
A KAM ALGORITHM FOR THE RESONANT NON–LINEAR
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Abstract. We prove, by applying a KAM algorithm, existence of large families of

stable and unstable quasi periodic solutions for the NLS in any number of independent
frequencies. The main tools are the existence of a non-degenerate integrable normal

form proved in [18] and [20] and a suitable generalization of the quasi-Töplitz functions

introduced in [24]
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1. Introduction

The present paper is devoted to the construction of stable and unstable quasi–periodic
solutions for the completely resonant cubic NLS equation on a torus Td:

(1) iut −∆u = k|u|2u+ ∂ūG(|u|2).

Here u := u(t, ϕ), ϕ ∈ Td, ∆ is the Laplace operator, G(a) is a real analytic function
whose Taylor series starts from degree 3 and k = ±1.

Our results are obtained by exploiting the Hamiltonian structure of equation (1) and ap-
plying a KAM algorithm. As is well known such algorithms require strong non-degeneracy
conditions which are not always valid, even for finite dimensional systems and, when valid,
are generally proved by performing on the Hamiltonian a few steps of Birkhoff normal
form. This is done in [18] (where the results are for for a larger class of NLS with non–
linearity |u|2qu) and [20] in which we exhibit and study the normal forms for classes of
completely resonant non–linear Schrödinger equations.

Let us give a brief overview of the main difficulties in proving existence and stability
of small quasi-periodic solutions for PDEs. One starts with a Hamiltonian PDE which
has an elliptic fixed point at u = 0, and wishes to prove that some of the solutions of the
nonlinear equation stay close to the linear solutions for all time. One has to deal with
two classes of problems:

the resonances, namely the equation linearized at u = 0 does not have quasi-periodic
solutions so we are dealing with a singular perturbation problem;

the small divisors, namely the equation linearized at u = 0 is described by an operator
whose inverse is unbounded so that in order to find small solutions one needs to use some
Generalized Implicit Function Theorem.

There are two main approaches to these problems: 1. Use a combination of Lyapunov–
Schmidt reduction techniques and a Nash–Moser algorithm to solve the small divisor
problem. This is the so–called Craig–Wayne–Bourgain approach, see [7] ,[5] and for a
recent generalization also [4]. 2. Use a combination of Birkhoff normal form and a KAM
algorithm, see for instance [15], [1].
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In both cases one usually studies simplified models, namely parameter families of PDEs
with the parameters chosen in such a way as to avoid resonances. Even under this sim-
plifying hypotheses the problems related to the small divisors are in general quite compli-
cated. Essentially, in order to perform a quadratic iteration scheme to prove the existence
of quasi-periodic solutions, one needs some control on the operator (which we denote by
L(u)) describing the equation linearized on an approximate solution u(x, t) (and not only
at u = 0). In the Nash–Moser scheme one requires very weak hypotheses, in order to
ensure that one may define a left inverse for L(u) with some control on the loss of reg-
ularity. In a KAM scheme instead one imposes lower bounds on the eigenvalues of L(u)
and on their differences, this allows to prove a stronger result namely the NLS operator
linearized at a quasi-periodic solution can be diagonalized by an analytic time dependent
change of variables. Note that these last hypotheses imply a very good control on the loss
of regularity of L−1. The Nash-Moser approach combined with reducibility arguments
(together with some novel ideas from pseudo-differential calculus) was used in [16] in or-
der to prove existence and stability of quasi-periodic solutions for a class of fully-nonlinear
perturbations of the KdV equation.

For PDEs in dimension d > 1, where the eigenvalues of L(0) are clearly multiple, the
Nash–Moser algorithm is more readily applicable, see for instance [5]. KAM results for
PDEs in dimension d > 1 are few and relatively recent, see for instance [11], and in
particular the paper [8] which studies an NLS with external parameters. Note that not
only one needs to impose that the eigenvalues are different but one must give a lower
bound on the difference. In the case of the NLS of [8] this requires a subtle analysis and
the introduction of the class of Töplitz-Lipschitz functions (see also [24]).

In the case of equation (1), before attempting to study the small divisor problem one
must deal with the resonances, since there are no external parameters and the only freedom
is in the choice of the initial data.

