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Abstract. We define and describe the class of quasi-Toplitz functions. We then prove an
abstract KAM theorem where the perturbation is in this class. We apply this theorem to a nonlinear
Schrédinger equation on the torus T¢, thus proving existence and stability of quasi-periodic solutions.
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1. Introduction. In this paper, we study a model nonlinear Schrédinger equa-
tion (NLS) with external parameters on the torus T¢, and prove existence and stability
of quasi-periodic solutions. In order to do this we introduce a new class of functions,
which we denote as quasi-T6plitz. We focus on the equation

(1.1) iug — Au+ Meu + f(|u]*)u =0, zeT teR,

where f(y) is a real analytic function with f(0) = 0, while M, is a Fourier multiplier,
namely, a linear operator which commutes with the Laplacian, and whose role is to
introduce b parameters in order to guarantee that (1.1), linearized at u = 0, admits
a quasi-periodic solution with b frequencies. More precisely we choose a finite set
W =0,0@ .. n®} with n® € Z9, and define M so that the eigenvalues of the
operator A + M are
(1 2) wj:|n(j)|2+§j7 1<5<0b,

' Q, = |n|?, nd¢ {n® . a®}

Equation (1.1) is a well-known model for the natural NLS, in which the Fourier
multiplier is substituted by a multiplicative potential V. Existence and stability of
quasi-periodic solutions of (1.1) via a KAM algorithm was proved in [11] for the more
general case where f(y) is substituted for with f(y,z), € T?. With respect to that
paper we use a different approach to prove measure estimates, based essentially on
two ingredients: the fact that the equation has the total momentum M = de uVu
as an integral of motion, and the use of the properties of the quasi-To6plitz functions.
These two ideas induce some significant simplifications which we think are interesting,
in particular the conservation of momentum enables us to prove a stronger result,
namely, our solutions are analytic while in [11] only Gevrey class is proven. Our
dynamical result for the NLS (1.1) is the following theorem.

THEOREM 1.1. There ezists a positive-measure Cantor set C such that for any
&= (&,...,&%) € C, the NLS equation (1.1) admits small amplitude analytic quasi-
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periodic solutions. The solutions are linearly stable, and we give a reducible normal
form close to them.

This is obtained by proving that the NLS Hamiltonian fits the hypotheses of an
abstract KAM theorem; see Theorem 5.1.

Before describing our results, and techniques in more detail, let us make a very
brief excursus on the literature on quasi-periodic solutions for PDEs on T%, and on
the general strategy of a KAM algorithm.

The existence of quasi-periodic solutions for (1.1) (as well as for the nonlinear
wave equation) was first proved by Bourgain (see [6], [8], and [7]), by applying a
combination of Lyapunov—Schmidt reduction and Nash—Moser generalized implicit
function theorem in order to solve the small divisor problem. This method is very
flexible, and may be effectively applied in various contexts, for instance in the case
where f(y) has only finite regularity; see [2] and [3]. As a drawback this method
only establishes existence of the solutions but does not give information on the linear
stability. In order to achieve this stronger result it is natural to extend to (1.1) the,
by now classical, KAM techniques which were developed to study (1.1) with Dirichlet
boundary conditions on the segment [0, 7], see [17]-[24]. A fundamental hypothesis in
the aforementioned algorithms is that the eigenvalues 2,, are simple, and this is clearly
not satisfied in the case of (1.1) on T!, where the eigenvalues are double. We mention
that this hypothesis was weakened for the nonlinear wave equation by Chierchia and
You in [9], by only requiring that the eigenvalues have finite and uniformly bounded
multiplicity. Their method however does not extend trivially to the NLS on T!, and
surely may not be applied to the NLS in higher dimensions, where the multiplicity of
Q, is of order led_l)/ % The first result on KAM theory on the torus T? was given in
[12] for the nonlocal NLS:

iy — Du+ Meu + f(|Us(u)[*)Ws(u) =0, re T teR,

where ¥, is a linear operator, diagonal in the Fourier basis, and such that ¥ (e!{"*)) =
|n|~2%¢!™*) for some s > 0. The key points of that paper are (1) the use of conserva-
tion of total momentum to avoid the problems arising from multiplicity of the €2,,, and
(2) the fact that the presence of the nonlocal operator ¥y simplifies the proof of the
Melnikov nonresonance conditions throughout the KAM algorithm. As we mentioned
before, the more complicated problem of a KAM algorithm for the local NLS without
momentum conservation was solved by Eliasson and Kuksin in [11].

Let us briefly describe the general strategy in the KAM algorithm for (1.1).

We expand the solution in Fourier series as u = ) _ya un¢n(x); here ¢, () =

vV (2;)dei<”7w> with n € Z% is the standard Fourier basis. Then we introduce stan-

dard action-angle coordinates for the modes n; by setting u,; = V. I;O) + Ijewf,j =

1,...,b, where the I ;0) are arbitrary sufficiently small numbers. Finally we set

Up = 2p = 25, Uy = Zn = 2, forall n # {n® . a®) We get

(13) H= Y wj@Li+ Y Qe+ P(U,0,22), Z{:=2"\{n,...,m}.

1<5<b nezd

It is easily seen that H, and hence P, preserve the total momentum (see (2.5) below);
moreover, P (and > (Q, — |m|?)2mZzm) are Toplitz/anti-Téplitz functions, namely,

the Hessian matrix 0, 0., P depends on z;, z"/only through om + o/n.

m’Tn
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Informally speaking the KAM algorithm consists in constructing a convergent
sequence of symplectic transformations ®, such that

(1.4) o, 0H=H,= Y wOL+ Y QWE)|znl* + Po(€,1,9,2,2),

1<j<b nezs

where P, — 0 in some appropriate norm. The symplectic transformation is well
defined for all & which satisfy the Melnikov nonresonance conditions

(1.5) (W) k) + QW 1] > yK e

for all k € Z°, | € Z% such that (k,1) # (0,0), |I| < 2, and |k| < K,,. Here o, are
appropriate constants. With these conditions in mind it is clear that a degeneracy
Qg’) = Qg,’f) poses problems since the left-hand side in (1.5) is identically zero for k =
0,0 = em — e, (em with m € Z¢ is the standard basis vector). To avoid this problem
we use the fact that all the H,, have M as the constant of motion. This in turn implies
that some of the Fourier coefficients of P, are identically zero so that the conditions
(1.5) need to be imposed only on those &, such that Zle nk; + ZmGZ‘f mly, = 0.
Then, in our example, kK = 0 automatically implies n = m. This is the key argument
used in [12]. However, once that one has proved that the left-hand side of (1.5) is
never identically zero, one still has to show that the quantitative bounds of (1.5) may
be imposed on some positive measure set of parameters £&. This is an easy task when
|I| = 0,1 orl = e, + e, but may pose serious problems in the case [ = e,, — e,,, where
the nonresonance condition is of the form

(1.6) ™ k) + QW) — QW > VKT eVkeZb, nom e Z¢: |k| < K,

where n —m = Zl;:l n;k;. Indeed in this case for every fixed value of k one should in
principle impose infinitely many conditions, since the momentum conservation only

fixes n —m. In [12], the presence of ¥y implies that o) — |m|? ~ wa‘s so that if

|m|* > c|k|™ the variation of Q) is negligible. This implies in turn that one has to
impose only finitely many conditions for each k. In the case of (1.1), however, s = 0,
so that this argument may not be applied. One wishes to impose the nonresonance
conditions by verifying only a finite number of bounds for each k. To do this one
needs some control on Q) — |m|?, for |m| large, throughout the KAM algorithm.

The ideal setting is when o) — |m|? is m-independent. This holds true for the first
step of the KAM algorithm due to the fact that P is a Toplitz function. However
it is easily seen that already P; is not a Toplitz function, and some wider class of
functions must be defined.

In order to control the shift of the normal frequency, Eliasson and Kuksin in [11]
define a T'éplitz—Lipschitz property, which they show is satisfied by the NLS Hamilto-
nian, and preserved through the KAM iteration. With this property, they prove the
existence of KAM tori. As a further difficulty they consider an NLS which does not
have M as a constant of motion. This implies that some of the Melnikov nonresonance
conditions (1.6) may not be imposed. At each step of the KAM algorithm they thus
obtain a more complicated normal form.

In order to describe the Toplitz—Lipschitz property, given an analytic function
A(z,2), let A" (£) = 0,,,0_+ A be its Hessian matrix. For all n,m,c € Z%, one

2m Ut
requres that the limit A7, (£, ¢) := limy_oo Al Y (£) exists, and is attained with
speed of order % In dimension d > 2 one also requires similar conditions on the
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limits lim_, o0 A;ﬁssccl/(:t, ¢) with ¢’ orthogonal to ¢. In [13] an understanding of this
property in T2 is given. A key step is to divide the region {|n —m| < N} c Z¢ x Z¢
into a finite number of Lipschitz domains.

In our paper we use a similar—but in our opinion more natural—approach. We
define a class of functions, the quasi- Toplitz functions whose main properties are

1. the Poisson bracket of two quasi-T6plitz functions is quasi-T6plitz (Proposi-
tion 6.8),
2. the Hamiltonian flow generated by a quasi-Toplitz function preserves the
quasi-Toplitz property (Proposition 6.8),
3. the solution of the homological equation with a quasi-T6plitz perturbation is
quasi-Toplitz (Proposition 6.7).
Note that the Toplitz—Lipschitz property of [11] is closed only with respect to Poisson
brackets when one of the functions is quadratic; this makes our definitions more
flexible.

In this paper we strongly rely on the conservation of momentum for our defini-
tions; however, this condition is not necessary in order to define the quasi-Toplitz
functions; see, for instance, [4]. In the next paragraph we give a brief informal de-
scription of our method.

1.1. Brief description of the strategy. We start by fixing two Diophantine
exponents 79 < 7. All our definitions, and constructions are based on some param-
eters N > 1, % <0, <4, and 79 < 7 < 71/4d which are needed in order to ensure
that the quasi-Toplitz functions are closed with respect to Poisson brackets (with
slightly different parameters).

The first step in our construction is an intrinsic (and unique) description of affine
subspaces described by equations with integer coefficients. We consider the equations
vi-x=p;,i=1,...,0 x,v; € Z% p; € Z describing the set of integral points z in an
affine subspace; we then denote this set by [v;; p;]e and, by abuse of notation, call it
an affine subspace. Given N > 1, an N-optimal presentation of an affine subspace of
codimension ¢ is a (uniquely fixed if it exists) list [v;;p;]e such that |v;| < C1 N, and
the p; are positive, ordered, and as small as possible (see Definition 3.4).

This decomposition holds also for a single point (when ¢ = d, in this case an
N-optimal presentation will surely exist). Then we use the parameters % <O, <4,
70 < 7 < 71/4d to define the notion of ¢ cut for a point m, and of good points of an
affine subspace with respect to the parameters (N, 6, u, 7). Namely, if [v;; pi]q is the
N-optimal presentation of m, then m has a cut at £ if p, < N7 and py1 > ON*97. In
the same way the (N, 6, i, 7)-good points of an affine subspace [v;; p;e, with p; < uNT
are those points of [v;;p;]¢ which have a cut at ¢ with parameters (N, 6, u,7) (see
Definition 3.6).

We then define the (N, 0, u, 7)-bilinear functions, i.e., functions which are bilinear
in the high variables 25,z such that |m|, [n| > §N™*, and both m, and n have a cut
with parameters (N, 0, u, 7). These functions may depend on I,4, and on the small
variables z§ with |j| < pN 3 in a possibly complicated way (see Definition 4.1 for a
precise statement).

Finally we define the piecewise Téplitz functions as those (N, 6, p, 7)-bilinear func-
tions which are T6plitz when restricted to the (N, 0, i, 7)—good points of any affine
subspace (see Definition 4.2, and Remark 4.1).

