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Abstract. We prove the existence and stability of Cantor families of quasi-periodic, small amplitude

solutions of quasi-linear autonomous Hamiltonian perturbations of KdV. MSC 2010: 37K55, 35Q53.

1 Main result

The aim of this Note is to present the recent results in [3], concerning the existence and stability
of Cantor families of small amplitude quasi-periodic solutions for Hamiltonian quasi-linear (also
called “strongly nonlinear”, e.g. in [8]) perturbations of the KdV equation

ut + uxxx − 6uux +N4(x, u, ux, uxx, uxxx) = 0 , (1)

under periodic boundary conditions x ∈ T := R/2πZ, where

N4(x, u, ux, uxx, uxxx) := −∂x
[
(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))

]
(2)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Equation (1) is the Hamiltonian
PDE ut = ∂x∇H(u) where ∇H(u) denotes the L2(Tx) gradient of the Hamiltonian

H(u) =

∫
T

u2x
2

+ u3 + f(x, u, ux) dx (3)

on the phase space H1
0 (Tx) :=

{
u(x) ∈ H1(T,R) :

∫
T u(x)dx = 0

}
.

We assume that the “Hamiltonian density” f ∈ Cq(T× R× R;R) for some q large enough,
and that

f = f5(u, ux) + f≥6(x, u, ux), (4)

where f5(u, ux) denotes the homogeneous component of f of degree 5 in (u, ux) and f≥6 collects
all the higher order terms. By (4) the nonlinearity N4 in (2) vanishes with order 4 at u = 0 and
(1) may be seen, close to the origin, as a “small” perturbation of the KdV equation

ut + uxxx − 6uux = 0 , (5)

which is completely integrable. Actually, the KdV equation (5) may be described by global
analytic action-angle variables, see [6] and the references therein.

A natural question is to know whether the quasi-periodic solutions of (5) persist under small
perturbations. This is the main content of KAM theory.

The first KAM results for KdV have been proved by Kuksin [7], and then Kappeler-Pöschel
[6], for semilinear Hamiltonian perturbations ε∂x(∂uf)(x, u), namely when the density f is
independent of ux, so that (2) is a differential operator of order 1 (such perturbations are
called “quasi-linear” in [8]). The key point is that the frequencies of KdV grow as ∼ j3 and
the difference |j3 − i3| ≥ (j2 + i2)/2, i 6= j, so that KdV gains (outside the diagonal i = j) two
derivatives. This approach also works for Hamiltonian pseudo-differential perturbations of order
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2 (in space), using the improved Kuksin’s lemma in Liu-Yuan [9]. However it does not work for
a quasi-linear perturbation as in (2), which is a nonlinear differential operator of the same order
(i.e. 3) as the constant coefficient linear operator ∂xxx. Such a strongly nonlinear perturbation
makes the KAM question quite delicate because of the possible phenomenon of formation of
singularities in finite time, see e.g. section 1.5 in [8]. Concerning this issue, Kappeler-Pöschel
[6] (Remark 3, page 19) wrote: “It would be interesting to obtain perturbation results which
also include terms of higher order, at least in the region where the KdV approximation is valid.
However, results of this type are still out of reach, if true at all”.

Theorem 1.1, proved in [3], provides the first positive answer to this problem, at least for
small amplitude solutions. Note that (1) is a completely resonant PDE, namely the linearized
equation at the origin is the linear Airy equation ut + uxxx = 0, which possesses only the
2π-periodic in time solutions

u(t, x) =
∑

j∈Z\{0}
uje

ij3teijx .

Thus the existence of quasi-periodic solutions of (1) is a purely nonlinear phenomenon (the
diophantine frequencies in (7) are O(|ξ|)-close to integers and ξ → 0).

The solutions that we find are localized in Fourier space close to finitely many “tangential
sites”

S+ := {̄1, . . . , ̄ν} , ̄i ∈ N \ {0} , ∀i = 1, . . . , ν , S := S+ ∪ (−S+) . (6)

The set S is required to be even because the solutions u of (1) have to be real valued. Moreover,
we also assume the following explicit hypotheses on S:

• (S1) j1 + j2 + j3 6= 0 for all j1, j2, j3 ∈ S.

• (S2) @j1, . . . , j4 ∈ S such that j1+j2+j3+j4 6= 0, j31 +j32 +j33 +j34−(j1+j2+j3+j4)
3 = 0.

