβ/2

)
, (10)

K θ
α,α(x ; t) =

t−1

π

(x/t)α−1 sin[π2 (α− θ)]

1 + 2(x/t)α cos[π2 (α− θ)] + (x/t)2α , (11)

K 0
2,2(x ; t) =

1
2
δ(x − t) . (12)
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Integral Representation Formulae for K θ
α,β(x ; t)

If x > 0 then

K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ)L−ββ (t ; τ)
t
τβ

dτ , 0 < β ≤ 1 , (13)

K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ) Mβ(τ ; t) dτ , 0 < β ≤ 1 , (14)

K θ
α,β(x ; t) =

∫ ∞
0

K θ
α,α(x ; τ) Mβ/α(τ ; t) dτ , 0 < β/α ≤ 1 . (15)

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001
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Supplementary Results

From formulae (13) and (14) it follows that

t
βτ

L−ββ (t , τ) =
t

βτ1/β+1 L−ββ

(
t

τ1/β

)
=

1
tβ

Mβ

( τ
tβ
)

(16)

0 < β ≤ 1 , τ, t > 0 .

From formulae (8) and (9)

K 0
2,1(x ; t) = G(x ; t) = L0

2(x ; t) . (17)

From formulae (8) and (10)

K 0
2,1(x ; t) = G(x ; t) =

1
2

M1/2(x ; t) . (18)
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Supplementary Results

Lθα(x ; t) =

∫ ∞
0

Lωη (x ; ξ)L−νν (ξ; t) dξ , α = ην , θ = ων , (19)

0 < α ≤ 2 , |θ| ≤ min{α,2− α} ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .

In particular it holds

L0
α(x ; t) =

∫ ∞
0

L0
2(x ; ξ)L−α/2

α/2 (ξ; t) dξ (20)

=

∫ ∞
0

G(x ; ξ)L−α/2
α/2 (ξ; t) dξ . (21)

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003
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Supplementary Results

Mν(x ; t) =

∫ ∞
0

Mη(x ; ξ)Mβ(ξ; t) dξ , ν = ηβ , (22)

0 < ν, η, β ≤ 1 .

In particular it holds

Mβ/2(x ; t) = 2
∫ ∞

0
M1/2(x ; ξ)Mβ(ξ; t) dξ (23)

= 2
∫ ∞

0
G(x ; ξ)Mβ(ξ; t) dξ . (24)

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003
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New Integral Representation Formula for K θ
α,β(x ; t)

Consider formula (14), i.e. K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ)Mβ(τ ; t) dτ ,

then and by using (19) it follows

K θ
α,β(x ; t) =

∫ ∞
0

{∫ ∞
0

Lωη (x ; ξ)L−νν (ξ; t) dξ
}

Mβ(τ, t) dτ

=

∫ ∞
0

Lωη (x ; ξ)

{∫ ∞
0

L−νν (ξ; t)Mβ(τ ; t) dτ
}

dξ

=

∫ ∞
0

Lωη (x ; ξ) K−νν,β (ξ; t) dξ , α = ην , θ = ων ,

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , 0 < β ≤ 1 ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .
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New Integral Representation Formula for K θ
α,β(x ; t)

K θ
α,β(x ; t) =

∫ ∞
0

Lωη (x ; ξ) K−νν,β (ξ; t) dξ , (25)

0 < x < +∞ , α = ην , θ = ων ,

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , 0 < β ≤ 1 ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .

Spatial symmetric case: η = 2 and ω = 0⇒ L0
2 ≡ G

Hence ν = α/2 and θ = 0 and formula (25) gives

K 0
α,β(x ; t) =

∫ ∞
0

G(x ; ξ) K−α/2
α/2,β (ξ; t) dξ . (26)

−∞ < x < +∞ , 0 < α ≤ 2 , 0 < β ≤ 1 .
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Special Cases: Time Fractional α = 2 and 0 < β ≤ 1

From (14) it results that

K−1
1,β (ξ; t) =

∫ ∞
0

L−1
1 (ξ; τ) Mβ(τ ; t) dτ

=

∫ ∞
0

δ(ξ − τ) Mβ(τ ; t) dτ = Mβ(ξ; t) , (27)

finally by using (24)

K 0
2,β(x ; t) =

∫ ∞
0

G(x ; ξ) K−1
1,β (ξ; t) dξ (28)

=

∫ ∞
0

G(x ; ξ) Mβ dξ =
1
2

Mβ/2(x ; t) . (29)
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Special Cases: Space Fractional 0 < α ≤ 2 and β = 1

From (14) it results that

K−α/2
α/2,1 (ξ; t) =

∫ ∞
0

L−α/2
α/2 (ξ; τ) M1(τ ; t) dτ

=

∫ ∞
0

L−α/2
α/2 (ξ; τ) δ(τ − t) dτ = L−α/2

α/2 (ξ; t) , (30)

finally by using (21)

K 0
α,1(x ; t) =

∫ ∞
0

G(x ; ξ) K−α/2
α/2,1 (ξ; t) dξ (31)

=

∫ ∞
0

G(x ; ξ) L−α/2
α/2 (ξ; t) dξ = L0

α(x ; t) . (32)
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Product of Random Variables

Z1 and Z2 are two real independent random variables
PDFs p1(z1) and p2(z2), z1 ∈ R, z2 ∈ R+.
Joint PDF is p(z1, z2) = p1(z1)p2(z2).

Let Z = Z1 Z γ
2 so that z = z1zγ2

Carrying out the variable transformations z1 = z/λγ and z2 = λ,

p(z1, z2) dz1 dz2 = p1(z/λγ)p2(λ) J dz dλ,

where J = 1/λγ is the Jacobian of the transformation.

Integration in dλ gives

p(z) =

∫ ∞
0

p1

( z
λγ

)
p2(λ)

dλ
λγ

. (33)
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Product of Random Variables
Hence by applying the changes of variable z = xt−γΩ and
λ = τ t−Ω, integral formula (33) becomes

t−γΩp
( x

tγΩ

)
=

∫ ∞
0

τ−γp1

( x
τγ

)
t−Ωp2

( τ
tΩ

)
dτ . (34)

By setting
p1 ≡ G , p2 ≡ K−α/2

α/2,β , (35)

γ = 1/2 , Ω = 2β/α , (36)

formula (34) turns out to be identical to (26), i.e.

p(x ; t) =

∫ ∞
0

G(x ; τ) K−α/2
α/2,β (τ ; t) dτ ,

hence
p(x ; t) ≡ K 0

α,β(x ; t) . (37)
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Stochastic Solution of Space-Time Fractional Diffusion

∫ ∞
0

1
τ1/2 G

( x
τ1/2

) 1
t2β/αK−α/2

α/2,β

( τ

t2β/α

)
dτ = t−β/αK 0

α,β

( x
tβ/α

)
.

