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Abstract: We prove the existence of small amplitude quasi-periodic solutions for quasi-linear and fully
nonlinear forced perturbations of the linear Airy equation. For Hamiltonian or reversible nonlinearities we
also prove their linear stability. The key analysis concerns the reducibility of the linearized operator at
an approximate solution, which provides a sharp asymptotic expansion of its eigenvalues. For quasi-linear
perturbations this cannot be directly obtained by a KAM iteration. Hence we first perform a regularization
procedure, which conjugates the linearized operator to an operator with constant coefficients plus a bounded
remainder. These transformations are obtained by changes of variables induced by diffeomorphisms of the
torus and pseudo-differential operators. At this point we implement a Nash-Moser iteration (with second
order Melnikov non-resonance conditions) which completes the reduction to constant coefficients.
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1 Introduction

A challenging and open question in the theory of quasi-periodic motions for PDEs concerns its possible
extension to quasi-linear and fully nonlinear equations, namely PDEs whose nonlinearities contain derivatives
of the same order as the linear operator. Besides its mathematical interest, this question is also relevant in
view of applications to physical real world nonlinear models, for example in fluid dynamics and elasticity.

The goal of this paper is to make the first step in this direction, developing a KAM theory for quasi-
periodically forced perturbations of the linear Airy equation

Up + Uge + €f (W T, U, Uy, Ug, Ugzrr) =0, x €T :=R/27Z. (1.1)

In the modulus of the frequency vector w is used as a parameter in the problem, see (|1.2)).

First, in Theorem we prove an existence result of quasi-periodic solutions for a large class of quasi-
linear nonlinearities f. Then for Hamiltonian or reversible nonlinearities, we also prove the linear stability of
the solutions, see Theorems Theorem also holds for fully nonlinear perturbations. The precise
meaning of stability is stated in Theorem The key analysis is the reduction to constant coefficients of the
linearized Airy equation, see Theorem These results are presented in [3]. To the best of our knowledge,
these are the first KAM results for quasi-linear or fully nonlinear PDEs. We reserve to a future work the
study of autonomous, parameter independent, perturbations of KdV, which also requires the analysis of the
frequency-to-amplitude map arising from the nonlinearity. We think it is worth to split these difficulties.

Let us outline a short history of the subject. KAM and Nash-Moser theory for PDEs, which counts
nowadays on a wide literature, started with the pioneering works of Kuksin [29] and Wayne [42], and was
developed in the 1990s by Craig-Wayne [17], Bourgain [12], [13], Poschel [37] (see also [31], [32], [16] for more
references). These papers concern wave and Schrédinger equations with bounded Hamiltonian nonlinearities.

The first KAM results for unbounded perturbations have been obtained by Kuksin [30], [31], and, then,
Kappeler-Poschel [27], for Hamiltonian, analytic perturbations of KdV. Here the highest constant coeffi-
cients linear operator is O.., and the nonlinearity contains one space derivative 0,. This means that the
Hamiltonian density is a functions of z and w (it could also depend on |9,|'/?u). The key idea is to work
with a variable coefficients normal form. The corresponding homological equations are solved thanks to the
so called “Kuksin lemma”, see Chapter 5 in [27]. Their approach has been recently improved by Liu-Yuan
[34] who proved a stronger version of the Kuksin lemma. Then in [35] (see also Zhang-Gao-Yuan [43]) they
applied it to 1-dimensional derivative NLS (DNLS) and Benjamin-Ono equations, where the highest order
constant coefficients linear operator is 0,, and the nonlinearity contains one derivative 0,. These methods
apply to dispersive PDEs with derivatives like KAV, DNLS, the Duffing oscillator (see Bambusi-Graffi [4]),
but not to derivative wave equations (DNLW) which contain first order derivatives 9,, 0y in the nonlinearity.

For DNLW, KAM theorems have been recently proved by Berti-Biasco-Procesi for both Hamiltonian [10]
and reversible [I1] equations. The key ingredient is an asymptotic expansion of the perturbed eigenvalues
that is sufficiently accurate to impose the second order Melnikov non-resonance conditions. This is achieved
introducing the notion of “quasi-T6plitz” vector field, which is inspired to the concept of “quasi-T6plitz”
and “Toplitz-Lipschitz” Hamiltonians, developed, respectively, in Procesi-Xu [39] and Eliasson-Kuksin [19],
[20] (see also Geng-You-Xu [2I], Grébert-Thomann [23], Procesi-Procesi [38]).

Existence of quasi-periodic solutions of PDEs can also be proved by imposing only the first order Melnikov
conditions. This approach has been developed by Bourgain [12]-[I5] extending the work of Craig-Wayne [17]
for periodic solutions. It is especially convenient for PDEs in higher space dimension, because of the high
multiplicity of the eigenvalues: see also the recent results by Wang [41], Berti-Bolle [7], [8] (and [9], [22]
for periodic solutions). This method does not provide information about the stability of the quasi-periodic
solutions, because the linearized equations have variable coefficients.

All the aforementioned results concern “semilinear” PDEs, namely equations in which the nonlinearity

contains strictly less derivatives than the linear differential operator. For quasi-linear or fully nonlinear
PDEs the perturbative effect is much stronger, and the possibility of extending KAM theory in this context



is doubtful, see [27], [16], [35], because of the possible phenomenon of formation of singularities outlined in
Lax [33], Klainerman and Majda [28]. For example, Kappeler-Poschel [27] (remark 3, page 19) wrote: “I¢
would be interesting to obtain perturbation results which also include terms of higher order, at least in the
region where the KdV approximation is valid. However, results of this type are still out of reach, if true at
all’. The study of this important issue is at its first steps.

For quasi-linear and fully nonlinear PDEs, the literature concerns, so far, only existence of periodic
solutions. We quote the classical bifurcation results of Rabinowitz [40] for fully nonlinear forced wave
equations with a small dissipation term. More recently, Baldi [I] proved existence of periodic forced vibrations
for quasi-linear Kirchhoff equations. Here the quasi-linear perturbation term depends explicitly only on time.
Both these results are proved via Nash-Moser methods.

For the water waves equations, which are a fully nonlinear PDE, we mention the pioneering work of
Tooss-Plotnikov-Toland [24] about existence of time periodic standing waves, and of Iooss-Plotnikov [25],
[26] for 3-dimensional traveling water waves. The key idea is to use diffeomorphisms of the torus T? and
pseudo-differential operators, in order to conjugate the linearized operator to one with constant coefficients
plus a sufficiently smoothing remainder. This is enough to invert the whole linearized operator by Neumann
series. Very recently Baldi [2] has further developed the techniques of [24], proving the existence of periodic
solutions for fully nonlinear autonomous, reversible Benjamin-Ono equations.

These approaches do not imply the linear stability of the solutions and, unfortunately, they do not work
for quasi-periodic solutions, because stronger small divisors difficulties arise, see the comment [5| below.

We finally mention that, for quasi-linear Klein-Gordon equations on spheres, Delort [I8] has proved long
time existence results via Birkhoff normal form methods.

The key analysis of the present paper concerns the linearized operator obtained at any step of the
Nash-Moser iteration. Its reduction to constant coefficients can not be obtained by the KAM schemes [30],
[27], [B5]. The reason is that the perturbation in is unbounded of order three (i.e. O(0yz5)) and the
homological equation (solved by the Kuksin lemma) gains only two space derivatives (thanks to the cubic
dispersion relation of KdV). Therefore the scheme does not converge. Our idea is to perform, before starting
with the KAM iteration, some preliminary transformations which decrease the d,-order of the perturbation,
but not its size. We use changes of variables, like quasi-periodic time-dependent diffeomorphisms of the
space variable x, a quasi-periodic reparametrization of time, multiplication operators and Fourier multipliers,
which reduce the linearized operator to constant coefficients up to a bounded remainder, see . These
transformations, which are inspired by [2], [24], are very different from the usual KAM transformations.
At this point, we start a KAM reducibility scheme a la Eliasson-Kuksin which reduces the size of the
perturbation quadratically, and completely diagonalizes the linearized operator (actually, since we work with
finite differentiability, we implement a Nash-Moser scheme). For reversible or Hamiltonian perturbations we
get that the eigenvalues of this diagonal operator are purely imaginary, i.e. we prove the linear stability. In
section [1.2| we present the main ideas of the proof.

1.1 Main results

We consider problem ([1.1)) where € > 0 is a small parameter, the nonlinearity is quasi-periodic in time with
diophantine frequency vector
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3
w=\oeRY, AGA;:[ } \@-z\zl% Vi€ zv\ {0}, (1.2)

[E|7
and f(p,x,2), o € T, z := (20, 21, 22, 23) € R*, is a finitely many times differentiable function, namely
fe0UT” x T x R4 R) (1.3)

for some ¢ € N large enough. For simplicity we fix in (1.2]) the diophantine exponent 75 := v. The only
“external” parameter in (1.1)) is A, which is the length of the frequency vector (this corresponds to a time
scaling). We consider the following questions:

e For e small enough, do there exist quasi-periodic solutions of (1.1) for positive measure sets of A € A?



o Are these solutions linearly stable?

Clearly, if f(¢, z,0) is not identically zero, then u = 0 is not a solution of (1.1)) for £ # 0. Thus we look for
non-trivial (27)"*1-periodic solutions u(¢, z) of the Airy equation

W - Opt + Upga + €F (@, T, U, Uy, Upg, Upga) = 0 (1.4)
in the Sobolev space
H® := H*(T" x T;R) (1.5)
={up )= > w @R,y =uny, Juli= Y (L)l < oo}

(Lj)€zr X1 (Lj)ezr <2

where
(L, 3) = max{1, [], |j[}.

From now on, we fix s := (v + 2)/2 > (v + 1)/2, so that for all s > so the Sobolev space H*® is a Banach
algebra, and it is continuously embedded H*(T**1) — C(T*1).

We need some assumptions on the perturbation f(p,x, u, Uy, Uy, Ugzs ). We suppose that

e TYPE (F). The fully nonlinear perturbation has the form
[, @, u, Uz, Ugea), (1.6)

namely it is independent of wu,, (note that the dependence on ., may be nonlinear). Otherwise, we require
that

e TYPE (Q). The perturbation is quasi-linear, namely

f = f0(<p7x7uauw7uw:v) + fl(@7xauauzvuwx>uxw:v

is affine in uz.,, and it satisfies (naming the variables zo = u, 21 = Uy, 22 = Uz, 23 = Ugzzz)

0 f = () (02,0 f + 21022, f + 2202, f + 2302, f) (1.7)
for some function a(y) (independent on x).

The Hamiltonian nonlinearities in ((1.11)) satisfy the above assumption (Q), see remark In comment
after Theorem |1.5 we explain the reason for assuming either condition (F) or (Q).

The following theorem is an existence result of quasi-periodic solutions.

Theorem 1.1. (Existence) There exist s :== s(v) >0, q := q(v) € N, such that:

For every quasi-linear nonlinearity f € C? of the form
f = aﬂC(g(Wt7‘T7u7u£7u$J))) (18)

satisfying the (Q)-condition (L.7), for all € € (0,e0), where go := eo(f,v) is small enough, there exists a
Cantor set C. C A of asymptotically full Lebesgue measure, i.e.

ICcl—1 as e—0, (1.9)

such that YA € C. the perturbed equation (1.4) has a solution u(e, \) € H® with ||u(e, )]s = 0 as e — 0.

We may ensure the linear stability of the solutions requiring further conditions on the nonlinearity, see
Theorem for the precise statement. The first case is that of Hamiltonian equations

2
up = 0, V2 H(t, z,u,uy,), H(t,x,u,u,):= / %T + eF(wt, z,u,uy) dx (1.10)
T



which have the form (|1.1)), (1.8) with
f(‘pv TyU, Ugy Ugy, uwwm) = _893{(820}7)(90’ x,u, ux)} + 8a:w{(8z1F)((P7 x,u, uw)} . (111)
The phase space of (1.10]) is

Hy(T) := {u(m) € H'(T,R) : /u(a:) dx = 0}
T
endowed with the non-degenerate symplectic form
Qu,v) := /(am_lu)v dr, Yu,v€ H}(T), (1.12)
T

where 9, 'u is the periodic primitive of u with zero average, see (3.19). As proved in remark the
Hamiltonian nonlinearity f in (1.11]) satisfies also the (Q)-condition (1.7)). As a consequence, Theorem
implies the existence of quasi-periodic solutions of ([1.10f). In addition, we also prove their linear stability.

Theorem 1.2. (Hamiltonian case) For all Hamiltonian quasi-linear equations (1.10)) the quasi-periodic
solution u(e, \) found in Theorem[I.]] is LINEARLY STABLE (see Theorem[1.5).

The stability of the quasi-periodic solutions also follows by the reversibility condition

f(=p,—x, 20, —21, 22, —23) = —f(p,, 20, 21, 22, 23). (1.13)
Actually implies that the infinite-dimensional non-autonomous dynamical system
ur =V(t,u), V(tu) = —Upge — f (W T, U, Ug, Upsy Uzza)
is reversible with respect to the involution
S:u(x) = u(—z), S*=1,
namely
=SV (—t,u) =V(t,Su).
In this case it is natural to look for “reversible” solutions of , that is

u(p,z) = u(—p,—x). (1.14)

Theorem 1.3. (Reversible case) There exist s := s(v) >0, ¢ := q(v) € N, such that:
For every nonlinearity f € CY9 that satisfies

() the reversibility condition (1.13)),

and

(ii) either the (F)-condition (1.6) or the (Q)-condition (1.7)),
for all e € (0,e0), where ey := eo(f,v) is small enough, there exists a Cantor set Cc C A with Lebesgue
measure satisfying (1.9), such that for all X € C. the perturbed Airy equation (L.4) has a solution u(e, \) € H?
that satisfies (1.14), with ||u(e, N)||s = 0 as € — 0. In addition, u(e, \) is LINEARLY STABLE.

Let us make some comments on the results.

1. The quasi-periodic solutions of Theorem could be unstable because the nonlinearity f has no
special structure and some eigenvalues of the linearized operator at the solutions could have non zero
real part (partially hyperbolic tori). In any case, we reduce to constant coefficients the linearized
operator (Theorem and we may compute its eigenvalues (i.e. Lyapunov exponents) with any
order of accuracy. With further conditions on the nonlinearity—like reversibility or in the Hamiltonian
case—the eigenvalues are purely imaginary, and the torus is linearly stable. The present situation is
very different with respect to [I7], [12]-[I5], [7]-[8] and also [24]-[26], [2], where the lack of stability
information is due to the fact that the linearized equation has variable coefficients.



2. One cannot expect the existence of quasi-periodic solutions of for any perturbation f. Actually,
if f =m # 0 is a constant, then, integrating in (o, z) we find the contradiction em = 0. This is

a consequence of the fact that
Ker(w - 0p + 0pzz) =R (1.15)

is non trivial. Both the condition (which is satisfied by the Hamiltonian nonlinearities) and the
reversibility condition allow to overcome this obstruction, working in a space of functions with
zero average. The degeneracy also reflects in the fact that the solutions of appear as
a l-dimensional family ¢ 4 u.(g, A) parametrized by the “average” ¢ € R. We could also avoid this
degeneracy by adding a “mass” term +mu in , but it does not seem to have physical meaning.

3. In Theorem [I.I] we have not considered the case in which f is fully nonlinear and satisfies condition
(F) in (1.6]), because any nonlinearity of the form (|1.8) is automatically quasi-linear (and so the first
condition in ([1.7) holds) and (1.6) trivially implies the second condition in (L.7)) with a(p) = 0.

4. The solutions u € H*® have the same regularity in both variables (¢, ). This functional setting is
convenient when using changes of variables that mix the time and space variables, like the composition

operators A, T in sections [3.1] [3-4]

5. In the Hamiltonian case (1.10), the nonlinearity f in (1.11]) satisfies the reversibility condition (|1.13]
if and only if F(—¢, —x, 20, —21) = F(¢, z, 20, 21).