We can now define the (K, 0, u)-quasi-Toplitz functions. Informally speaking
given a function f, for all N > K, 79 < 7 < 71/4d, we project it on the (N, 6, u, 7)-
bilinear functions, and we say that f is quasi-Toplitz if all these projections are well
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approzimated by a piecewise Toplitz function. To be more precise, 7 controls the size
of the error function, namely, the (N, 8, u, 7)-bilinear part of f is approximated by a
piecewise T6plitz function with an error of the order N =497 for all N > K (see (4.5),
and Definition 4.3).

The role of the parameters K, 6, pu is to ensure that if f, g are quasi-T6plitz with
parameters K, 0, u then {f, g} is quasi-Toplitz for all 8/ > 6 and p/ < p provided
K’ > K is large enough (see Proposition 6.8).

We proceed by induction supposing that we have been able to perform v KAM
iterative steps, and that we have a Hamiltonian of the form (1.4), where Zm(QS{) -
Im|?)|zm|? is quasi-Toplitz with parameters (K, 0, u,) (note that K, is the ultravi-
olet cut-off at step v). In order to solve the homological equation (and hence pass to
step v+1 ) we restrict to the subset of £ for which (1.5) holds for all k, m,n (satisfying
momentum conservation) for some g := g(k, m,n) < 2dr;. The main point is to show
that this restriction on the parameters only removes a small measure set.

For all natural N > K, we introduce a decomposition of Z{l as

d—1

(1.7) 74 = Ag U (U Ag>u {Im| < 4N},

(=1

here, Ag = Ag(N) is Z¢ minus a finite number of affine hyperplanes while A, := A,(N)
is the union of a finite number of affine spaces of codimension £ minus a finite number
of affine spaces of codimension ¢ + 1 (see Figure 3.1 for a picture in d = 2).

This decomposition is constructed as follows:

Ao (defined in (3.8)) is chosen so that for all |k] < N,m € Ay the Melnikov
denominators (1.6) are not small.

For all 0 < ¢ < d we may write

Ap = U [vi; pil7

Ve vp €LY, p1s- s pyEL
|vi|<C1N,p;<aNT1/4d

where the [v;;p;]] C [vi;pi]e (see Definition 3.9) are defined in order to ensure the
following property: fix 7(pg) by setting N7 = max(2p;, N™); we have that all m €
[vi; ps]{ are (N, 0, p, T(pe))-good points for [v;; p;]¢ for all choices of % < 6, 1 < 4—+this
is the content of Lemma 3.10. Finally the fact that these sets provide a decomposition
of Z¢ is the content of Proposition 3.11.

To prove the measure estimates we use the above decomposition with N = K,,.
Then the quasi-T6plitz property with N = K, implies that for each m € [v;; p;]7,

(1.8) QW = mf2 + %

([v3; pale) + QU K470,

where 2() is constant on all the points of [v;; p;]e while Q$,’:) is bounded by ¢ (see

Lemma 4.4). We stress that here! 7 = 7(py) is fixed by the positive integer py.
Roughly speaking, we fix k, choose one point m9 on each [v;;p;]7, and impose

the Melnikov conditions (1.6) with ¢ = 2d7(p¢), v ~» 2v, and m = m? (see Defini-

tion 6.1(iv) for the precise formulation). This condition, and (1.8) ensure the second

Melnikov condition for all m € [v;; p;|] with ¢ = 2d7(p,) (see Lemma 6.2). This shows

INote that in the definition of quasi-T6plitz functions and of cuts, however, 7 is left as a free
parameter with the only restriction 79 < 7 < 71 /4d.
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that the infinitely many conditions (1.6) can be imposed by only requiring a finite
subset of them.
In order to check the measure estimates we remark that to impose one Melnikov

condition (i.e., with fixed k, m € [v;; p;]7, and ¢ = 2d7(p;)) we need to remove a region

of parameter sets of order K, 2dr(p e)(see Lemma 6.4). Thus we need to estimate the

number of affine spaces [v;;p;]e with p, = p; using Remark 3.2 it follows that this
bound is proportional to K&™® — (2p)?. This concludes the problem of measure
estimates, and we exclude a set of & of measure Y7 .o x0(2p)”? (here we are
giving only an informal argument; see Lemma 6.3 for the complete proof). In order
to pass to the step v + 1 we need F,, (the solution of the homological equation) to be
quasi-Toplitz: this requires a further restriction of the parameter set (see Definition
6.1(iv), Remark 6.3, and Proposition 6.7).

Recalling that quasi-Toplitz functions are closed with respect to Poisson brackets
we conclude that the new Hamiltonian is still quasi-T6plitz for some new parameters
0y41, po41 forall N > K, 41.

2. Relevant notation and definitions.

2.1. Function spaces and norms. We start by introducing some notation.
We fix b vectors {n, ... n®} in Z9¢ called the tangential sites. We denote by Z¢ :=
ZA\{nM ... n®} the complement, called the normal sites. Let z = (..., 2y, .. Inezd
and its complex conjugate Z = (..., Zn,...)pezs. We introduce the weighted norm

lzlly = > leale™?n|*H,

nezg

where |n| = \/n? +nZ+---+n2 n = (ni,n2,...,nq), and p > 0. We denote by ¢,
the Hilbert space of lists {w; = (zj, Zj)}jezs With ||z, < oc.

We consider the real torus T? := R®/Z? naturally contained in the space C*/Z"x ¢,
as the subset where I = z = z = 0. We then consider in this space the neighborhood
of T :

D(r,s) == {(I,9,2, %) : Im?| < s,|I| < 2, 2], <mllzll, <}

where |-| denotes the sup-norm of complex vectors. Denote by O an open and bounded
parameter set in R®, and let D = max¢ ,e0 € — 7).

We consider functions F'(I,9,2;€) : D(r,s) x O — C analytic in 1,9, z, and of
class Cfy; in €. We expand in Taylor-Fourier series as:

(2.1) F(,1,2,%8) = Y Frap(§I'e ™ 2020,
Lk,a, 8
where the coefficients Figap(€) are of class Cfy, (in the sense of Whitney), the vectors
@=(..,0m,. Jpeza, B=(...,Bn;.. . )neza have finitely many nonzero components
an, Bn € N, 222P denotes [, 29728, and finally (-,-) is the standard inner product
in CP.
We use the following weighted norm for F:

(2.2) IElrs = | Fllprsy.0 = sup S | Friaglo r2HelMs |20 28],
HEHZ<"‘ a,B,k,l
OFia
(2.3) |Friaglo = sup (|Fkla6| + B - ) :
e £
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(The derivatives with respect to £ are in the sense of Whitney.) To an analytic function
F, we associate a Hamiltonian vector field with coordinates

Xp = (Flv —Fy, {inn}nGZ‘fa {_ian}TLEZ‘f)'
Consider a vector function G : D(r,s) x O — £, with

G = Z leaﬁ (f)[l€i<k’ﬂ>za55,
klaj

where Giag = (.. -, G,(fl)aﬁ, .- -)iezg- Its norm is similarly defined as

”GHD(TS)O— sup HMGHm

IIzllp<m
Izllp<r

where

MG = (.. MG icpa,  MGD = 37 |G sl ekl 2o 2P
o, B,k,l

is a majorant of G(Y). We say that an analytic function F is regular if the function
(z,2) = MXp is analytic from B, — ¢,. Its weighted norm is defined by?

b

b
1
5 = ”XFHD(T,S),O = E ”FIJ'HD(T,S),O + T'_2 E HFﬂjHD(r,s),O
Jj=1

Jj=1

—_

(2.4) ;(Ha Flp(r,s),0 + 10zF | p(r,s),0)-
A function F is said to satisfy momentum conservation if {F, M} =0 with M =
S a4+ > mezd jl2m|?. This implies that

(2.5) Fitap=0 if w(k,a,p) : Zn(l ki + Z Bm) # 0.

mGZd

By Jacobi’s identity momentum conservation is preserved by the Poisson bracket.
Remark 2.1. Tt will be useful to envision the conservation of momentum at fixed
k as a relation between «, 3; to make this more evident we write

b
(2.6) n(k,a,8) =0 as — Y m(am —Bm) = Zn(i)ki = 7 (k).

meZi

DEFINITION 2.1. We denote by A, s the space of reqular analytic functions in
D(r,s), and C}, in O which satisfy momentum conservation (2.5), and with finite
semi-norm (2.4).

If S is a set of monomials in I}, i 2., Z,, we define the projection operator Ils
which to a given analytic function F' associates the part of the series only relative to
the monomials in S.

2The norm || - D, (rs),0 for scalar functions is defined in (2.2).
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We have the following useful result.

LEMMA 2.2. (i) The majorant norm is closed under projections, namely, ||ILs f]
< fllrs and | Xuigsllrs < [ Xl

(i) Ay, s is closed under Poisson brackets, with respect to the symplectic form dI A

(]

d¥+idz Ndz; moreover by Cauchy estimates, if we denote § = (%/)2 min(s—s’,1—L'),

11X 7, Xglllrr,or < 2276 X 6| X
X (gl < 2267 X p | ]| X g |

.85

T,8°

Proof. Ttem (i) is obvious. Item (ii) is proved in [5, respectively, Lemmas 2.15,
and 2.16]. In [5] the interested reader can find an analysis of the properties of the
majorant norm. Note that in [5] there is the restriction r/2 < v’ < r (the same for
s), hence the term (%)? is substituted for by 4. O

3. Affine subspaces. An affine space A of codimension ¢ in R% can be defined
by a list of ¢ equations A := {x | v;-x = p; }, where the v; are independent row vectors
in R4, We will write shortly that A = [v;; p;]s. We will be interested in particular in
the case when v;, p; have integer coordinates, i.e., are integer vectors, and the vectors
v; lie in a prescribed ball By of radius some constant N. We set C := max; |n;|, and
we denote by

(v;)e = Span(vy,...,v;R)NZY, By :={x e Z\ {0} : |z| < C1N};

here N is any large number. In particular we implicitly assume that By contains a
basis of R%.

For given s € N, in the set of vectors Z° we can define the sign lexicographical
order as follows.

DEFINITION 3.1. Given a = (a1, ...,as), set (|a]) == (Ja1|,...,|as]); then we set
a < b if either (la|) < (|b|) in the lexicographical® order (in N*) or if (|a|) = (|b]), and
a > b in the lexicographical order in Z°.

For instance in Z2, (£1,45) < (£2,44) since (1,5) < (2,4); on the other hand,
we have (1,4) < (1,—4) < (—1,4) < (—1,—4). This is due to the fact that these
last vectors have the same components apart from the sign, and (1,4) > (1,—4) >
(—1,4) > (=1, —4) in the lexicographic ordering of Z?.

LEMMA 3.2. Every nonempty set of elements in L C Z° has a unique minimum.

Proof. We first consider the list of vectors |L| C N*¥ consisting of the vectors (]a|)
with @ € L. This list has a minimum with respect to the lexicographic ordering of N*.
Naturally there may more than one vector, say a # b € L with (|a]) = (|b]), which
attain the minimum of |L|. This vectors are at most 2%, and among them we choose
the unique maximum in the lexicographical order in Z°. O

Consider a fixed but large enough N.

DEFINITION 3.3. We set Hy the set of all affine spaces A which can be presented
as A = [v;; pile for some 0 < £ < d so that v; € By.

We display as (p1,...,pev1,...,0¢) a given presentation, so that it is a vec-
tor in Z“4+1) Then we can say that [vi;pile < [wisqile if (p1,...,pe; 01, 00) <
(qlv"'aqf;wla"'vwl)-

DEFINITION 3.4. The N-optimal presentation [l;;¢;]¢ of A € Hy is the minimum
in the sign lexicographical order of the presentations of A which satisfy the bound
v; € By.