(38)

Change of variable λ = τ t−2β/α,

One-point one-time PDF:

fα,β(x ; t) =

∫ ∞
0

t−β/α

λ1/2 G

(
x t−β/α

λ1/2

)
K−α/2
α/2,β (λ) dλ

= t−β/αK 0
α,β(x t−β/α) , (39)
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Stochastic Solution of Space-Time Fractional Diffusion

In terms of random variables it follows that

Z = X t−β/α and Z = Z1Z 1/2
2 , (40)

X = Z tβ/α =
(

Z1 tβ/α
)

Z 1/2
2 = G2β/α(t)

√
Λα/2,β . (41)

Z1: Gaussian random variable, i.e. p1 ≡ G, with anomalous
scaling

Natural choice: standard fBm with Hurst exponent H=β/α < 1
for G2β/α(t) = Z1tβ/α

Λα/2,β = Z2 distributed according to p2 ≡ K−α/2
α/2,β .
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H-sssi Processes and fBm

Same constructive approach adopted by Mura (PhD, 2008)⇒
generalized grey Brownian motion (Mura and Pagnini, J. Phys. A,
2008).

Let Xα,β(t), t ≥ 0, be an H-sssi defined as

Xα,β(t) =
d
√

Λα/2,β G2β/α(t) , (42)

0 < β ≤ 1 , 0 < β < α ≤ 2 , (43)

=
d

denotes the equality of the finite-dimensional distribution, the
stochastic process G2β/α(t) is a standard fBm with Hurst
exponent H = β/α < 1 and Λα/2,β is an independent

non-negative random variable with PDF K−α/2
α/2,β (λ), λ ≥ 0,

then the marginal PDF of Xα,β(t) is K 0
α,β(x ; t).
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Special Cases: α = 2 (grey Brownian motion)

Let Xβ(t), t ≥ 0, be an H-sssi defined as

Xβ(t) =
d √

Λβ Gβ(t) , (44)

0 < β ≤ 1 , (45)

=
d

denotes the equality of the finite-dimensional distribution, the
stochastic process Gβ(t) is a standard fBm with Hurst exponent
H = β/2 < 1 and Λβ is an independent non-negative random
variable with PDF K−1

1,β (λ) = Mβ(λ), λ ≥ 0, then the marginal

PDF of Xβ(t) is K 0
2,β(x ; t) =

1
2

Mβ/2(x ; t).
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Special Cases: β = 1

Let Xα(t), t ≥ 0, be an H-sssi defined as

Xα(t) =
d
√

Λα/2 G2/α(t) , (46)

1 < α ≤ 2 , (47)

=
d

denotes the equality of the finite-dimensional distribution, the
stochastic process G2/α(t) is a standard fBm with Hurst
exponent H = 1/α < 1 and Λα/2 is an independent

non-negative random variable with PDF K−α/2
α/2,1 (λ) = L−α/2

α/2 (λ),
λ ≥ 0, then the marginal PDF of Xα(t) is K 0

α,1(x ; t) = L0
α(x ; t).
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H-sssi Processes and fBm
The finite-dimensional distribution of Xα,β(t) is obtained from
(33) according to

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

det γα,β
×∫ ∞

0

1
λn/2 G

( zn

λ1/2

)
K−α/2
α/2,β (λ) dλ , (48)

where zn is the n-dimensional particle position vector

zn =

 n∑
i,j=1

xi γα,β
−1(ti , tj) xj

1/2

,

and γα,β(ti , tj) is the covariance matrix (fBm)

γα,β(ti , tj) =
1
2

(t2β/α
i + t2β/α

j − |ti − tj |2β/α) , i , j = 1, . . . ,n .
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Stochastic Process Generation

From (14) it follows that

K−α/2
α/2,β (ξ; t) =

∫ ∞
0

L−α/2
α/2 (ξ; τ) Mβ(τ ; t) dτ , 0 < β ≤ 1 , (49)

and by using the self-similarity properties and the changes of
variable ξ = t2β/αλ and τ = tβy it holds

K−α/2
α/2,β (λ) =

∫ ∞
0

L−α/2
α/2

(
λ

y2/α

)
Mβ(y)

dy
y2/α , 0 < β ≤ 1 . (50)



WORKSHOP ON FRACTIONAL CALCULUS AND ITS APPLICATIONS. Roma Tre University, March 11, 2015

Stochastic Process Generation

Integral (50) suggests to obtain Λα/2,β again by means of the
product of two independent random variables, i.e.

Λα/2,β = Λ1 · Λ
2/α
2 = Lext

α/2 · M
2/α
β , (51)

where Λ1 = Lext
α/2 and Λ2 =Mβ are distributed according to the

extremal stable density L−α/2
α/2 (λ1) and Mβ(λ2), respectively, so

that λ = λ1 λ
2/α
2 .
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Stochastic Process Generation
Moreover, from (16) and setting t = 1, the random variableMβ

can be determined by an extremal stable random variable
according to

Mβ =
[
Lext
β

]−β
, (52)

so that the random variable Λα/2,β is computed by the product

Λα/2,β = Lext
α/2 ·

[
Lext
β

]−2β/α
. (53)

Finally, the desired H-sssi processes are established as follows

Xα,β(t) =
√
Lext
α/2 ·

[
Lext
β

]−β/α G2β/α(t) . (54)
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Numerical Generation

Computer generation of extremal stable random variables of
order 0 < µ < 1 is obtained by using the method by Chambers,
Mallows and Stuck

Lext
µ =

sin[µ(r1 + π/2)]

(cos r1)1/µ

{
cos[r1 − µ(r1 + π/2)]

− ln r2

}(1−µ)/µ

, (55)

where r1 and r2 are random variables uniformly distributed in
(−π/2, π/2) and (0,1), respectively.

Chambers, Mallows, Stuck J. Amer. Statist. Assoc. 1976
Weron Statist. Probab. Lett. 1996
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Numerical Generation

The Hosking direct method is applied for generating the fBm
G2H(t), 0 < H < 1. In particular, first the so-called fractional
Gaussian noise Y2H is generated over the set of integer
numbers with autocorrelation function

〈Y2H(k)Y2H(k + n)〉 =
1
2

[
|n − 1|2H − |n|2H + |n + 1|2H

]
. (56)

Finally, the fBm is then generated as a sum of stationary
increments, i.e. Y2H(n) = G2H(n + 1)−G2H(n)

G2H(n + 1) = G2H(n) + Y2H(n) . (57)

Hosking Water Resour. Res. 1984
Dieker PhD Thesis Univ. of Twente, The Netherlands, 2004
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Numerical Simulations

For a given set of parameter values (α,β),
104 trajectories generated for 103 time steps.
Time step: ∆t = 1 (see formula (57))
For generic ∆t use self-similarity.