Theorems are based on a Nash-Moser iterative scheme. An essential ingredient in the proof—which
also implies the linear stability of the quasi-periodic solutions—is the reducibility of the linear operator

L:=L(u) =w- 0y + (14 as(p, 2))0pzz + a2(p, )0z + a1(p, )05 + ap(p, ) (1.16)

obtained by linearizing (1.4) at any approximate (or exact) solution u, where the coefficients a;(p,x) are
defined in (3.2)). Let H? := H*(T) denote the usual Sobolev spaces of functions of € T only.

Theorem 1.4. (Reducibility) There exist & > 0, ¢ € N, depending on v, such that:

For every nonlinearity f € CY that satisfies the hypotheses of Theorems or for all € € (0,eq), where
g0 := eo(f,v) is small enough, for all w in the ball ||u||s,+5 < 1, there exists a Cantor like set Aoo(u) C A
such that, for all X € Aoo(u):

i) for all s € (80,9 — 7), if ||ulls+5 < 400 then there exist linear invertible bounded operators Wy, Wy :
Hs(T"+Y) — H3(TY*1) (see (.72)) with bounded inverse, that semi-conjugate the linear operator L(u) in
(1.16)) to the diagonal operator Lo, namely

E(U) :Wl‘COOWQ_l: ‘Coo ::w'84p+Doo (117)

where
Dy = diagjeZ{,u’j}a My = i(fm&jg + ml]) + rj, M3, M1 € Ra Sup |rj‘ < Ce. (118)
J

it) For each ¢ € TV the operators W; are also bounded linear bijections of HS (see notation )

Wilp), W, ) HS — HS, i=1,2.
A curve h(t) = h(t,-) € HS is a solution of the quasi-periodically forced linear equation

Oth + (1 + az(wt, x))Opazh + az(wt, )0y h + a1 (wt, x)0ph + ag(wt, x)h =0 (1.19)
if and only if the transformed curve
v(t) == v(t,-) := Wy Hwt)[h(t)] € HS

is a solution of the constant coefficients dynamical system

O+ Do =0, 05 =—pv;, Vjei. (1.20)

In the reversible or Hamiltonian case all the ji; € iR are purely imaginary.



The operator Wy differs from Wy (see (4.72])) only for the multiplication by the function p in which
comes from the re-parametrization of time of section As explained in section [2.2] this does not affect the
dynamical consequence of Theorem zz)

The exponents (; can be effectively computed. All the solutions of are

o(t) = v ()T, v;(t) = e Hitv;(0).
jEz
If the p; are purely imaginary—as in the reversible or the Hamiltonian cases—all the solutions of (|1.20) are
almost periodic in time (in general) and the Sobolev norm
o) 1/2 o) 1/2
lo® e = (3 los@P0*) " = (Dl @PG>) " = 10(0) a3 (1.21)

JET JEZ
is constant in time. As a consequence we have:

Theorem 1.5. (Linear stability) Assume the hypothesis of Theorem and, in addition, that f is
Hamiltonian (see ) or it satisfies the reversibility condition (1.13). Then, Vs € (so,q — & — sg),
|1l siso+5 < +o0, there exists Ko > 0 such that for all A € Ao (u), € € (0,e0), all the solutions of
satisfy

1) s < Kol|h(0)| s (1.22)

and, for some a € (0,1),
1(O) ][ 71y = e*Kollh(O)][ grg+r < [1A(E) ][ < N[P(O) | mrg + * Kol [(O)| g - (1.23)
Theorems [L.I}I.5| are proved in section [5.1] collecting all the informations of sections 2}j5}

1.2 Ideas of the proof

The proof of Theorems [1.1{1.3]is based on a Nash-Moser iterative scheme in the scale of Sobolev spaces H®.
The main issue concerns the invertibility of the linearized operator £ in 7 at each step of the iteration,
and the proof of the tame estimates for its right inverse. This information is obtained in Theorem
[4:3] by conjugating L to constant coefficients. This is also the key which implies the stability results for the
Hamiltonian and reversible nonlinearities, see Theorems [1.4

We now explain the main ideas of the reducibility scheme. The term of £ that produces the strongest
perturbative effects to the spectrum (and eigenfunctions) is as(p, €)0zze, and, then as(p, £)0y,. The usual
KAM transformations are not able to deal with these terms because they are “too close” to the identity.
Our strategy is the following. First, we conjugate the operator £ in to a constant coefficients third
order differential operator plus a zero order remainder

Ls=w-0p+mMm3030: + m10z + Ry, mz=1+0(), mi =0(e), mi,ms3 €R, (1.24)

(see ), via changes of variables induced by diffeomorphisms of the torus, a reparametrization of time,
and pseudo-differential operators. This is the goal of section|3] All these transformations could be composed
into one map, but we find it more convenient to split the regularization procedure into separate steps (sections
[3.1}3.5), both to highlight the basic ideas, and, especially, in order to derive estimates on the coefficients in
section Let us make some comments on this procedure.

1. In order to eliminate the space variable dependence of the highest order perturbation as(p, 2)0z.. (see
(3.20)) we use, in section ¢-dependent changes of variables of the form

(AR)(p, z) := h(p, 2 + B, 2)) .-

These transformations converge pointwise to the identity if 3 — 0 but not in operatorial norm. If g
is odd, A preserves the reversible structure, see remark On the other hand for the Hamiltonian
equation (1.10)) we use the modified transformation

(AR) (¢, z) := (1 + Ba(p, ) b,z + B(p, ) = %{(@flh)(% v+ By, )} (1.25)



for all h(p,-) € HE(T). This map is canonical, for each ¢ € T", with respect to the KdV-symplectic
form (1.12]), see remark Thus (|1.25) preserves the Hamiltonian structure and also eliminates the
term of order 9., see remark

. In the second step of section we eliminate the time dependence of the coefficients of the highest
order spatial derivative operator O,,, by a quasi-periodic time re-parametrization. This procedure
preserves the reversible and the Hamiltonian structure, see remark and

. Assumptions (Q) (see (1.7)) or (F) (see (1.6)) allow to eliminate terms like a(p,x)0,, along this
.10)

reduction procedure, see ( . This is possible, by a conjugation with multiplication operators (see

B3), it (sec EA0))
/7“2(@’“7) dz = 0. (1.26)
T 1+ a3((p7 $)
If (F) holds, then the coefficient as(p,2) = 0 and (1.26) is satisfied. If (Q) holds, then an easy
computation shows that az(p, ) = a(p) dza3(p, ) (using the explicit expression of the coefficients in
(3-2)), and so

GQ(SO,:L') = (0% (6] a x €T =
[0 do [ ()2, (toelt + st )] o =0.

In both cases (Q) and (F), condition ([1.26]) is satisfied.

In the Hamiltonian case there is no need of this step because the symplectic transformation (|1.25)) also
eliminates the term of order 0., see remark [3.7}

We note that without assumptions (Q) or (F) we may always reduce £ to a time dependent operator
with a(@)0... If a(p) were a constant, then this term would even simplify the analysis, killing the
small divisors. The pathological situation that we avoid by assuming (Q) or (F) is when a(y) changes
sign. In such a case, this term acts as a friction when a(¢) < 0 and as an amplifier when a(p) > 0.

. In sections we are finally able to conjugate the linear operator to another one with a coefficient
in front of 9, which is constant, i.e. obtaining (1.24)). In this step we use a transformation of the
form I +w(p,2)9; ", see (3.49). In the Hamiltonian case we use the symplectic map e"ow(‘/”g”)all, see
remark

. We can iterate the regularization procedure at any finite order & = 0,1,..., conjugating £ to an
operator of the form © + R, where

D=w-0,+D, D=m383+m18w+...+m_k8;k, m; € R,
has constant coefficients, and the rest R is arbitrarily regularizing in space, namely
9% o R = bounded . (1.27)

However, one cannot iterate this regularization infinitely many times, because it is not a quadratic
scheme, and therefore, because of the small divisors, it does not converge. This regularization procedure
is sufficient to prove the invertibility of £, giving tame estimates for the inverse, in the periodic case,
but it does not work for quasi-periodic solutions. The reason is the following. In order to use Neumann
series, one needs that D 'R = (D719, %)(0kR) is bounded, namely, in view of (1.27), that D19, * is
bounded. In the region where the eigenvalues (iw-l+D;) of ® are small, space and time derivatives are
related, |w-I| ~ |j|3, where [ is the Fourier index of time, j is that of space, and D; = —imgsj>+imij+...
are the eigenvalues of D. Imposing the first order Melnikov conditions |iw - I + D;| > ~|I|~7, in that
region, (D719,%) has eigenvalues

L
G- 1+ D)7 | <Al = w178

In the periodic case, w € R, € Z, |w - I| = |w||!|, and this determines the order of regularization that
is required by the procedure: k > 37. In the quasi-periodic case, instead, |I| is not controlled by |w -],
and the argument fails.



Once has been obtained, we implement a quadratic reducibility KAM scheme to diagonalize Ls,
namely to conjugate L5 to the diagonal operator L., in . Since we work with finite regularity, we
perform a Nash-Moser smoothing regularization (time-Fourier truncation). We use standard KAM transfor-
mations, in order to decrease, quadratically at each step, the size of the perturbation R, see section
This iterative scheme converges (Theorem because the initial remainder R is a bounded operator (of
the space variable ), and this property is preserved along the iteration. This is the reason for performing the
regularization procedure of sections The second order Melnikov non-resonance conditions required
by the reducibility scheme (see (4.17))), are verified thanks to the good control of the eigenvalues

pj = —imz(e,A)7° +imi(e, N\)j + (e, A),  sup|r;(e,A)] = O(e).
j
We underline that the goal of the Téplitz-Lipschitz [19], [21], [23] and quasi-Téplitz property [39], [10], [I1],

[38] is precisely to provide an asymptotic expansion of the perturbed eigenvalues sharp enough to verify the
the second order Melnikov conditions.

Note that the above eigenvalues u; could be not purely imaginary, i.e. r; could have a non-zero real part
which depends on the nonlinearity (unlike the reversible or Hamiltonian case, where r; € iR). In such a
case, the invariant torus could be (partially) hyperbolic. Since we do not control the real part of 7; (i.e. the
hyperbolicity may vanish), we perform the measure estimates proving the diophantine lower bounds of the
imaginary part of the small divisors.

The final comment concerns the dynamical consequences of Theorem [I.4}ii). All the above transfor-
mations (both the changes of variables of sections as well as the KAM matrices of the reducibility
scheme) are time-dependent quasi-periodic maps of the phase space (of functions of = only), see section
It is thanks to this “T6plitz-in-time” structure that the linear equation is transformed into the
dynamical system as explained in section Note that in [24] (and also [I5], [7],[8]) the analogous
transformations have not this T6plitz-in-time structure and stability informations are not obtained.

Acknowledgements. We warmly thank W. Craig for many discussions about the reduction approach of the
linearized operators and the reversible structure, and P. Bolle for deep observations about the Hamiltonian
case. We also thank T. Kappeler, M. Procesi for many useful comments.

2 Functional setting

For a function f: A, = E, A — f(\), where (E, || ||g) is a Banach space and A, is a subset of R, we define
the sup-norm and the Lipschitz semi-norm

1f (A1) = fF(A2)le

i i
IIE" =I5, = sup IfNle,  [IfIE = fIFa, = sup ; (2.1)
AeA, N O ]
A1F# A2
and, for v > 0, the Lipschitz norm
Li Li su li

17157 = WA = 11 + A1 (2:2)

If E = H*® we simply denote Hf||L1p(ﬂ’ : ||f||Llp
As a notation, we write
a<;b <<= a<C(s)b

for some constant C(s). For s = s¢ := (v + 2)/2 we only write a < b. More in general the notation a < b

means a < Cb where the constant C' may depend on the data of the problem, namely the nonlinearity f,
the number v of frequencies, the diophantine vector @, the diophantine exponent 7 > 0 in the non-resonance
conditions in (4.6)). Also the small constants ¢ in the sequel depend on the data of the problem.



2.1 Matrices with off-diagonal decay

Let b € N and consider the exponential basis {e; : i € Zb} of L?(T?), so that L?(T?) is the vector space
{u = S useq, S |uil? < oo}, Any linear operator A : L?(T®) — L2?(T?) can be represented by the infinite
dimensional matrix

i il . i
(A} )iiezrs Aj = (Aey, ei)L2(']1‘b)7 Au = E Aj uie;.
i’

We now define the s-norm (introduced in [7]) of an infinite dimensional matrix.

Definition 2.1. The s-decay norm of an infinite dimensional matriz A := (Az:f)ilvléezb 18

A2 =" <i>28( sup |A%2 )2. (2.3)

: i1 —i2=1
1ELL 1T

For parameter dependent matrices A := A(A\), A € A, C R, the definitions (2.1) and (2.2]) become

. AN — AN, . .
AR = sup [AN)], AP = sup AQDZ ARl 1 wioe g o 4pte
AEA,

MAe A=Al
Clearly, the matrix decay norm (2.3)) is increasing with respect to the index s, namely
|Als < |Alg, Vs<s'.

The s-norm is designed to estimate the polynomial off-diagonal decay of matrices, actually it implies

: Al b
|A2T|Sma VthQEZ ’

and, on the diagonal elements, ‘ o _
Af < |Alo, | A3" < A" (2.4)

We now list some properties of the matrix decay norm proved in [7].

Lemma 2.1. (Multiplication operator) Let p =Y, pie; € H*(T®). The multiplication operator h — ph
is represented by the Toplitz matriz Tii/ = pi—y and

IT'ls = llplls- (2.5)
Moreover, if p=p(\) is a Lipschitz family of functions,
TSP = ||| (2.6)
The s-norm satisfies classical algebra and interpolation inequalities.
Lemma 2.2. (Interpolation) For all s > sg > b/2 there are C(s) > C(sg) > 1 such that
|AB|s < C(s)|Als, | Bls + C(s0)[Als| Bls, - (2.7)
In particular, the algebra property holds
|AB|s < C(s)|Als|Bls - (2.8)
If A= A(\) and B = B()\) depend in a Lipschitz way on the parameter A € A, C R, then

|AB|P™) < C(s)|A[LPD)|BILP) (2.9)
|AB‘I;ip(’Y) < C(s)|A|I;ip(v)|B|5;p(v) + C(so)|A\£;p(7)\B\I;ip(7). (2.10)
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For all n > 1, using (2.8) with s = sq, we get

A", < [Clso)]"HALS,  and  [A"]s < n[C(s0)|Als]" "' C(s)|Als, Vs > 50

Moreover (2.10]) implies that (2.11]) also holds for Lipschitz norms | |]§ip(7).
The s-decay norm controls the Sobolev norm, also for Lipschitz families:

1AR|ls < O(s) (| Also IR lls + [ALslIR]lso), [ARIFPO < O(s) (JAIGPDIAIIEPO + |AFPO|[A|5P).

(2.11)

(2.12)

Lemma 2.3. Let ® = I + ¥ with ¥ := U(\), depending in a Lipschitz way on the parameter A € A, C R,

such that C’(so)|\IJ|I;ép(7) < 1/2. Then ® is invertible and, for all s > so > b/2,
@71 — 1], < C(s)| s, [@7HPY) <2, (@7 —I7P0) < C(s) WL
If O, = I+, i =1,2, satisfy C(so)|W;[5PY) < 1/2, then
|5 — 7y < C)([Wo — Wiy + (|15 + [Wals) [W5 — Wiy, ) -
Proor. Estimates follow by Neumann series and . To prove , observe that

Oyl — 0T =B (@) — @)@y = O (W — W)@y
and use (2.7), (2.13). =

2.1.1 Toplitz-in-time matrices
Let now b:=v +1 and
ei(p,x) = ellletio) .= (Lj)ezb, 1ez’, jel.
An important sub-algebra of matrices is formed by the matrices Toplitz in time defined by

AT = AR = 1),

whose decay norm (2.3)) is
AZ= > sup [AROPEH.

jezlezy 17127

These matrices are identified with the ¢-dependent family of operators

A@)i= (A7), pyenr AR(9)i= 3 AR

lezv

which act on functions of the z-variable as

Alp) : h(z) = 3 e o Ap)h(e) = Y. A (p)hse.