In the case of (1) in dimension one this problem is avoided by just performing a step
of Birkhoff normal form then applying a KAM algorithm (see [15] or [1]). This is due
to the fact that the NLS equation after one step of Birkhoff normal form is integrable
and non-degenerate. Unfortunately this very strong property holds only for the cubic
NLS in dimension one, indeed for d > 1 the non-integrability of the NLS normal form
has been exploited (see for instance [6] and [14]) to construct diffusive orbits. In order
to overcome this problem Bourgain proposed the idea of choosing the initial data wisely.
More precisely one looks for a set S ⊂ Zd, the tangential sites, such that the Birkhoff
normal form Hamiltonian admits quasi-periodic solutions which excite only the modes
j ∈ S. Then, by choosing S appropriately, one may prove existence of true solutions
nearby.

This idea was used in [5] to prove the existence of quasi–periodic solutions with two
frequencies for the cubic NLS in dimension two. This strategy was generalized by Wang
in [21],[22] to study the NLS on a torus Td and prove existence of quasi periodic solutions.

A similar idea was exploited in [13] and [12] to look for “wave packet” periodic solu-
tions (i.e. periodic solutions which at leading order excite an arbitrarily large number of
“tangential sites”) of the cubic NLS in any dimension both in the case of periodic and
Dirichlet boundary conditions. All the previous papers only deal with the existence of
quasi-periodic solutions and not the linear stability and reducibility of the normal form.
Note that the results by Wang on the NLS imply existence of quasi-periodic solutions for
equation (1) and indeed her approach to the resonance problem is parallel in various ways
to the one of [18]. Her approach is through the Nash–Moser method and hence does not
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prove reducibility results as explained before. Note however that [22] covers a larger class
of cases i.e. non-cubic NLS equations with explicit dependence on the spatial variable.

In the context of KAM theory and normal form, we mention the result of [9] for the
NLS in dimension one with the nonlinearity |u|4u.

A strategy similar to the one used in this paper is proposed by Geng You and Xu in
[10], to study the cubic NLS in dimension two. In that paper the authors show that one
may give constraints on the tangential sites so that the normal form is non–integrable (i.e.
it depends explicitly on the angle variables) but block diagonal with blocks of dimension 2.
They apply this result to perform a KAM algorithm and prove existence (but not stability)
of quasi–periodic solutions. We also mention the paper [19], which studies the non-local
NLS and the beam equation both for periodic and Dirichlet boundary conditions.

The present paper is the last of a series of three papers in which we have developed a
strategy aimed at the construction of large families of stable and unstable quasi-periodic
solutions for the cubic NLS (1) in any dimension.

In the first paper [18] we study the NLS equation after one step of Birkhoff normal
form and give “genericity conditions” on the tangential sites S ⊂ Zd in order to make the
normal form as simple as possible.

The main results of [18] are formulated in Theorem 2, where we prove that, for |S| <∞
and for generic S, one can choose symplectic coordinates in which the normal form is
integrable. On the tangential variables the normal form is non-degenerate and the motion
is quasi-periodic with frequency ω = ω(ξ), where ω(ξ) is a diffeomorphism and ξ ∈ Rn
(n = |S|) are free parameters modulating the initial data. Moreover, in the “normal
variables,” the normal form is a block diagonal quadratic form, with blocks of dimension at
most d+1. All blocks have constant coefficients. These infinitely many blocks are explicitly
described by a graph ΓS (cf. §4.1) which contains all the combinatorial difficulties of the
structure. This combinatorial structure will influence the KAM–algorithm presented in
this paper.

In [20] we address the delicate question of the non-degeneracy of the normal form
deduced in [18], we obtain precise positive results for the cubic case q = 1.

In this paper we address the question of constructing quasi–periodic solutions and
present a general solution. We need to analyze three issues

i) The second Melnikov non–degeneracy condition. This we prove by using the
results of [20].

ii) The Töplitz–Lipschitz (cf. [8]) or quasi–Töplitz property of the perturbation.
This is done by generalizing the quasi–Töplitz functions of [24] to this context;
in particular we need to prove that the changes of variables that we perform to
integrate the normal form do not destroy the quasi–Töplitz structure.

iii) The KAM algorithm. This is a variation (with some complications) of a well
established path; we follow closely the structure of [1] and of [24].