(1) Generate trajectories for FBM with H = β/α.
(2) For each trajectory draw random number from the Lévy

density⇒ change amplitude of the trajectory randomly

NOTE:
Time averages depend on the fBm
(no effect of the random amplitude)
Ensemble averages affected by random amplitude
Non-ergodicity
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Numerical Simulations, H = β/α
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Numerical Simulations, H = β/α
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Numerical Simulations, H = β/α
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Numerical Simulations, H = β/α

-400
-300
-200
-100

 0
 100
 200
 300
 400

 0  200  400  600  800  1000

_=0.5 ; `=0.45
Sample Paths

X

t  0.001  0.003  0.005

PDF, t=1000

-30

-20

-10

 0

 10

 20

 30

 0  200  400  600  800  1000

_=1.5 ; `=0.5
Sample Paths

X

t  0.02  0.06

PDF, t=1000



WORKSHOP ON FRACTIONAL CALCULUS AND ITS APPLICATIONS. Roma Tre University, March 11, 2015

Numerical Simulations, H = β/α
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Numerical Simulations, H = β/α

Self-similarity and large amplitudes
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Numerical Simulations, H = β/α
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Generalized Grey Brownian Motion (ggBm)

Mura (PhD, 2008); Mura and Pagnini (J. Phys. A, 2008)

Let XH,β(t), t ≥ 0, be an H-sssi defined as

XH,β(t) =
d √

Λβ G2H(t) , (58)

0 < β ≤ 1 , (59)

=
d

denotes the equality of the finite-dimensional distribution, the
stochastic process G2H(t) is a standard fBm with Hurst
exponent H < 1 and Λβ is an independent non-negative
random variable with PDF Mβ(λ), λ ≥ 0, then the marginal PDF
of XH,β(t) is 1

2Mβ/2(x ; t2H/β) = 1
2 t−HMβ/2(|x |t−H).

Time stretching
t → t2H/β .
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Generalized Grey Brownian Motion (ggBm)

Master equation (0 < β < 1, 0 < H < 1):

∂P
∂t

=
2H
β

t2H−1Dβ−1,1−β
2H/β

∂2P
∂x2 , (60)

where Dγ,µ
η is the Erdélyi–Kober fractional derivative

Fundamental solution: P(x ; t) =
1
2

t−HMβ/2(|x |t−H),

Variance: 〈x2〉 =
2

Γ(1 + β)
t2H .

Mura (PhD, 2008)
Mura and Pagnini (J. Phys. A, 2008)
Garra, Orsingher, Polito (arXiv:1501.04806 [math.PR], 2015)
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Introduction

Fractional partial diffusion or reaction-diffusion differential equa-
tions in several space dimensions can be used to model several
phenomena in many fields of Science, and in particular in Mete-
orology. In case of anomalous diffusion, generalized models us-
ing fractional derivatives, thus leading to fractional partial diffusion
equations have indeed been proposed, especially to describe diffusion
and transport dynamics in complex systems [Baumer02, Chen12,
Gorenflo00, Mainardi97].
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Introduction

In fact, such equations may describe fluid flow through porous
media better than classical diffusion equations. For instance, frac-
tional time-derivatives may account for (time) delays, while frac-
tional space-derivatives may explain a nonlocal behavior, typically
characterized by power law (rather than exponential law) decay.
Equations like these are also used in groundwater hydrology to
model the transport of passive tracers carried by fluid flows in porous
media and seepage [Benson00, Benson&Wheatcraft00, Benson01]
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High-order approximations for Riemann-Liouville frac-
tional derivatives

In this section, we recall some known results concerning fractional
derivatives. We begin with the definition of the Riemann-Liouville
(RL)

Definition

[Podlubny99] If n − 1 < α ≤ n for some n ∈ N, the RL fractional
left and right derivative of order α of the function u(x), whose
domain is [a, b], at the point x ∈ [a, b], are defined as follows.

left Riemann-Liouville fractional derivative:

aD
α
x u(x) :=

1

Γ(n − α)

dn

dxn

∫ x

a

u(ξ)

(x − ξ)α−n+1
dξ;
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High-order approximations for Riemann-Liouville frac-
tional derivatives

Definition

right Riemann-Liouville fractional derivative:

xD
α
b u(x) :=

−1

Γ(n − α)

dn

dxn

∫ b

x

u(ξ)

(ξ − x)α−n+1
dξ,

where Γ(·) denotes the Gamma function.

When α = n, aD
α
x = dn

dxn and xD
α
b = (−1)n dn

dxn .
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High-order approximations for Riemann-Liouville frac-
tional derivatives

In [Meerschaert06], it was shown that the shifted Grünwald dif-
ference operator, defined as

Aαh,pu(x) :=
1

hα

∞∑
k=0

g
(α)
k u(x − (k − p)h), (1)

where p is an integer, and g
(α)
k := (−1)k

(
α
k

)
, approximates the

left RL fractional derivative of order α, uniformly, with first-order
accuracy, i.e.,

Aαh,pu(x) = −∞Dα
x u(x) + O(h). (2)
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High-order approximations for Riemann-Liouville frac-
tional derivatives

Theorem

Let be u ∈ L1(R), and hence (as is known), −∞Dα+2
x u and its

Fourier transform also belong to L1(R), and define the “weighted
and shifted” Grünwald difference (WSGD) operator LDαh,p,q by

LDαh,p,qu(x) :=
α− 2q

2(p − q)
Aαh,pu(x) +

2p − α
2(p − q)

Aαh,qu(x). (3)

Then, we have

LDαh,p,qu(x) = −∞Dαx u(x) + O(h2) (4)

uniformly for x ∈ R, where p,q ∈ {−1, 0, 1}, with p 6= q.
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Fractional diffusion equations in two space dimensions

Consider the following fPDE (fractional partial differential equation)
in two space dimensions,

∂u
∂t =

(
K+

1 aD
α
x u + K+

2 xD
α
b u
)

+
(
K−1 cD

β
y u + K−2 yD

β
d u
)

+f (x , y , t), (x , y , t) ∈ Ω× [0,T ],

u(x , y , 0) = u0(x , y), (x , y , t) ∈ Ω,

u(x , y , 0) = ϕ(x , y , t), (x , y , t) ∈ ∂Ω× [0,T ],

(5)

where u ≡ u(x , y , t), Ω := (a, b) × (c , d), K±i ≥ 0 for i = 1, 2,

aD
α
x , xD

α
b , and cD

β
y , yD

β
d are RL fractional operators with 1 <

α, β ≤ 2, T > 0, u0 and ϕ are the initial and boundary values.
We assume that the problem in (5) has a unique sufficiently smooth
solution.
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The CN-WSGD scheme