JEL J1,J2€Z
We still denote by |A(¢)|s the s-decay norm of the matrix in (2.17)).
Lemma 2.4. Let A be a Toplitz matriz as in (2.15), and s := (v + 2)/2 (as defined above). Then

[A(@)]s < Cls0)[Alstsy, V€T

11

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Proor. For all ¢ € T we have

|A((p)|§ = Z<]>29 sup ‘AJ2 <Z 2s sup Z |A12 250

jEeZ J1—Jj2=J =/ J1—J2 ]lezp
< Y osup Y A% G <y sup |AZ () (1, 5)* =)
jez 112l jegy jeziezy 1 I2=]
2.%6 | 5
s+507

whence the lemma follows. B
Given N € N, we define the smoothing operator Iy as

(I2,52) :
(I2,52) A if |ll - ZQ‘ <N
My A), 2720 = ¢ T ) 2.19
( N )(ll’“) {O otherwise. ( )
Lemma 2.5. The operator HJ](, = I — Iy satisfies
Iy Al < N7P[Alopp,  [IRALPO) < NP4 5>, (2.20)

where in the second inequality A := A(\) is a Lipschitz family A € A.

2.2 Dynamical reducibility

All the transformations that we construct in sections [3| and [4] act on functions u(p, z) (of time and space).
They can also be seen as:

(a) transformations of the phase space H? that depend quasi-periodically on time (sections
and ;

(b) quasi-periodic reparametrizations of time (section [3.2)).

This observation allows to interpret the conjugacy procedure from a dynamical point of view.
Consider a quasi-periodic linear dynamical system

Opu = L(wt)u. (2.21)

We want to describe how (2.21)) changes under the action of a transformation of type (a) or (b).
Let A(wt) be of type (a), and let u = A(wt)v. Then (2.21) is transformed into the linear system

O = Ly(wt)v where Ly(wt) = A(wt) 'L(wt)A(wt) — A(wt) [0 A(wt)] . (2.22)
The transformation A(wt) may be regarded to act on functions u(p,x) as
(Au)(p, ) == (Alp)ulp, ) (@) := Alp)ulp, z) (2.23)

and one can check that (A~'u)(p, z) = A~ (p)u(ep, z). The operator associated to (2.21)) (on quasi-periodic
functions)

L:=w-0,— L(p) (2.24)
transforms under the action of A into
AT'VLA=w 0, — Ly(p),

which is exactly the linear system in ([2.22)), acting on quasi-periodic functions.

Now consider a transformation of type (b), namely a change of the time variable

Ti=t+awt) & t=17+awr); (Bu)(t):=v(t+a(wt)), (B 'u)(r) =u(r + alwr)), (2.25)
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where o = a(p), p € T%, is a 2r-periodic function of v variables (in other words, ¢ — t + a(wt) is the
diffeomorphism of R induced by the transformation B). If u(t) is a solution of (2.21)), then v(7), defined by
u = Bw, solves

L(wt) )
1+ (w-0p0)(wt)/ jt=r+a(wr)

0-v(1) = Ly(wr)v(r), Ly(wr):= ( (2.26)

We may regard the associated transformation on quasi-periodic functions defined by

(Bh)(p, @) = h(p +walp),x),  (B7'h)(p,2) := h(p +wily), ),
as in step [3.2] where we calculate

BB =p(p)Ly, plp):=B ' (1+w-d,a),

Ly =0, = Lalp), Lale) = Lo +uils)). (2.27)

(2.27) is nothing but the linear system (2.26]), acting on quasi-periodic functions.

2.3 Real, reversible and Hamiltonian operators

We consider the space of real functions

Z = {ulp,z) = u(p,2)}, (2.28)
and of even (in space-time), respectively odd, functions
Xi=A{ulp,r) =u(-¢,—2)}, Y :={ulp,r) = —u(—p,—2)}. (2.29)
Definition 2.2. An operator R is
1. REALfR: Z — Z
2. REVERSIBLE if R: X =Y
3. REVERSIBILITY-PRESERVING if R: X - X, R:Y =Y.

The composition of a reversible and a reversibility-preserving operator is reversible.
The above properties may be characterized in terms of matrix elements.

Lemma 2.6. We have

R:X =Y < RI(-)=-Ri(l), R:X—X < RIi(-1)=R{),

R:Z—Z <= RL()=RL(-I).
For the Hamiltonian equation (L.10)) the phase space is Hy := {u € H'(T) : [ u(z)dz = 0}.

Definition 2.3. A time dependent linear vector field X (t) : Hi — Hg is HAMILTONIAN if X (t) = 0, G(t)
for some real linear operator G(t) which is self-adjoint with respect to the L* scalar product.

If G(t) = G(wt) is quasi-periodic in time, we say that the associated operator w -9, — 0, G(p) (see (2.24)))
is Hamiltonian.

Definition 2.4. A map A: H} — H} is SYMPLECTIC if
Q(Au, Av) = Qu,v), Yu,v € H}, (2.30)

where the symplectic 2-form ) is defined in (1.12)). Equivalently ATO A = 9 *.
If A(p), Yo € T, is a family of symplectic maps we say that the corresponding operator in (2.23)) is
symplectic.
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Under a time dependent family of symplectic transformations u = ®(t)v the linear Hamiltonian equation

up = 8,G(t)u  with Hamiltonian H(t,u) := 5 (G(t)u,u),,

transforms into the equation
v = 0, E(t)v, E(t):=dt)TGt)®(t) — d(t)T0,1®,(t)
with Hamiltonian

K(t,v) = 5 (G)2(t)v, @(t)) ., — 5 (0, ' @i (t)v, D(t)v) ., - (2.31)

Note that E(t) is self-adjoint with respect to the L? scalar product because 79, 1®, + &7 9 1d = 0.

3 Regularization of the linearized operator

Our existence proof is based on a Nash-Moser iterative scheme. The main step concerns the invertibility of
the linearized operator (see (|1.16))

Lh =LA u,e)h :=w-0,h+ (14 a3)0rpeh + 42057 4+ a10h + agh (3.1)

obtained linearizing (1.4 at any approximate (or exact) solution u. The coefficients a;, = a;(p,z) =
a;(u,€)(p,x) are periodic functions of (p,z), depending on w,e. They are explicitly obtained from the
partial derivatives of e f(p,x, 2) as

ai(p,x) = e(2, ) (@, 2, ul@, ), ue (0, @), Uze (0, ), Unwa (0, 7)), 1=0,1,2,3. (3.2)

The operator £ depends on A because w = A@. Since € is a (small) fixed parameter, we simply write L(\, u)
instead of L£(\,u,¢), and a;(u) instead of a;(u,e). We emphasize that the coefficients a; do not depend
explicitly on the parameter A (they depend on A only through w(A)).

In the Hamiltonian case (1.11]) the linearized operator (3.1) has the form
Lh=w-0,h+8, (am{Al(% 2)0:h} — Ao(e, m)h)
where

A1(<p71') =1+ 5(8Z1Z1F)(507xau»uz) ) AO(QO,Z') = _5890{(820211?)(90»‘%”7”1’)} +5(82020F)(901$7u7u1)

and it is generated by the quadratic Hamiltonian

1
Hr(p,h):= 5/? (A0(<p733)h2 + Al(ap,m)hi) dr, heH;.

Remark 3.1. In the reversible case, i.e. the nonlinearity f satisfies (1.13) and u € X (see (2.29), (1.14)))
the coefficients a; satisfy the parity

az,a1 € X, ag,ag €Y, (3.3)
and L maps X into Y, namely L is reversible, see Definition[2.9

Remark 3.2. In the Hamiltonian case (1.11)), assumption (Q)-(1.7)) is automatically satisfied (with a(p) =
2) because

f(sov Ty Uy Ugy Uz ummx) = CL(QD, Z,u, u:r) + b(307 Z,u, uz)uzx + C(QD’ z,u, uw)uix + d(S07 €, U, uz)ux:rx

where
b=202 . F)+2x(3%, , F), c=02F, d=02F,

zZ1z21T Z1Z1%0

and so

Ou f =0+ 220¢=2(dy + z1d;, + 20d,,) = 2(83330]” + 218§SZOf + zzagsmf + 2385322 f) .
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The coefficients a;, together with their derivative d,a;(w)[h] with respect to u in the direction h, satisfy
tame estimates:

Lemma 3.1. Let f € C1, see (1.3)). For all s < s < q—2, ||u||so+3 < 1, we have, for all i =0,1,2,3,

lai(u)lls < &C(s)(1+ [[ulls+3), (3.4)
10uai()[A]]ls < e C(s)(1hlls4s + l[ullsallhllso+3) - (3.5)

If, moreover, A\ — w(\) € H® is a Lipschitz family satisfying ||uHI;;3_(;) <1 (see (2.2))), then
laslly ) < e Cls) (1 + [ull357) (3.6)
PROOF. The tame estimate (3.4) follows by Lemmal6.2)(¢) applied to the function 8., f, i =0, ..., 3, which
is valid for s + 1 < ¢. The tame bound (3.5)) for
53 o
Oya;(u)[h] 2 EZ(angif) (@,x,u,uw,uw,umw) 8§h, 1=0,...,3,
k=0

follows by (6.5) and applying Lemma z) to the functions 2 . f, which gives

ZkZ

H(agkzif)((pv337”7“:1:7”@’:1:7“:1:3030)||s < C(S)”f‘

for s + 2 < q. The Lipschitz bound (3.6)) follows similarly. B

a2 (L + [[ulls4s),

3.1 Step 1. Change of the space variable

We consider a p-dependent family of diffeomorphisms of the 1-dimensional torus T of the form

y:x+ﬂ(g0,x), (37)

where 8 is a (small) real-valued function, 27 periodic in all its arguments. The change of variables (3.7)
induces on the space of functions the linear operator

(AR)(p,z) := h(p,x + B(p, x)). (3.8)
The operator A is invertible, with inverse
(A™0)(p,y) = v(e,y + Ble,y)), (3.9)

where y — y + B (¢, y) is the inverse diffeomorphism of , namely

z=y+B(py) = y=z+p(p ). (3.10)

Remark 3.3. In the Hamiltonian case (1.11)) we use, instead of (3.8)), the modified change of variable (1.25))
which is symplectic, for each ¢ € TV. Indeed, setting U := 9, 'u (and neglecting to write the o-dependence)

Qu Av) = [ 01 (00 (UG + 5@)}) (14 Balo)(e + Bla) do
— [Vl 5@+ Bul@))oe + BN — ¢ [ (14 Ba(a)ola + Hla))da
T T
= /TU(y)v(y)dy =Q(u,v), veH,
where ¢ is the average of U(x + B(x)) in T. The inverse operator of is (A7) (p,y) = (1 +

By (o, y)v(y + B(p,y)) which is also symplectic.
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Now we calculate the conjugate A=1LA of the linearized operator £ in (3.1)) with A in (3.8)).
The conjugate A~taA of any multiplication operator a : h(p,x) + a(p, z)h(p, ) is the multiplication
operator (A~1a) that maps v(p,y) — (A~1a)(p, y) v(p,y). By conjugation, the differential operators become
ATlw - 8 A=w- 9, + {A™ (w- 98)} Oy,
A0, A= {ATH (1 + B2)} 0y,
AT O A = {AT 1+ B2)?} Oy + {AT (Bia) } Oy,
AT Oz A = {AT 1+ B2)’} Oyyy + {3ATH (1 + B2) Bual} Oy + {A™" (Braw) } Oy,

where all the coefficients {A~1(...)} are periodic functions of (¢,y). Thus (recall (3.1)))

L1:=A"LA=w- 0y +b3(p,y)Dyyy + b2(0,9)0yy + b1 (2, ¥)y + bo(,y) (3.11)

where
bs=A ' (1+a3)(1+5.)%,  b1=A"w- 9,8+ (1+a3)Bess + a2Bs0 + ar(l + B2)], (3.12)
by = Ail(ao), by = -Ail[(l + a3)3(1 + /Bx)ﬁxx + a2(1 + Bac)z] (3'13)

We look for B(¢p,z) such that the coefficient bs(p,y) of the highest order derivative 0y, in (3.11) does not
depend on y, namely

ba(0, 1) B2 A1+ ) (1 + B2))(0, ) = b)) (3.14)

for some function b(p) of ¢ only. Since A changes only the space variable, Ab = b for every function b(y)
that is independent on y. Hence (3.14)) is equivalent to

(14 as(e, @) (1+ Bali,2))” = b(y), (3.15)

namely
-1/3
Ba=ros  pole,a) i=b(e) (1 +as(p,a) -1 (3.16)
The equation ([3.16)) has a solution 3, periodic in z, if and only if fT po(p, ) dz = 0. This condition uniquely
determines

1 _1 -3
b(p) = (/ (14 as(p,z)) * d:v> : (3.17)
2 T
Then we fix the solution (with zero average) of (3.16]),
Blp,x) = (8, po)(p, ), (3.18)

where 0, ! is defined by linearity as

ijx

o lelin = % viezZ\{0}, 9 '1=0. (3.19)

x

In other words, d; 'k is the primitive of h with zero average in x.

With this choice of 3, we get (see (3.11)), (3.14))
Ly =AT'LA=w 0y + b3(9)Dyyy + b2(,9)0yy + b1(, )0y + bo(.y), (3.20)

where bs(¢) := b(ip) is defined in ([3.17)).

Remark 3.4. In the reversible case, 5 € Y because ag € X, see (3.3). Therefore the operator A in (3.8),
as well as A= in (3.9), maps X — X and Y — Y, namely it is reversibility-preserving, see Definition |2.2,

By (3.3)) the coefficients of L1 (see (3.12)), (3.13)) have parity
bs,b1 € X, ba, by €Y, (321)

and L1 maps X — Y, namely it is reversible.
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Remark 3.5. In the Hamiltonian case (1.11)) the resulting operator Ly in (3.20) is Hamiltonian and
ba(p,y) = 20yb3(p) = 0. Actually, by (2.31), the corresponding Hamiltonian has the form

1
K(p,v) = Q/TbS(@U; + Bo(p, y)v° dy, (3.22)

for some function Bo(p,y).

3.2 Step 2. Time reparametrization

The goal of this section is to make constant the coeflicient of the highest order spatial derivative operator
Oyyy of L1 in , by a quasi-periodic reparametrization of time. We consider a diffeomorphism of the
torus T of the form

o= ptwalp), peT’ alp) eR, (3.23)

where « is a (small) real valued function, 27-periodic in all its arguments. The induced linear operator on
the space of functions is

(Bh)(¢,y) = h(p +wa(e), y) (3.24)
whose inverse is

(B~0)(¥,y) == v(0 + wa(¥), y) (3.25)
where ¢ = ¥ + wa(¥) is the inverse diffeomorphism of 4 = ¢ + wa(p). By conjugation, the differential
operators become

B'w-0,B=p()w-09, B '0,B=09,, p:=B1(1l+w-09,a). (3.26)
Thus, see (3.20)),
B 'LiB = pw- 0y + {B b3} Oyyy + {B b2} Oy + {B 01} 0y + {B o} (3.27)

We look for a(y) such that the (variable) coefficients of the highest order derivatives (w - 0y and Jy,,) are
proportional, namely

(BYb5}(9) = map(9) = ms{B~1(1 +w- 0,0)}(¥) (3.28)
for some constant m3 € R. Since B is invertible, this is equivalent to require that
b3(p) = ms(1+w- dpa(p)). (3.29)
Integrating on T” determines the value of the constant ms,
7
ms = —— bs(p) de. (3.30)
2m)” Jr
Thus we choose the unique solution of (3.29)) with zero average
1 _
alp) == — (w-8y) " (bs — ma) () (3.31)
ms
where (w- 8,)~! is defined by linearity
-1 _il-p . et -1
(w-0,) e .:iw.l,l;éo, (w-0,)""1=0.
With this choice of o we get (see (3.27), (3.28]))
B7'L1B = pL,, Lo :=w - Oy +m3 Oyyy + c2(V,y) Oyy + c1(V,y) 0y + co(V,y), (3.32)
where B-1p
6= — L i=0,1,2. (3.33)

Remark 3.6. In the reversible case, o is odd because bs is even (see (3.21) ), and B is reversibility preserving.
Since p (defined in (3.26])) is even, the coefficients cs,c1 € X, ca,co €Y and Lo : X — 'Y is reversible.