Theorem 1.1 Given ν ∈ N, let f ∈ Cq (with q := q(ν) large enough) satisfy (4). Then, for
all the tangential sites S as in (6) satisfying (S1)-(S2), the KdV equation (1) possesses small
amplitude quasi-periodic solutions with diophantine frequency vector ω := ω(ξ) = (ωj)j∈S+ ∈ Rν
of the form

u(t, x) =
∑

j∈S+
2
√
ξj cos(ωjt+ jx) + o(

√
|ξ|), ωj := j3 − 6ξjj

−1 , (7)

for a “Cantor-like” set of small amplitudes ξ ∈ Rν+ with density 1 at ξ = 0. The term o(
√
|ξ|)

is small in some Hs-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable.

Let us make some comments on this result.

1. The set of tangential sites S satisfying (S1)-(S2) can be iteratively constructed in an explicit
way. After fixing {̄1, . . . , ̄n}, in the choice of ̄n+1 there are only finitely many forbidden
values, while all the other infinitely many values are good choices for ̄n+1. In this precise
sense the set S is “generic”.

2. The linear stability of a quasi-periodic solution u(ωt, x) means that there exists a set of
symplectic coordinates (ψ, η, w), ψ ∈ Tν , in which the linearized equation at u assumes
the form

ψ̇ = K20(ωt)η +KT
11(ωt)w, η̇ = 0, ẇ − ∂xK02(ωt)w = ∂xK11(ωt)η.
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The last PDE is a quasi-periodically forced Airy type equation that can be diagonalized
into

v̇j + iµ∞j vj = fj(ωt) , j ∈ Sc , µ∞j ∈ R , (8)

which is a sequence of uncoupled harmonic oscillators. Moreover, near the diophantine
invariant torus, the Hamiltonian H assumes the (KAM) normal form (see [4])

K = const+ω ·η+
1

2
K20(ψ)η ·η+

(
K11(ψ)η, w

)
L2(T) +

1

2

(
K02(ψ)w,w

)
L2(T) +O(|η|+ |w|)3.

3. A similar result holds for perturbations of mKdV (both focusing and defocusing)

ut + uxxx ± ∂xu3 +N4(x, u, ux, uxx, uxxx) = 0

for tangential sites S satisfying 2
2ν−1

∑ν
i=1 ̄

2
i /∈ Z. The KdV equation (1) is more difficult

because the nonlinearity is quadratic and so its effects near the origin are stronger than for
mKdV. An important point is that the fourth order Birkhoff normal forms of both KdV
and mKdV are completely integrable. The strategy in [3] for proving Theorem 1.1 could
also be extended for generalized KdV equations with leading nonlinearity up by using the
normal form techniques of Procesi-Procesi [11].

2 Strategy of the proof of Theorem 1.1

Weak Birkhoff normal form. We decompose the phase space in the symplectic subspaces

H1
0 (Tx) := HS ⊕H⊥S , HS := span{eijx : j ∈ S}, (9)

and, accordingly, we write u = v+ z, where v ∈ HS is called the tangential variable and z ∈ H⊥S
the normal one. The dynamics of these two components is quite different. The variable v
contains the largest oscillations of the quasi-periodic solution (7), while z remains much closer
to the origin.

We write the KdV Hamiltonian (3) as H = H2 +H3 +H≥5 where

H2 :=

∫
T

v2x
2
dx+

∫
T

z2x
2
dx, H3 :=

∫
T
v3dx+ 3

∫
T
v2zdx+ 3

∫
T
vz2dx+

∫
T
z3dx, (10)

and H≥5 :=
∫
T f(x, u, ux)dx. We perform a “weak” Birkhoff normal form (weak BNF), whose

goal is to find an invariant manifold of solutions of the third order approximation of equation
(1), on which the dynamics is completely integrable. Thus we need to eliminate/normalize
the monomials of H which are linear in z (this is the reason for which we call this BNF only
“weak”). Since the KdV nonlinearity is quadratic, two steps of weak BNF are required. We
first remove the term 3

∫
T v

2zdx of (10). Since v is Fourier supported on the finitely many
sites S, these monomials are finitely many. As a consequence the required Birkhoff map is the
identity map plus a finite dimensional nonlinear operator (with finite rank and which acts on a
finite dimensional space), see (11). The key advantage is that such a transformation modifies
N4 only up to a finite dimensional remainder. Then a second step removes/normalizes also the
monomials of order 4 that are linear in z. In order to construct a sufficiently good approximate
solution such that the Nash-Moser iteration will converge it is necessary to remove also the terms
O(v5), O(v4z) (these further steps of Birkhoff normal form are not required if the nonlinearity
of the original PDE is yet cubic as for mKdV or in the KAM theorems [10]). This requires the
hypothesis (S2) on the tangential sites. The following Birkhoff normal form proposition holds.
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Proposition 2.1 Assume (S2). Then there exists an analytic invertible symplectic map of the
phase space ΦB : H1