3Recall that given two partially ordered sets A and B, the lexicographical order on the Cartesian
product A X B is defined as (a,b) < (a/,b) if and only if either a < a’ or a = a’, and b < ¥’.
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Given an affine subspace A = {x|v; -x = p;, © = 1,...,¢} by the notation
Ag[vi;pi]g we mean that the given presentation is N optimal.

Remark 3.1. (i) Note that each point m = (m1,...,mg) € Z¢ has an N-optimal
presentation (this presentation is usually not the naive one [e;, m;]q where the e; form
the standard basis of Z?).

(ii) We may use the ordering given by N-optimal presentations of points in order
to define a new lexicographic order on Z? which we shall denote by a <y bor a < b
when N is understood.

Ezxample 3.1. We now give an example of the N-optimal presentation of a point,
and of an affine subspace. One may easily verify that for any affine subspace A there
exists N (A) such that for all N > N(A) the N-optimal presentation is IV independent.

Let us start with the case mg = (—11,15,3,27) € Z*. We have that for all
N > C;'v/82 (recall that C; = max; |n;|)

mo=>[0,0,0,1;(0,0,9,—1),(0,1,4,—1),(3,0,2,1), (1,0, —5,1)].

In general, given any point mg we will always find N (mg) such that for all N > N(my)
(0)]11 andp(o) =0fori=1,...,d—1,

A A

the N-optimal presentation is fixed, say [pgo); v
while pfio) = mcd (mgo), . ,mfio)).
Let us now study some affine subspaces.

If d = 2 consider the line A := {m € Z? : m = mg +tc, t € R}, with mg orthogo-
nal to ¢ (suppose also that the components of mg are coprime). Then A£[|m0|2; m©],
provided that N > Cy *my|.

Ifd=4and A:={meZ*: m=(-11,15,3,27) + (1,0,0,0)t, t € R} we have
that

A%10,0,3;(0,0,9,-1),(0,1,4,-1),(0,0,1,0))]s VN > C;'V/32.

If B:={m¢€ 74 m = (—11,15,3,27)+ (1,0,0,0)t 4+ (0,1,0,0)s, t,s € R} we
have that

BX[0,3;(0,0,9,-1),(0,0,1,0)], VN > C;'V/82.
LEMMA 3.5. (i) If the presentation A = [v;; pile is N-optimal, we have
(3.1) 0<p1<pa<- <pe
(ii) For all j < ¢, and for which v € (v1,...,v¢) N By \ (v1,...,v;), one has
(3.2) |(v,7)] > pjy1 Vre A

(ili) Given j < £ set Aj = {x|v;-x = p;, @ < j}; then the presentation A; =
[vi,pi]; is N-optimal.

(iv) Finally, —A has an N-optimal presentation —A = [v},p;]l¢ with the same
constants p; and (|vl]) = (Jvi]).

Proof. (i) If p; < 0 we can change the presentation changing p; into —p; and
v; into —v;. By definition this is a lower presentation lexicographically; we obtain
a contradiction. Suppose now that (3.1) is false—say, for instance, that p; > py >
O0—then by definition {p2,p1,...pe;v2,v1,...,0¢} is a presentation of A, and it is
lexicographically lower than {p1,pa,...pe;v1,v2, ..., v}
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(ii) Take v € (v1,...,v¢) N Bn \ (v1,...,v;), and any r € A. We note that (v,r)
is constant on A. There exists an h > j such that if we substitute v, h > j, with v
we obtain a new presentation. Again we deduce by minimality in the lexicographical
order that |(v,r)| > pr > pjt1.

(ili) Any presentation A; = [w;,¢;]; can be completed to a presentation [w;, g

of A soif [g1,...,q5,wi,...,w;] < [p1,...,p;;01,...,0;] we also have [¢g1,...,q;
Wiy, We) < [P1y.-.,De; 01, ..., 0] by the definition of lexicographical order, a con-
tradiction.

(iv) As for the last statement it is enough to observe that there is a 1 to 1
correspondence between presentations A = [w;, ¢;] of A and —A with the constants
¢i > 0; if A= [w,,q;] we have —A = [—wj, ¢;]. The absolute value vectors of the two
presentations are the same, the statement follows. O

Remark 3.2. For fixed N, ¢, p the number of affine spaces in H, of codimension
¢ and such that py < p, is bounded by (2C; N)*(2p)*.

3.1. Parameters, and cuts. We shall need several auxiliary parameters in the
course of our proof. We start by fixing some numbers:

(33) 70 > max(d + b,12), 711 := (4d)4 (1o + 1),

1
c< 5, C>4 No> dicice 1.

In what follows N will always denote some large number, in particular N > Ny. For
the purpose of this paper we may fix ¢ = % and C' = 4; however, we give the definitions
in the more general setting so that they are more flexible.

We assume that N has been fixed. Given a point m we write mﬁ[vi; p;] for its
optimal presentation dropping the index ¢ which for a point is always ¢ = d. Set by
convention pg = 0 and pgy1 = oo.

We then give a definition involving the parameters 6, u, 7 which we call allowable
if

70 <7 <71/(4d) = (4d)? (o + 1), c<O,pu<C.

We need to analyze certain cuts, for the values p; associated with an optimal
presentation of a point. This will be an index ¢ where the values of the p; jump
according to the following definition.

DEFINITION 3.6. The point mg[vi;pi] has a cut ¢ € {0,1,...,d} with the param-
eters (N, 0, p, ) if £ is such that pg < uN7, pgy1 > ON*T (recall that py = 0,pg41 =
00).

The space A :={x|v;-x =p;, i =1,...,L} is denoted by [v;; p;]e and called the
affine space associated with the cut of m.

In turn for every affine subspace Ag[vi;pi]g with pg < uNT, the set of points
m € A with |m| > K™ which have £ as a cut with the parameters (N,0,u,7) are
called the (N, 0, u, 7)-good points of A.

Notice that N7 > yN7 (since N#4=D7 > N@d=D70 5 Ot > gy~1), so for
any given m € Z{ there is at most one choice of ¢ such that m has an ¢ cut with
parameters (N,0,u, 7). Note moreover that the affine subspace associated with a
(N, 0, u, 7)-good point of A is A.

Remark 3.3. The purpose of defining a cut ¢ is to separate the numbers p;
into small and large. The parameters (N, 0, u, 7) give a quantitative meaning to this
statement.
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Ezxample 3.2. Fix N > C’fl\/82, 0, u, 7, and consider the affine subspace

Ag[(), 0,3;(0,0,9,-1),(0,1,4,-1),(0,0,1,0))]5 of Example 3.1. For all ¢ large enough
(i.e., t > 66C1N), setting

m(t) = (—11,15,3,27) + (1,0,0,0)¢
we have
m(t)ﬁ)[o, O’ 3,]94(N, t); (07 07 97 _1)7 (07 1747 _1)7 (07 07 ]-7 0)7 ’[}4(N))],

where v4(N) = (vfll)(N), e ,vff) (N)) is a vector such that |vs(N)| < C1 N, the first
component Uil)(N) = 1; finally p4(N,t) = t — P(N) with |[P(N)| < 33C1N. Hence m
is a (V, 0, u, 7)-good point of A provided that ¢t > §N44™ — 330 N.

Remark 3.4. (1) If £ is a cut for the point mg[vi; p;], with allowable parameters
(N, 8,1, 7) it is also so for all parameters (N, 0, u, 7) with e <0 <0 < C, c< ' <
u<C.

(2) If for a given £, 79 < 7 < 71/4d we have p; < ¢N7, pgy1 > CN*97 then £ is a
cut with parameters (N, 8, u, 7) for every choice of ¢ < 0, u < C.

LEMMA 3.7. Consider m,r € Z¢ with mg[vi;pi], rg[wi;qi]; suppose that £ is a
cut for m with the allowable parameters N, 0", 1/, 7 and suppose there exist parameters
c<<® <C,c<py <u<C:

(3.4) Ir—ml < C7l (u— )N, €7@ — NI,
then

(1) £ is a cut for the point r, for all allowable parameters (N,0,u,7) for which
(3.4) holds,

(2) (wy,...,we) = (v1,...,0¢),

(3) [wis ¢ile = [vis pile + 7 —m.

Proof. Fix 0, satisfying (3.4). Write (v;,r) = (v;,r —m) + p;. For @ < £, since
|v;| < C1N we have

(3-5) |(vi, )| < pi+ [villr = m| < p/NT + (n— p')NT = uNT.

From (3.1) by the definition of N-optimal, for all v € By \ (v1,...,v) one has
(3.6)
|(v,7)| = |(v,m)+ (v, —m)| > pe1—|v||r—m| > @ N —CN|r—m| = N1,

(1), (2) By induction on ¢ we wish to show that ¢; < N7 and w; € (v1,...,ve)
for all ¢ < ¢. For ¢ = 0 this is trivial, so assume that for 0 < ¢ < ¢, we have
(w1, ..., w;) C (v1,...,ve). Since the v; are independent, there exists h < £ such that
v & (w1, ..., w;). By (3.5) qit1 < |(vp, )] < uNT.

By contradiction suppose that w;+1 € By \ (v1,...,v); applying (3.6) we would
get (wit1,7) == qix1 > ON*" > uN7 a contradiction.

Since the w; (as well as the v;) are linearly independent, clearly (vi,...,v) =
(w1, ..., we). This proves (2). As a consequence for s > ¢, we again apply (3.6) to
ws € By \ (v1,...,vs); we obtain g;+1 > ON*7. This completes the proof of (1).

(3) By (2) the space [w;; ¢;]¢ is the one parallel to [v;; p;], and passing through r.
The result follows. d
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Remark 3.5. Note that if we know that m,r both have an ¢ cut with parameters
N, 0, u, T then we can deduce that the subspace [w;; g;]¢ is the one parallel to [v;; p;]e
and passing through r provided that
(3.7) |r —m| < Cyle(N*™=1 — Cc™INTT).

Notice that Cy te(N*7—1 — Cec ' N7—1) > N7; actually in our computations we will
have |r —m| < N3.

Remark 3.6. With the above lemma we are stating that if m has an ¢ cut with
parameters ', i/, 7 then, for all choices of 8 < ',/ < u, for which 6, 1 are allowable
parameters, there exists a spherical neighborhood B of m such that all points r € B
have an ¢ cut with parameters N, 0, u, 7. The radius of B is determined by (3.4).
Note moreover that if 7 has a cut £ for some parameters then so has —r, and with the
same parameters. Then Lemma 3.7 holds verbatim if in (3.4) we substitute |m — r|
with |m + r|.

The definitions which we have given are sufficient to define and analyze the quasi-
Toplitz functions, which are introduced in section 4. In the next subsection we collect
some definitions which are useful for the measure estimates, and which are indepen-
dent of the auxiliary parameters 6, y.

3.2. Standard cuts. The following construction will be useful: we divide

[CNA4dm0 (N1 /4d) = a1 [NSi NSi+1)  [NSe, (NT1/4d)

by setting N1 := CN4970 and defining recursively
cINSH =710 (eTINSH =1, .d—1.
By definition we get
INSi — (c—lc)zf;} (4d)" pr(dd)? o
Recalling that N > Ng = Cc™!, and 71 = (4d)? (9 + 1), we get
¢ INSa < NA(@d) ™+ (4d) o < NT/4d,

We set

T1
4d’
LEMMA 3.8. For all allowable parameters ¢ < 0, < C and for each point

00 :=T0, 0d ‘= eN9% = N% 0<i<d.

mg[vi;pi] we construct a standard cut ¢, 0 < ¢ < d, for m for which the parameter
T is one of the previously defined numbers g;, i =0,...,d.
If |m| > N™, then £ < d, if py < CN*™ then £ > 0.