Remark 3.7. In the Hamiltonian case, the operator Lo is still Hamiltonian (the new Hamiltonian is the old
one at the new time, divided by the factor p). The coefficient co(9,y) = 0 because by = 0, see remark .
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3.3 Step 3. Descent method: step zero

The aim of this section is to eliminate the term of order d,, from L in (3.32).
Consider the multiplication operator

Mh :=v(,y)h (3.34)

where the function v is periodic in all its arguments. Calculate the difference
LoM — M (w- 0y +m30Oyyy) = T20yy + T10, + Tp, (3.35)
where
Ty := 3mavy + cav, T1 = 3mavyy + 2cv, + c1v, T = w - Oyv + M3avyy, + C2vyy + 10, + cov.  (3.36)

To eliminate the factor 15, we need

3mavy + cov = 0. (3.37)

Equation (3.37) has the periodic solution

1
d,y) = - — (9, e2) (¥ 3.38
o(i,y) = exp{ — 5 (0, ) (0,0)} (3.38)
provided that
/ c2(¥,y)dy = 0. (3.39)
T

Let us prove (3.39). By (3.33)), (3.26)), for each ¥ = ¢ + wa(yp) we get

1 . B 1
ey = iy LE R0 = s [y

By the definition ([3.13)) of by and changing variable y = 2 + 5(p, x) in the integral (recall (3.8))

/ ba(ip.y) dy / ((1+a3)3(1 + Bo)Bra + 021+ B2)%) (14 B,) da
T T

ﬂw:c((p’m) ag(go,:c) "
Al lm¢){3 TiTFB;@Z}de‘Fjgifiﬁg@iéjd }. (3.40)

The first integral in (3.40) is zero because Byq/(1 4 B2) = 02 log(1 + ;). The second one is zero because of
assumptions (Q)'@ or (F)—7 see ([1.26)). As a consequence is proved, and has the periodic
solution v defined in . Note that v is close to 1 for € small. Hence the multiplication operator M
defined in is invertible and M~ is the multiplication operator for 1/v. By and since Th = 0,
we deduce

£3 = MﬁlﬁgM =Ww- 819 + mgayyy + dl(ﬁ,y)ﬁy + do(’ﬂ,y), dz =

i
— =0,1. 3.41
Li=01 (341

Remark 3.8. In the reversible case, since co is odd (see Remark) the function v is even, then M, M~}
are reversibility preserving and by (3.36) and (3.41) d1 € X and dy € Y, which implies that L3 : X — Y.

Remark 3.9. In the Hamiltonian case, there is no need to perform this step because co = 0, see remark[3.7]

3.4 Step 4. Change of space variable (translation)

Consider the change of the space variable
z=y+p()

which induces the operators

Th(d,y) := h(d,y + p(9)), ’Tﬁlv(ﬁ, z) = v(¥, z — p(9)). (3.42)
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The differential operators become
T w-0sT =w 09+ {w-09p(¥)}0,, T '0,T =0,.

Thus, by (3.41)),
Ly:=T 'L3T =w-0p +m30... +e1(9,2) 0, + eo(V, 2)

where

e1(9,2) == w - Ogp(¥) + (T 1d1)(9,2), eo(V,2) := (T tdo)(¥,2). (3.43)
Now we look for p(1}) such that the average
e1(9,2)dz=mq, VIeT”, (3.44)

2r Jy

for some constant m; € R (independent of ). Equation (3.44) is equivalent to
w-Ogp=my — / dqi (9, y) dy =: V(99). (3.45)
T

The equation (3.45)) has a periodic solution p(¥) if and only if [}, V() dd = 0. Hence we have to define

1
= d1 (9, y) dvd 3.46
= G /TV+1 1(0,y) didy (3.46)
and

p(9) = (w-0p) V(). (3.47)

With this choice of p, after renaming the space-time variables z = x and ¥ = ¢, we have

1
Ly =w-0p+ Mm30szs + e1(p, ) 0y + eo(p, x), by e1(p,z)dr=my, Yo eT". (3.48)
T

Remark 3.10. By (3.45)), (3.47) and since di € X (see remark @), the function p is odd. Then T and
Tt defined in (3.42)) are reversibility preserving and the coefficients ey, eq defined in (3.43)) satisfy e; € X,
eo €Y. Hence L4 : X — 'Y is reversible.

Remark 3.11. In the Hamiltonian case the operator L4 is Hamiltonian, because the operator T in (3.42))
is symplectic (it is a particular case of the change of variables (1.25|) with B(¢,z) = p(p)).

3.5 Step 5. Descent method: conjugation by pseudo-differential operators

The goal of this section is to conjugate L4 in (3.48)) to an operator of the form w - 0, + M30y0z +M10, + R
where the constants mg, m; are defined in ([3.30)), , and R is a pseudo-differential operator of order 0.
Consider an operator of the form
S:=1+w(p,z)0;* (3.49)
where w : T"*1 — R and the operator 9! is defined in . Note that 9,19, = 0,0, = 7, where 7 is
the L2-projector on the subspace Hy := {u(p,z) € L*(T"*™) : [Lu(p,z)dx = 0}.
A direct computation shows that the difference

L4S — S(w . 8¢ + m30ppe + mlc’)w) =110, + 710 + 7;18;1 (350)

where (using 9,7y = M0y = Op, 05 *Oraz = Ouz)

r1 = 3mgwy +ei(p,x) —my (3.51)
ro = e+ (3m3wm +eqw — mlw)ﬁo (3.52)
r_1 = W OpW+ M3Wapy + €1Wg - (3.53)
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We look for a periodic function w(yp, z) such that ry = 0. By (3.51]) and (3.44) we take

1
w= 3—7?138;1[7711 —eq]. (3.54)

For & small enough the operator S is invertible and we obtain, by (3.50)),
Ls = S_1£4S:w-8@+m38mz+mlam—|—R, R = S_l(ro—&—r,la;l). (3.55)

Remark 3.12. In the reversible case, the function w € Y, because e; € X, see remark|3.10} Then S, S~1
are reversibility preserving. By (3.52) and (3.53), 7o € Y and r—1 € X. Then the operators R, Ls defined
in (3.55) are reversible, namely R, L5 : X — Y.

Remark 3.13. In the Hamiltonian case, we consider, instead of (3.49), the modified operator
S = emowlemdt Ty mow(p, x)0; 4+ ... (3.56)

which, for each p € T, is symplectic. Actually S is the time one flow map of the Hamiltonian vector field

mow(p, )0+ which is generated by the Hamiltonian

1
Hs(p,u) := —3 Aw(w,x)(@;lufdx , u€Hj.

The corresponding Ls in (3.55)) is Hamiltonian. Note that the operators (3.56|) and (3.49) differ only for
pseudo-differential smoothing operators of order O(d;2) and of smaller size O(w?) = O(g?).
3.6 Estimates on L;

Summarizing the steps performed in the previous sections we have (semi)-conjugated the operator
L defined in (3.1]) to the operator L5 defined in (3.55)), namely

L= L5D;", O, := ABpMTS, &y:= ABMTS (3.57)

(where p means the multiplication operator for the function p defined in (3.26)).
In the next lemma we give tame estimates for L5 and ®;, 5. We define the constants

o:=2190+2v+17, o :=219+v+14 (3.58)
where 79 is defined in (|1.2) and v is the number of frequencies.

Lemma 3.2. Let f € C?, see (1.3)), and sop < s < g — 0. There exists 6 > 0 such that, if 5%—1 < 4 (the
constant o is defined in (1.2))), then, for all

[ullso+o <1, (3.59)
(i) the transformations ®1,® defined in (3.57) are invertible operators of H*(T**1), and satisfy
[@shlls + 1127 Alls < C(s)(I-lls + lulls+ollhllsy ), (3.60)

fori=1,2. Moreover, if u(X), h(\) are Lipschitz families with

Li
lull525 < 1, (3.61)
then i i Lip(v) Lip(7) | 7, | Lip(7)
19377 + (|95 Al < C(s) (1Rl + lull 5 1hllsgs ), i = 1,2 (3.62)
(i1) The constant coefficients ms,my of Ls defined in (3.55)) satisfy
Ims — 1] + [mq| < eC, (3.63)
|0ums (u)[h]] + |Ouma (u)[h]] < eC|hl, . (3.64)
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Moreover, if u()\) is a Lipschitz family satisfying (3.61)), then
Ims — 1|HPO) 4 |y |HPO) < e (3.65)
(#i1) The operator R defined in satisfies:
Rls <eC(s)(1 + [luflsto), (3.66)
0uR(u)[1]]s < eC(s)([hlls+or + Nullstollllsgrar) (3.67)

where o > o’ are defined in (3.58)). Moreover, if u(X) is a Lipschitz family satisfying (3.61)), then

[RIFPO) < eC(s)(1+ lull2557). (3.68)
Finally, in the reversible case, the maps ®;, <I>i_1, i = 1,2 are reversibility preserving and R,Ls : X — Y are
reversible. In the Hamiltonian case the operator Ls is Hamiltonian.

PROOF. The proof is elementary. It is based only on a repeated use of the tame estimates of the Lemmata
in the Appendix. B
In the same way we get the following lemma.

Lemma 3.3. In the same hypotheses of Lemmal[3.3, for all ¢ € T", the operators A(y), M(p), T(¢), S(¢)
are invertible operators of the phase space HE := H*(T), with

1A= (@)l < C(s)(IIRlls + lulls+sosllBlla), (3.69)

I(AF (9) = Dl < eC () (Il gess + llullstso+sllhllzz), (3.70)
M) T(@)S (@) hllay < Cls)(I1Pllms + lullstollhllaz), (3.71)
(M (@T(@)S(@)*! = Dhllag < evg ' C6) (I1hll g + ullseo A1) (3.72)

4 Reduction of the linearized operator to constant coefficients

The goal of this section is to diagonalize the linear operator L5 obtained in (3.55]), and therefore to complete
the reduction of £ in (3.1]) into constant coefficients. For 7 > 79 (see (1.2))) we define the constant

B:=TT+6. (4.1)

Theorem 4.1. Let f € C9, see (1.3)). Let v € (0,1) and sg < s < q— o — 8 where o is defined in (3.58),
and B in (4.1)). Let u(X\) be a family of functions depending on the parameter A € A, C A :=1[1/2,3/2] in a
Lipschitz way, with

Li
lullgh g0, <1 (4.2)

Then there exist 69, C (depending on the data of the problem) such that, if

eyt < 6, (4.3)
then:
(i) (Eigenvalues) VA € A there exists a sequence
pEN) = p(Aw) = B30 +15°(N), A5(N) = 1( = ma(N)j° +mi(N)j). €L, (4.4)

where m3,my coincide with the coefficients of L5 in (3.55) for all A € A,, and the corrections r$° satisfy
g — 1[MPO) 4 |7y |[UPO) 22 lPD) < e vj e 7. (4.5)

Moreover, in the reversible case (i.e. (1.13) holds) or Hamiltonian case (i.e. (1.11)) holds), all the eigenvalues

w;o are purely tmaginary.
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(7) (Conjugacy). For all X in
A% = AT () = {)\ €Ay M- 14 pP(N) — (V)] > 2905° = K77, VIeZ¥, j ke Z} (4.6)

there is a bounded, invertible linear operator ®oo(X\) : H® — H?*, with bounded inverse ® 1(\), that conjugates

Ls in (3.55)) to constant coefficients, namely
Loo(X) =D (A) 0 L5(A) 0 Do (A) = A - 0y + Do (A),  Dao(A) := diagjczu°(A) . (4.7)

The transformations ®.,, @3l are close to the identity in matriz decay norm, with estimates

Li - Li - Li
[@ae (V) — 12050 4+ [0 () — 11575 < ey ™1 C(s) (1+ [ullFi7y 0, )- (4.8)
For all ¢ € T”, the operator ®(p) : HS — HE is invertible (where HS := H*(T)) with inverse (®o(¢)) "t =
0} (), and

(@3 (9) = Dhllmz < ey ' C(s) (1Pl + Nullstot srs 1 Bllar2)- (4.9)

In the reversible case ®oo, L : X — X, Y — Y are reversibility preserving, and Lo, : X — Y is reversible.
In the Hamiltonian case the final Lo, is Hamiltonian.

An important point of Theorem is to require only the bound (4.2) for the low norm of w, but it
provides the estimate for ®%! — I in (4.8) also for the higher norms | - |4, depending also on the high norms
of u. From Theorem we shall deduce tame estimates for the inverse linearized operators in Theorem

Note also that the set A% in depends only of the final eigenvalues, and it is not defined inductively as
in usual KAM theorems. This characterization of the set of parameters which fulfill all the required Melnikov
non-resonance conditions (at any step of the iteration) was first observed in [6], [5] in an analytic setting.
Theorem extends this property also in a differentiable setting. A main advantage of this formulation is
that it allows to discuss the measure estimates only once and not inductively: the Cantor set A2 in
could be empty (actually its measure [AZ]| =1 — O(y) as v — 0) but the functions u$°(\) are anyway well
defined for all A € A, see . In particular we shall perform the measure estimates only along the nonlinear
iteration, see section [3]

Theorem [4.1]is deduced from the following iterative Nash-Moser reducibility theorem for a linear operator
of the form

ﬁozw-3¢+D0+Ro, (4.10)

where w = A\,
Do := m3(A, u(A))Opzx + mi( A u(N))0z, Ro(Au(N)) := RN u(N)), (4.11)

the ma(A, u(A)),mi(A, u(X)) € R and u(A) is defined for A € A, C A. Clearly L5 in (3.55) has the form

(4.10). Define
N_i:=1, N,:=Nf Ww>0, x:=3/2 (4.12)

(then N,41 = NX, Vv > 0) and
a:=771+4, og:=0+f (4.13)

where o is defined in (3.58)) and S is defined in (4.1)).

Theorem 4.2. (KAM reducibility) Let ¢ > o 4+ s9 + 8. There exist Cog > 0, Ny € N large, such that, if
Li _
NS R[5~ <1, (4.14)

then, for all v > 0:
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(S1), There exists an operator
L, =w-0,+D,+R, where D, =diag;cz{ps(\)} (4.15)

1) = g V) + 15N, mf ) = =i(ma (N u(N)5® = mi(Au(N)g), jEZ, (4.16)
defined for all A € A} (u), where Aj(u) := A, (is the domain of u), and, for v >1,

k‘3
AY = A)(u) := {)\ €A}t |iw- U4 ™ YO — 1()\)‘ > 'y|<l>| V| < N,_1, j,k € Z} (4.17)
Forv>0,r} = =7 j» equivalently p = E, and
|7,;|Lip(7) — |T;|kizp("f) <eC. (4.18)
The remainder R, is real (Deﬁnition and, Vs € [sg,q — o — f3],
Li Li —« Li Li
RSP < [Rol 57 Ny RS < IRl Noes (4.19)
Moreover, for v > 1,
L,=®,1 L, 1Py 1, P 1:=1+T, 4, (4.20)

where the map V,_q is real, Toplitz in time ¥,_1 := U,_1(p) (see (2.17)), and satisfies
Wy [JP0) < (Rl NSNS (4.21)

In the reversible case, R, : X — Y, \I/V_1,<I>V_1,<I>;_11 are reversibility preserving. Moreover, all the
w4 () are purely imaginary and py = —p” ;, Vj € Z.

