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Abstract

We present the recent results in [3] concerning quasi-periodic solutions
for quasi-linear and fully nonlinear forced perturbations of KdV equations.
For Hamiltonian or reversible nonlinearities the solutions are linearly stable.
The proofs are based on a combination of different ideas and techniques:
(i) a Nash-Moser iterative scheme in Sobolev scales. (ii) A regularization
procedure, which conjugates the linearized operator to a differential operator
with constant coefficients plus a bounded remainder. These transformations
are obtained by changes of variables induced by diffeomorphisms of the torus
and pseudo-differential operators. (iii) A reducibility KAM scheme, which
completes the reduction to constant coefficients of the linearized operator,
providing a sharp asymptotic expansion of the perturbed eigenvalues.
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1 Introduction

One of the most challenging and open questions in KAM theory concerns its possi-
ble extension to quasi-linear and fully nonlinear PDEs, namely partial differential
equations whose nonlinearities contain derivatives of the same order as the lin-
ear operator. Besides its mathematical interest, this question is also relevant in
view of applications to physical real world nonlinear models, for example in fluid
dynamics and elasticity.

The aim of this Note is to present the recent results in [3] about KAM theory
for quasi-periodically forced KdV equations of the form

ut + uxxx + εf(ωt, x, u, ux, uxx, uxxx) = 0 , x ∈ T := R/2πZ . (1)

To the best of our knowledge, these are the first KAM results for quasi-linear or
fully nonlinear PDEs.

KAM and Nash-Moser theory for PDEs, which counts nowadays on a wide
literature, started with the pioneering works of Kuksin [19] and Wayne [26], and
was developed in the 1990s by Craig-Wayne [12], Bourgain [9], Pöschel [23] (see
also [21], [11] for more references). These papers concern wave and Schrödinger
equations with bounded Hamiltonian nonlinearities.

The first KAM results for unbounded perturbations have been obtained by
Kuksin [20], [21], and, then, Kappeler-Pöschel [17], for Hamiltonian, analytic per-
turbations of KdV. Here the highest constant coefficients linear operator is ∂xxx
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and the nonlinearity contains one space derivative ∂x. Their approach has been
recently improved by Liu-Yuan [22] and Zhang-Gao-Yuan [27] for 1-dimensional
derivative NLS (DNLS) and Benjamin-Ono equations, where the highest order con-
stant coefficients linear operator is ∂xx and the nonlinearity contains one derivative
∂x. These methods apply to dispersive PDEs with derivatives like KdV, DNLS,
but not to derivative wave equations (DNLW) which contain first order derivatives
∂x, ∂t in the nonlinearity.

For DNLW, KAM theorems have been recently proved by Berti-Biasco-Procesi
for both Hamiltonian [7] and reversible [8] equations. The key ingredient is an
asymptotic expansion of the perturbed eigenvalues that is sufficiently accurate
to impose the second order Melnikov non-resonance conditions. In this way, the
scheme produces a constant coefficients normal form around the invariant torus (re-
ducibility), implying the linear stability of the solution. This is achieved introduc-
ing the notion of “quasi-Töplitz” vector field, which is inspired to “quasi-Töplitz”
and “Töplitz-Lipschitz” Hamiltonians, developed, respectively, in Procesi-Xu [24]
and Eliasson-Kuksin [13], [14].

Existence of quasi-periodic solutions can also be proved by imposing only the
first order Melnikov conditions. This approach has been developed by Bourgain [9],
[10] extending the work of Craig-Wayne [12] for periodic solutions. It is especially
convenient for PDEs in higher space dimension, because of the high multiplicity of
the eigenvalues, see also Berti-Bolle [6]. This method does not provide informations
about the stability of the quasi-periodic solutions, because the linearized equations
have variable coefficients.

All the aforementioned results concern “semilinear” PDEs, namely equations
in which the nonlinearity depends on the unknown and its derivatives up to an
order strictly less than that one of the linear differential operator. For quasi-linear
or fully nonlinear PDEs the perturbative effect is much stronger and the possibility
of extending KAM theory in this context is doubtful, see [17], [11], [22], because
of the possible phenomenon of formation of singularities outlined in Klainerman
and Majda [18]. For example Kappeler-Pöschel [17] (remark 3, page 19) wrote:
“...it would be interesting to obtain perturbation results which also include terms of
higher order, at least in the region where the KdV approximation is valid. However,
results of this type are still out of reach, if true at all”.