In this section we derive a Crank-Nicolson difference scheme. We
make a partition of the domain Ω by a uniform mesh with space steps
hx := (b−a)/Nx , hy := (d−c)/Ny , and time step τ := T/M, where
Nx , Ny , and M are positive integers. Then, the grid points will be
xi := ihx , yj := jhy , and tn := nτ , for 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny , and
0 ≤ n ≤ M. Let define tn+1/2 := (tn + tn+1)/2 for 0 ≤ n ≤ M − 1,
and use the following notation

uni ,j := u(xi , yj , tn), f
n+1/2
i ,j := f (xi , yj , tn+1/2),

δtu
n
i ,j :=

un+1
i ,j − uni ,j

τ
.
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The CN-WSGD scheme

Time discretization of (5) leads to the definition of the operator

δtu
n
i ,j =

1

2
[K 1

+ (aD
α
x u)n+1

i ,j + K 2
+ (xD

α
b u)n+1

i ,j + (6)

+K 1
− (cD

β
y u)n+1

i ,j + K 2
− (yD

β
d u)n+1

i ,j + K 1
+ (aD

α
x u)ni ,j + K 2

+ (xD
α
b u)ni ,j+

+K 1
− (cD

β
y u)ni ,j + K 2

− (yD
β
d u)ni ,j)]f

n+1/2
i ,j + O(τ2).

After a little algebra, and factoring the equation before, denoting
with Un

i ,j the numerical approximation to uni ,j , we obtain the finite
difference approximation for problem (5),(

1− τ2

2
δαx

)(
1− τ2

2
δβy

)
Un+1
i ,j =

(
1 +

τ2

2
δαx

)(
1 +

τ2

2
δβy

)
Un
i ,j

+ τ f
n+1/2
i ,j . (7)
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The CN-WSGD scheme

A simple calculation shows that

τ3

2
δαx δ

β
x f

n+1/2
i ,j =

τ3

2

(
K 1

+ aD
α
x + K 2

+ xD
α
b

) (
K 1
− cD

β
y + K 2

− yD
β
d

)
f
n+1/2
i ,j ,

(8)
+O(τ3h2).

so eliminating the truncating error and introducing the intermediate
variable V n

i ,j , we obtain the locally one-dimensional (LOD) scheme
mentioned in [Qin11, Wang06]

(
1− τ2

2
δαx

)
V n
i ,j =

(
1 +

τ2

2
δαx

)
Un
i ,j +

τ

2

(
1 +

τ2

2
δαx

)
f
n+1/2
i ,j ,

(9a)(
1− τ2

2
δβy

)
Un+1
i ,j =

(
1 +

τ2

2
δβy

)
V n
i ,j +

τ

2

(
1 +

τ2

2
δβy

)
f
n+1/2
i ,j ,

(9b)

Moreno Concezzi Numerical solution of two-dimensional fractional diffusion equations by a high-order ADI method



A third-order CN-WSGD scheme

In the space discretization, we choose the so-called 3-WSGD oper-
ators, i.e., the weighted and shifted Grünwald difference operators,
defined as

Gαh,p,q,ru(x) := λ1 A
α
h,pu(x) + λ2 A

α
h,qu(x) + λ3 A

α
h,ru(x), (10)

where the λ′i s coefficients depend on p, q, r . The operator (10) is
third-order accurate in time [Qin11].
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A third-order CN-WSGD scheme

We define LGαhx ,p,q,ru, RGαhy ,p,q,ru, and LGβhy ,p,qu, RGβhy ,p,qu, to ap-

proximate the fractional diffusion terms aD
α
x u, xD

α
b u, and cD

β
y u,

yD
β
d u, respectively, see [Tadjeran06]. Multiplying both sides of (6)

by τ , and separating the terms containing un and un+1, we have(
1−

K 1
+τ

2
LGαhx ,p,q −

K 2
+τ

2
RGαhx ,p,q −

K 1
−τ

2
LGβhy ,p,q−

K 2
−τ

2
RGβhy ,p,q

)
un+1
i ,j =

(
1 +

K 1
+τ

2
LGαhx ,p,q +

K 2
+τ

2
RGαhx ,p,q

+
K 1
−τ

2
LGβhy ,p,q +

K 2
−τ

2
RGβhy ,p,q

)
uni ,j + τ f

n+1/2
i ,j + τ εni ,j , (11)
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A third-order CN-WSGD scheme

where εni ,j denotes the (local) truncation error, and we have |εni ,j | ≤
c̃ (τ2 + h3). We also write

δαx = K+
1 LGαhx ,p,q+K+

2 RGαhx ,p,q, δβy = K−1 LGβhy ,p,q+K−2 RGβhy ,p,q.

We chose the same step sizes, hx = hy = h. A Taylor expansion
yields

τ2

4
δαx δ

β
y

(
un+1
i ,j − uni ,j

)
=

=
τ3

4

[(
K 1

+ aD
α
x + K+

2 xD
α
b

) (
K−1 cD

β
y + K−2 yD

β
d

)
ut
]n+1/2

i ,j

+ O(τ5 + τ2h3). (12)
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A new numerical method with examples: theoretical
considerations

A considerable amount of computing time can be saved just resorting
to an extrapolation technique. This procedure may also increase the
accuracy of the method up to the third order in time [Marchuk83].
Let describe such a technique.

Step 1. Compute the numbers ζ1, ζ2, and ζ3, solving the three
linear algebraic equations

ζ1 + ζ2 + ζ3 = 1
ζ1 + 1

2ζ2 + 1
4ζ3 = 0

ζ1 + 1
3ζ2 − 1

9ζ3 = 0.

An extrapolated solution, depending on Un, is then used to solve the
problem. The quantity Un requires evaluating certain coefficients,
which can be obtained by the “PageRank accelerating method”
[Golub03]. The previous algebraic system yields the optimal co-
efficients ζ1, ζ2, ζ3.
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A new numerical method with examples: theoretical
considerations

Step 2. Compute the solution Un of a compact difference scheme
[Deng10, Spotz95, Tolstykh94, Zhuang08] (see below, at step 3),
with the three time step sizes τ , 2

3τ , and τ
3 [Tolstykh94]. This kind of

methods is usually adopted for steady convection-diffusion numerical
problems on uniform grids [Spotz95], rather than for time-dependent
problems.

Step 3. Evaluate the extrapolated solution, W n(τ), by

W n(τ) = ζ1 U
n(τ) + ζ2 U

n

(
2

3
τ

)
+ ζ3 U

n
(τ

3

)
,

where we have displayed the precise dependence of Un on τ .
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Numerical examples

Example 1: Let be the FDE

0D
γ
t u = 0D

α
x u + xD

α
1 u + 0D

β
y u + yD

β
1 u + f (x , y , t) (13)

on the space domain Ω := (0, 1) × (0, 1), for t > 0, subject to the
boundary conditions

u(x , y , t) = 0, (x , y) ∈ ∂Ω, t ∈ [0, 1],

with the initial value

u(x , y , 0) = x3(1− x)3y3(1− y)3 (x , y) ∈ [0, 1]× [0, 1].