S2), For all j € Z, there exist Lipschitz extensions p%(-) : A = R of p%(+) : A) — R satisfying, for v > 1,
J ] v
| — g MPO) < Ry [P (4.22)

(S3), Let ui(A), ua(N), be Lipschitz families of Sobolev functions, defined for A € A, and such that conditions
4.2), (4.14) hold with Ry := Ro(u;), i = 1,2, see (4.11)).

Then, for v >0, VA € AJ' (uy) N A2 (uz), with y1,72 € [7/2,27],
IRy (u2) = R (u1)lsg < Ny flur —uallsotons [Ru(uz) =Ry (ur)lse+s < eNp—illur — uzllse 4o, - (4.23)
Moreover, for v > 1, Vs € [sg,50 + 5], Vj € Z,
|(7”;(U2) - T;(Ul)) - (7”5_1(“2) - T;_l(ul)ﬂ <IRy-1(u2) = Ru—1(u1)ls, , (4.24)
P (uz) = ¥ )] < eCllur = a5 (1.25)
(S4), Let uy,uq like in (S3), and 0 < p < /2. For all v > 0 such that

eCNJ_yflur —ua|2h,, <p = AJ(u1) €A P(u2). (4.26)

Remark 4.1. In the Hamiltonian case ¥, _1 is Hamiltonian and, instead of (4.20) we consider the symplectic
map
O, 1 :=exp(P,_1). (4.27)

The corresponding operators L,,, R, are Hamiltonian. Note that the operators (4.27) and (4.20) differ for

an operator of order W2_,.

The proof of Theorem [£.2]is postponed in Subsection [f.I} We first give some consequences.
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Corollary 4.1. (KAM transformation) YA € N,>oA] the sequence
B, :=Dyodio-- 0D, (4.28)

converges in | - |£ip(

" to an operator o, and
Li - Lip() Li
oo — I1XPD @t — 1| P < C(s) [Ro|EP A7 (4.29)

In the reversible case ®o, and ®L! are reversibility preserving.

Proor. To simplify notations we write | - |5 for | - \Llpm. For all v > 0 we have <T>V+1 =®,0 b, =
b, +D,9,1 (see (4.20)) and so

_ _ _ _

[Puiilsy < [Pulsy + ClPuls, |\I’u+1|50 < @ufse (1 +60) (4.30)

where ¢, := C'|Rg Eﬁ/ﬁ YTINZTTIN @ Tterating (4-30) we get, for all v,

|RU‘L ip(v) ., —1

1B 1lsy < [Folso Iz0(1 + ) < [Dolsye” R0l < 2 (4.31)

using (Z.21) (with v = 1, s = s¢) to estimate |®g|s, and (£.14). The high norm of &, = &, + &, ¥, 4 is

estimated by (2.10), [@.31) (for ®,), as

[Pytals < @, [s(1 4+ C(s) |\Ilu+1|50) +C(s) [Pyl
EEm
< 1@+ el) el ) = [Rolsg a7 N €l = [Rolsssy TN

Iterating the above inequality and, using II;>0(1 + 5( )) <2, we get
~ > ~
[Pyt1ls <s 25§8) +|®ols < C(5)(1+ [Rolsrp7™") (4.32)

using |®gls < 1+ C(s)|Ro|s+py L. Finally, the <T>j a Cauchy sequence in norm | - |5 because

N N v+m—1 » ’ v+m—1 N »
Boim— Bl < > B - (\<I>j\s|%+l|go+|<I>j|50|wj+1|s)
Jj=v
@32, @21, @31, @19 _ 1A
Zl 0|s+57 lN <s |R0|s+ﬁ7 N (4.33)
j>v

|Wols <77 Rols+p. Then the estimate for &' — I follows by (2.13
In the reversible case all the ®,, are reversibility preserving and so ®,, ®., are reversibility preserving. B

Hence @, ‘—lf‘ ®,,. The bound for ®, — I in (4.29)) follows by (4.33]) with m = oo, v = 0 and |§>0 —Is =
2.13)

Remark 4.2. In the Hamiltonian case, the transformation &)V in (4.28) is symplectic, because ®, is sym-
plectic for all v (see Remark . Therefore O, is also symplectic.

Let us define for all j € Z

pP) = lim @) =20+, ()= lim #()) VA€ A,

v——+00 v—+00

It could happen that A} = 0 (see [#.17)) for some vy. In such a case the iterative process of Theorem
stops after finitely many steps. However, we can always set puy := ﬂ;’", Yv > 1y, and the functions
p5° A — R are always well defined.

24



Corollary 4.2. (Final eigenvalues) For allv €N, j € Z

~V|L1P( v _ |’I“OO _W‘Llp v) < C|R0|L1P("/) N~

~0Li oo Li Li
5 VRN s = BOPT) = e (P < O R |URD) . (4.34)

|5 —
PROOF. The bound (4.34) follows by (4.22)) and (4.19) by summing the telescopic series.

Lemma 4.1. (Cantor set)
AZ CNysoAl. (4.35)

PROOF. Let A € AZ. By definition A%2Y C A := A,. Then forall v > 0, [I| < N,, j # k

w- ity =g 2 i L = ] = [ ] e -
D), &2 .
> 7177 = B[ = 2CIRolsy+8 N, 27|j3—k3\<l>

becanse 1] — k(1) = AN; ™ = 2C|Roleg 5N,

Lemma 4.2. For all A € A% (u) ,

BEO) = 500, 15N = 1500, (4.36)

and in the reversible case
=) =~ ), 1) = —r (). (4.37)

J ~j
Actually in the reversible case /ﬁ;o()\) are purely imaginary for all X € A.

PrOOF. Formula ([4.36) and (4.37) follow because, for all A € AZ) € N,>0A} (see ([£.35)), we have p = p”

Ty = E7 and, in the reversible case, the 7 are purely imaginary and uf = —p”;, 7% = —r” ;. The final
statement follows because, in the reversible case, the u%()) € iR as well as its extension fi}/(\). B

Remark 4.3. In the reversible case, (4.37)) imply that pg° = r§° = 0.

Proof of Theorem We apply Theorem |4.2] - to the linear operator Ly := L5 in , where Rg =R
defined in batlbﬁeb

, 1
Rl U <Otso + ) (14 [ulE70),) E 260060 + 6. (4.38)

Then the smallness condition (4.14]) is implied by (4.3)) taking d¢ := do(v) small enough.
For all A € A%2Y C N,>0A} (see ([4.35)), the operators

Lip(v)
£, B0 0,40, + RS w00, + D = Loy, Do 1= ding, i (4.39)
because
Li v oo | Lip(7) - Li - Li - Li -
1D, — Doo| p(7) _ s,lelg“‘j — S | p(y C[Rol: Ijr(g) Ny, R p(7) Ro |S+p,8(7) N
J

Applying @ iteratively we get £, = &);EIEOZI;V,l where 5,,,1 is defined by (4.28]) and &)V,l — & in
| |s (Corollary . Passing to the limit we deduce (4.7)). Moreover and (4.38]) imply . Then
([@29), (3.68) (applied to Ry = R) imply (4.3).

Estimate follows from (1n H$(T)), Lemma [2.4] and the bound (4.8).

In the reversible case, since ®.,, P! are reversibility preserving (see Corollary 4.1} . and Ly is reversible
(see Remar and Lemma, we get that Lo is reversible too. The eigenvalues p3° are purely imaginary

by Lemma

In the Hamiltonian case, £y = L5 is Hamiltonian, ®, is symplectic, and therefore L., = ® 1 L5P, (see
(4.7)) is Hamiltonian, namely D, has the structure Do, = 0,3, where B = diag;_.({b;} is self-adjoint. This
means that b; € R, and therefore p3° = 1jb; are all purely imaginary. B
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4.1 Proof of Theorem [4.2]

PROOF OF (Si),, i = 1,...,4. Properties ([£.15)-(4.19) in (S1), hold by (£.10)-(£.11) with (1§ defined in
(.16) and () = 0 (for recall that N_; := 1, see ([4.12))). Moreover, since m;, ms are real functions,
p are purely imaginary, uf = p° ; and p = —u? ;. In the reversible case, remarkmimphes that Rg := R,
Ly := L5 are reversible operators. Then there is nothing else to verify.

(S2), holds extending from Aj := A, to A the eigenvalues £9(\), namely extending the functions m; (A),
ms(A) to mq(N), m3(N), preserving the sup norm and the Lipschitz semi-norm, by Kirszbraun theorem, see
e.g. [37]-Lemma A.2, or [32].

(S3), follows by (3.67), for s = 59,50 + 3, and (4.2)), (4.13).

)

(84), is trivial because, by definition, Aj(u1) = Ay = A§~ " (u2).
4.1.1 The reducibility step

We now describe the generic inductive step, showing how to define £,1; (and ®,, ¥, etc). To simplify
notations, in this section we drop the index v and we write + for v + 1. We have

LOh = w-0,(B(h)) + DDA+ RPh
W+ Boh + W - Bk + (w - ,0)h + Dh + DWh + Rh + RUA
®(w-0ph+Dh) + (w- 0,0 + [D, W] + xR )b+ (4R + RY)h (4.40)

where [D, ¥] := DU — UD and [Ty R is defined in (2.19).

Remark 4.4. The application of the smoothing operator Iy is necessary since we are performing a dif-
ferentiable Nash-Moser scheme. Note also that Iy regularizes only in time (see (2.19)) because the loss of
derivatives of the inverse operator is only in ¢ (see (4.44) and the bound on the small divisors (4.17))).

We look for a solution of the homological equation
w- 0,0+ [D, W] +TIyR =[R]  where  [R]:=diag;c;R’(0). (4.41)

Lemma 4.3. (Homological equation) For all A\ € A}, (see (4.17)) there exists a unique solution
U := U(p) of the homological equation (4.41). The map ¥ satisfies

‘\m};ip(v) < ON?TH1y-1 |R‘I;ip(v) ) (4.42)

Moreover if v/2 < 1,72 < 2v and if ui(\), ua(N\) are Lipschitz functions, then Vs € [so,50 + 8], A €
Al (ua) VAJE (uz)
[A1p¥[, < CN?THIyT (lR(U2)|s||U1 — Ua||so 4o + |A12R\s) (4.43)

where we define AoV := W(uy) — U(ug).
In the reversible case, U is reversibility-preserving.

PrOOF. Since D := diag,cz(p;) we have [D, \I/]éc = (uj — uk)\IJ?@p) and (4.41) amounts to
w0, W5 (9) + (j — ) V5 () + R5(9) = [RIj, VikeZ,

whose solutions are \II;c (©) =2 icav \Ilgc (1)el"# with coefficients

RE(1)
J if (j —k,1 0,0) and |I| < N, where &;5x(\) :=iw -1+ pu; — g,
\I/;C(l) _ 5ljk(>\) (] )#( ) | | ljk( ) K — Mk (4.44)
0 otherwise.
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Note that, for all X € A}, by (£.17) and (L.2), if j # k or I # 0 the divisors d;;x(A) # 0. Recalling the
definition of the s-norm in (2.3) we deduce by (4.44]), (4.17)), (1.2, that

||, <y 'NT|R[s, VYAEAL,,. (4.45)
For A, A2 € A), 4,

IRE( (A1) = RED)(A2)] S1ik(A1) — 01k (A2)]

k _ gk k |
|\I!j(l)()\1) \Il] H(N)] < \5ljk(/\1)| + |R] (O (A2)| |5ljk(/\1)”6ljk()\2)| (4.46)
and, since w = A\,
1815 (M) — dige(Aa)| O = o)1+ (1 — ) M) = (115 — ) )| (4.47)
B i@ )+ fma (M) — maQa) |1 — ]+ fma(hn) — ma (M)l — K]

() = (2] + (M) — (M)
Ar = Dol (1] + 771 5% = K| + ey )j — k| + &7 (4.48)

because
7|mg|lip = y|mg — 1|lip < |mg — 1|Lip(7) < eC, |m1|Lip('Y) <eC, |rj\Lip('7) <eC Vjezl.

Hence, for j # k, ey~ ! <1,

0176 (M1) — dije(A2)| EA8), EIT) 3 .3 (1) 2r 41 —2
< A — Mo 1] + —k°) ————= < |[A1 — X|N“T 4.49
10255 (A1) 10155 (A2) | & 2‘(| I+l |) V2|33 — k3| =l T 49)

for |I| < N. Finally, recalling (2.3)), the bounds (4.46]), (4.49) and (4.45) imply (4.42). Now we prove (4.43).
By (@.44), for any XA € A) (u1) N A (u2), L € Z¥, j # k, we get

k
A () = m ~ RED) ) (4:50)
where
|A1201k| = |[Ava (g — pr)| < [Avams| 7% = k2] + [Aroma| [ — k] +[Arorj| + [Arory]
EEED 5 3)ur = e (4:51)

Then [@50), (E5I), eyt < 1,97 75t <47t imply
[A12W5 ()] < N¥7y 7 (|802REW)]| + R (1) (w2) [[ur = wollag )

and so (4.43) (in fact, (4.43) holds with 27 instead of 27 + 1).
In the reversible case iw -l + p; — pug € iR, T—; = p; and p_; = —p;. Hence Lemma and (4.44]) imply

S
TR (=) = R ED __ RO k(1)
I “iw (<)t - For iwe L

and so U is real, again by Lemma [2.6] Moreover, since R : X =Y,

) Rk (1) —RK(1)
ko7 — j — I =
k(- O ) R S ) S, w3 )

which implies ¥ : X — X by Lemma [2.6] Similarly we get ¥:Y Y. &
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Remark 4.5. In the Hamiltonian case R is Hamiltonian and the solution W in (4.44)) of the homological
equation is Hamiltonian, because 0; ;5 = 0_1k; and, in terms of matriz elements, an operator G(yp) is

self-adjoint if and only if Gé?(l) =Gi(-1).

Let ¥ be the solution of the homological equation (4.41)) which has been constructed in Lemma By
Lemma if C'(80)|¥[s, < 1/2 then ® := I + ¥ is invertible and by (4.40) (and (4.41))) we deduce that

Ly =0""Ld=w- -0, +Ds +Ry, (4.52)

where
Dy =D+[R], Ry:= @*1<HﬁR+R\IJf\IJ[R]>. (4.53)

Note that £ has the same form of £, but the remainder R is the sum of a quadratic function of ¥, R and
a remainder supported on high modes.

Lemma 4.4. (New diagonal part). The eigenvalues of
Dy =diag;cz{pf ()}, where pl = p; +RI0) = pd + 75+ RIO0) = pd + 77, rf =r;+RI0),
satisfy ,u;r = E and
5 = g = I = = RGO < Ry V) € Z (4.54)
Moreover if ui(X), uz(X) are Lipschitz functions, then for all X € A (uy) N AJ? (ug)
|A127“;-r — A1 <|A1R]s, - (4.55)
In the reversible case, all the uj are purely imaginary and satisfy ,u;r = —,uJ_rj for all j € Z.

PROOF. The estimates (4.54))-(4.55) follow using ([2.4) because |R§(O)|lip = |R8;;|hp < [RJIP < |R|¥P and

|Arar} = Avarj| = |ALRY(0)] = \A12R82§| < JA12R|o < |A12R]s, -

Since R is real, by Lemma [2.6

RE() = RZ¥(-1) = RJ(0)=RI(0)

—Jj —Jj

and so uj‘ = Tf] If R is also reversible, by Lemma

RI(1) =—-RZ5(=1), RE) =RIE(—1) = -REQ).