For quasi-linear and fully nonlinear PDEs, the literature concerns, so far, only
periodic solutions. We quote the classical bifurcation results of Rabinowitz [25]
for fully nonlinear forced wave equations with a small dissipation term. More
recently, Baldi [1] proved existence of periodic forced vibrations for quasi-linear
Kirchhoff equations. Here the quasi-linear perturbation term depends explicitly
only on time. Both these results are proved via Nash-Moser methods.

For the water waves equations, which are a fully nonlinear PDE, we mention
the pioneering work of Iooss-Plotnikov-Toland [15] about the existence of time
periodic standing waves, and of Iooss-Plotinikov [16] for 3-dimensional traveling
water waves. The key idea is to use diffeomorphisms of the torus T2 and pseudo-
differential operators, in order to conjugate the linearized operator to a constant
coefficients operator plus a sufficiently regularizing remainder. This is enough to
invert the whole linearized operator by Neumann series, see remark 2.

Very recently Baldi [2] has further developed the techniques of [15], proving the
existence of periodic solutions for fully nonlinear autonomous, reversible Benjamin-
Ono equations.
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These approaches do not imply the linear stability of the solutions (see com-
ment 2 below) and, unfortunately, they do not work for quasi-periodic solutions,
because stronger small divisors difficulties arise (see remark 2).

In [3] we combine different ideas and techniques. The key analysis concerns
the linearized KdV operator (15) obtained at any step of the Nash-Moser itera-
tion. First, we use changes of variables, like quasi-periodic time-dependent dif-
feomorphisms of the space variable x, a quasi-periodic reparametrization of time,
multiplication operators and Fourier multipliers, in order to reduce the linearized
operator to constant coefficients up to a bounded remainder (see (21)). These
transformations, which are inspired to [2], [15], are very different from the usual
KAM transformations. Then we perform a quadratic KAM reducibility scheme
à la Eliasson-Kuksin, which completely diagonalizes the linearized operator. For
reversible or Hamiltonian KdV perturbations we get that the eigenvalues of this
diagonal operator are purely imaginary, i.e. we prove the linear stability. In section
3 we present the main ideas of the proof in more details.

We remark that the present approach could be also applied to quasi-linear
and fully nonlinear perturbations of dispersive PDEs like 1-dimensional NLS and
Benjamin-Ono equations (but not to the wave equation, which is not dispersive).

In order to highlight the main ideas, we have considered in [3] the simplest
setting of nonlinear perturbations of the Airy-KdV operator ∂t+∂xxx and we look
for small amplitude solutions.

2 Main results

We consider equation (1) where ε > 0 is a small parameter, the nonlinearity is
quasi-periodic in time with Diophantine frequency vector

ω = λω̄ ∈ Rν , λ ∈ Λ :=
[1

2
,

3

2

]
, |ω̄ · l| ≥ 3γ0

|l|τ0
∀l ∈ Zν \ {0}, (2)

and f(ϕ, x, z), ϕ ∈ Tν , z := (z0, z1, z2, z3) ∈ R4, is a finitely many times differen-
tiable function, namely

f ∈ Cq(Tν × T× R4;R) (3)

for some q ∈ N large enough. For simplicity we fix in (2) the diophantine exponent
τ0 := ν. The only “external” parameter in (1) is λ, which is the length of the
frequency vector (this corresponds to a time scaling).

We consider the following questions:

• For ε small enough, do there exist quasi-periodic solutions of (1) for positive
measure sets of λ ∈ Λ?

• Are these solutions linearly stable?

Clearly, if f(ϕ, x, 0) is not identically zero, then u = 0 is not a solution of (1) for
ε 6= 0. Thus we look for non-trivial (2π)ν+1-periodic solutions u(ϕ, x) of

ω · ∂ϕu+ uxxx + εf(ϕ, x, u, ux, uxx, uxxx) = 0 (4)
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in the Sobolev space

Hs := Hs(Tν×T;R) :=
{
u(ϕ, x) =

∑
(l,j)∈Zν×Z

ul,j e
i(l·ϕ+jx) ∈ R, ūl,j = u−l,−j ,

‖u‖2s :=
∑

(l,j)∈Zν×Z

(max{1, |l|, |j|})2s|ul,j |2 <∞
}
.