The analytical solution to this problem turns out to be known see
[Deng12], and is

u(x , y , t) = e−tx3(1− x)3y3(1− y)3, (14)
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if in (13), we choose the source term to be

f (x , y , t) =− e−tx3(1− x)3y3(1− y)3

+ (
3!

Γ(4− α)
(x3−α + (1− x)3−α)− 3 · 4!

Γ(5− α)
(x3−α+

+ (1− x)3−α) +
3 · 5!

Γ(6− α)
(x5−α + (1− x)5−α)−

+
6!

Γ(7− α)
(x6−α + (1− x)6−α))y3(1− y)3

+
3!

Γ(4− β)
(y3−β + (1− y)3−β)− 3 · 4!

Γ(5− β)
(y4−β+

+ (1− y)4−β) +
3 · 5!

Γ(6− α)
(y5−β + (1− y)5−β)−

+
6!

Γ(7− β)
(y6−β + (1− y)6−β))x3(1− x)3.

Moreno Concezzi Numerical solution of two-dimensional fractional diffusion equations by a high-order ADI method



Numerical examples

This choice is useful to validate our algorithm and test its perfor-
mance. Then, we will be confident that the code is as good as in
this case also when different sources, possibly reflecting specific
problems of practical interest replace the forcing term above.
In Fig. 2, the effect of replacing ordinary derivatives (α,β,γ) =
(2, 2, 1) with fractional derivatives, in a given diffusion equation,
e.g., with (α,β,γ) = (1.1, 1.7, 1), thus accounting for anomalous
diffusion, is clear. In general, such a modification implies new ge-
ometric patterns in the solution, and a possibly anisotropic be-
havior. Even a different speed of propagation, depending on the
order of the fractional derivatives can be reproduced in this way. In-
deed, all these features are observed, e.g., in certain porous media
through which a fluid flows [Crank47 ,Thambynayagam01].
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Numerical examples

Figure: Classical solution (obtained by a fine grid numerical ADI method
with τ = h/16).
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Numerical examples

Figure: Exact (analytical) fractional diffusion solution with
(α, β, γ) = (1.1, 1.7, 1).
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Numerical examples

In Table 1, the absolute numerical errors ||un −W n||∞ and ‖un −
W n‖2, as well as the corresponding convergence rates achieved using
different space step sizes, are shown.

(α, β) N ||un −W n||∞ time-rate space-rate ||un −W n||2 time-rate space-rate

(1.1, 1.7) 8 3.4852E-7 −− −− 9.745252E-5 −− −−
16 2.4585E-8 2.95 1.92 7.7852E-5 2.93 1.87
32 2.7852E-8 2.99 1.98 5.3255E-6 2.98 1.95
64 4.8420E-9 3.00 1.99 4.7852E-6 2.99 1.98

128 1.9651E-9 3.00 2.00 5.4525E-7 3.00 2.00
256 4.4582E-11 3.00 2.00 3.6321E-10 3.00 2.00
512 3.8512E-14 3.00 2.00 6.78521E-13 3.00 2.00

Table: L∞ and L2 norm errors, and convergence rates for Example 1,
when the (LOD) CN-WSGD scheme, that is a FADI method, is used, at
time t = 5, for several values of N, and τ = h.
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Figure 3 shows the infinity norm and the L2 norm errors for Example
1, when the compact difference scheme is implemented, at times
t = 1, for several values of N, and fixed α, β, and γ.

Figure: L∞ and L2 discrepancy between the numerical solution of the
classical problem and that of the fractional problem with (α, β, γ) =
(1.1, 1.7, 1), at t = 1.
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Example 2: If one wants to predict the fluid motion for a concen-
trate introduced at the left side of a tank, which advects rightwards
and diffuses in the y direction, the fractional evolutionary advection-
diffusion equation

0D
γ
t u = K1(0D

α
x u + xD

α
1 u) + K2(0D

β
y u + yD

β
1 u) + a1

∂u

∂x
+ a2

∂u

∂y
,

(15)
can be solved, for suitable values of the fractional orders, α, β, and
γ.
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An example of a real case, where a dye is continuously introduced
into a tank filled in with a fluid, is shown in Fig. 4. Here, the diffusion
occurring in the direction of the y -axis is due to turbulence. Classi-
cal diffusion yields a parabolic profile, while in the picture the flow
described by anomalous diffusion looks conic (in 3D) [Cushman06,
Pritchard08].

Figure: Example of an advecting plume, which is better described
through anomalous rather than classical diffusion (from [Cushman06]).
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Let consider the space domain Ω := [0, 10]× [0, 10], for t ∈ [0, 10].
We impose the boundary condition

u(10, y , t) = uy (x , 0, t) = uy (x , 10, t) = 0, (16)

and the initial condition

u(0, y , 0) = δ(y − 5). (17)

What we are doing is setting the boundary back to its initial value
each time step. We do not want to allow to pass through the
horizontal walls of the tank so the boundary conditions for both y
axis are set to zero.
Setting then K1 = a2 = 0, we obtain

0D
γ
t u = K2(0D

β
y u + yD

β
1 u) + a1

∂u

∂x
. (18)
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In Fig. 5, the numerical results are shown for the advection-diffusion
plume, corresponding to the parameters K2 = 1, a1 = 2, ∆x =
∆y = 1/20, ∆t = 0.002.

Figure: Numerical results for advection-diffusion plume,
α = β = 1.6, γ = 0.6 (from [Cushman06]).
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Conclusions and future developments

We presented a weighted and shifted Grünwald-Letnikov dif-
ference (WSGD) operator is used to approximate RL fractional
diffusion operators. It is shown that indeed third-order accuracy
in time can be achieved solving numerically two-dimensional fPDEs
by ADI-like methods. A new technique, designed to accelerate the
algorithm, which is competitive with respect to the methods existing
to date in the literature [Deng12], has also been developed. While
the present method seems to outperform all the other existing al-
gorithms, using very dense grids to attain low errors may require,
however, as one may expect, a considerable computational time.