Proof. Let mg[vi;pi]. If pg < ¢cN™/%4 then we set £ = d and 7 = gg = 71 /4d. If
p1 > CN*70 then we set £ =0 and 7 = 9o = 7o.

Otherwise if p; < CN447 and pg > ¢N71/%4 then at least one of the d—1 intervals
(NS, NSi+1) with 4 = 1,...,d — 1 does not contain any element of the ordered list
{p2,...,pa—1}. The parameters ¢, T are fixed by setting 7 = g;, where cN& = N7,
and 7 is the smallest among the indices i such that the interval (N9, Ni+1) does
not contain any points of the list {p2,...,ps—1}; finally £ < d is the index for which
pe < N9 =cN7, and ppy1 > N9+t = C(c7INS?)4d = O N7,

If pg < ¢cN %, we apply Cramer’s rule to the equations Vm = p given by the
presentation. We have |m| = [V ~!p| < cdINT/4(CyN)4=1 < N7 since 7y +d < 11
and as soon as N > cd!C{ ™, O
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3.3. Cuts, and good points. As shown in the introduction we need a decom-
position of Z{ as in (1.7). For any given N we set

(3.8) Apg = Ap(N) := {m ez? : mBvip) with py > CK4dTO},

In order to define Ay we set the following.
DEFINITION 3.9. For all [vi;pi]le € Hy with 1 < £ < d and py < cNT, the set

(3.9) [vi;pil¢ o= {z € [vi,pile | [l > N, [(v, 2)]
> C max(Nm =4dpld) vy € By \ (vi)e}

will be called the N-good portion of the subspace A = [v;;pile.

Remark 3.7. Notice that every v € By \ (v;)¢ gives a non constant linear function
v-x on A. Thus the good points of A form a nonempty open set complement of a
finite union of strips around subspaces of codimension 1 in A. Note moreover that we
are interested only in integral points, and the integral points in A which are not good
form a finite union of affine subspaces of codimension one in A.

LEMMA 3.10. Given p < cNT/(4) we fix 7(p) so that N™®) = max(N™,c1p)
(note that 7o < 7 < 71 /(4d)). The following holds: for all ¢ < 8, < C, and for all
affine subspaces [vi; pile € Hn such that pe = p, we have that every point m € [v;; p;]J
is an (N, 0, p, 7(p))-good point for [vi;pile.

Proof. By hypothesis (3.9)

pes1 = (veg1,m) > Cmax(N4dmo —2dptdy,
recall that p; = p. If p < ¢N™ then 7(p) = 79 by definition. Since pyy1 > CN*470 m
has the cut £ for all choices of ¢ < 6, < C. Otherwise cN™/(4d) > 5 > ¢N70 and
per1 > Ce*p* So in conclusion for all ¢ < 0, u < C we have py = p = eN™®) <
pNT®) and pgyq > CNA7®) > gN447(P) | hence the cut. |

We now show that (1.7) provides a decomposition of Z¢; see Figure 3.1.

PROPOSITION 3.11. Fach point mg[vi,pi] with |m| > N™ and p; < CN*d7
belongs to the set [v;;p;|] for some choice 0 < ¢ < d.

Proof. According to Lemma 3.8, each point m has a normalized cut 0 < ¢ < d for
all allowable 6, i1, and for some 79 < 7 < 71/4d with 7 in the finite list {o1,..., 04}-
Thus for all w € By \ (v;)¢ we have |(m, w)| > N7 for all @ < C, moreover pp < uNT™
for all 4 > ¢. Hence |(m,w)| > CN*™ > CN*™ and p, < ¢N7. Combining these
relations we obtain

|(m, w)| > Cmax(N*™, = 44ppd),

hence, m € [v;; p;]] by Definition 3.9. O

LEMMA 3.12. Given p < cNT/4 fix 7(p), as in Lemma 3.10, then the following
holds. Given m € Z$ with m € [v;;pi]] and pe = p, then for all v € Z$, and for all
parameters ¢ < 0, u < C such that

(3.10) r—m| < Oy M p — ¢)N™~L, 07 H(C — g) N4t

r,m have the same cut { with parameters (N,0, u,7(p)) with parallel corresponding
affine spaces.

Proof. We can apply Lemma 3.10 to m, obtaining the cut ¢ with parameters
(N, 0,1/, 7) for all ¢ < 0', 1/ < C. Then, we may apply Lemma 3.7 obtaining the
required cut for r for any choice of 8, u satisfying (3.4) with respect to ¢, /. Since
0', 1’ can be taken arbitrarily close to ¢, C' (3.4) follows from (3.10). a
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Fra. 3.1. A drawing of the standard decomposition in Z% Ap s Z% minus the dashed lines
(each dashed line is described by an equation [v;p]1). On each dashed line the set [v;p]{ is signed
in solid boldface. Note that [v;p]] is [v;p]1 N Z% minus a finite number of subspaces of codimension
two, i.e., points.

4. Quasi-Toplitz functions. Now, and in the following, we fix ¢ = %, C=4.
DEFINITION 4.1. Given N, 0, u, 7 such that 1/2 < 6,u < 4, 10 <71 <71 /4d, and
4N3 < %N” we say that a monomial

. !’
e‘(kﬁ)llzaéﬁzfnzz

is (N, 0, p, 7)-bilinear if it satisfies momentum conservation (2.5), i.e.,
om+o'n=—m(k,a,f),

(4.1) k| <N, Inl,lm|>0N™, > [jl(a; + B;) < uN?,
J

and moreover there exists 0 < £ < d such that both n,m have an £ cut with parameters
N, 60, u,7. By convention if mﬁ[vi;pi] and nﬁ[wl, qi) with (p1,...,pe,01,...,0) =
(q1,---,qe, w1, ..., we) we say that the monomial has the cut [vi;pile (this defines
uniwocally an affine subspace associated with the monomial). Note that by Lemma
3.8 we are sure that £ < d. In A, s we consider the subspace of (N, 8, u,7)-bilinear
functions, and call IL(n g ,, -) the projection onto this subspace.

Notice that by Remark 3.5 the cut [w;;¢;]¢ is completely fixed by [v;;ps]e and
om + o'n.

Having chosen 1/2, 4 as bounds for the parameters 0, yu we will call low momentum
variables, denoted by w”, and spanning the space 25, the 2z such that l7] < 4N3.
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Similarly we call high momentum variables, denoted by w', and spanning the space
(¥ the z7 such that |j| > N7 /2. Notice that the low and high variables are separated.
We may write uniquely

(4.2) ingpunf = Z Z ,‘f{f’r;(l, O, w27 27

o,0'=%+ |m|,|n|>6NT1
3¢: m,n have an £ cut
with parameters N,0,u,

where

gl)a?-’:(lvﬁvwl/): Z f;:::z,k,a,ﬁ(]-) <k19>z ZB;

[k|<N, [a|+]8|<uN3,
—m(k,a,8)=cm+c’'n

finally f;[;/ k.op(1) is an analytic function of I for [I] < r2.

Given an affine subspace Ag[vi; pile, we construct (N, 0, u, 7, A)-restricted Toplitz
functions by setting:

(N,0,p,1,A)
(4.3) g(A 1,9,2) = Z e [3 (om + o'n, A; I)ei<k’ﬁ>zaiﬁz;zgl;
n,m,o,o’ ko,

here the sum Z (NO.1m4) 1heans the sum over those n,m,o,0’,k, a, 3 such that

ek 19>z 2027 29" is a (N, 0, p, 7)-bilinear monomial with cut given by A. Finally
I, /3(h B; I) is an analytic function of I, for |I| < r?, which is well defined for all
o0 =41, ke Z he Z{, o, € NZI, and B—>[wi;qi]g € My such that |k| < N,
B = — (b, 8), X gz 110 + B) < N, and [ge] < ANT/A4.

Notice that the coefficient g;7 ;(om + o'n, A; I) depends on m,n only through
om+oc'n, A; I. The sum ng;ﬁf_;f’:)aﬁ instead selects those m, n such that |m|, |n| >
ONTL, |om + o'n| < uN3 + N, m,n have a cut £,7, and the cut of m is A .

DEFINITION 4.2. A function g is called piecewise Toplitz if it is of the form

9= > 9(A, 1,9, 2).
A€M N
AJ—\{[vi;m]e dpgl<pNT

We denote the space of piecewise Tdplitz functions as F(N,8,pu,7) =F C A,
Remark 4.1. Notice that F(N, 0, u, 7) is a subset of the (N, 6, u, 7) bilinear func-
tions. Hence given g € F(N, 0, u, 7) we may write it in the form (4.2)

g=>_ > 955 (1,9, w20 27

o,0'=% \m,\ |n|>6NT1
3¢: m,n have an £ cut
with parameters N6 o7

and one has that

(1,9, w") = g7 (om + o'n, [vi; pile, I, 9, w")
- > 975 5(om + o'n, [vi; pile; T)el 0 2220

[KI<N,|a|+]|8|<pN3,

—7(k,a,8)=cm+c'n

(4.4)

gmn
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if [n|,|m| > 6N, mg[vl;pz] and there exists £ such that m,n have a cut at ¢ with
parameters (N, 0, u, 7). Otherwise g7, o — .

Notice that g7 (om + o'n, [vi,pi]g,l,ﬂ,wL) depends on m,n only through the
subspace [v;; pi]e, and om + ¢’n. In other words the quadratic form representation
(4.2) of an (N 0,1, 7)- -piecewise Toplitz function has translation invariance in the
sense that gmn = gm?,, provided that: om + o'n = omy + o'ny, there exists £
such that m,n,mq,ny all have an ¢, 7 cut, and both m,m; have the same associated
subspace [vi; Dile-

Given f € A, s and F € TF, we define

(4.5) fo= N (Mo, f — F).

Finally set

4.6 XF. = inf .
(4.6) 1 X1l WS [;%F(maX(l | | )]
To<T<T1/4d

DEFINITION 4.3. We say that f € A, is quasi-Tdplitz of parameters (K, 6, p) if
[ XlIF, < co. We call | Xy}, the quasi-Téplitz norm of f.

Remark 4.2. Notice that our definition includes the To6plitz and anti-To6plitz
functions by setting, for any N, 0, u, 7, F =y g, -)f, and hence f =0. In the case
of Téplitz functions one trivially has || X[|T

Remark 4.3. Intuitively a quasi-T6plitz function is a function whose bilinear part
is “well approximated” by a piecewise T6plitz function.

Given K, 0, 1, and a function f € A, ; we proceed as follows. For any choice of
N > K and 10 < 7 < 71/4d we compute a “weighted distance” between Iy g . rf
and the subspace F. First, for any F € F, we define f := N4 (Iy g, f — F),
and compute || X | s( since f, and F are in A, s all this quantities are finite); then,
in order to obtain a “distance,” we perform the infimum over F € F. Essentially a
function f is quasi-T6plitz if this weighted distance stays bounded as N — oco. Note
that one could probably prove that the inf in our definition is actually a min, thus
associating to f a “canonical choice” F (depending on N, 6, i, 7); this however is not
needed in our construction, we only need a weaker decomposition as follows.