From now on, we fix s0 := (ν+ 2)/2 > (ν+ 1)/2, so that for all s ≥ s0 the Sobolev
space Hs is a Banach algebra, and it is continuously embedded Hs(Tν+1) ↪→
C(Tν+1).

We need some assumptions on the nonlinearity. We first consider quasi-linear
perturbations satisfying

• Type (Q)

∂2
z3z3f = 0, ∂z2f = α(ϕ)

(
∂2
z3xf + z1∂

2
z3z0f + z2∂

2
z3z1f + z3∂

2
z3z2f

)
(5)

for some function α(ϕ) (independent on x).

We note that every Hamiltonian nonlinearity, see (9), satisfies (Q) with α(ϕ) = 2.
In step 3 in section 3 we explain the reason for assuming condition (Q).

Theorem 1. (Existence) There exist s := s(ν) > 0, q := q(ν) ∈ N, such that:

For every quasi-linear nonlinearity f ∈ Cq of the form

f = ∂x
(
g(ωt, x, u, ux, uxx)

)
(6)

satisfying the (Q)-condition (5), for all ε ∈ (0, ε0), where ε0 := ε0(f, ν) is small
enough, there exists a Cantor set Cε ⊂ Λ of asymptotically full Lebesgue measure,
i.e.

|Cε| → 1 as ε→ 0, (7)

such that, ∀λ ∈ Cε the perturbed KdV equation (4) has a solution u(ε, λ) ∈ Hs

with ‖u(ε, λ)‖s → 0 as ε→ 0.

We may ensure the linear stability of the solutions requiring further condi-
tions on the nonlinearity, see Theorem 5 for the precise statement. The first case
concerns Hamiltonian KdV equations

ut = ∂x∇L2H(t, x, u, ux) , H(t, x, u, ux) :=

∫
T

u2
x

2
+ εF (ωt, x, u, ux) dx , (8)

which have the form (1), (6) with

f(ϕ, x, u, ux, uxx, uxxx) = ∂x

(
∂x
{

(∂z1F )(ϕ, x, u, ux)
}
− (∂z0F )(ϕ, x, u, ux)

)
. (9)

The phase space of (8) is

H1
0 (T) :=

{
u(x) ∈ H1(T,R) :

∫
T
u(x) dx = 0

}
endowed with the non-degenerate symplectic form

Ω(u, v) :=

∫
T
(∂−1
x u)v dx , u, v ∈ H1

0 (T) , (10)
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where ∂−1
x u is the periodic primitive of u with zero average, namely

∂−1
x eijx :=

eijx

ij
∀j ∈ Z \ {0}, ∂−1

x 1 = 0.

The Hamiltonian nonlinearity f in (9) satisfies both (6) and (5). As a consequence,
Theorem 1 implies the existence of quasi-periodic solutions of (8). In addition,
exploiting the symplectic structure, we also prove their linear stability.

Theorem 2. (Hamiltonian KdV) For all Hamiltonian quasi-linear KdV equa-
tions (8) the quasi-periodic solution u(ε, λ) found in Theorem 1 is linearly sta-
ble (see Theorem 5).

The stability of the quasi-periodic solutions also follows by the reversibility
condition

f(−ϕ,−x, z0,−z1, z2,−z3) = −f(ϕ, x, z0, z1, z2, z3). (11)

Condition (11) implies that the infinite-dimensional non-autonomous dynamical
system

ut = V (t, u), V (t, u) := −uxxx − εf(ωt, x, u, ux, uxx, uxxx)

is reversible with respect to the involution

S : u(x)→ u(−x), S2 = I,

namely
−SV (−t, u) = V (t, Su) .

In this case it is natural to look for “reversible” solutions of (4), namely

u(ϕ, x) = u(−ϕ,−x) . (12)

In this case we also consider fully nonlinear perturbations f which may depend on
uxxx in a nonlinear way. We assume that

• Type (F)
∂z2f = 0, (13)

namely f is independent of uxx, see step 3 in section 3.

Theorem 3. (Reversible KdV) There exist s := s(ν) > 0, q := q(ν) ∈ N, such
that: for every nonlinearity f ∈ Cq that satisfies

(i) the reversibility condition (11),

and

(ii) either the (F)-condition (13) or the (Q)-condition (5),

for all ε ∈ (0, ε0), where ε0 := ε0(f, ν) is small enough, there exists a Cantor
set Cε ⊂ Λ with Lebesgue measure satisfying (7), such that for all λ ∈ Cε the
perturbed KdV equation (4) has a solution u(ε, λ) ∈ Hs that satisfies (12), with
‖u(ε, λ)‖s → 0 as ε→ 0. In addition, u(ε, λ) is linearly stable.
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Let us make some comments on the results.