Confirming those models, it would be interesting to study the effects
of anisotropy due to different fractional orders affecting different
space directions.
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We will discuss how to 
represent the action of the 
operators involving fractional 
derivative, by using the 
concept and the related 
formalism of special classes of 
orthogonal polynomials
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by using the previous results, we 
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for example, if 

the Gauss transform can be 
explicit worked out, to give
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Special Polynomials and 

Fractional Operators



The generalized, two-variable 
Hermite polynomials (Kampé de 
Fériet)
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fractional derivative acting on 
the monomial

this integral transform defines 

2
1

2

0

1
( , )

( )

n t

nx x e t H x yt dt
x

ν

α να
ν

− +∞
− − ∂

− = 
∂ Γ 

∫

this integral transform defines 
a new family of polynomials, 
strictly related to Hermite 
polynomials, denoted by

( , ; )
n

H x yν α



operational definition

helps us to write

2

2
( , ; ) n

n
H x y y x

x

ν

ν α α

−
 ∂

= − 
∂ 

2

2
( , ; )

!

n
x

nH x y x e
n x

ν

ξ
ν

ξ
α α

−
+∞  ∂

= − 
∂

∑

which gives the relevant 
generating function

2
0

( , ; )
!

n

n

H x y x e
n x

ν α α
=

= − 
∂ 

∑

( )2
0

( , ; ) ,
!

n x

n

n

e
H x y

n y

ξ

ν ν

ξ
α

α ξ

+∞

=

=
−

∑
1

2

| |
y

α
ξ

 
<  
 



There are many interesting relations 
satisfied by this family of Hermite-
like polynomials, these can be 
derived by analogous properties of 
ordinary Hermite polynomials. We just 
observe that they solve the following observe that they solve the following 
partial differential equation
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an interesting operational rule 
involving the fractional derivative
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Expressions involving the first-order 
derivative can be obtained by noting 
the structure of the Hermite 
polynomials
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then, the previous relation

allows to write 
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so that we can introduce the 
following polynomials

and similarly, we obtain the 
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operational relation  
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The considerations we have seen offer 
the possibility of developing a 
different point of view regarding the 
fractional derivatives 
representations and allow to include, 
within a more general and wider 
context, families of apparently context, families of apparently 
uncorrelated polynomials. For 
instance, an obvious generalization 
of the above discussed polynomials 
can be provide by the following 
identity:



which defines the further generalized 
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The formalism and the polynomials we 
have proposed may offer significant 
advantages to compute the effect of 
fractional operators on a given 
function. For example, if we 
introduce the following Bessel-like introduce the following Bessel-like 
functions 
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we can obtain 
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similarly, we can derive the related 
generating function for the Bessel-
like function 
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In conclusion, the combined use of 
integral transforms and special 
polynomials provides a powerful tool 
to deal with fractional derivative 
and integrals.
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Diffusion equations with time-varying
coefficients: probabilistic motivation

The diffusion equation governing the one-dimensional marginal of
the fractional Brownian motion BH(t), t ≥ 0, 0 < H < 1 is given
by(

t1−2H
∂

∂t

)
u(x , t) = H

∂2

∂x2
u(x , t), H ∈ (0, 1), x ∈ R, (1)

Here we consider bifractional diffusion equations, involving the
Hurst parameter linked to the fractional Brownian motion and the
real order of the power of operators appearing in the governing
equations.We consider two different approaches:

• The time-varying diffusion equation involving the fractional
power of the operator

(
t1−2H ∂

∂t

)
• The time-varying diffusion equation involving the Caputo

time-fractional derivative
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Fractional generalizations: the first
approach

We first consider the fractional diffusion equation with
time-dependent coefficients(

t1−2H
∂

∂t

)α
uα(x , t) = Hα ∂

2

∂x2
uα(x , t), (2)

where H ∈ (0, 1) is the Hurst parameter and α ∈ (0, 1).

The first question is: what is the operator appearing in (2)?
McBride and coauthors studied the general theory of fractional
powers of hyper-Bessel operators in a series of works, e.g.

• A.C. McBride, A theory of fractional integration for
generalized functions. SIAM Journal on Mathematical
Analysis, 6(3):583–599, (1975)

• A.C. McBride, Fractional Powers of a Class of Ordinary
Differential Operators. Proceedings of the London
Mathematical Society, 3(45):519–546, (1982)
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McBride theory of fractional powers of
hyper-Bessel operators

McBride considered the generalized hyper-Bessel operator

L = ta1
d

dt
ta2 . . . tan

d

dt
tan+1 , t > 0, (3)

where n is an integer number and a1, . . . , an+1 are real numbers.

Lemma 1: The operator L in (3) can be written as

Lf = mnta−n
n∏

k=1

tm−mbkDmt
mbk f , (4)

where

Dm :=
d

dtm
= m−1t1−m

d

dt
.

The constants appearing in (4) are defined as

a =
n+1∑
k=1

ak , m = |a− n|, bk =
1

m

(
n+1∑

i=k+1

ai + k − n

)
.
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Lemma 2: Let r be a positive integer, a < n. Then

Lr f = mnr t−mr
n∏

k=1

I bk ,−rm f , (5)

where, for α > 0

I η,αm f =
t−mη−mα

Γ(α)

∫ t

0
(tm − um)α−1umηf (u) d(um), (6)

and for α ≤ 0

I η,αm f = (η + α + 1)I η,α+1
m f +

1

m
I η,α+1
m

(
t
d

dt
f

)
. (7)

The fractional integrals I η,αm are Erdélyi–Kober-type operators.



Definition 1: Let m = n − a > 0, η any real number. Then, for
any f (x) ∈ Fp,µ

Lηf = mnηt−mη
n∏

k=1

I bk ,−ηm f , (8)

In order to understand the key-role played by the operator Dm, we
remark that the following equality holds

(Dm)ηf =
m

Γ(n − η)
(Dm)n

∫ t

0
(tm − um)n−η−1um−1f (u) du. (9)

Then it is possible to prove Lemma 2, considering the relation
between negative powers of Dm and Erdélyi–Kober integrals.



Caputo-like counterpart of the operator
(8)

In analogy with the classical theory of fractional operators, we
introduce the following
Definition 2: Let α be a positive real number, m = n − a > 0,
f ∈ Fp,µ is such that

Lα

(
f (t)−

b−1∑
k=0

tk

k!
f (k)(0+)

)
exists.

Then we define CLα by

CLαf (t) = Lα

(
f (t)−

b−1∑
k=0

tk

k!
f (k)(0+)

)
, (10)

where b = dαe.
The relevance of this definition for the applications is due to the
fact that for physical reasons we are interested in solving fractional
Cauchy problems involving initial conditions on the functions.
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Fractional diffusions with time-varying
coefficients: the first approach

Theorem
The solution to the Cauchy problem{

C
(
t1−2H ∂

∂t

)α
uα(x , t) = Hα ∂2

∂x2
uα(x , t), α ∈ (0, 1), t > 0

uα(x , 0) = δ(x),

(11)
is given by

uα(x , t) =
1

21−α/2tHα
W−α/2,1−α/2

(
−2α/2|x |

tHα

)
. (12)



In view of definitions 1 and 2 the regularized Caputo-like operator
appearing in (11) reads

C

(
t1−2H

∂

∂t

)α
uα(x , t) =

(
t1−2H

∂

∂t

)α
uα(x , t) (13)

− (2H)α
t−2Hα

Γ(1− α)
uα(x , 0)

= (2H)αt−2HαI 0,−α2H uα(x , t)− (2H)α
t−2Hα

Γ(1− α)
uα(x , 0).