If f is quasi-To6plitz with parameters (K, 6, 1) then for any N > K, and 79 < 7 <
71/4d there exist functions F € F(N, 0, u, 7), such that setting

f=N(Uyopurf~F) wehave [|Xz|ns, | Xfllns <2 X]7,

We now concentrate on the very special case of diagonal quadratic functions
Qz) := ZmGZ‘f QmzZmZm. We notice that in this case we may reformulate the pro-

jection on (N, 8, u, 7)-bilinear functions as:

(N,0,p,7,A)
H(N797M7T)Q(z) = E : E QmzmZm,
AN ip1pemny  mELY

[PglSUNT

where S04 coincides with Zm - inAo)o o of (4.3), namely, it is the sum over
those m with |m| > @N™ which have an ¢ cut with parameters (N, 6, s, 7) associated

with the affine space A.
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LEMMA 4.4. Let Q(2) be a quasi-Tdplitz diagonal quadratic function. There
exist two diagonal quadratic functions Q(z) € F, Q(z),

(N,0,p,1,A)
(4.7) Qz) = 3 S 0)anin,
ANlvsip] e (V) mezs

[pg|<UNT
N74dTQ(Z) = H(N,G,;L,T)Q(Z) - Q(Z),

such that for all m which have a cut at £ with parameters (N, 0, 1, T) associated with
A one has

(4.8) Qm = Q(A) + N' Q..
Moreover one has

(4.9) |Quml, 1Q(A)], 1Qm| < 21 Xql7

Proof. Since @ is quasi-Toplitz we may approximate it by a function F € F;
moreover, since () is quadratic and diagonal we may choose F of the same form.

Hence we can we can fix quadratic, and diagonal functions Q@ € F and Q =
N7 (Ily,9,u,-Q — Q) so that [|[Xo|lr, [Xgllr < 2| XqllE. To conclude we need to
show that a quadratic, diagonal, and piecewise Toplitz Q is of the form (4.7). Indeed
by (4.3) an (N, 0, i, A)-restricted Toplitz function which is quadratic and diagonal is

of the form

(N,0,u,7,A)

g(A,Z) = g(A) Z ZmZm-

m

Our last statement is proved by noting that

2]

IXqllr =2 sup > |Qh|76’p|h‘ > Q]

”Z”P<T hGZ‘li

by evaluating at z,(f) := §;pe~Pllr /2. The same holds for Q and Q. 0

Remark 4.4. Tt is interesting to compare the set of quasi-T6plitz functions
with the T6plitz—Lipschitz functions of [11]. The first observation is that the set of
quasi-Toplitz functions is closed with respect to Poisson brackets, while the T6plitz—
Lipschitz functions are closed only with respect to Poisson brackets when one of the
functions is quadratic. This is due to the fact that the property of being quasi-Toplitz
depends on the idea of (N, 8, i, 7)-bilinear projection, and not on the Hessian of the
function. Indeed one may easily produce functions which are quasi-T6plitz but not
Toplitz—Lipschitz (even in the class of functions which preserve momentum).

A second more subtle point is whether the class of quadratic quasi-T6plitz and
Toplitz—Lipschitz functions coincide; this should be true at least for d < 2, and we
expect some inclusions to hold even in higher dimensions.

5. An abstract KAM theorem. The starting point for our KAM theorem is
a family of Hamiltonians

(5.1) H=N+P, N=w&,I)+ Y 2(&)zz., P=P(9,22¢),

n€ezg
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defined in D(r,s) x O, where O C R is open and bounded, say it is contained in a
set of diameter D. The functions w(§), 2, (§) are well defined for € € O.

It is well known that, for each £ € O, the Hamiltonian equations of motion for
the unperturbed N admit the special solutions (¢, 0,0,0) — (¥ + w(&)t,0,0,0) that
correspond to invariant tori in the phase space.

Our aim is to prove that, under suitable hypotheses, there is a set Oy, C O of
positive Lebesgue measure, so that, for all £ € Oy, the Hamiltonians H still admit
invariant tori.

We require the following hypotheses on A/, and P.

(A1) Nondegeneracy: The map & — w(€) is a Cf, diffeomorphism between O and
its image with |w|c1 , [Vo™ o < M.

(A2) Asymptotics of normal frequency:

(5.2) Qn(€) = Inf* + 2 (8),

where Q,,’s are Cyy functions of ¢ with Cfj,-norm uniformly bounded by some positive
constant L with LM < %

(A3) Momentum conservation: The perturbation P satisfies momentum conser-
vation, it is real analytic, and Cll/V in £ € O; namely, P € A, ;.

(A4) Quasi-Toplitz property and regularity: the functions P and Q;]2;]? are
quasi-Toplitz with parameters (K, 6, i), where

1 1
5 <On<4, (n= K™, (4= 0) K49 > 5K

One has the bounds

XI5, . o0 <00 Q2,215 ) o < L.

D(r,s),O D(r,s),O

Now we state our infinite dimensional KAM theorem.

THEOREM 5.1. Assume Hamiltonian N+ P in (5.1) satisfies (A1)—(A4). Then,
for all v > 0 small enough there exists a positive constant € = e(v,b,d, L, M, K, 0, 1)
such that if ||XP||§(T < ¢, then there exists a Cantor set O, C O with meas(O \

18),0 —

0O,) = O(v), and two maps (analytic in I, and C}y, in &)
U:T x O, = D(r,s), @:0,—R",

where U is %—close to the trivial embedding Wy : T® x O — T x {0,0,0}, and @ is
e-close to the unperturbed frequency w, such that for any £ € O,, and 9 € T®, the
curve t — W (I+w(&)t, §) is a linearly stable quasi-periodic solution of the Hamiltonian

system governed by H = N + P.

5.1. Application to the NLS. The NLS (1.1) is a Hamiltonian equation. We
expand the solution in Fourier series as u = ) ;4 Um®m(x) and obtain that the
Um (t) are the Hamiltonian flow of

2

b
(5.3) N+P =) (Ini +&)un, >+ > [nlPuntin + / 9[> tmom(@)| |da
Td

=1 nezg mezZd

with respect to the symplectic form i} . dup A di,. Here g is a primitive of
the analytic function f so it has a zero of degree at least two. The conservation of
momentum follows by translation invariance.
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As an example, if f(u) = |u|?u, then P = myezd Uy Uy Uims Umy s
my—mogtmg—my=0

and the constraint mi; — mo + m3 — my = 0 ensures that P satisfies momentum
conservation. We introduce standard action-angle coordinates uy;, = /1 ](0) +1I jewi,

J=1,...,b, up = zp,n # W . a®} where 472 > Il-(o) > 272, and obtain (1.3),
where P is the last summand of (5.3). Let us suppose without loss of generality that
g(y) = y? + O(yP*™1), so that P is regular, and Xp is of order |Iy|?Pr=2. It is easily
seen that P is Toplitz (hence by Remark 4.2 P is quasi-Toplitz for all choices of 6, p).
Conditions (A1)~(A4) hold with M = 1 and any L (since Q = 0).

In order to apply Theorem 5.1 we fix r = caﬁ, with ¢ small. We have HXPHZ?S <
C|Io|**r=2 so the smallness condition is achieved.

6. KAM step. Theorem 5.1 is proved by an iterative procedure. We produce a
sequence of Hamiltonians H,, = N, + P, and a sequence of symplectic transformations
X},ﬂyilH,,_l := H,, well defined on a domain D(r,,s,) x O,. At each step, the
perturbation becomes smaller at the cost of reducing the analyticity, and parameter
domain. More precisely, the perturbation should satisfy HXPV+1||g(r,,+1,s,,+1),(’),, <
e® k > 1. The sequence r, — 0 while s, — s/4 and O, — Ou. For simplicity of
notation, we denote the quantities in the vth step without subscript, i.e., O, = O,
wy, = w, and so on. The quantities in the (v + 1)th step are denoted with subscript
“+.” Most of the KAM procedure is completely standard; see [12] for proofs. The new
part is (1) to show that the quasi-Toplitz property (A4) for P and (Qz, z) are kept by
KAM iteration, and (2) prove the measure estimate using the quasi-T6plitz property.

For simplicity, below we always use the same symbol C' to denote constants inde-
pendent of the iteration.

One step. Suppose that the Hamiltonian (5.1), well defined in D(r, s) x O, satisfies
(A1)-(A4). Moreover P and (Qz, z) are quasi-Toplitz with parameters (K, 6, 1), and
we have

(6.1) wle, Vo™ o < M, [Qulcs, <L,
||<QZ72>|‘g(r,s)7O <L, [IXplDes0 <

Our aim is to construct (1) an open set O C O of positive measure, (2) a one-
parameter group of symplectic transformations ®%,, well defined for all ¢ € O, ¢t <1,
such that ®LH := H, = N + P, still satisfies (A1) — (A4) in the domain D(r, s, ).
Finally Py, and (QFz,2) are quasi-Toplitz with new parameters (K, 6, ), and
we have

wilen s [Vwitlo < My; [ e s 102, 2)] <Ly,

r4,54),04 =
T
HXP+||D(T‘+7S+)7O+ < &+ = e”.

Let us define

b
R:= Z Py pope ™ 1P202 (R) ::ZPO)%OKJIZ' + Z Po,0.e5.e5 BT
k2|p|+|of+|B|<2 i=1 jezd

Remark 6.1. The quadratic function R is quasi-T6plitz, and satisfies the bounds
I X7 < 21Xp[7,.

rs —
The generating function of our symplectic transformation, denoted by F', solves
the “homological equation”:

(6.2) {N,F} = ll<k R — (R),
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where Il< g is the projection which collects all terms in R with |k| < K, and K is fixed
to be the quasi-T6plitz parameter of P, Q). It’s well known (and immediate) that F' is
uniquely defined by the homological equation for those £ such that (w(&), k) +Q(&)-1 #
0. In order to have quantitative bounds, we restrict to a set O1 where (see Lemma
6.2)

(6.3) {w(€),k) + Q) 1| 27K 2™, k| < K, [I| <2, (k1) #0,

where k € Zb, I € Z% | and (k,l = a— B) satisfy momentum conservation (2.5). Then
H in the new variables is:

Hy =Yg =N + P,
where Ny = N 4 (R) and P, = el" Y H — N

6.1. The set O,. The set of no-resonant parameter is defined.
DEFINITION 6.1. O is defined to be the open subset of O such that
(i) for all |k| < K, h € Z, (h,k) # (0,0),

(6.4) Hw, k) + h| > 2yK™7;

(i) for all |k| < K, 1 € Z%, such that |I| = 1, and I,k satisfy momentum
conservation (i.e., | = e, with —mw(k) = +m)
(6.5) [w, k) + Q-1 > 2yK~7°;

(iii) for all |k| < K,|l| = 2, such that I,k satisfy momentum conservation, and
moreover | # ey, — ey, 01 | = €y, — ey, and max(|m|, |n|) < 8K™, we set

(6.6) [(w, k) + Q- 1] > 2y K~ 2™,
(iv) for all N with K < N < 2K /70 for all affine spaces [vi,pile in Hy (1 <

¢ < d) with |pe| < cNT/*? we choose a point m? € [vi; pil]. For each such
m9, and for all k such that |k| < K, we require

(6.7) [{w, k) + Qo — Qa| > 2 min(]\f‘z‘i”’7 2_4d|pg|_2d),

where n9 = m9 + (k) (see (2.6) for the definition of w(k)).
The set O is defined in order to ensure Lemma 6.2 below.
LEMMA 6.2. For all ¢ € Oy, for all k € Z', |k| < K, and | € 7%, |I| < 2 which
satisfy momentum conservation, we have

(6.8) [(w, k) +1-Q] >~K 2™,

Before proving the lemma we give some relevant notation.

We know that Q(z) := >, Qn|zm|? is quasi-Téplitz quadratic and diagonal,
hence given 6, u, 7, we apply Lemma 4.4 with Q(z) = Q(z) to obtain the bounds
(4.8), and (4.9) for all mg[vi;pi] which have a cut at ¢ with parameters (N, 6, 1, 7):

(6.9) Qm = Q([’Ui;pi]g) + N_4dTQm.

Let us fix an affine subspace Ag[vi;pi]g. By Lemma 3.10 there exists 7 := 7(pe)
(depending only on py) such that every m € [v;;p;]] has a cut at £ with parameters
(N, 0, u,7(pe)) for all % < 6,1 < 4, hence

(6.10) [ — 2([vss pil)| < 2LN 470,
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here £2([vi; pile) plays the role of Q(A) while by (6.1) L dominates the Téplitz norm
of Q. Note that in particular this relation holds for m?.