1. — The previous theorems (in particular the Hamiltonian Theorem 2) give a
positive answer to the question posed by Kappeler-Pöschel [17], page 19, Remark
3, about the possibility of KAM type results for quasi-linear perturbations of KdV.

2. — In Theorem 1 we do not have informations about the linear stability
of the solutions because the nonlinearity f has no special structure and it may
happen that some eigenvalues of the linearized operator have non zero real part
(partially hyperbolic tori). We remark that, in any case, the approach of [3] allows
to compute the eigenvalues (i.e. Lyapunov-exponents) of the linearized operator
with any order of accuracy. With further conditions on the nonlinearity—like
reversibility or in the Hamiltonian case—the eigenvalues are purely imaginary, and
the torus is linearly stable. The present situation is very different with respect to
[12], [10], [6] and also [15]-[16], [2], where the lack of stability informations is due to
the fact that the linearized equation has variable coefficients, and it is not reduced
as in Theorem 4 below.

3. — One cannot expect the existence of quasi-periodic solutions of (4) for
any perturbation f . Actually, if f = m 6= 0 is a constant, then, integrating (4) in
(ϕ, x) we find the contradiction εm = 0. This is a consequence of the fact that

Ker(ω · ∂ϕ + ∂xxx) = R (14)

is non trivial. Both the condition (6) (which is satisfied by the Hamiltonian non-
linearities) and the reversibility condition (11) allow to overcome this obstruction,
working in a space of functions with zero average. The degeneracy (14) also reflects
in the fact that the solutions of (4) appear as a 1-dimensional family c+ uc(ε, λ)
parametrized by the “average” c ∈ R. We could also avoid this degeneracy by
adding a “mass” term +mu in (1), but it does not seem to have physical meaning.

4. — In Theorem 1 we have not considered the case in which f is fully nonlinear
and satisfies condition (F) in (13), because any nonlinearity of the form (6) is
automatically quasi-linear (and so the first condition in (5) holds) and (13) trivially
implies the second condition in (5) with α(ϕ) = 0.

5. — The solutions u ∈ Hs have the same regularity in both variables (ϕ, x).
The main reason is that the compositions operators that we use in the first (and
fourth) step of the reduction procedure (see section 3) mix the time and space
variables.

6. — In the Hamiltonian case (8), the nonlinearity f in (9) satisfies the re-
versibility condition (11) if and only if F (−ϕ,−x, z0,−z1) = F (ϕ, x, z0, z1).

Theorems 1-3 are based on a Nash-Moser iterative scheme, as developed in [5].
An essential ingredient in the proof—which also implies the linear stability of the
quasi-periodic solutions—is the reducibility of the linear operator

L := L(u) = ω ·∂ϕ+ (1 +a3(ϕ, x))∂xxx+a2(ϕ, x)∂xx+a1(ϕ, x)∂x+a0(ϕ, x) (15)

obtained linearizing (4) at any approximate (or exact) solution u. The coefficients
ai = ai(ϕ, x) = ai(u, ε)(ϕ, x) are periodic functions of (ϕ, x), depending on u, ε,
obtained from the partial derivatives of εf(ϕ, x, z0, z1, z2, z3) as

ai(ϕ, x) = ε(∂zif)
(
ϕ, x, u(ϕ, x), ux(ϕ, x), uxx(ϕ, x), uxxx(ϕ, x)

)
. (16)

Let Hs
x := Hs(T) denote the usual Sobolev spaces of functions of x ∈ T only

(phase space).
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Theorem 4. (Reducibility) There exist σ̄ > 0, q ∈ N, depending on ν, such
that:

For every nonlinearity f ∈ Cq that satisfies the hypotheses of Theorems 1 or
3, for all ε ∈ (0, ε0), where ε0 := ε0(f, ν) is small enough, for all u in the
ball ‖u‖s0+σ̄ ≤ 1, there exists a Cantor like set Λ∞(u) ⊂ Λ such that, for all
λ ∈ Λ∞(u):

i) for all s ∈ (s0, q− σ̄), if ‖u‖s+σ̄ < +∞ then there exist linear invertible bounded
operators W1, W2 : Hs(Tν+1) → Hs(Tν+1) with bounded inverse, that semi-
conjugate the linear operator L(u) in (15) to the diagonal operator L∞, namely