Therefore the Fourier transform of (11) reads

(2H)αt−2HαI 0,−α2H ûα(β, t) = −Hαβ2ûα(β, t) + (2H)α
t−2Hα

Γ(1− α)
,

(14)
whose solution is

ûα(β, t) = Eα,1

(
−β

2t2Hα

2α

)
. (15)

Then, by inverting the Fourier transform we obtain the claimed
result.
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ûα(β, t) = Eα,1

(
−β

2t2Hα

2α

)
. (15)

Then, by inverting the Fourier transform we obtain the claimed
result.



Relation with the generalized grey
Brownian motion (ggBm)

The generalized grey Brownian motion (ggBm) was recently
introduced and studied by A. Mura and coauthors in as a series of
papers as a family of non-Markovian stochastic processes for
anomalous fast or slow diffusions.

In his PhD thesis A. Mura introduced the fractional equation
governing the probability density of the ggBm, that is given by

P(x , t) = P(x , 0) +
1

Γ(δ)

γ

δ

∫ t

0
τ

γ
δ
−1(tγ/δ−τγ/δ)δ−1 ∂

2

∂x2
P(x , τ) dτ,

(16)
involving the Erdélyi–Kober integras.
We now discuss the equivalence between (16) and our master
equation, in the case of δ = α and γ/2 = Hα.
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From Definitions 1 and 2, we recall that the diffusion equation
(11) can be written as

C

(
t1−2H

∂

∂t

)α
P(x , t) =

(
t1−2H

∂

∂t

)α
(P(x , t)− P(x , 0)) (17)

= (2H)αt−2HαI 0,−α2H (P(x , t)− P(x , 0))

= Hα ∂
2

∂x2
P(x , t),

and therefore in the integro-differential form

I 0,−α2H (P(x , t)− P(x , 0)) =
t2Hα

2α
∂2

∂x2
P(x , t). (18)
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We now recall the following property of the Erdélyi–Kober integral
(see McBride (1982), Theorem 2.7, page 523)

(I η,αm )−1 = I η+α,−αm . (19)

In our case, the inverse of the operator appearing in the left hand
side of (18) is given by (

I 0,−α2H

)−1
= I−α,α2H . (20)

By applying the inverse operator (20) to both sides of (18), we
arrive at

P(x , t)− P(x , 0) =
I−α,α2H

2α

(
t2Hα

∂2

∂x2
P(x , t)

)
(21)

=
21−αH

Γ(α)

∫ t

0
τ2H−1

(
t2H − τ2H

)α−1 ∂2

∂x2
P(x , t)dτ,

which coincides with (16) for δ = α and γ = 2Hα, up to a
multiplicative constant.
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Other results

• We prove that uα(x , t) is the law of the r.v. Xα,H(t) which is
connected to the fractional Brownian motion by means of the
relation

Xα,H(t)
d
= X2α,H

(
|BH(t)|

1
2H

)
, 0 < α <

1

2
(22)

and has variance

VarX2α,H(t) =
t2Hα

2α−1Γ(α + 1)
. (23)

• We establish a relationship between solutions of equation (2)
and solutions of higher order diffusion equations

t1−2H
∂u

∂t
= (−1)kH

∂ku

∂xk
, k > 2. (24)
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Fractional generalizations: the second
approach

The second fractional generalization of equation (1) is given by

CDν
0+u (x , t) = Ht2H−1

∂2

∂x2
u (x , t) , ν ∈ (0, 1), x ∈ R, t > 0,

(25)
involving Caputo time-fractional derivatives of order ν.

This
approach has been recently adopted for the analysis of anomalous
diffusions in heterogeneous media in the papers

• M. Bologna, B.J. West, P. Grigolini, Renewal and memory
origin of anomalous diffusion: a discussion of their joint
action. Phys. Rev. E, 88:062106, (2013)

• M. Bologna, A. Svenkeson, B.J. West, P. Grigolini, Diffusion
in heterogeneous media: An iterative scheme for finding
approximate solutions to fractional differential equations with
time-dependent coefficients. Journal of Computational
Physics, in press, (2014)
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Analytical results

Theorem. The fundamental solution u(x , t) to (25) can be
written as

u(x , t) =
1

2π

∫ +∞

−∞
e−iβxEν,1+ 2H−1

ν
, 2H−1

ν

(
−Hβ2tν+2H−1

)
dβ,

(26)

where
Eν,1+ 2H−1

ν
, 2H−1

ν

(
−Hβ2tν+2H−1

)
is the Saigo-Kilbas generalized Mittag-Leffler function.



The proof is simply based on the fact that the Fourier transform of
the Cauchy problem reads{

CDν
0+U (β, t) = −Ht2H−1β2U (β, t) , t > 0, ν ∈ (0, 1],

U(β, 0) = 1,

(27)
whose solution is given by

Eν,1+ 2H−1
ν

, 2H−1
ν

(
−Hβ2tν+2H−1

)
.

We underline that the Cauchy problem (27) has been firstly
considered by Kilbas and Saigo in a series of papers and recently
studied by E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr.
(2014) in the framework of fractional relaxation models. In this
paper complete monoticity of Kilbas and Saigo function has been
considered.
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Probabilistic results
From the probabilistic point of view an interesting result comes
from the special choice H = 1/4, ν = 3/4.

In this case, we have that the Fourier transform of the fundamental
solution of (25) reads

U(β, t) = E 3
4
, 1
3
,− 2

3

(
−1

4
β2t1/4

)
= 1 +

∞∑
k=1

(
−β

2t1/4

22

)k k−1∏
j=0

Γ( j
4 + 1

2)

Γ( j
4 + 5

4)
.

Since
k−1∏
j=0

Γ( j
4 + 1

2)

Γ( j
4 + 5

4)
=

Γ(1/2)Γ(3/4)

Γ(k+2
4 )Γ(k+3

4 )Γ(k+4
4 )

(28)

and using the multiplication formula for the Gamma function we
have that

k−1∏
j=0

Γ( j
4 + 1

2)

Γ( j
4 + 5

4)
=

Γ(k+1
4 )Γ(3/4)

π 2−2k+
1
2 k!

. (29)
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Therefore,

U(β, t) = E 3
4
, 1
3
,− 2

3

(
−1

4
β2t1/4

)
= 1 +

Γ(3/4)

π
√

2

∞∑
k=1

(
−β2t1/4

)k Γ
(
k+1
4

)
k!