—Jj —Jj J

P — i j - +_ o+ + o
We deduce that R}(0) = —R_;(0), R}(0) € iR and therefore, ] = —u”; and pj € iR. ®
Remark 4.6. In the Hamiltonian case, D, is Hamiltonian, namely D, = 0,8 where B = diag,;_.o{b;} is
self-adjoint. This means that b; € R, and therefore all p¥ = ijb; are purely imaginary.

4.1.2 The iteration

Let v > 0, and suppose that the statements (Si), are true. We prove (Si), 41, i = 1,...,4. To simplify

notations we write | - |5 instead of | - |¥P"),

PROOF OF (S1),,1. By (S1),, the eigenvalues i are defined on A}. Therefore the set A, ; is well-defined.

By Lemma for all A € A)_, there exists a real solution ¥, of the homological equation (4.41]) which
satisfies, Vs € [sg,q — 0 — [],

3 . _, @D ot
W, |, < NTTR v T [Rolapsy NI NG (4.56)
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which is (4.21]) at the step v + 1. In particular, for s = sq,

it o ED
Cls0) [Tulg, < Cl80) [Rolgy sy NS N TS 1/2 (4.57)

for Ny large enough. Then the map ®, := I + VU, is invertible and, by (2.13),

9,1, <2, |21, S 1+ CO(9)Wuls- (4.58)

Hence ([4.52)-([.53) imply £,41 := @, 'L, ®, = w-dp + Dyy1 + Ryq1 where (see Lemma

Dys1i= Dy + [Ro] = dingen (i), it = + (RU)(0). (4.59)

J
Wlth NV+1 _ M’i+1 d
Rys1 =0, H,, H, =1y R, +R, ¥, — U,[R,]. (4.60)

In the reversible case, R, : X — Y, therefore, by Lemma U, ®,, &1 are reversibility preserving, and
then, by formula (4.60)), also R,41: X — Y.
Let us prove the estimates (4.19) for R, 1. For all s € [sg,q — 0 — ] we have

Rusals S 195 oo (IR, Ruls + [Ru L[ Woleq + [Rolog [ W0l ) + 105 s (1T, Roleg + [Rulo [0 e )

(4.58) L n
S 208 Rl + Ry LW loy + [Ruleo W05 ) + (1 [0 1) (1T, Ruleg + Ry leo W0y

Es7) -
<o R Ruls + Ruls| W lsg + [Rulso | W0 ls <

Hence and ([2.20) imply

|Rv+1|s§sN;ﬁ‘RV|s+ﬁ + NV27+1771|RD|3|R,,|50 (4~62)

s TN Ruls + NIy R [G[Ruls, . (4.61)

which shows that the iterative scheme is quadratic plus a super-exponentially small term. In particular

), G ) . ED.ED.ED) )
|RV+1|S <s Nu ﬂ‘R0|s+ﬁN1’fl + N3T+17 1|R0|S+,@|R0|50+3Ny_2f < |R0‘8+6Ny “

(x = 3/2) which is the first inequality of (4.19)) at the step v + 1. The next key step is to control the
divergence of the high norm |R,41]s+s. By (4.61) (with s + 3 instead of s) we get

|Ru+l‘s+ﬂ <s+8 |RV|S+B + N3T+1771|RV|5+5‘RV|50 (4.63)

(the difference with respect to (4.62) is that we do not apply to |IIy Ry|sts any smoothing). Then ([4.63),
(4.19), (4.14), (4.13) imply the inequality

|Ru+l|s+6 <C(s+ B)‘RV|S+5’

whence, iterating,
|Ru+1‘s+6 < NV|R0|S+B

for No := Ny(s, 3) large enough, which is the second inequality of ([4.19) with index v + 1.

By Lemma the eigenvalues MVH = u? + r”“ deﬁned on AZ+1, satisfy ,u”+1 = u’”;l, and, in the
reversible case, the M] are purely imaginary and ,u”"’l —p” ] .
It remains only to prove ) for v + 1, which is proved below.
PROOF OF (S2),,,. By -,
Y : ) ; L - L _
gt = g HROY = [ = EOD < R [ TS Rl 3 N (4.64)
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By Kirszbraun theorem, we extend the function u; —py = rj”+1 7% to the whole A, still satisfying (4.64)).

In this way we define fi} 1. Finally (#.18) follows summing all the terms in (4.64)) and using (3.68).
PROOF OF (S3),,,. Set, for brevity,

RL =Ry, (wi), Y =V, q(u), & _,:=&, 1(w), H. ,:=H, 1(u), i:=12,

which are all operators defined for A € A)* (uq) N AJ?(uz). By Lemma one can construct ¥, := U, (u;),
Pl =, (u;), i =1,2, for all X € AJY; (u1) N AJ%, (uz). One has

A, \50 ) e —1(|R (1) lglliz = a0, + 1212R, ey
D NN (Rolg s ) 12— 1 s
NZHINen 1||u2 il ron € 2 = 1 g (4.65)
for ey~1 small (and - ). By (2.14 , applied to ® := &, and -, we get
|A12®, s <o ([T ]s + [V2]6) [[ur — uallsgros + [A12T, s (4.66)
which implies for s = 5o, and using (4.21)), [#.14)), (4.65)
A0, sy < Jlur — uzl|soto, - (4.67)

Let us prove the estimates ) for A12Ru+1, which is defined on A € Ayﬂ(ul) N AZil(uQ). For all
s € [s0,50 + ], using the mterpolatlon and ([£.60),

ARy 1ls <o [ A12®0 o[ H sy + [A12®@) sy [Hy s+ [(93) 7 s Az Hy sy +1(95) o[ Ar2Hyls . (4.68)
We estimate the above terms separately. Set for brevity A% := R, (u1)]s + [Ry(u2)|s. By (4.60) and (2.7),

|A12Hl/|s Ss |HJ1(]UA12RV|S + |A12\pu|s‘Rll/|5o + |A12\pu|50|Rll/|s + |\I/3|5|A12RV|50 + |\IIZ|50|A12RI/|S

(E22), @E43) B
<s ‘HﬁVAmRV‘S + N2+, 1A§0AZHU1 — Uz |5yt

+ N2 T AY AR e + NI YT AY |A LR, (4.69)

Estimating the four terms in the right hand side of (4.68]) in the same way, using (4.66)), (4.60)), (4.42]),
(4.43), (4.21), (4.67), (4.58), (4.69), (4.19), we deduce

ARuls <s [Ty, A1aRyls + N7y AV AL [lur — usllsy 1o
FNSTHY T AL AR |5 + NOTHIY AL |ALR, s - (4.70)

Specializing (4.70)) for s = 5o and using (3.68), (2.20), (#.19), ([@23)), we deduce

A1 Ry 41]sg < C(eN,—1 N, P + NJTHIN 202y Juy — ualsgroy < N, lur — talsgto,

for Ng large and ey~! small. Next by ([4.70) with s = 59 + 3

7
|A12Ry |50+ <sot8 Agipllur = uzllsgron + [A12R s+

Eo)E=3)
< C(so + B)eNy—1llur — u2llsyror < eNpllur — uzllsgtos

for Ny large enough. Finally note that (4.24)) is nothing but (4.55).

PROOF OF (S4) We have to prove that, if CeN] ||u1 — ug||sy+o, < p, then

v+1-

A E AZ+1(U1) — A E Ay+1(’l,L2)
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Let A € A}, ;(u1). Definition ({4.17) and (S4), (see (4.26)) imply that A)  (u1) € AJ(u1) € A) 7P (uz).
Hence A € A7 P(ug) C AZ/2(uQ). Then, by (S1),, the eigenvalues (A, u2(A)) are well defined. Now (|4.16})
and the estimates (3.64)), (4.25)) (which holds because A € A7 (u1) N AY ®(u3)) imply that

(15 = )\ u2 (V) = (i = )N un )] < [ — ) w2 (V) = (1 — ) (3 ua (V)]
) —

+2sup |r (A, uz(A)) = 75 (A ur(A))]
JEL
< &0l = Klluz — w505, - (4.71)

Then we conclude that for all |I| < N, j # k, using the definition of A (u1) (which is (4.17) with v + 1
instead of v) and -7

liw - 14 pf (ug) — pi(u2)| = fiw - I 4 p (un) — g (un)| = | = pi) (u2) = (= pi) (ua)|
> P = EUDTT = Celi® = B llur — ullsg 4o,
> (y=p)li =KD

provided CeN |luy — uzllso+0, < p- Hence A € A {(u2). This proves (4.20) at the step v + 1.

4.2 Inversion of L(u)

In (3.57) we have conjugated the linearized operator £ to L5 defined in (3.55)), namely £ = ®L;®; L
In Theorem we have conjugated the operator L5 to the diagonal operator L., in (4.7]), namely L5 =
(1’00500‘1);1- As a consequence

L=WiL Wyt W;:=®d,, & :=ABpMTS, &y:= ABMTS. (4.72)
We first prove that Wy, W5 and their inverses are linear bijections of H®. We take

Y<%/2, T=T0. (4.73)
Lemma 4.5. Let 59 < s < q—o0 — [ — 3 where 8 is defined in and o in . Let u = u(X) satisfy

[l ||§;ia+ﬁ+3 <1, and ey~! < § be small enough. Then W;, i = 1,2, satzsfy, V)\ € AZW( ),
Wbl + HW;%HS < COs) (Il + Nl 10, ) (174)

Li Li Li Li Li

(Wbl 4+ W )7 < ) (IR + [ullE s 45 1D1EES) ) (4.75)

In the reversible case (i.e. - holds), W, W, 1, i =1,2 are reversibility-preserving.

K2

ProoF. The bound , resp. - follows by (4.8 , , resp -7 and Lemma In

the reversible case W are reversibility preserving because ! are revers1b1hty preserving. B
By (.72)) we are reduced to show that, VA € A2 (u), the operator

Lo = diag;cz{ido - 1+ p5° (N}, pw7(\) = —i(mg()\)j3 —my(N)j) + 737 (A)

is invertible, assuming (1.8]) or the reversibility condition ((1.13)).
We introduce the following notation:
1
(2m)vH1

If (1.8) holds, then the linearized operator £ in (3.1]) satisfies

Mou := / u(p,z)dodr, Pu:=u—ou, Hiy:={uc H*(T"): Hou = 0}. (4.76)
TV+1

L:H — H, (4.77)
(for s < s < g —1). In the reversible case (1.13])

L:XNHT 5 YNHS C Hy,. (4.78)
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Lemma 4.6. Assume either (1.8) or the reversibility condition (1.13)). Then the eigenvalue
(A =75°(\) =0, VYAe AR (u). (4.79)

PROOF. Assume (|1.8). If 5° # 0 then there exists a solution of Loow = 1, which is w = 1/r§°. Therefore,

by (4.72),
EWQ[l/Tgo] = EWQ'UJ = Wlﬁoow = Wl[l]

which is a contradiction because IIcW;[1] # 0, for ey~! small enough, but the average IlcLW3[1/rg°] = 0
by . In the reversible case r§° = 0 was proved in remark ]

As a consequence of , the definition of A% in (just specializing with k = 0), and
(with v and 7 as in )7 we deduce also the first order Melnikov non-resonance conditions
(4)°
U

Lemma 4.7. (Invertibility of L) For all A\ € A% (u), for all g € HE, the equation Low = g has the
unique solution with zero average

Ldglpa)= S T et (4.81)
i) 2 00) AW - L+ pse(N)

VYA€ A2, ida - L+ u(N)] > 2y Y(1,5) # (0,0). (4.80)

For all Lipschitz family g :== g(\) € H§, we have

1£22g) 2P < oyt gl (4.82)

In the reversible case, if g € Y then L g € X.
PrOOF. For all A € AZY(u), by (4.80)), formula (4.81)) is well defined and

£ N9, <7 g s - (4.83)
Now we prove the Lipschitz estimate. For A1, Ao € A% (u)
L M)g(h) = L5 (A2)g(A2) = LI (A)[9(M) — g2 + (£ (M) = L (A2))g(A2) - (4.84)
By (4.83)
YL A)lg) = 9Qlls < lgAn) = 9 lsrr < 7 gl Ay = Kl (4.8)
Now we estimate the second term of (4.84)). We simplify notations writing g := g(\2) and §;; := iA&- [ + p3°.

(C20n) — L O)g = 3 R Z0) g -
itz 0(A)d(A2)

The bound ([A.5) imply |u5°["" < ey~ ![j|* < |j|* and, using also (4.80)),
o) = oAl (1 + 1) {02
|01 (A1) 1161 (A2) v(5)°

Then (E86) and (@87) imply 7[|(£2 (\2) — L2 (A))glls <7 lglZE) 1| A2 — Aq| that, finally, with (E33),
({4.85), prove (4.82). The last statement follows by the property (4.37). B

In order to solve the equation Lh = f we first prove the following lemma.

Ao — M| < (D7 — A (4.87)

Lemma 4.8. Let so+ 7+ 3 <s<q—o0——3. Under the assumption (1.8)) we have

Wi(Hgo) = Hio, Wi (Hio) = Hep - (4.88)
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PRrOOF. It is sufficient to prove that Wi (Hg,) = Hg, because the second equality of (£.88) follows applying
the isomorphism W~ 1. Let us give the proof of the inclusion

Wi(Hg) € Hgo (4.89)
which is essentially algebraic). For any g € HS,, let w(p,z) := L3lg € Hj, " defined in (4.81). Then
00 oo 00
h := Wow € H*™7 satisfies
ch O e W th = Wi Loww = Wig.

By ([@77) we deduce that Wig = Lh € H, 7~ 3. Since Wig € H® by Lemma we conclude Wig €
H*N HS T3 = Hg,. The proof of (4.89 ([@:89) is complete.

It remains to prove that Hg, \ W1 (Hg,) = 0. By contradiction, let f € Hg, \ W1 (Hg,). Let g := Wl f €
H?® by Lemma Since Wig = f ¢ Wi(Hg), it follows that g ¢ H, (otherwise it contradicts (£.89)),
namely ¢ := IIgg # 0. Decomposing g = c¢+Pg (recall ) and applying W7, we get Wyg = ¢Wq[1]+W;Pg.
Hence

Wil] = ¢ Y (Wig — WiPg) € HE,

because Wig = f € H§, and W1PPg € Wi (Hg,) € Hg, by (4.89). However, IIcWi[1] # 0, a contradiction. B

Remark 4.7. In the Hamiltonian case (which always satisfies (1.8])), the W;(p) are maps of (a subspace
of) H} so that Lemma is automatic, and there is no need of Lemma .