L(u) = W1L∞W−1
2 , L∞ := ω · ∂ϕ +D∞ (17)

where
D∞ := diagj∈Z{µj}

and
µj := i(−m3j

3 +m1j) + rj , m3,m1 ∈ R , sup
j
|rj | ≤ Cε . (18)

ii) For each fixed ϕ ∈ Tν , the operators Wi(ϕ), defined by setting(
Wi(ϕ)h

)
(x) := (Wih)(ϕ, x) ∀h = h(x) ∈ Hs

x,

are also bounded linear bijections of the phase space Hs
x,

Wi(ϕ) ,W−1
i (ϕ) : Hs

x → Hs
x , i = 1, 2 .

A curve h(t) = h(t, ·) ∈ Hs
x is a solution of the quasi-periodically forced linear

KdV equation

∂th+ (1 + a3(ωt, x))∂xxxh+ a2(ωt, x)∂xxh+ a1(ωt, x)∂xh+ a0(ωt, x)h = 0 (19)

if and only if the transformed curve

v(t) := v(t, ·) := W−1
2 (ωt)[h(t)] ∈ Hs

x

is a solution of the constant coefficients dynamical system

∂tv +D∞v = 0 , v̇j = −µjvj , ∀j ∈ Z . (20)

In the reversible or Hamiltonian case all the µj are purely imaginary.

The exponents µj can be effectively computed. All the solutions of (20) are

v(t) =
∑
j∈Z

vj(t)e
ijx , vj(t) = e−µjtvj(0) .

If the µj are purely imaginary—as in the reversible or the Hamiltonian cases—all
the solutions of (20) are almost periodic in time (in general) and the Sobolev norm

‖v(t)‖Hsx =
(∑
j∈Z
|vj(t)|2〈j〉2s

)1/2

=
(∑
j∈Z
|vj(0)|2〈j〉2s

)1/2

= ‖v(0)‖Hsx

is constant in time. As a consequence we have:
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Theorem 5. (Linear stability) Assume the hypothesis of Theorem 4 and, in
addition, that f is Hamiltonian (see (9)) or it satisfies the reversibility condition
(11). Then, ∀s ∈ (s0, q− σ̄− s0), ‖u‖s+s0+σ̄ < +∞, there exists K0 > 0 such that
for all λ ∈ Λ∞(u), ε ∈ (0, ε0), all the solutions of (19) satisfy

‖h(t)‖Hsx ≤ K0‖h(0)‖Hsx

and, for some α ∈ (0, 1),

‖h(0)‖Hsx − ε
αK0‖h(0)‖Hs+1

x
≤ ‖h(t)‖Hsx ≤ ‖h(0)‖Hsx + εαK0‖h(0)‖Hs+1

x
.

3 Ideas of the proof

The proofs are based on a Nash-Moser iterative scheme in the Sobolev spaces Hs.
The main issue concerns the invertibility of the linearized KdV operator L in (15),
at each step of the iteration, and the proof of tame estimates for its right inverse
L−1. These informations are obtained by conjugating L to constant coefficients.

We now explain the main ideas of the reducibility scheme. The term of L that
produces the strongest perturbative effects to the spectrum (and eigenfunctions)
is a3(ϕ, x)∂xxx, and, then, a2(ϕ, x)∂xx. The usual KAM transformations are not
able to deal with these terms because they are “too close” to the identity. Our
strategy is the following. First, we conjugate the operator L in (15) to a constant
coefficients third order differential operator plus a zero order remainder

L5 = ω · ∂ϕ +m3∂xxx +m1∂x +R0, (21)

where m1,m3 ∈ R, m3 = 1 + O(ε), m1 = O(ε). We use changes of variables
induced by diffeomorphisms of the torus, reparametrization of time, and pseudo-
differential operators, that we now shortly present.

1. — The first step is to eliminate the space variable dependence of the highest
order perturbation a3(ϕ, x)∂xxx. We use a ϕ-dependent change of variable of the
form

(Ah)(ϕ, x) := h(ϕ, x+ β(ϕ, x)) .