0 (Tx)→ H1
0 (Tx) of the form

ΦB(u) = u+ Ψ(u), Ψ(u) = ΠEΨ(ΠEu), (11)

where E is a finite-dimensional subspace such that the transformed Hamiltonian is

H := H ◦ ΦB = H2 +H3 +H4 +H5 +H≥6 , (12)

where H2(u) := 1
2

∫
T u

2
x dx and

H3 :=

∫
T
z3 dx+ 3

∫
T
vz2 dx , H4 := −3

2

∑
j∈S

|uj |4

j2
+H4,2 +H4,3 , H5 :=

5∑
q=2

R(v5−qzq) ,

H4,2 := 6

∫
T
vzΠS

(
(∂−1x v)(∂−1x z)

)
dx+ 3

∫
T
z2π0(∂

−1
x v)2 dx , H4,3 := R(vz3) ,

R(vnzm) denotes a homogeneous polynomial of degree n in v and m in z, and H≥6 collects all
the terms of order at least six in (v, z).

The weak normal form (12) does not remove (or normalize) the monomials O(z2). We do not
give such stronger normal form (called “partial BNF” in Pöschel [10]) because the corresponding
Birkhoff map is close to the identity only up to an operator of order O(∂−1x ), and so it would
produce, in the transformed vector field N4, terms of order ∂xx and ∂x. A fortiori, we cannot
either use the full BNF computed in [6], which normalizes all the fourth order monomials,
because this Birkhoff map is only close to the identity up to a bounded operator. For the same
reason, we do not use the global nonlinear Fourier transform in [6] (Birkhoff coordinates), which
is close to the Fourier transform up to smoothing operators as O(∂−1x ).

Note that the HamiltonianH in (12) possesses the invariant subspace {z = 0} and the system
restricted to {z = 0} is completely integrable and non-isochronous (it is formed by ν decoupled
rotators). The quasi periodic solutions that we construct in (7) bifurcate from this invariant
manifold.

Action-angle coordinates. We introduce the rescaled symplectic action-angle on the tangential
directions

uj := (ε2ξj + ε2b|j|yj)1/2 eiθj if j ∈ S, uj := εbzj if j ∈ Sc, b > 1. (13)

After some calculations, (12) transforms into a Hamiltonian of the form

Hε(θ, y, z) = α(ξ) · y +
1

2
(N(θ)z, z)L2(T) + P (θ, y, z) (14)

where α(ξ) = ω̄ − ε26Aξ, ω̄ := (j3)j∈S+ , A := diag{j−1}j∈S+ , is the frequency-to-amplitude
relation in (7), the normal form 1

2(N(θ)z, z)L2(T) is quadratic in z and does not depend on the
action variable y, and the Hamiltonian vector field of the perturbation P satisfies XP (ϕ, 0, 0) =
O(ε6−2b), see [3]-section 5.

Note that the normal form N(θ) in (14) depends on the angle θ, unlike those of the KAM
theorems in [10], [8]. This is because the weak BNF of Proposition 2.1 did not normalize the
quadratic terms O(z2). These terms are dealt with two “linear BNF” transformations in the

4



successive analysis of the linearized operator.

The nonlinear functional setting. We look for an embedded invariant torus i : Tν → Tν × Rν ×
H⊥S , ϕ 7→ i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ)) of the Hamiltonian vector field XHε filled by quasi-periodic
solutions with diophantine frequency ω,

|ω · l| ≥ γ〈l〉−τ , ∀l ∈ Zν \ {0} , γ = o(ε2) . (15)

The diophantine constant γ = o(ε2) because ω is ε2-close to the integer vector ω̄ (the minimal
condition is indeed γ ≤ cε2 with c small). We shall also require that ω satisfies first and second
order Melnikov-non-resonance conditions. Actually, in this functional approach, the parameters
are the frequencies ω. We choose in the Hamiltonian Hε the unperturbed actions ξ = α−1(ω) =
ε−2A−1(ω − ω̄) and we look for a zero of the nonlinear operator

F(i, ζ, ω) := ω · ∂ϕi−XHε,ζ (i) (16)

where XHε,ζ is the Hamiltonian vector field generated by Hε,ζ := Hε + ζ · θ with ζ ∈ Rν . The
unknowns in (16) are the embedded torus i and ζ. The frequency ω is a parameter. The
auxiliary variable ζ is introduced in order to control the average in the y component of the
linearized equation. If F(i, ζ, ω) = 0, then ζ = 0, and so ϕ 7→ i(ϕ) is an invariant torus for the
Hamiltonian Hε itself, see [4].