We may now prove the main result of sections [ and [4]
Theorem 4.3. (Right inverse of £) Let
T i=274+7, p:=4r+o+p+ 14, (4.90)
where o, B are defined in , respectively. Let uw(\), A € A, C A, be a Lipschitz family with

Li
||u\|5oiu) <1. (4.91)

Then there exists 6 (depending on the data of the problem) such that if
eyt <4,

and condition (1.8)), resp. the reversibility condition (1.13)), holds, then for all X € A% (u) defined in (4.6)),
the linearized operator L = L(A,u(X)) (see (3.1)) admits a right inverse on H,, resp. Y N H®. More
precisely, for so < s < q—p, for all Lipschitz family f(\) € Hfy, resp. Y N H?, the function

hi=L f=Wol J W, f (4.92)
is a solution of Lh = f. In the reversible case, L™\ f € X. Moreover
— i — Li Li Li
171 AR < Oyt (AR + Dl 20 £ (4.93)

ProoF. Given f € Hjy, resp. f €Y ﬁ H*, with s like in Lemma [£.8] the equation £h = f can be solved
for h because Il¢ f = 0. Indeed, by (4 the equation Lh = f is equivalent to LWy 'h = W f where
Wi lfe H§, by Lemma resp. Wl_ f G Y N H? being W1_ reversibility-preserving (Lemma [4.5). As a
consequence, by Lemma [4.7] all the solutions of Lh = f are

h=cWo[l] + Wol Wl f, ceR. (4.94)

The solution is the one with ¢ = 0. In the reversible case, the fact that £L=!f € X follows by (4.92] -
and the fact that WZ, W, ! are reversibility-preserving and £ : Y — X, see Lemma

K2

Finally (4.75)), (4.82), (4.91) imply
_ i — Li Li Li
L7 FIEPO) < Oy (IS + Il SR g LIRS )

and (4.93)) follows using (6.2)) with bg =89, ag :=850+ 27+ 0+ 8+ 7,¢g=27+7,p=5— 5. A
In the next section we apply Theorem [£.3] to deduce tame estimates for the inverse linearized operators
at any step of the Nash-Moser scheme. The approximate solutions along the iteration will satisfy (4.91)).
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5 The Nash-Moser iteration

We define the finite-dimensional subspaces of trigonometric polynomials

H, = {u€L2(T”+1) u(p,z)= Y uljei(l-wa‘m)}
(L) <Ny

where N, := N@‘n (see (4.12)) and the corresponding orthogonal projectors
I, =My, : L*(T""Y) - H,, IIl:=I1-T1I,.
The following smoothing properties hold: for all a, s > 0,

T u| X200 < N2 | WP, vu(A) € H®; || MP0) < Noo[lu| Y200 vu()) € HoH, (5.1)

where the function u(\) depends on the parameter A in a Lipschitz way. The bounds are the classical

smoothing estimates for truncated Fourier series, which also hold with the norm || - ||Llp 7 defined in (2.2)).
Let
F(u) = F(\u) := Ao - 0pU + Ugge + £ (@, T, U, Uy, Upg, Uzaa) - (5.2)

We define the constants
K= 28 + 6, B1 =50+ 11p, (5.3)

where p is the loss of regularity in (4.90)).

Theorem 5.1. (Nash-Moser) Assume that f € C?, q > sg+ p+ P1, satisfies the assumptions of Theorem
or Theorem[1.3 Let 0 < v < min{vy,1/48}, 7 > v + 1. Then there exist § > 0, C, > 0, Ng € N (that
may depend also on ) such that, if ey~! < &, then, for all n > 0:

(P1),, there exists a function u, : G, € A — Hy, A — uy(N), with HunHi;ﬂ(Z) <1, ug := 0, where G, are

Cantor like subsets of A :=[1/2,3/2] defined inductively by: Gy := A,

2'Yn|l7 - |
—_— kelZ, ler” 4
0 , Vi, ke € } (5.4)

where vy, := y(1 4+ 27™). In the reversible case, namely (1.13)) holds, then u,(\) € X.

The difference h,, := u, — u,—1, where, for convenience, hy := 0, satisfy

Gt = {NEGu ¢ w1 () = i ()| >

hall520) < Cen™IN, T, oy =18 4 2. (5.5)

(P2)n |IF(un)|[EP™) < CeNT*.

. Li _ % Li K
(P3), (High norms). [[un||5%5) < Cuey 'Ng and || F(u,)|[25G) < CLeNg.

(P4),, (Measure). The measure of the Cantor like sets satisfy

All the Lip norms are defined on G, .

ProoOF. The proof of Theorem is split into several steps. For simplicity, we denote || ||“P by || ||.

STEP 1: prove (P1,2,3)p. (P1)g and the first inequality of (P3)q are trivial because ug = hg = 0. (P2)g
and the second inequality of (P3), follow with C. > max{||f(0)|ls, NV, | £(0)|lso+8, No "}

STEP 2: assume that (P1,2,3), hold for some n > 0, and prove (P1,2,3),41. By (P1), we know that
ltnllsg+p < 1, namely condition (4.91) is satisfied. Hence, for ey~! small enough, Theorem applies.
Then, for all A € G, 41 defined in (5.4)), the linearized operator

Ln(A) :i= LA un(N) = F' (N un(N))
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(see (3.1)) admits a r1ght inverse for all h € HOO, 1f condition (1.8]) holds, respectively for h € Y N H*® if the
reversibility condition ) holds. Moreover gives the estlmates

125 0l <o v (Illstry + NunllosallBll) s VRO, (5.7)
L5 hllsy < 7T N llbllsg , VR(N) € Hps, (5.8)

(use and ||un||so4+, < 1), for all Lipschitz map h(X). Then, for all A € G, 41, we define
Ups1 = Up + hpy1 € Hog1y  hpgr o= =11 £, 01 Fuy,), (5.9)

which is well defined because, if condition holds then II,, 11 F(u,) € H,, and, respectively, if
holds, then I1,, 1 F(u,,) € YNH? (hence in both cases £, 11,1 F(uy,) exists). Note also that in the reversible
case hp4+1 € X and so up4+1 € X.

Recalling and that £,, := F'(uy), we write

F(upt1) = F(un) + Lohnt1 +eQ(un, hpyr) (5.10)
where
Qun, hnt1) =N (up + hpg1) — N(un) — N (un)hnr1, N(u) = f(@, 2, U, Ug, Uz, Uz )-
With this definition,

F(u) = Lyu+eN(u), F'(u)h = Lyh+eN'(w)h, Ly :=w- 0y + Opza.

By (5.10) and (5.9) we have
F(’U,n+1) = F( ) E Hn+1£71Hn+1F(Un) + SQ(Un, hn+1)

= Hn—i—lF(un) + L Hn-&-l‘cilnn-‘rlF(un) +€Q(Um, n+1)
= Hn+1F(Un) +Hn+1£ £;1Hn+1F(un) [ﬁnvnn+1}£;1Hn+1F(un) +eQ(Un, hnt1)
= Hn-i—lF(un) +5[ /(un),Hi+1]£;1Hn+1F(un) +5Q(unahn+1) (5'11)

where we have gained an extra € from the commutator
(Lo Wa] = [Lio + eN(un), Iy ] = €[N (), s ] -
Lemma 5.1. Set
Un = l[unllsgrs, + 7 IF(un)llsorpr s wn =771 F(un)lls, - (5.12)
There exists Co := C(11, 1, v, $1) > 0 such that
Wpt1 < CoanllJr“ Un(14+w,) + C’ON6I?“wi, Unt1 < C’oNsif“(l +w, )2 U, . (5.13)

PROOF. The operators N’ (u,,) and Q(uy, ) satisfy the following tame estimates:

1QCuns W) ls <o Illsas (Illsts + luonllsssbllsos) — VROA), (5.14)
1QCuns ) log < NS lIBlE,  VR() € Hysa, (5.15)
IV (Bl <, [Bllors + lunllosallllags ¥RO), (5.16)

where h()\) depends on the parameter Ain a Llpschltz way. The bounds and (5.16)) follow by Lemma
z) and Lemmam is simply (5 at s = sg, using that ||un||50+3 <1, un,hnH € H, .1 and the
smoothing (5.1)).
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By (5.7) and , the term (in (5.11)) Ry, := [N (up), I 4 ]L, L, 1 F(uy,) satisfies, using also that
uy, € H, and .,

1Ralls <o 77 Ny (I un)lls + il oI F )l ) 5= 34 (5.17)
|Ralleo oot v N f (I n)llag0 + im0 1 (n) oo ) (5.18)

because p > 71 + 3. In proving (5.17) and (5.18), we have simply estimated N (u, )1, and IL N7 (u,,)
separately, without using the commutator structure.

From the definition (5.9)) of h,41, using , (5.8) and (5.1)), we get

||h"+1||50+,31 S504‘51 1N#+1(||F(un)”50+31 + ||un||50+31||F(un)”50)a (519)
||hn+1H50 _lN +1||F(un)H (5.20)

because p > 7. Then

NG

Hun+1‘|50+51 ||u71||50+,31 + ||h’ﬂ+1H50+51

T
o

.19)
S sotBr ||Un||5o+ﬁ1 (1 +7 1N#+1||F(un)||50> +771N +1|‘F(Un)||so+ﬁl (5.21)

Formula for F(up+1), and (5.18), (5.15)), (5.20), ey ! < 1, (5.1)), imply
IF (1) s <so8 Noptd T <||F(Un)||so+[31 + ||Un||so+61||F(Un)||so) + ey AN IE ()2, (5:22)
Similarly, using the “high norm” estimates (5.17), (5.14)), (5.19)), (5.20), ey~' <1 and ,
VF i)+ Ssatn (1 Cm)llowt s+ N oot 1 n)llsa ) (14 Nty + NS 1P ()l ) - (5.23)

By (5.21), (5.22) and (5.23) we deduce (5.13). ®

By (P2),, we deduce, for ey~! small, that (recall the definition on w, in (5.12))

w, < Ey‘lC*Nn_“ <1, (5.24)

Then, by the second inequality in 7 - (P3),, (recall the definition on U, in ) and the choice
of k in , we deduce Upqq < C*E’y N +17 for No large enough. This proves (733)n+1

Next, by the first inequality in , (P2),, (recall the definition on w,, in ) and , we
deduce w41 < Cey 'Nf,, for No large, 67’1 small This proves (P2),41.

The bound at the step n + 1 follows by (5 and (P2),, (and . Then

n+1
[tnt1llsotn < lluollsotn + Z [hkllson < ZC 5’7_1N <1
k=1 k=1

for ey~! small enough. As a consequence (P1,2,3),4+1 hold.
STEP 3: prove (P4),, n > 0. For alln > 0,
gn \ gn+1 = U lek(un) (525)
1€Z¥ ,j,keL
where
Riji(un) = {A € G+ |IA0 - L4 15 (A un(N) = 172 (A, un(N)] < 29al5° — K| <l>*7} . (5.26)

Notice that, by the definition (5.26)), Rj;k(un) = 0 for j = k. Then we can suppose in the sequel that j # k.
We divide the estimate into some lemmata.
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Lemma 5.2. For ey~! small enough, for alln >0, || < N,,
Rijk(un) C Rijr(un—1). (5.27)
PrOOF. We claim that, for all j, k € Z,
(5% = 1) (un) = (157 = ) (un—1)| < Celj® = K*IN;®, VA€ G, (5.28)

where p2°(up) = p$° (A, un(N)) and « is defined in (4.13). Before proving (5.28) we show how it implies
B27). For all j # K, |l < Ny, A € G, by (-28)

A - 1 5 (un) = p (un)| = A0 - L4 7 (un 1) — i (un 1) = [(15° = ") (un) = (5" — p”) (tn 1)
> 2yn-1lf® = K077 = Celf® = K2 INg® = 297° = K1) 77
for Ce*y_lNT_o‘ 2”"‘1 <1 (recall that v, := (14 27")), which implies (5.27).

PROOF OF . By (£.4),

(5 = uzé"’)(un) = (15 = 1) (un 1) = =i [ms (un) = ma(un—1)] (5° = B%) + i[ma(un) = ma(un—)] (G = K)
+ 777 (un) = 757 (un—1) — (7",C (un) — 17, (un,l)) (5.29)

where mg3(uy) := m3(A, u,(A)) and similarly for mq, r5°. We first apply Theorem (S4), with v =n+1,
Y= Yn—1, Y — P = Yn, and uq, ug, replaced, respectlvely, by %,_1, Uy, in order to conclude that

AN (un—1) © A (un) - (5.30)
The smallness condition in (4.26]) is satisfied because o2 < i (see definitions (4.13)), (4.90)) and so

eCNy |lun — up—1llso+os < ECNyllun — un—1llsgrp < 527_1CC*N7:_‘71 <Y1 = =tp=72"
for ey~1 small enough, because o1 > 7 (see (5.5)), (4.90)). Then, by the definitions (5.4) and ([4.6]), we have
gn = gn 1OA2’YH 1 un 1 ! ﬂ A’Yn 1 Un 1) CAn+1 Uy — 1 ! An+1 un
v>0

Next, for all A € G, C A"\ (up—1) N AY" (u,) both r?“(un,l) and T”H(un) are well defined, and we
deduce by Theorem [4.2}(S3), with v =n + 1, that

([-23)
|T§L+1(“n) - rgn+1(un D < ellun—1 — unllso+os - (5.31)

Moreover (4.34]) (with v =n 4 1) and (3.66]) imply that

1759 (1) = 73 (nm2) |+ 1750 (un) = 77 (un)| < €(U+ [un—1llsg+ s+ + [tnllsors40) No®
< eN;“ (5.32)

because 0 + 5 < p and |[tup—1|lsg4put [|Unlso+n < 2 by (S1),,_, and (S1), . Therefore, for all A € G,,, Vj € Z,

752 (un) = 5% (un—1)| < !T?“(u ) = 13 )|+ 150 () = 73 () + |5 (un—1) = 7 (un—1)]

£, 679 B
< €||un — Up—1l|lsotor + N, ¢ < eN, ¢ (5.33)

because o1 > a (see (4.13)), (5.5)). Finally (5.29), (5.33), (3.64)), ||un/sg+p < 1, imply (5.28). =
By definition, Rk (un) C G, (see (5.26))) and, by (5.27)), for all |I| < N,,, we have Ryjx(un) C Ryjk(tn—1).
On the other hand Ryjx(un—1) NG, =0, see (5.4). As a consequence, V|| < Ny, Ryi(u,) =0, and

(5.25))
G\ Gni1 C U  Ruyslwn), ¥n>1 (5.34)
|{l|>Ny,j,kEL
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Lemma 5.3. Let n > 0. If Ry (un) # 0, then |j3 — k3| < 8| - 1.

PrROOF. If Ryjx(un) # 0 then there exists A € A such that [iA@ - I + p3* (A, un(N) — pt (A un(N))] <
27,172 — k3[{1)~" and, therefore,

155 (A un (V) = 127 (N un ()] < 29157 = KP[(0) 77 + 2|0 - 1]. (5.35)
Moreover, by (4.4)), (3.63)), (4.5)), for & small enough,
152 = w2 = |mall3® = k2| = lmallj = k[ = [r5°] =[] = 515° = k| = Celj — k| = Ce > 215" = k7| (5.36)

if j # k. Since 7, < 2 for all n > 0, v < 1/48, by (5.35) and (5.36) we get

_ L4y 3 3 Ls 3
201> (= — == —k° > =|5° -k

@112 (5 - g )li° =K1 2 418 = &)
proving the Lemma. W
Lemma 5.4. For alln >0,

| Ruji(un)l < Cy ()77 (5.37)
ProOOF. Consider the function ¢ : A — C defined by
6O = DL () - ()

I\ - 1 —img(N)(5° — k%) +ima(A)(J — k) +75°(A) = 2% (A)
where m3(A), m1(A), 75°(N), ui°(A), are defined for all A € A and satisfy by ||u"||§;‘jr(l)gn < 1 (see
(P1),,). Recalling | - [P < 4~1| - |MP(M) and using
52 = 2 [P < Jig[FP15% — k2| [P — k| 50 [rET < Cey TR - K7 (5.38)
Moreover Lemma [5.3] implies that, VA1, A2 € A,

'3_k3
|]97||>\1 — Ao

. 1» 1 .
[6(\) = ()| = (101 = 157 = p[) A = do = (g = Cov )l = K¥[d = 2o >

1

for ey~ small enough. Hence

dyals® =K 9 72y
B (un)] < O VER A (L

which is (5.37)). ®
Now we prove (P4)o. We observe that, for each fixed I, all the indices j, k such that R;;;(0) # 0 are
confined in the ball j2 + k% < 16|&||l|, because

57 = B = 1 = kll® Gk + K2 > 5% 4 B = k] 2 5 (G + k), VikeZ, j#k
and |52 — k3| < 8|@||l| by Lemma As a consequence
29 (5.37) _r
0\ B |Uru0|<Y T R0 = a0 =0
1,4,k IEZY j2+k2<16|w]|!| lezv

if 7 > v+ 1. Thus the first estimate in (5.6) is proved, taking a larger C, if necessary.
Finally, (P4),, for n > 1, follows by

(5.34) 15.37)

G\ Gusa| < > | Rij(un)| < > Y1)~
11> Ny ], k| <Ci|1/2 [1>Nnljl,|k[<Cl|/2
< ) )T <N, T < CN, !

|l|>Ny,

and (5.6]) is proved. The proof of Theorem is complete. H
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5.1 Proof of Theorems [1.1], [1.2], [1.3] 1.4 and

ProoF oF THEOREMS [L.1], [[.2], [[.3] Assume that f € C? satisfies the assumptions in Theorem or in
Theorem with a smoothness exponent ¢ := q(v) > s9 + u + (1 which depends only on v once we have

fixed 7:= v + 2 (recall that s¢ := (v + 2)/2, 8 is defined in (5.3) and p in (4.90)).