Note that A converges pointwise to the identity if β → 0, but it does not converge
in operatorial norm. Choosing β such that(

1 + a3(ϕ, x)
)(

1 + βx(ϕ, x)
)3

= b3(ϕ) = independent on x, (22)

the transformation A conjugates L to

L1 := A−1LA = ω · ∂ϕ + b3(ϕ)∂yyy + b2(ϕ, y)∂yy + b1(ϕ, y)∂y + b0(ϕ, y) .

For β odd, A preserves the reversible structure.
For the Hamiltonian KdV (8) we use instead the modified transformation

(Ah)(ϕ, x) := (1 + βx(ϕ, x))h(ϕ, x+ β(ϕ, x)) (23)

which is symplectic, namely, for each ϕ ∈ Tν ,

Ω
(
A(ϕ)h, A(ϕ)v

)
= Ω(h, v) ∀h, v ∈ H1

0 ,
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where
(A(ϕ)h)(x) := (1 + βx(ϕ, x))h(x+ β(ϕ, x)) , ∀h ∈ H1

0 (T) .

Hence (23) preserves the Hamiltonian structure, namely the corresponding conju-
gated operator L1 is still Hamiltonian. Choosing β as in (22), the coefficient b3(ϕ)
is the same as above, and, moreover, b2(ϕ, y) = 2∂yb3(ϕ) = 0.

2. — In the second step we eliminate the time dependence of the coefficient of
∂yyy by a quasi-periodic time re-parametrization

(Bh)(ϕ, y) := h
(
ϕ+ ωα(ϕ), y

)
, ϕ ∈ Tν , α(ϕ) ∈ R .

Calling the new angle ϑ := ϕ+ ωα(ϕ), we choose α so that

B−1L1B = ρL2, L2 := ω · ∂ϑ +m3 ∂yyy + c2(ϑ, y) ∂yy + c1(ϑ, y) ∂y + c0(ϑ, y)

where m3 ∈ R and ρ(ϕ) is close to 1. This transformation preserves the reversible
and the Hamiltonian structure.

3. — The next goal is to eliminate the term c2(ϑ, y)∂yy obtaining an operator
of the form

L3 :=M−1L2M = ω · ∂ϑ +m3∂yyy + d1(ϑ, y)∂y + d0(ϑ, y) .

This is achieved by a conjugation with a multiplication operators M, assuming
condition (Q) (see (5)) or (F) (see (13)). Indeed, after a computation, it turns out
that the second order term is zero if∫

T

a2(ϕ, x)

1 + a3(ϕ, x)
dx = 0 . (24)

If (F) holds, then the coefficient a2(ϕ, x) = 0, and (24) is satisfied. If (Q) holds,
then a2(ϕ, x) = α(ϕ) ∂xa3(ϕ, x), and so∫

T

a2(ϕ, x)

1 + a3(ϕ, x)
dx =

∫
T
α(ϕ) ∂x

(
log[1 + a3(ϕ, x)]

)
dx = 0 .

In both cases (Q) and (F), condition (24) is satisfied.
We remark that, in the Hamiltonian case, this step is not needed because the

term c2∂yy has already been eliminated (namely b2 ≡ 0, see comment 7).

Remark 1. Without assumptions (Q) or (F), we can always reduce L to a time
dependent operator

L3 = ω · ∂ϑ +m3∂yyy + d2(ϑ)∂yy + d1(ϑ, y)∂y + d0(ϑ, y) .

If d2(ϑ) were a constant, then this term would even simplify the analysis, killing
the small divisors. The pathological situation that we want to eliminate assuming
(Q) or (F) is when d2(ϑ) changes sign. In such a case this term acts as a friction
when d2(ϑ) < 0 and as an amplifier when d2(ϑ) > 0.

4. — Finally, in order obtain (21), we conjugate L3 via a translation of the
space variable T h(ϕ, x) := h(ϕ, x+ p(ϕ)) (renaming the variables ϕ := ϑ, x := y),
and a transformation of the form

S = I + w(ϕ, x)∂−1
x .
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In the Hamiltonian case, we use the symplectic map

S = exp{π0w(ϕ, x)∂−1
x } = I + π0w(ϕ, x)∂−1

x +O(w2∂−2
x )

where π0 is the projection π0 := ∂x∂
−1
x on H1

0 (T), namely π0e
ijx = eijx for j 6= 0,

and π01 = 0.