In all these steps we need to combine the analysis of [24] with the special structure of
the graph ΓS . This is the source of most of the specific problems for the NLS which make
this case particularly complex.

The final result will be the construction, for any dimension d, of families of linearly
stable (and also elliptic for appropriate initial data) quasi–periodic solutions for the cubic
NLS.

Following [18] for any n ∈ N we introduce the notion of generic set of frequencies
S ⊂ Zd with |S| = n (see Definition 3.of [18]). The conclusive result of this analysis is:
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Theorem 1. For any n ∈ N and any generic set of frequencies S = {j1, . . . jn} ⊂ Zd
the NLS equation (1) admits small-amplitude, analytic (both in t and ϕ), quasi-periodic
solutions of the form

(2) u(ϕ, t) =
∑
j∈S

√
ξje

i(ω∞(ξ)t+j·ϕ) + o(
√
ξ), ω∞j (ξ)

ξ→0
≈ |j|2

for all sufficiently small ξ ∈ Rn belonging to a ”Cantor-like” set of parameters with asymp-
totical density 1 at ξ = 0. The term o(

√
ξ) in (2) is small in an analytic norm. The

equations (1) linearized at these quasi-periodic solutions are diagonable by an analytic
time dependent change of variables. Finally, in a non empty open set of this Cantor set
the solutions are also elliptic and linearly stable.

We prove this result by verifying that the NLS Hamiltonian can be brought into a
normal form which satisfies the properties of an abstract KAM Theorem, Theorem 6.

Most of the properties necessary for Theorem 6 have been verified for the NLS in
Theorem 1 of [18] and in [20], here we have to prove the quasi–Töplitz property of the
NLS, cf. §11.

It is possible to perform a KAM algorithm for any analytic NLS obtaining a weaker
result. In this case one has the second Melnikov condition property i) only in a finite block
form. This will be discussed elsewhere.

1.0.1. The plan of the paper. The paper is divided into four parts. In Part 1 we recall all
the properties of the normal form proved in [18] and [20] which will be needed. In Part
two we start by recalling the geometric formalism developed in [24] and prove that this
formalism is compatible with the structure of the graph ΓS . Having done this we proceed
to define quasi-Töplitz functions in our context and prove their basic properties. Parts 3
and 4 are devoted to the KAM algorithm. In Part 3 we discuss the general properties of
the type of algorithm that we shall apply to the NLS while in the final Part 4 we verify
that the NLS satisfies all the properties of the class of Hamiltonians studied in Part 3.
We can finally conclude that the KAM algorithm, applied to the Hamiltonian of the NLS
starting from the normal form described in Part 1, leads to a successful construction of a
family of quasi–periodic solutions of the NLS parametrized by a set of positive measures
of the parameters ξi, actions of the initial excited frequencies. We discuss also which
solutions are stable or unstable.

Part 1. The normal form

2. Summary of results from [18]

2.0.2. The Hamiltonian. In [18] we have studied the NLS on Td as an infinite dimensional
Hamiltonian system. After rescaling and passing to Fourier representation1

(3) u(t, ϕ) :=
∑
k∈Zd

uk(t)ei(k,ϕ)

the Hamiltonian is (having normalized κ):

(4) H :=
∑
k∈Zd

|k|2ukūk +
∑

ki∈Zd:
∑4
i=1(−1)iki=0

uk1 ūk2uk3 ūk4 .

1In fact one should work in a slightly more general setting where the torus is the quotient of Rd by
any lattice Λ of finite index in Zd and write u(t, ϕ) :=

∑
k∈Λ∗ uk(t)ei(k,ϕ).
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The complex symplectic form is i
∑
k duk ∧ dūk, on the scale of complex Hilbert spaces

(5) ¯̀(a,p)
:= {u = {uk}k∈Zd

∣∣ |u0|2 +
∑
k∈Zd

|uk|2e2a|k||k|2p := ||u||2a,p ≤ ∞},

a > 0, p > d/2.