For v = &%, a € (0,1) the smallness condition ey~! = £!17% < § of Theorem [5.1]is satisfied. Hence on the

Cantor set Go := Nyp>0Gn, the sequence u, () is well defined and converges in norm || - ||§;I4).(Z)gx (see (5.5))
to a solution us, (A) of

F(\us(N) =0 with  sup [[tuee(N)||lsgtp < Cey ™t =Ce'™?,

namely 4. () is a solution of the perturbed equation (1.4)) with w = A&. Moreover, by (5.6)), the measure
of the complementary set satisfies

A\ Gool € 1Gn\ Guia| SCy+ Y ACN, ' < Cy = Ce",

n>0 n>1

proving (|1.9). The proof of Theorem is complete. In order to finish the proof of Theorems or it
remains to prove the linear stability of the solution, namely Theorem [1.5

PROOF OF THEOREM [1.4] Part (i) follows by (4.72), Lemma [4.5] Theorem [4.1] (applied to the solution
Uso(A)) with the exponents & := o + 8+ 3, Ao (u) := A% (u), see (4.6). Part (i) follows by the dynamical
interpretation of the conjugation procedure, as explained in section Explicitely, in sections 3| and 4] we

have proved that
L=ABpWL W 'B'TA™Y, W= MTS®Ps .

By the arguments in Section we deduce that a curve h(t) in the phase space H is a solution of the
dynamical system ([1.19) if and only if the transformed curve

v(t) ;== W (wt) B~ A (wt)h(t) (5.39)

(see notation (2.18)), Lemma[3.3] (4.9)) is a solution of the constant coefficients dynamical system (L.20).

PRrROOF OF THEOREM [1.5| If all 41 are purely imaginary, the Sobolev norm of the solution v(t) of ((1.20)
is constant in time, see (1.21)). We now show that also the Sobolev norm of the solution h(t) in (5.39)) does

not grow in time. For each t € R, A(wt) and W (wt) are transformations of the phase space H? that depend

quasi-periodically on time, and satisfy, by (3.69)), (3.71]), (4.9)),
A= @t + W wt)gllms < C(s)lgllus , Yt € R, Vg = g(z) € H, (5.40)

where the constant C(s) depends on |[u||s4o48+s, < +00. Moreover, the transformation B is a quasi-periodic
reparametrization of the time variable (see (2.25))), namely

Bf(t) = f(&(t)) = f(r), B 'f(r)=f(~'(r) = f(t) Vf:R— H, (5.41)
where 7 = (t) ==t + a(wt), t = 71(7) = 7 + a(w7) and «, & are defined in Section Thus

180l B A BW (@to(®)llns < C)BW (wt)o®) ]z B2 C(s)|W (wr)o(r)a;
(15.40)

= O(s) o)1y B C(s)llo(ro)llms B2 O(s) W (wro) B-LA (wro)h(ro) 1

B (1B A wr)h(m) i B C(5) | AT RO s 2 C($)IR(O)]

having chosen 7y := ¥(0) = (0) (in the reversible case, « is an odd function, and so a(0) = 0). Hence (1.22)

is proved. To prove (|1.23)), we collect the estimates (3.70)), (3.72), (4.9) into
[(AF (wt) = Dgllas + (W (wt) = Dl < ev ' Cls)llgll gz, VEER, Vg € H, (5.42)
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where the constant C(s) depends on |[u|/s4o+g+s,- Thus

Bl B A BW (wtyo(®)llmz < |BW (wtyo(®)llm; + | (Awt) — ) BW (wt)o(t)]|u;
5‘415‘42||W(m)v(T)IIH; +e7 T O(s) [ BW (wt)u(t)]| gz
C=2 W wr)o(m) s + ey C() W (wr)o(r) | e
S o)l + 1V (wr) = Dol + v C6) o(r) o
ED o() s + e [0 | g B Jo(ro) oz + 2y~ C(5) [0(70) | rees

o
lles
i<l

W= Hwro) B~H AT (wro) (o)l + ey  Cs) W™ wo) B™HAT (wo) (7o) | 1 -
Applying the same chain of inequalities at 7 = 79, t = 0, we get that the last term is

< [[M(0) 713 + ey C()R(0) ] e+
proving the second inequality in ([1.23)) with a := 1 — a. The first one follows similarly.

6 Appendix. Tame and Lipschitz estimates

In this Appendix we present standard tame and Lipschitz estimates for composition of functions and changes
of variables which are used in the paper.
Let H® := H*(T%,C) (with norm || ||5) and W := W*>(T9¢ C), d > 1.

Lemma 6.1. Let sg > d/2. Then
(1) Embedding. ||u||p~ < C(so)l||ul|s, for allu € H®.
(79) Algebra. |uv||s, < C(so0)||vllsollv]lse for all u,v € H®.

(741) Interpolation. For 0 < s; < s <389, s =As1 + (1 — \)sa,
lulls < N3, lulls; ™, Yu € H. (6.1)
Let ag,by > 0 and p,q > 0. For all u € HtPtd 4 ¢ fghotrta

[ellag+pl[vllbo+a < l[ellag+p+allvllbg + ullas [V]lbo-+p+q - (6.2)

Similarly, for the |ulsoo == 3)5<s | DAu| o morm,

[uls,00 < 0(31,32)|u|>‘ \u|1_)‘ Yu € W2 (6.3)

51,00 892,00 7

, b ,
and Yu € WaotpP+a,00 4 ¢ JfbotpFaco

‘u|ao+p,00|v|bo+q,oo < C(ao, bo, p, Q)(|U|ao+p+q,00|v‘bo,oo + ‘u|ao,cx>|v|bo+p+q,oo) . (6.4)
(iv) Asymmetric tame product. For s > s,
[uv]ls < Cso)llullslvlls, + Cls)llulls, llvlls,  Vu,v € H®. (6.5)
(v) Asymmetric tame product in W*>. For s >0, s € N,
[uv]s,00 < 3 |ulpoe |V]s,00 + C(8)|uls,00|v|Le s Vu,v € WS (6.6)
vi) Mixed norms asymmetric tame product. For s >0, s € N,
1) Mixed tric t duct. F >0 N

luvlls < 3 Julzellv]ls + C()lulscollvllo,  Yue W=, veH". (6.7)

If u := u(\) and v := v(\) depend in a Lipschitz way on X\ € A C R, all the previous statements hold if we
ngip(v) |- Lip(v)

replace the norms || - ||s, | - |s,00 with the norms || -

)
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PrROOF. The interpolation estimate (6.1)) for the Sobolev norm (1.5) follows by Holder inequality, see also
[36], page 269. Let us prove (6.2)). Let a = apA+a1(1—X), b =bo(1 —A) +b1A, A € [0,1]. Then (6.1]) implies

A 1-X
lullallvlle < (lellag vlley) ™ (leellay 0l6) ™ < Alellag vlle, + (1= M)llaellay [0]lb (6.8)

by Young inequality. Applying with a = a9 +p, b =bg+¢q, a1 = ap+p+q, by = bg + p + ¢, then
A =q/(p+q) and we get (6.2). Also the interpolation estimates (6.3) are classical (see [9]) and (6.3) implies
(6.4) as above.

(iv): see the Appendix of [9]. (v): we write, in the standard multi-index notation,

D% (uww) = Z Cp~(DPu) (DY) = uD*v + Z Cp(DPu)(D ). (6.9)
Bty=a B+y=a,B#0

Using |(DPu)(Dv)|pe < |DPul|pe|DYv|pe < |uf|g),00|v]j],00, and the interpolation inequality (6.3)) for
every 3 # 0 with A :=|3|/]a| € (0,1] (where |a| < s), we get, for any K > 0,
A 1-A
Cﬂ,7|Dﬁu‘L°°|DWU|L°° < CB,WC(S)(|U|L°°|U|8,OO) (|U|s,00|u|L°°)
C(S) 1 A
= L1y ol ] (o el )
C(s L]
< SO (10 ) Blloli e + 0
Then follows by , (6.10) taking K := K(s) large enough. (vi): same proof as (v), using the
elementary inequality ||(Du)(Dv)|lo < |DPu|pe|Dv|o. m
We now recall classical tame estimates for composition of functions, see [36], section 2, pages 272275,
and [40]-I, Lemma 7 in the Appendix, pages 202-203.
A function f: T x By — C, where By := {y € R™ : |y| < 1}, induces the composition operator

f(u)(x) = f(z,u(z),Du(:c),,Dpu(x)) (611)

where D*u(z) denotes the partial derivatives 0%u(x) of order || = k (the number m of y-variables depends
on p,d).

1-X

s,oolt] L} (6.10)

Lemma 6.2. (Composition of functions) Assume f € C"(T? x By). Then
(i) For all w € H™'P such that |ulp oo < 1, the composition operator (6.11)) is well defined and

IF@)llr < Cllfler(lullrp + 1)
where the constant C' depends on r,d,p. If f € C"2, then, for all |ulp oo, |hlpoo < 1/2,
||f(u +h) — f(u)Hr < Ol fllgrer (||h||r+p + |h|p,OOHU||T+p) )
Hf(u +h) — f(u) — f’(u)[h]”r <Clflier+ ‘h|p’00(|‘h||r+p + |h|p,00||u||r+p)-

(17) The previous statement also holds replacing || || with the norms | |, oo-

Lemma 6.3. (Lipschitz estimate on parameters) Let d € N, d/2 < sg <s,p >0, v>0. Let F be a
C'-map satisfying the tame estimates: V||usg+p < 1, h € H*TP,

IF()lls < C(s)(X+ llulls+p) (6.12)
[0uF (w)[h][ls < C(s)(Ihlls4p + lullstpllPllsorp) - (6.13)
For A C R, let u(X\) be a Lipschitz family of functions with ||u||1;;5)r(;) <1 (see [2.2)). Then

[F(u) | PO < O(s) (1 + [|uf| X2,

The same statement also holds when all the norms || ||s are replaced by | |s.00-
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Proor. By (6.12) we get sup, ||[F(u(N)|s < C(s)(1 + ||u||1;f157)) Then, denoting u; := wu(A;) and
h:=u(A2) —u(A1), we have
1
I1F() = Falle < [ 10uF(wn -+ tuz — w)A] .
0

:
< s [l + ||h||30+p/0 (=Bl llssp + tluro)[lssp) dt

whence
[ F(u(A)) — Fu(r2))|l Li Li
v sup > <l 5+ ul5nS sup (uha)lstp + [u(i)]lstp)
AL Az €A A1 — Az At
A1F# A2
Lip(7) Lip(v) Lip(y <C Lip(7)
3 ||uH5+p + H ||so+p H ||5+p — (S)||uHs+p ’

because ||uHI;;I_’~_(; ) <1, and the lemma follows. m

The next lemma is also classical, see for example [24], Appendix G. The present version is proved in [2],
except for the part on the Lipschitz dependence on a parameter, which is proved here below.

Lemma 6.4. (Change of variable) Let p : R? — R? be a 2r-periodic function in W™, s > 1, with
IDl1,00 < 1/2. Let f(z) = x + p(x). Then:

(i) f is invertible, its inverse is f~*(y) = g(y) = y + q(y) where q is 2w-periodic, ¢ € W**>(T* R?), and
Iq]s,00 < C|pls,c0- More precisely,

|q|L°C = |p|L°°a |Dq|L°° < 2|Dp|L°°7 |Dq|sfl,oo < C‘Dp‘sfl,oo- (614)

where the constant C' depends on d, s.
Moreover, suppose that p = py depends in a Lipschitz way by a parameter A € A C R, and suppose, as
above, that |Dypx|pe < 1/2 for all \. Then q = qx is also Lipschitz in A\, and

20 < C (IR + {suplpalssroc} IPEET) < CIPIETL (6.15)

The constant C' depends on d, s (and is independent of ).
(i) If u € H*(T¢,C), then uo f(x) = u(x + p(z)) is also in H®, and, with the same C as in (i),

luo flls < C(lulls + [Dpls—1collullr), (6.16)
luo f—ulls < C(Iplllullss1 + |pls.ollull2), (6.17)
[uo fIEPOY < € (Jful| X2 4 [p|5EO) u) 5. (6.18)

(6.16), (6.17) (6.18]) also hold for uog .

(238) Part (i1) also holds with || - ||x replaced by | - |k .00, and || - ||Llp replaced by | - \Llp " namely
s,00 < C(Juls oo+|Dp|s 1,00[U[1,00); (6.19)
i Li Li Li
o S92 < Cul 0 +1DPLE ul5E”)- (6.20)

PRrROOF. The bounds (6.14)), (6.16) and (6.19) are proved in [2], Appendix B. Let us prove (6.15). Denote

pa() == p(A, x), and similarly for gy, gx, fa. Since y = fa(z) = z+pa () if and only if z = gx(y) = y+ar(y),
one has

qk(y) +p)\(gk(y)) = Oa VA e A7 ye Td' (621)
Let A1, A2 € A, and denote, in short, ¢1 = gx,, ¢2 = q»,, and so on. By (6.21]),

qg1 — g2 =PpP2°g2 —P1°G1 Z(P2092—p1092)+(2?1 ©g2—pP1 091)

= A5 (p2a — p1) +/o AN (Depy)dt (g2 — q1) (6.22)
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where Ay 'h:=ho gy, A;'h:=ho (g1 +tlgs — g1]), t € [0,1]. By (6:22), the L* norm of (g» — 1) satisfies

1 1
lg2 —q1|n= < |A2_1(p2_p1)|L°0+/ |A;H(Dyp1)|p dt|g2 —qi |~ < |p2—p1|Loo+/ | Dypr|reedt |2 —qi1| 1o
0 0

whence, using the assumption |Dyp1|r~ < 1/2, we get [g2 — q1|r~ < 2[p2 — p1|r~. By (6.22), using (6.6),
the W*# norm of (g2 — q1), for s > 0, satisfies

_ 3 (Y b
1 —2]s,00 < |43 1(p2_p1)|5,oo+§ / Ay 1(sz1)|L°° dt|‘12_q1|s,oo+c(3)/ Ay 1(sz1)|s,oo dt|g2—q1 |-
0 0
Since [ A7 (Dep)li = | Deplie < 1/2,
3 1
(1= )10z = @l < 145702 = Pl + C(5) [ 147 (Do) e — ar]
0

Using g2 — q1|n~ < 2|p2 — p1]r=, (6-19)), (6.4) and (6.14),

lg2 — q1]s,00 < C’(s)<|p2 — Pils,00 + {iuﬁ [PAls+1,00 } P2 *p1|L°°>
€

and (6.15]) follows. The proof of (6.17)), (6.18]), (6.20) may be obtained similarly. ®

Lemma 6.5. (Composition) Suppose that for all ||ul|sy4+p., < 1 the operator Q;(u) satisfies
1Qihlls < €)Y (Illssms + [llosplBllagsn)s i = 1,2 (6.23)
Let 7 := max{m, 72}, p:= max{u1, u2}. Then, for all
[ullso4rtn <1, (6.24)

the composition operator Q := Q1 o Qs satisfies the tame estimate

HQhHs < C(S)(Hh”8+71+72 + ||u||s+‘r+u||h||80+n+fz)- <6~25)

Moreover, if Q1, Qa2, u and h depend in a Lipschitz way on a parameter X, then (6.25)) also holds with || -||s
replaced by || - ||£ip(7),

PROOF. Apply the estimates for (6.23]) to ®; first, then to ®2, using condition ((6.24]). ®
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