Remark 2. We could iterate the regularization procedure at any finite order k =
0, 1, . . ., conjugating L to an operator of the form D +R, where

D = ω · ∂ϕ +D, D = m3∂
3
x +m1∂x + . . .+m−k∂

−k
x , mi ∈ R ,

has constant coefficients, and the rest R is arbitrarily regularizing in space, namely

∂kx ◦ R = bounded . (25)

One cannot iterate this regularization infinitely many times, because it is not a
quadratic scheme, and therefore, because of the small divisors, it does not converge.
This regularization procedure is sufficient to prove the invertibility of L, giving
tame estimates for the inverse, in the periodic case, but it does not work for quasi-
periodic solutions. In order to use Neumann series, one needs that D−1R =
(D−1∂−kx )(∂kxR) is bounded, namely, in view of (25), that D−1∂−kx is bounded.
In the region where the eigenvalues (iω · l + Dj) of D are small, space and time
derivatives are related, |ω · l| ∼ |j|3, where l is the Fourier index of time, j is that
of space, and Dj = −im3j

3 + im1j + . . . are the eigenvalues of D. Imposing the
first order Melnikov conditions |iω · l+Dj | > γ|l|−τ , in that region (D−1∂−kx ) has
eigenvalues ∣∣∣ 1

(iω · l +Dj)jk
∣∣∣ < |l|τ

γ|j|k
<

C|l|τ

|ω · l|k/3
.

In the periodic case, ω ∈ R, l ∈ Z, |ω · l| = |ω||l|, and this determines the order
of regularization that is required by the procedure: k ≥ 3τ . In the quasi-periodic
case, instead, |l| is not controlled by |ω · l|, and the argument fails.

5. — Once (21) has been obtained, we implement a quadratic reducibility KAM
scheme to diagonalize L5, namely to conjugate L5 to the diagonal operator L∞
in (17). Since we work with finite regularity we perform a Nash-Moser smoothing
regularization (in time). In order to decrease the size of the perturbation R at
each step, we use standard KAM transformations of the form

Φ = I + Ψ , Φ = eΨ in the Hamiltonian case .

If Ψ is a solution of the homological equation

ω · ∂ϕΨ + [D,Ψ] + ΠNR = [R] where [R] := diagj∈ZR
j
j(0) (26)

and ΠN is the time-Fourier truncation operator, then

L+ := Φ−1LΦ = ω · ∂ϕ +D+ +R+ ,

where
D+ := D + [R] , R+ := Φ−1

(
Π⊥NR+RΨ−Ψ[R]

)
.

Note that L+ has the same form of L, but the remainder R+ is the sum of a
quadratic function of Ψ,R and a remainder supported on high modes.
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This iterative scheme converges because the initial remainder R0 in (21) is a
bounded operator (of the space variable x) and this property is preserved, along
the iteration, passing from R to R+. This is the reason why we have performed
the regularization procedure in steps 1-4 above, before starting with the KAM
reducibility scheme. The homological equation (26) may be solved imposing the
second order Melnikov non-resonance conditions

|iω · l + µj(λ)− µk(λ)| ≥ γ|j3 − k3|
〈l〉τ

, ∀l ∈ Zν , |l| ≤ N , j, k ∈ Z ,

where µj(λ) are the eigenvalues of the diagonal operator D. We may verify that for
most parameters λ ∈ [1/2, 3/2] these conditions are verified thanks to the sharp
control of the eigenvalues µj(λ) := −im3(ε, λ)j3 + im1(ε, λ)j + rj(ε, λ) where
supj |rj(ε, λ)| = O(ε).

Note that the eigenvalues µj could be not purely imaginary, i.e. rj could have
a non-zero real part which depends on the nonlinearity (unlike the reversible or
Hamiltonian case, where rj ∈ iR). In such a case, the invariant torus could be
(partially) hyperbolic. Since we do not control the real part of rj (i.e. the hyper-
bolicity may vanish), we perform the measure estimates proving the diophantine
lower bounds of the imaginary part of the small divisors.

All the above transformations, both those of the regularization procedure and
those of the KAM reducibility scheme, are also quasi-periodically time-dependent
families of transformations of the phase space (of functions of x only), namely they
are “Töplitz in time”. For this reason we deduce the dynamical consequence of
Theorem 4-ii) concerning all the solutions of (19) and, therefore, Theorem 5.

We note that the transformations used in [15] (as well as those of [10], [6]) have
not the Töplitz-in-time structure. This is another reason (in addition to comment
2) for which stability informations are not obtained in [15], [10], [6].
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M. Procesi for many useful comments.
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