Proof of Lemma 6.2. The cases with |I| = 0,1 follow trivially from the definitions
(6.4), and (6.5) since 7 is large with respect to 7p; same for +I = e, + ey, and
| = em — e, with max(jm|, |n|) < 8K™.

For the remaining cases we proceed in two steps: first we fix k, N = K, and one
subspace Ai()[vi; pile, and we consider (6.7) with this choice of k, [v;;p;]e. We show
that this inequality implies that (6.8) holds for all I = e, — e,, such that m € [v;; p;]]
and n = m~+mx (k). We prove this fact by using (6.10) with N = K. Finally Proposition
6.2 ensures that every point m ¢ Ay with [m| > 4K™ must belong to some [v;; p;]].

Let m be any point in [v;; p;]7. Let us first notice that

(6.11) (w, k) +|mf* = In]* = (w, k) + [7(k)]* — 2(m(k), m),

hence (6.8) with | = e,, — e, is surely satisfied if |(7(k),m)| > 2K? because in that
case (6.11) is greater than 2K? — C2K? — |w|K > K3 provided that K is large with
respect to C7 and w .

If on the other hand |(7(k),m)| < 2K?3, then (k) € B% is in (v;)¢, otherwise we
would have |(7(k),m)| > 1 K*9™ by definition of [v;; p;]7, and recalling that K*4m >
4K?3 by hypothesis. Thus for all m € [v;;p;]J either (6.8) is trivially satisfied or

m? = |nf? =[x (k)[* = 2(m(k), m) = |7 (k)| — 2(m(k),m?);

recall that m?9 is one fixed point in [v;; p;|] on which we have imposed the nonresonance
conditions (6.7).

We apply (6.10) with N = K to m,m9 and n = m + w(k),n? = w(k) + m9. We
set nﬁ[wi; gi), since (u— 3)K™®), (4 — ) K*47(P) > 5K* we may apply Lemma 3.12
(with » = n) to conclude that n has an ¢ cut [w;;¢;], with parameters 6, 1, 7. Note
moreover that, by Lemma 3.7(3) [w;; gi]¢ is completely fixed by [v;;pi]e, and k. We
have

|, — 2([wis qile)| < 20K 47 @),
and this relation holds also for n¢ = m9 + w(k). This implies that
1D — U — Qs + Qo | < BLK ~447(Pe)
where by definition of 7, K™(P¢) = max(K™,2|p,|), and hence
{w, k) 4 Q= Q| > [{w, k) + Qo — Qo — SLK 4470

(6.12) > min(K 2470 2744y, |724) > KT

2

Now we may apply Proposition 3.11 with N = K to conclude that every point m
with |m| > 8 K™ and p; < CK%9™ belongs to some [v;;p;]7. So the measure estimates
for the points m which fall in this case are covered by (6.6).

Finally if m € Ag of (3.8), i.e., if we have p; > CK*I™ then

| £ (w, k) + Qo — Q| > | £ (W, k) + |7(k) > = 2(x(k), m) + Qp — Q| > K470 — 2K?

since 7(k) € Bk, and hence |(7w(k), m)| > p1.
We have shown that conditions (ii)—(iv) in O" imply (6.8). O
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Remark 6.2. This lemma is essentially saying that by improving only one non-
resonant condition (6.7), we impose all the conditions (6.8) with | = e,, — e, such
that m € [vi;p]§ and n =m + 7 (k).

Remark 6.3. Notice that up to now we only use (6.7) and (6.10) with N = K.
Indeed the other nonresonance conditions are only required in order to show that the
quasi-Toplitz property is preserved in solving the homological equation.

LEMMA 6.3. The set Oy is open, and has |O\ O] < CyK ~Totb+d/2,

For the measure estimates, given o > 0 we define.

RE, = {€€O| {w, k) + Q1| <yK~°}.

LEMMA 6.4. For all (k,1) # (0,0), |k| < K, and |l| < 2, which satisfy momentum
conservation, one has |Rf || < CyK~¢.

Proof. By assumption O is contained in some open set of diameter D.

Choose a to be a vector such that (k,a) = |k|; we have

‘i(w,w(g +ta)) + Q- z)‘ > M(|k| — ML) >

M
dt 2

which leads to

d¢ < 2M‘17K_9/

dt/dgz...dgb <2M~Db"lyKTe. 0
E+tanRy

[
R

Proof of Lemma 6.3. The first statement is trivial, indeed (ii)—(iv) are a finite
number of inequalities; notice that in (iv) for each [v;, p;]7, and k we impose only one
condition by choosing one couple m9,n9. Finally by Remark 3.2 there are a finite
number of [v;, p;]7. Item (i) apparently has infinitely many conditions since h € Z,
however, we note that all but a finite number (i.e., |h| < 2|w|K) are trivially satisfied.

Let us prove the measure estimates; to impose (6.4) with h = 0 we have to remove

(6.13) | Uikj<i Ritol < C(0)y KT,
For h € Z we set
R, = {£ € O] [(w, k) + | <yK ¢},

and note that ﬁi)h is empty if |h| > 2|w||k|. As in Lemma 6.4 for fixed (k, k) we have
|7~3£7h| < CyK~2. Then

(6.14) | Upki< s jhi<ofel k] Ricpl < CO)yK 0+,

In order to impose the first Melnikov condition (6.5) we note that by momentum
conservation in R;°, we have | = *exr(k)- Then we have to remove

(6.15) | Uk<k, 1=te, oy Rivtl < COVE .

If | = +(es + €,,) the momentum conservation fixes n = Fr(k) — m; we notice that
the condition

- 1
|i<w,k>+|m|2+|n|2+Qm+Qn|<§
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implies |  (w, k) + |m|? + |n|?| < 1, and hence |m|? + |n|? < 2|w|K, and we have to
remove a set of parameters:

(6.16) U, ksx )RZ(,}H = |Ur<k U I=%(em-ten) R < CyK—TothHd/2,

l=*(em+en |m|<C(b)VE ,n=—n(k)—m

In conclusion one gets (6.4), and (6.5) with 79 > b+ d/2 and | # *(e,,, — e,) by
removing an open set of measure CyK ~Totb+d/2
One trivially has

(6.17) | Uk<k Ul:i(cm—cn),m—n::}:ﬂ(k),Ri?;’ll < C"/KﬁdTler,

max(|m|,|n|) <8K 1

so we have (6.6) by removing an open set of measure CyK ~471+b,
In order to deal with the last case, for all natural N such that K < N < 2K7/70,
for all affine subspaces [v;; p;]e, and for all k| < K we set

(6.18) R;V)[wi]g = {& | w, k) + Qo — Qua| < 2y min(N 2470 974d|,|72d)}

Following Lemma 6.4, |RY ol < Cv min(N 2470 2-4d|p,|=2d) By Remark 3.2
4

k,[vi;p;
we have
U /70 Ur=o,....d—1 U 51 Ul pn? R o1
K<IN<ZKT1/70 =0,...,d— 1 N70<|p|<4NTd [vispily k,[vispi]]
- - |kl <K
d—1
S O,_y E E E |p£|72d71+dN€de S 4d02,_yK7dTo+b,
N>K £=0 |p,|>L N0

so that we have (6.7) by removing an open set of measure CyK ~470+b []

6.2. Quasi-Toplitz property. The main proposition of our paper is the fol-
lowing proposition.

PROPOSITION 6.5. The functions Py, S~2+|z|2 are quasi-Toplitz with parameters
(K4+,04, 1) such that

AKy <= p) (KPP, Apy KL < (04 — 0)K™ "

The key to our strategy is based on the following three propositions which are
proved in the appendix.
PROPOSITION 6.6. For any N > K, k € Z° with |k| < K, and for all |m|, |n| >

ON™ such that m —n = —w(k), mg[vi;pi], ng[wl, qi], and m,n have an ¢ cut with
parameters 0, p, T for some choice of £, T one has
[, k) + [ml* = ) + Q((vs; pile) — 2([wi; g:]o)]
= [{w, k) + |m(k)[* = 2(m(k), m) + 2([vi; pile) — 2([wi; aile)|
> { K2/ w(k) € (vi)e,

%N 4d7 - otherwise,

where Q([vi; pile), and Q2([wi; ¢;)e) are defined by (6.9).
PROPOSITION 6.7. For £ € O, the solution of the homological equation F is

quasi-Toplitz for parameters (K, 0, 1), moreover one has the bound

(6.19) |Xp |7, < Oy 2K 7| Xp | T

.87

where C is some constant.
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Analytic quasi-Toplitz functions are closed under the Poisson bracket. More
precisely we have the following proposition.

PROPOSITION 6.8. (i) Given f0, 2 € A, ., quasi-Téplitz with parameters
(K, 0, 1) we have that { fV), fP} € A o is quasi-Téoplitz for all parameters (K',0', ')
such that K', 0,1/, v, s satisfy

1 2:““/ —(s—sK' T
(6.20) &2 < (n—n), (B < (0 —0), e KK <1
We have the bounds
(6.21) X gyl g < C1a X pw 171 X e 17,

.87

where § = (2)? min(s — s/, 1 — ')

(i) Given O f3) as in item (i), with Cre|| X |lf67" < 1, the function
f® o gb;(l) = et{f(l)"}f@), for t < 1, is quasi-Toplitz in D(r',s") for all parame-
ters (K',0', 1) such that

(In K')?

(6.22) N (b —p),

21/ (In K’ 2 C(s—g ) —E
&7/()1”0)4 < (O —6), TV (R <1

we have the bounds
||Xf(2>o¢;(1) 5o <A =Cred X s ) T HIX o 11

7. Estimate, and KAM iteration.

7.1. Estimate on the coordinate transformation. We estimate X and ¢}
where F is given by (6.2). . .
LEMMA 7.1. Let Dy = D(gr,s4 + (s —s4)), 0 <i < 4, then

2
(7.1) IXplpsxo, <y 2K e, | Xp|hyxo, < Cy 2K/ Te,

LEMMA 7.2. Letn = aé,Din = D(inr,s;p + i(s—54)),0 <i <4 Ife <
(%WQK_BHQ/TO)?’, we then have that

(7.2) ¢% : Doy — D3y, —1<t <1,
is an analytic map, moreover,
(7.3) 6% (2) = (2)ll Dy, x0, < Cy 2K mel/3,
Proof. We first notice that
|XFI, < ¢n2IXF Dy xo, < Ce™/ Py 2K /me <1

by our smallness assumption. Let us denote by B, the space of close to identity
analytic symplectic maps Da, — C? x ¢, with finite norm (2.4). Similarly we call
C([0,1], B2y) the Banach space of all continuous functions ¢ — ¢' from [0,1] to Ba,
endowed with the norm supc(g 1 || - |25 Consider the ball of radius p := 2[| Xr|[3, < 1,
and centered in ¢° = id. For ¢! in such ball consider the map

t
(7.4) P(¢) == id + / X o ¢°ds.
0
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It is simple to see that the above map is a contraction, in particular

t
sup | [ Xpoods| < sup [Xp 00 ay < (14 p) Xellay < .
tefo,1] "' Jo 2n  ¢efo,1]

The lemma follows since the Hamiltonian flow ¢} generated by F' at time ¢ € [0, 1] is
found as the fixed point of P. d

7.2. Estimate of the new perturbation. The symplectic map ¢} defined
above transforms H into Hy = N} + Py, where Ny =N + (R), and