We systematically apply the fact that we have d+ 1 conserved quantities: the d–vector
momentum M and the scalar mass L:

M :=
∑
k∈Zd

k|uk|2 , L :=
∑
k∈Zd

|uk|2 ,

with

(6) {M, uh} = ihuh, {M, ūh} = −ihūh, {L, uh} = iuh, {L, ūh} = −iūh.

The terms in equation (4) commute with L. The conservation of momentum is expressed

by the constraints
∑4
i=1(−1)iki = 0.

2.0.3. Choice of the tangential sites. If in the Hamiltonian H we remove all quartic terms
which do not Poisson commute with the quadratic part, we obtain a simplified Hamiltonian
denoted HBirk. This has the property that its Hamiltonian vector field is tangent to
infinitely many subspaces obtained by setting some of the coordinates equal to 0 (cf.
[18], Proposition 1). On infinitely many of them furthermore the restricted system is
completely integrable, thus the next step consists in choosing such a subset S which, for
obvious reasons, is called of tangential sites. Without loss of generality one may assume
that S spans Zd over Z (cf. footnote 1).

With this remark in mind we partition

(7) Zd = S ∪ Sc, S := (j1, . . . , jn)

where the elements of S play the role of tangential sites and of Sc the normal sites. We
divide u ∈ ¯̀a,p in two components u = (u1, u2), where u1 has indexes in S and u2 in
Sc. The choice of S is subject to several constraints which make it generic and which
are fully discussed in [18] and finally refined in [20]. Here we shall always assume that
these constraints are valid so we just refer to the results of these two papers in all the
statements.

We often use the map π : Rn → Rd, π(a1, . . . , an) :=
∑
i aiji, notice that π maps Zn

to Zd, and set

(8) κ := max
j∈S
|j|.

If we use on Rn the L1 norm then κ is also the norm of the map π.
We apply a standard semi-normal form change of variables with generating function:

(9) FBirk = −i
∑

α,β∈(Zd)N:|α|=|β|=2 ,|α2|+|β2|≤2∑
k(αk−βk)k=0 ,

∑
k(αk−βk)|k|2 6=0

(
2

α

)(
2

β

)
uαūβ∑

k(αk − βk)|k|2
.

Here the notation α2, β2 refers to the exponents for the variable uk, ūk with k ∈ Sc. We
use the operator notation ad(F ) for the operator X 7→ {F,X}. The change of variables
by Ψ(1) := ead(FBirk) is well defined and analytic: Bε0 × Bε0 → B2ε0 × B2ε0 , for ε0 small
enough, see [18]. By construction Ψ(1) brings (4) to the form H = HBirk +P 4(u) +P 6(u)
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where P 4(u) is of degree 4 but at least cubic in u2 while P 6(u) is analytic of degree at
least 6 in u, finally

(10) HBirk :=
∑
k∈Zd

|k|2ukūk +
∑

α,β∈(Zd)N:|α|=|β|=2 , |α2|+|β2|≤2∑
k(αk−βk)k=0 ,

∑
k(αk−βk)|k|2=0

(
2

α

)(
2

β

)
uαūβ .

The three constraints in the second summand of the previous formula express the
conservation of L, M and of the quadratic energy

(11) K :=
∑
k∈Zd

|k|2ukūk.

In order to perform perturbation theory from the system given by the tangential sites
it is convenient to switch to polar coordinates. We set

(12) uk := zk for k ∈ Sc , uji :=
√
ξi + yie

ixi =
√
ξi(1 +

yi
2ξi

+ . . .)eixi for i = 1, . . . n,

considering the ξi > 0 as parameters |yi| < ξi while y, x, w := (z, z̄) are dynamical

variables. We denote by `(a,p) := `
(a,p)
S the subspace of ¯̀(a,p) × ¯̀(a,p) of the sequences

ui, ūi with indices in Sc and denote the coordinates w = (z, z̄).

Definition 2.1. Let K ⊂ Rn+ be a compact domain and let 0 < c1 < c2 be such that

c21 = min
K

(min
i
ξi) , c22 = max

K
(max

i
ξi)

It is convenient to choose as K = H×J a product in polar coordinates of a compact domain
H in the unit sphere and some compact set J in the coordinate ρ. We will consider for all
ρ > 0 the scaled domain ρK and notice that ρK = H× ρJ .