= 1 +
Γ(3/4)

π
√

2

∫ ∞
0

e−ww−3/4
∞∑
k=1

(
−β2w1/4t1/4

)k
k!

dw

=
Γ(3/4)

π
√

2

∫ ∞
0

e−ww−3/4e−β
2 4√twdw .

Finally, we have

u(x , t) =
Γ(3/4)

π
√

2

∫ ∞
0

e−ww−3/4
e
− x2

4 4√tw√
4π 4
√
tw

dw (30)

=

√
2Γ(3/4)

π 4
√
t

∫ ∞
0

e−
x2

2w

√
2πw

· e−
w4

24t dw ,
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The solution (30) is the probability law of the time-changed
Brownian motion B(Wt), where

P{Wt ∈ dz}/dz =

√
2Γ(3/4)e−

z4

24t

π 4
√
t

, z > 0,

and B is a standard Brownian motion.



Conclusions and remarks

• The McBride theory for fractional powers of hyper-Bessel-type
operators represents a convenient framework to derive the
governing equation of the ggBm

• The analysis of fractional PDEs with variable coefficients is a
developing field both from the mathematical and applied
point of view

• Applications of the discussed results in other problems of
mathematical-physics and probability where the governing
equations involve operators with variable coefficients will be
object of further research. For example time-fractional
Poisson process where state probabilities are governed by(

t1−2H
d

dt

)ν
pk(t) = −λ (pk(t)− pk−1(t)) , k ≥ 1 (31)

leads to homogeneous Poisson process with a random time
related to ggBm?
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Background: FALVABackground: FALVA

• The fractional variational principle (FVP) is a promising topic and several 
applications given  (El Nabulsi and Torres, 2008 ; Malinskowa and Torres 2012). 
 
• In 2005, El Nabulsi introduced the Fractional Action-Like Variational 
(FALVA) Action AF(x):

                                                                                                                    
                                                 

with
 

 

El Nabulsi, 2005

hhh

AF (x)=
1

Γ(α)
∫
a

b

L(x , ẋ , τ)(t−τ)(α−1)d τ

∂ L
∂ x

−
d
d τ ( ∂ L

∂ ẋ )=1−α

1−τ

∂ L
∂ ẋ

⋅0< α< 1
⋅t∈[a ,b]
⋅τ∈(a , t)



Background: Generalized Fractional Action Principle Background: Generalized Fractional Action Principle 

Odzijewick et al., 2012

hhh

• A generalization of the FALVA is an action involving a generalized 
kernel.

• Theorem: Let x be a solution to the problem of finding a function x that 
minimizes the functional A subject to boundary conditions
Also, if                  
 
                                 is square-integrable in                                                     

then, 

                                                            
                                                         

A( x)=∫
a

b

k α(b , τ)L(x , ẋ , τ)d τ

x (a)=xa , x(b)=xb .

⋅L∈C1([a ,b]×ℝ2 ;ℝ)

⋅k α(t , τ) Δ=[a ,b]×[a ,b]

⋅k α(t , τ)=k α(t−τ)

⋅k α(b , τ) ,∂ ẋ L∈AC [a ,b]

⋅k α(b , τ) ,∂x L∈C [a ,b]

∂ L
∂ x

−
d
d τ ( ∂ L

∂ ẋ )= 1
kα(b , τ)

dkα(b , τ)
d τ

∂ L
∂ ẋ

∀τ∈[a ,b]



Background: Non Standard LagrangiansBackground: Non Standard Lagrangians

• 

 

 

Musielak, 2008

A linear dissipative dynamical system can be described as : 
                                             

This equation of motion can be derived from the non standard Lagrangian

 if  A(τ), B(τ),r(τ) and s(τ) are continuous, differentiable and integrable 
functions and if they are a solution of a proper Riccati equation.

L(x , ẋ , τ)=
1

r(τ) ẋ+ s(τ) x
,

ẍ+ A(τ) ẋ+ B (τ) x=0



Methodology and results: Non Standard Lagrangians+ Generalized Fractional Action PrincipleMethodology and results: Non Standard Lagrangians+ Generalized Fractional Action Principle

• Let us consider the Non Standard Lagrangian, with r and s constant in time 
and insert in the Generalized Euler-Lagrange equation. We obtain the equation 
of motion

• In order to get physical solutions, it is easy to show that the following 
condition must hold 

 

ẍ+
ẋ
2
+ [ 3sr −

k̇ α

k α
]+ x [ s2

2r2−
s
2r

k̇ α

k α
]=0

{
s
r
> 0

k̇ α

k α

<
s
r

∀τ∈[a ,b]



Methodology and results: Non Standard Lagrangians+ Generalized Fractional Action PrincipleMethodology and results: Non Standard Lagrangians+ Generalized Fractional Action Principle

• Let us consider the Hamiltonian formalism for  the non nonstandard 
Lagrangian

It is easy to show that 

Also,  

 with r,s constant in time and                ,                        .

 

{ p=
−∂ L
∂ ẋ

=
−r

(r ẋ+ sx)2

H=
−spx

r

.

∀τ∈[a ,b]

L(x , ẋ , τ)=
1

r (τ) ẋ+ s(τ) x
,

s
r
> 0

{ ṗ=
−∂H
∂ x

−
p k̇α

k α

=
sp
r

−
p k̇ α

k α

ẋ=
−∂ H
∂ p

=
−sx
r

.

Taverna and Torres, 2014



Methodology and results: Bauer's theoremMethodology and results: Bauer's theorem

•                                          

                                                                                                                    
                                                 

 

 

                 
  “The equations of motion of a dissipative linear dynamical system with constant 

coefficients are not given by a variational principle”.

• Let's consider the Lagrangian of simple harmonic oscillator : 

• If we apply the Generalized Euler-Lagrange equation we get :

..which becomes  the equation of a damped harmonic oscillator if  

 

.

In 1931 Bauer proved the following corollary 

L(x , ẋ)=
m ẋ2

2
−

cx2

2

m ẍ=−cx

m ẍ=−cx−m ẋ
k̇α

kα

kα(b , τ)=eα τ ,α>0

m ẍ=−cx−m ẋα .
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 In this talk we analyzed the impact of the Generalized Fractional In this talk we analyzed the impact of the Generalized Fractional 
Variational principle on dynamical systems.Variational principle on dynamical systems.

 We found out that the Bauer's theorem can be easily overcome with this We found out that the Bauer's theorem can be easily overcome with this 
approach and interesting results about damped systems have been  approach and interesting results about damped systems have been  
shown.shown.

 In case of non-standard Lagrangians, this approach constrains the In case of non-standard Lagrangians, this approach constrains the 
freedom in choosing the kernel.freedom in choosing the kernel.

 Future works could focus on choosing appropriate kernel to model Future works could focus on choosing appropriate kernel to model 
realistic physical phenomena.realistic physical phenomena.
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