1 1
P+=/ (1—’5){{N,F},F}O¢%d’f+/ {Il<k R, F} o ¢lpdt + (P — Tl<x R) 0 ¢y
0 0
1
(7.5) = / (R(t), F} o dlodt + (P — Tl R) 0 &b,
0

with R(t) = (1 —t)(N; — N) + tll<x R. Hence

1
Xp, = / (64) X (reey.rylt + (65 X (porio 1.
0

LEMMA 7.3. The new perturbation Py satisfies the estimate
HXP+ HD(r+,s+) < 0772K4d7—1€4/3'
Proof. According to Lemma 7.2,
D¢y — Id||p,, < ey KMl 1<t <1,
thus
ID¢kllpy, <1+ [|Ddf — Id|p,, <2, —1<t<1,
1 X (rt),F D2y <072 X Rty P} D2 < Cy 2Ky~ 22,
and
HX(P—HSKR)HD277 < Cnga
and we have
IXP, | Drysq) < Cne+ C(y 2Ky —2e? < Cy 2K 0
We need to show that Py is quasi-Toplitz, and estimate its Toplitz norm. We
notice that R(t) and P —Il<x R in (7.5) are quasi-Toplitz, by hypothesis (A4). Then,
by Proposition 6.8(ii), we have that R(t) o ¢} = el }R(t) and (P — ll<xR) o ¢,
are quasi-Toplitz as well. Recalling Proposition 6.8, and repeating the reasoning of

Lemma 7.3 with quasi-Toplitz norm, one has the following lemma.
LEMMA 7.4. Set e, := Cy 2K37 /70e4/3  then

||XP+H,1[;(T+7S+) <eg.
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7.3. Iteration lemma. In order to make the KAM machine work fluently, for
any given s, &, 7,7, and for all v > 1, we define the following sequences:

v+1
Sy =35 <1—Z2_i> ,
i=2

1 v—1 %
(76) Ty = ZT],,_l’I",,_l = 2_21/ <11_£ 8i> To,
3712 /710 % :

_9 1
o =0y K, ey, M =Eu,
MV = lefl +éev-1, LV = Ll/fl +éev-1,

po=n—Y 007 6, =0+ (07
=1 =1

K, =c(sy_1—5,)"" 1n6;1,

where ¢, 1 < x < % is a constant, and the parameters rg, €9, Lo, So, and K are defined
to be r, &, L, s, and bounded by Ine~!, respectively.

We iterate the KAM step, and proceed by induction.

LEMMA 7.5. Suppose at the v—step of KAM iteration, the Hamiltonian

HV:NV+PV

18 well Eleﬁned in D(ry,s,) X O,, where N, is usual “integrable normal form,” P,,
and > Q¥ |z, |* satisfy (A4) for (K,,0,, 1), wy, and QY are Cl, smooth:

wuler » IVwy Mo < My, [9ca < Ly, Q% — Q7 o, <&,
HXP:/”g(T,,,s,,),O,, < Evy ||<QVZ72>H,1[;(T,,,S,,),O,, < LV'

Then there exists a symplectic and quasi-Téplitz change of variables for parameter
(KV+1J 91/7 Mu);

(77) '1),, : D(Tl,+1,51,+1) X O,,+1 — D(’I",,, S,,),
o d
where |0, 11\O, | < ’yKV+(1)+b+2 , such that on D(ry41,8041) X Op11 we have

HVJrl =H,o®, = €1 +NV+1 + PVJrl =eyt1 + <WV+1aI> + <Qu+lz’2> + PV+1

with wy41 = wy + 325121 1Po,1,0,0, VARE S VA PR
Noi1 is an “integrable mormal form.” P,.1 and > QU1 z,|? satisfy (A4) for
parameters (K,11,0,41, py1). Functions w, 11, and QY1 are Cll/V smooth:

|wv+1|C‘1/V7 |VW;J&1|O < MV+17 |QZ+1|C‘1,V < LV+1, |QZ+1 - Qmo < ey,

v+1
T S AT
||XP”+1 HD(TV+1;SL/+1)7OV+1 S EV+17 ||<Qy+127 Z>||D(Tu+1;5u+1)7ou+1 S LV+1'

e By Proposition 6.5, the new perturbations P,1, and (Q“11z, 2) satisfy the
quasi-Toplitz property for parameters (K,y1,0,41, tu+1). As we can see,
when we require 71 > 7 > 12,

VYN > Ky11 =c(sp-1 — s,,)*l lna,jl > Kog2"
implies the inequality

2N < vy (,Ul/ - Nu+l)N3/2a 4,U/N4 < (9v+1 - GV)N4dT071-
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e Since the set of Hamiltonians which Poisson commute with M (the momen-
tum) is closed under Poisson brackets (or by using Lemma 4.4 in [12]) P,
satisfies momentum conservation (namely, it Poisson commutes with M).

7.4. Convergence. Suppose that the assumptions of Theorem 5.1 are satisfied.
Recall

80:83T0:T750283M0:M5L0:L5 N0:N7P0:P7

O is an open set. The assumptions of the iteration lemma are satisfied when v = 0 if
€p, v are sufficiently small. Inductively, we obtain sequences

Ol/—‘rl C Ollv
U =PgodPro---0®,: D(ryy1,8,41) X Opp1 — D(ro,s0),v > 0,
HoVU¥ = Hl/+1 :Nl/+1 + Pl/+1-

Let O = N%,0,, since at v step the parameter we excluded is bounded by
CvyK, Totb+d/ 2, the total measure we excluded with the infinity step of KAM iteration
is bounded by 7 which guarantees Ois a nonempty set; actually it has positive
measure.

As in [20, 21], with Lemma 7.2, NV,,, ¥¥, D¥", w,, converge uniformly on D(0, §) x
O with

Noo = €00 + (Woo, I) + ZQZOZnEn-

312,
Since K, = ¢(sy—1 — s,) " 11lng, 1, we have e, = ¢y?K,™ €2 ; — 0 once ¢ is suffi-

v

ciently small. And with this we have wy is slightly different from w.
Let ¢%; be the flow of Xp. Since H o ¥¥ = H,, .1, there is

(7.8) L oUY =T o gl

Hyqq°

The uniform convergence of ¥, DU”, w,, and Xpg, implies that the limits can be
taken on both sides of (7.8). Hence, on D(0, 5) x O we get

(7.9) Gy 0 U = U 0 gly
and

\IJ“’:D(O,%) x @ = D(r,s) x O,

From 7.9, for £ € O, ¥=(T* x {¢}) is an embedded torus which is invariant for

the original perturbed Hamiltonian system at & € O. The normal behavior of this
invariant tori is governed by normal frequency .

Appendix A. Proof of Propositions 6.6, 6.7, and 6.8.
A.1. Proposition 6.6.
Proof. By hypothesis
ml, [n| > 0N, mSusp, i ws gl
(A1) lqel, [pel < N7, lgesal, [pesa] > ONYT o pile < [wis gile.
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By definition of quasi-T6plitz (see (6.10)), one has
(A.2) Q0 — 2([v; pil )], 190 — 2([wis i]e)] < 2LN—47
Recall that m —n = —w(k), so one has

m|* = [n|* = (m +n,m —n) = |x(k)]* - 2(x(k),m).

If (k) ¢ (vi)e then [(m(k),m)| > N4 > K3 and the denominator is not small:
. . 1w
[, k) + [ml* = [nl* + Q([vi; pile) — 2([wis ile)] > 5N,

since (again by definition of quasi-Téplitz) |£2([vs; pile)l,|2([ws; ¢:le)| < 2L.

If w(k) € (v;)¢ then the value of (w(k), m) is fixed for all m € [v;; p;]e.

We know that mg[vimé] has a standard cut, so that m € [v}; pj]? for some £. If
24T < N7 then

[{w, k) + [ (k) * = 2(m(k), m) + Q([vis pile) — 2([wss gile)]
(Az'z) (w, k) + Qp — Q| — 4ALN 447

(6.12)
> ymin(K 2470, 27 pf] ) — 4LIN| 7T 2 Zmin(K 2, |p| =),

since [p}| < 4K™/4¢ by the definition of standard cut.

If on the other hand we have 2K ™ > N7 we proceed as follows. We have seen
that we may restrict to the case (k) € (v;);, where

m? = [n|* = |x(k)[* = 2(n(k),m) = |7 (k)]* — 2(n(k),m?),

where (notice that N < 2K7/7) m9 := m9(N) is the point in [v;; p;]J chosen for the
measure estimates (6.7).

We notice that m9, n? satisty the conditions (A.1), so we apply (A.2) to m,n, m9,n9.
We have

{w, k) + |7 (k))? = 2(m(k), m) + 2([vi; pile) — 2([wi; qile)]
> [(w, k) + Qo — Qpo| — ALN 47

2 % min(N_QdTO, 2—2d|pe|—2d) _ 4LN—4dT
—2drr
> % Inin(j\]—QdTg7 2—2d|pe|—2d) > 'YK e 1

since by definition |p;| < ¢/ N7 < ANT, N < 2K/, 0

A.2. Proposition 6.7.

Proof. The quasi-Toplitz property is a condition on the (N, 6, i, 7)-bilinear part
of F', where F' is at most quadratic. Hence we only need to consider the quadratic
terms

(A.3)
O, F = Z el(k-0) (F%.0,em 60 2mZn+tFk,0,em+en,02m2n)+ complex conjugate.

[k|<N, |m|,[n|>0NT1

£: m,n have an £ cut
with parameters N,0,pu,
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Recall that

Pk 0O.e,, .e Pk 0,em+en,0
A'4 F . . — TWyE€m ,€En , F e e — yYybm 1 .
( ) k?70; ms&tn <k,w> + Qm _ Qn k;07 m+ n70 <(’d7 k'> + Qm + Qn

By hypothesis [m/,|n| > 6N™ so in the case of Fy g, +e, 0 One has

|Pk)07ern+en70|
(k,w)+ m|2+ n]?2 + Qm + Qp

|Fk70)€m+€n;0| = S |Pk70)€m+€n;0|N7Tl’

since
|(k,w) 4+ |m|? + 0> + Qm + Q| > 2N — ¢K — 2L.

We proceed in the same way for 0:Fj o.c,,+en,0- This means that Fj e, 4,0 IS
quasi-Toplitz with the “Toplitz approximation” equal to zero. Recalling that P is
quasi-To6plitz we deduce, by Remark 4.1, that if mg[vi;pi], |m|, |n| > O8N and m,n
have a cut £, 7, then we have:

Prt,encn = Pe(m—mn,[viipile) + N7 Proe,ncn-

Note that by definition (see (4.4)) for all m,n which have an ¢,7 cut the Toplitz
approximation Pg(m — n, [v;; p;]¢) must depend only on m — n on the affine subspace
[vi; pile, and on k. Moreover the approximation (A.5) must hold for all m € [v;; p;ile
which have a cut ¢, 7 (naturally if we fix 7, and an affine subspace [v;; p;]¢ it may well
be possible that no integer point m € [v;;p;]e has a cut ¢, 7).

Finally since >, QunzmZm is quasi-Toplitz, diagonal, and quadratic we have

Qm - Q([W%]%‘]é) + N74dTQm

for all mg[vi;pi] which have an £, 7 cut.
We wish to show that

(A.5) Froemen = Fr(m —n, [i;pile) + N7 Fy o000

here Fy, is the k Fourier coefficient of the To6plitz approximation F.