A solution of (16) is obtained by a Nash-Moser iterative scheme in Sobolev scales. The key
step is to construct (for ω restricted to a suitable Cantor-like set) an approximate inverse (à la
Zehnder) of the linearized operator at any approximate solution

di,ζF(i0)[̂ı , ζ̂] = ω · ∂ϕı̂− diXHε(i0(ϕ))[̂ı] + (0, ζ̂, 0). (17)

This means to find a linear operator T0 such that (di,ζF(i0) ◦ T0 − I) = O(γ−1F(i0, ζ0)), see
Theorem 6.10 in [3]. Note in particular that T0 is an exact inverse of (17) at an exact solution
F(i0, ζ0) = 0.

A major difficulty is that the tangential and the normal components of (17) are strongly
coupled. This difficulty is overcome by implementing the abstract procedure in Berti-Bolle [4]:
in a suitable set of symplectic variables the “tangential” and the “normal” dynamics are almost
decoupled and it remains to invert a Hamiltonian linear operator Lω of H⊥S . This is, up to a
finite dimensional remainder, a quasi-periodic perturbed Airy operator with variable coefficients
like

Lωh = Π⊥S
(
ω · ∂ϕh+ ∂xx(a1∂xh) + ∂x

(
a0h
)
− ε2∂xR2[h]− ∂xR∗[h]

)
, h ∈ H⊥S , (18)

where Π⊥S denotes the projection on H⊥S , the functions a1(ϕ, x), a0(ϕ, x) are multiplicative co-
efficients, R2,R∗ are finite rank regularizing operators, and R∗ = o(ε2). The precise expression
is in [3]-section 7.

Reduction of the linearized operator in the normal directions. The first task (obtained in sections
8.1-8.6 of [3]) is to conjugate Lω to another Hamiltonian operator with constant coefficients

L6 := ω · ∂ϕ +m3∂xxx +m1∂x +R6 , m1,m3 ∈ R , (19)

up to a small bounded remainder R6 = O(∂0x). Such an expansion in “constant coefficients
decreasing symbols” is similar to [2] and it is inspired to the work of Iooss, Plotnikov, Toland [5]
in water waves theory, and [1] for Benjamin-Ono. The main perturbative effect to the spectrum
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of Lω is due to the term a1(ϕ, x)∂xxx, which cannot be reduced to constants by the standard
reducibility KAM techniques.

In order to eliminate the x-dependence from a1(ϕ, x)∂xxx we cannot use the symplectic
transformation A(ϕ)u = (1 + βx(ϕ, x))u(ϕ, x + β(ϕ, x)) used in [2], because Lω acts on the
normal subspace H⊥S only, and not on the whole Sobolev space as in [2]. We need a symplectic
diffeomorphism of H⊥S near A⊥ := Π⊥SAΠ⊥S (which is not symplectic). The first observation is
that, at each ϕ, A(ϕ) is the time 1-flow map of the linear Hamiltonian time dependent transport
PDE

∂τu = ∂x(b(τ, x)u) , b(τ, x) := β(x)(1 + τβx(x))−1.

Hence we consider (section 8.1 of [3]) the Hamiltonian flow map of the projected transport
equation on H⊥S , which is Hamiltonian. This step may be seen as a quantitative application of
the Egorov theorem which describes how the principal symbol of a pseudo-differential operator
(here a1(ωt, x)∂xxx) transforms under the flow of a linear hyperbolic PDE. After a quasi-periodic
reparametrization of time (section 8.2 of [3]) we reduce to constant coefficients the term O(∂xxx)
of Lω and we eliminate the term O(∂xx).

Since the weak BNF (12) did not normalize the quadratic terms O(z2), the operator Lω
in (18) has variable coefficients also at the orders O(ε) and O(ε2). These terms cannot be
reduced to constants by the perturbative scheme in [2], which applies to operators R such that
O(Rγ−1) � 1 where γ = o(ε2) is the diophantine constant of the frequency ω, see (15). These
terms are reduced to constant coefficients in sections 8.4 and 8.5 of [2] by means of purely
algebraic arguments (linear BNF), which, ultimately, stem from the complete integrability of
the fourth order BNF of the KdV equation (5), see [6]. These Birkhoff transformations are
symplectic maps of the form I + εO(∂−1x ).

In section 8.6 in [3] we complete the task of conjugating Lω to L6 in (19) via a symplectic
transformation of the form exp(Π⊥S w∂

−1
x Π⊥S ). It is at this point that the assumption (S1) on

the tangential sites is used, see Lemma 7.5 in [3]. If f5 = 0 (see (4)) then (S1) is not required.
Finally, we apply the abstract reducibility Theorem 4.2 of [2], which diagonalizes L6, and thus
conjugate Lω to (see (8))

v̇j + iµjvj = 0, j /∈ S, µj := −m3j
3 +m1j + rj ∈ R, m3− 1, m1 = O(ε4), sup

j
|rj | = o(ε2).
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