By hypothesis we have conditions (A.1), and (vq,...,vs) = (wi,...,we). This
in turn implies that the subspace [w;, ¢;]¢ is obtained from [v;, p;]¢ by translation by
m—n=—m(k). If 7(k) ¢ (v;)¢ then the denominator in the first of (A.4) is

1
|(ky W) + Qi — Qu| > [(k,w) + |7(k))? — 2(x(k), m)| — 2L > ZN‘*U”,

and we may again set Fr(m — n, [v;, p;]¢) = 0. Otherwise we set

Pr(m —n, [Uilpi]é) i .
(w, k) + |m(k) > = 2(m(k),m) + Q([vi; pile) — L2([wi; gile)

Fr(m —n, [vi, pile) =

We notice that (7w(k), m) depends only on the subspace [v;, p;]¢, and on 7(k). Moreover
by definition £2(-) depends only on the affine subspace on which it is computed; finally
[w;; gi]e depends only on [v;;p;]e, and on k. Hence Fi(m — n,[v;, pi]¢) depends only
on k,m —n, and [v;, p;]¢ as was our claim. Finally we apply Proposition 6.6 to bound
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the denominator. In order to bound the derivatives in £ of F' we proceed in the same
way, only the denominators may appear to the power of two.
Finally to bound F' we notice that

Promon Adr Qi — 2([vi; pile) — QU + 2([wis gile)
ot N*"Pr(m — n, [vi, pile) DD ;

Fk,m,n =

where
D = (w, k) + 7 (k)]> = 2(w(k), m) + 2([vis pile) — 2([wis @i)e), D = (W, k) + Qo — D,
Q2

and N497|Q,, — 2([vi; pil¢)| < 2L. In conclusion taking the SUD N~ i r<ry

3112
IXFll7, < Cy N7 [|Xp[7, O

A.3. Proposition 6.8. Before proving Proposition 6.8, we discuss some techni-
cal lemmas, and set up some notation. We divide the Poisson bracket into four terms:
{5 = {0 4 {3+ {3 4+ {. -} where the superscripts L, H, R identify
the variables in which we are performing the derivatives (the symbol R summarizes
the derivatives in all the w; which are neither low nor high momentum). We call a
monomial

ci(k9) [l jazpB

L. of (N, p)-low momentum if [k| < N and 3, [j](a; + B;) < puN3. Denote by
Hﬁ)# the projection on this subspace;

2. of N-high frequency if |[k| > N. Denote by I1§; the projection on this subspace.

Recall that the projection symbol Il g . - is given in Definition 4.1. A function
f then may be uniquely represented as f =Ilng . -f + H]L\wf + 0% f + g f, where
IIg f is by definition the projection on those monomials which are neither (N, 8, u, 7)-
bilinear nor of (IV, u)-low momentum nor of N-high frequency.

A technical lemma is given below.

LEMMA A.1. The following splitting formula holds:

(A6) T {f 2}
=1Ine .~ ({HN,G,H,Tf(l)a Ty 6,0 f P+ {Tn g f, H%,zuf(z)}l’ﬂ
+ {0, SO TR g, FOYE (TR SO, 12
+ TR o f Y T g0 f O 4 {2 T 0, 2}
+ {50, ugr@}).
Proof. We perform a case analysis: we replace each f(*) with a single monomial to

show which terms may contribute nontrivially to the projection HN79/,H/)T{f(1), f(2)}.

Consider the expression

HN79/7M/7T{€i<k(1)719> Il(l)za(l)éﬁ(l) : ei<k(2)719> Il(2)Za(2)26(2) }

If one or both of the |I€(i)| > N then one or both monomials are of high frequency,
and we obtain the last term in the second and third lines of (A.6).

Suppose now that ||, |k?)| < N; we wish to understand under which conditions
on the a9, 3() this expression is not zero. By direct inspection, one of the following
situations (apart from a trivial permutation of the indexes 1, 2) must hold:
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1. one has 22" 28" = zd(l)éB(l)zf{lzgl and 20 287 = ;2 28?0’ . -1 where
|m|,|n| > @’ N™* have a cut for some ¢ with parameters (N,¢,u’,7), and
20D B 6P 28 g of (N, i’ )-low momentum. The derivative in the Poisson
bracket is on wy;

a® 280 _ 5@ 5@

W _g) a4 _gm /
2. onehas 2% 27 =242 22 29" and z , where |m/|, [n| >

. &M _3)_5(_5@

¢’ N™ have a cut for some £ with parameters (N, @', /', 7) and 2& 28" 2% 28
is of (N, p)-low momentum. The derivative in the Poisson bracket is on I, %;

M _gm 5 _g(n / @) _g@ 5(2) 3 _

3. one has 2@ 28 =& 2047 20 z7' and 2* 287 = 287 287 277 where

|m|,|n|] > 6/ N™ have a cut for some ¢ with parameters (N,0', ', 7), and
D _3(0 4@ _3@) . o .

2@ 2P 247 2 s of (N, i')-low momentum. The derivative in the Poisson
bracket is on wy;

o_/

n

W g g _zm @ _g  a@_z@
4. onehas z® 2% =2%""20 "2 and z* 28 =292 27 where |m|, |n| >
. M _5)_ 5@ _3@
¢’ N™ have a cut for some £ with parameters (N, 6, ', 7), and 2& 28 2% 28
is of (N, p)-low momentum. The derivative in the Poisson bracket is on I, 9.

Case 1. We apply momentum conservation to both monomials and obtain
01j = —om —x(kM,a®, M) = o'n + 7(k@,a® 52).
Recall that

Do + 57 +af? + B < wNT — 3T fi(al” + ) < N
lezd lezd

and by hypothesis [k(?| < N; this implies that [j| > ¢/N™* — /N3 — CN > N™
for N > K’ respecting (6.20) (recall that C is a constant so that |7(k)| < Clkl).
Hence min(|m|, |n|,|j|) > 6N™. By momentum conservation |om + o1j|,| — o1j +
o'n| < ON + /N3 < 5N3; by hypothesis n,m have a cut ¢ with parameters
(N,¢, 1, 7). By Lemma 3.7 also ]ﬂ)[wi; ¢i] has a cut ¢ with parameters (N, 0, u, 7).
Then "9 0 787 a0 by definition (N, 0, u, 7)-bilinear. The derivative in the
Poisson bracket is on j which is a high momentum variable.

As m, n run over all possible vectors in Z¢ with |m|, |n| > 6’ N, we obtain the first
term in (A.6).

Case 2. Following the same argument e :® o™ 26" is (N, ¢/, 1/, 7)-bilinear
and ei(k® ) 0 8% i (N, p')-low momentum. We obtain the second contribution
in (A.6).

Case 3. We apply momentum conservation to the second monomial, and obtain
—01j = —n(k®,a®, ). This implies that

G+ ST @ + M) < In(k®,a®, 3P+ S i@ + 8Y)
lezd lezd
<OoN+ Y lil@E® + 8D + & + 52)
lezd
< 4W/N® + CN < pN®

if N > K’ with K’ satisfying (6.20). Then ik 9) yal 780 is, by definition,
(N, 0, i, 7)-bilinear, and e/*®? 2a® 28 ig (N, 24)-low momentum. The deriva-
tive in the Poisson bracket is on j which is a low momentum variable. We obtain the
third contribution in (A.6).
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Case 4. We apply momentum conservation to both monomials and we get

min(|om|, |o'n|) < @%§(| —7(k®,a®, 3W) < CN + /N3,

which is in contradiction to the hypothesis |m/|,|n| > ¢/ N™. Hence Case 4 does not
give any contribution.

The third line in (A.6) is dealt with just as the second line is by exchanging the
indexes 1, 2. ad

In order to show that {f(), f*} is quasi-Toplitz, for all N > K’ and 7 we have
to provide a decomposition

g (D, ) = FO2) 4 y=t0r 702
so that F12) € F, and
(A7> ||X]_-(1,2) ||T’7S’7 HXf(LQ) Hr’,s’ < 6710||Xf(1) |

T
T,

Xl

for some constant C.

Using Remark 4.3, we substitute in (A.6) Ty g/ v, f@ = FO 4 N=497 f0) with
F@ cF.

LEMMA A.2. Consider the function

FO) Z Ty s ({;(1)7;<2>}H + {FW, 11k, fRY DL
+ {H%,Z;Lf(l)vf(2)}(1)ﬂ)+L) )

where we have denoted {-,-}IDTL = {. 309 4 £ 3L (i) One has F1?) € F. (i)
Setting f1?) = N (T g/ o AfD, f@} — FO2)) one has that the bounds (A.7)
hold.

Proof. In order to prove the first statement it is useful to write

(N, 7, A)
FO= X > > FOPT It iom+o'n i pile)znzn

A=[viipilp€HN 0,0’ =%1
[Ppl<pNT

where Z(N’GI’NI7T7A) is the sum over those n, m which respect (4.1), and have the ¢
cut at A = [v;; pi]e with the parameters ', i/, 7. For compactness of notation we will
omit the dependence on (I, 9, w%).

The fact that {FM, 1§ ,, fP} 7L € F is obvious. Indeed the coefficient of

(TZ(T

z7 20 is

{FW(om + o'n, [vis pile), Wi o, f O},

the same for {F*), II% ,, fO 2L,

Suppose now that n, m respect (4.1), and have the ¢ cut [v;; p;]¢ with the parame-
ters 6, i/, 7. By the rules of Poisson brackets the coefficient of 27,27 in the expression
{FO, FOM s
(A.8)

Z — 0 [.7-"(1)]‘7"’1 (om + o1r, [vi;pi]g)[}'@)]_”l"’ (—o1r + o'n; [wi; gile)-
rezd,o1==+1
Ir[>0NT1

lom+orr|<uN3
|—o1r+o/n| <pN3
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Since |om + 17, |o'n — o1r| < uN?3 and |m], |n| > 0’ N we have that the condition
|r| > ON™ is automatically fulfilled. By Lemma 3.7 7,n,m all have an ¢ cut with

parameters (0, u, 7). We set mﬁ[vi;pi], nﬁ[vl’»;pg], rﬁ[wi; ¢i]. Again by Lemma 3.7
(vi)e = (V)¢ = (w;)e, moreover [w;; q;]¢ is completely fixed by [vi; pile, 0,01, and by
om + o1r := h. We may suppose (the other cases are done in the same way) that

(P1y ey Pey VL s 00) 21y Qo Wiy e we) = (P P VY V)).

Note also that this order relation depends only on o,0’,01, [vi;pile, om + o'n, and
om + o1r = h. Then we may change variables in the sum over r in (A.8):

> o = aFOT (b s pil) [FO)T (om + o'n — b [wis gile);
o1==%1 hi|h|<uN3

lom4o/n—h|<uN3

this expression only depends on [v;;p;le. The estimate (A.7) for F(1:2) follows by
Cauchy estimates since

[ Xram e <X Fo) reylles + 11Xz penlles + 1 X ze joylles

We now compute
=T (e fO, FOVE 4 (7O, FEYH
+ R SOV (fO I fPYE 4+ NI O, f )
(I, 50, T+ (1, 7, FOYE 4 N0, T ).
Since e~ V(=) <« N=71 one has

I Xy mg ey llers < NTH22HET X b |

X

r,s| 7,89

by the Cauchy and smoothing estimates. The estimate (A.7) follows. O

Proof of Proposition 6.8. Proposition 6.8(i) follows Lemma A.2.

(ii) Given f® 4 =1,...,J as in item (i), and applying repeatedly (6.20), the
nested Poisson bracket

{f(l)’ {f(Z)’ el {f(Jfl)’ f(J)} .
is quasi-Toplitz in D(ry, s4) with parameters (K4, 64, py) if
1 _ (k=) 2p' o' -6
(A.9) N2 < J > N4dro—4 < J

for all N > K. For given N we bound all the terms in e{*"}G containing .J > (In N)?
Poisson brackets by N~™! by using the standard bound

e T NN <1

[ Xaarye g, llr s _
> BT < 2067 X g )| X pen|
k>J '

T,

<CN™ ™ ||Xf(1)|

rsl X |

provided that 26| X |ls < 3. We then apply (A.9) with J = (InN)?, we get
the restriction (6.22). So applying item (i) repeatedly we get, for all k < J,

T,

T,89

1 _
E”Xad(f(l))’“fg”z’,s’ <(Ces M| X po [F )M 1 X pea |

and the result follows. a
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