One can refer to such a domain as a truncated cone.

We choose ρ = ε2 and note that, for all r < c1ε, formula (12) is an analytic and
symplectic change of variables Φξ in the domain

(13) Da,p(s, r) = D(s, r) := {x, y, w : x ∈ Tns , |y| ≤ r2 , ‖w‖a,p ≤ r} ⊂ Tns ×Cn×`(a,p).

Here ε > 0, s > 0 and 0 < r < εc1 are auxiliary parameters. Tns denotes the compact
subset of the complex torus TnC := Cn/2πZn where x ∈ Cn, |Im(x)| ≤ s. Moreover if

(14)
√

2nc2κ
pe(s+aκ)ε < ε0 , (recall κ = max(|ji|) )

the change of variables sends D(s, r)→ Bε0 so we can apply it to our Hamiltonian.
We thus assume that the parameters ε, r, s satisfy (14). Formula (12) puts in action

angle variables (y;x) = (y1, . . . , yn;x1, . . . , xn) the tangential sites, close to the action
ξ = ξ1, . . . , ξn, which are parameters for the system.

The symplectic form is now dy ∧ dx+ i
∑
k∈Sc dzk ∧ dz̄k.

We give degree 0 to the angles x, 2 to y and 1 to w. We use the degree only for handling
dynamical variables, as follows. We develop in Taylor expansion, in particular since y is
small with respect to ξ we develop

√
ξi + yi =

√
ξi(1 + yi

2ξi
+ . . .) as a series in yi

ξi
.

By abuse of notations we still call H the composed Hamiltonian H ◦Ψ(1) ◦ Φξ.

Definition 2.2. We define the normal form N which collects all the terms of HBirk of
degree ≤ 2 (dropping the constant terms). We then set P = H −N .
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Notice that the Hamiltonian HBirk is different from the corresponding one in [18] (in
that paper we performed a full normal form transformation), however the resulting normal
formN is the same since it collects only terms of degree less or equal to two in the variables
z = u2.

3. Functional setting

Following [17] we study regular functions F : ε2K × Da,p(s, r) → C, that is whose
Hamiltonian vector field XF (·; ξ) is M-analytic from D(s, r) → Cn × Cn × `a,pS . In the
variables ξ we require Lipschitz regularity. Let us recall the definitions of M-analytic and
majorant norm and their properties proved in [3].

Let us consider the space

(15) V := Cn × Cn × `a,pS
with (s, r)-weighted norm

(16) v = (x, y, z, z̄) ∈ V , ‖v‖V := ‖v‖s,r = ‖v‖V,s,r =
|x|∞
s

+
|y|1
r2

+
‖z‖a,p
r

+
‖z̄‖a,p
r

where 0 < s < 1, 0 < r < c1ε and |x|∞ := maxh=1,...,n |xh|, |y|1 :=
∑n
h=1 |yh|.

For a vector field, i.e. a map X : D(s, r) → V , described by the formal Taylor expan-
sion:

X =
∑
ν,i,α,β

X
(v)
ν,i,α,βe

i(ν,x)yizαz̄β∂v , v = x, y, z, z̄

we define the majorant and its norm:

MX :=
∑
ν,i,α,β

|X(v)
ν,i,α,β |e

s|ν|yizαz̄β∂v , v = x, y, z, z̄

||X||s,r := sup
(y,z,z̄)∈D(s,r)

‖MX‖V .(17)

The different weights ensure that, if ‖XF ‖s,r < 1
2 , then F generates a close–to–identity

symplectic change of variables from D(s/2, r/2)→ D(s, r), Proposition 3.3.

Remark 3.1. The notion of M–analytic can be given in general for any map between
separable Hilbert spaces with prescribed bases. It means that the map given in coordinates
by the corresponding majorant functions is in fact analytic. It is then easy to see that
composition of M–analytic maps is M–analytic with the corresponding estimate on norms.

In our algorithm we deal with functions which depend in a Lipschitz way on some
parameters ξ in a compact set O ⊆ ε2K (Formula (2.1)). To handle this dependence we
introduce weighted Lipschitz norms for a map X : O ×D(s, r)→ V setting:

‖X‖lips,r,O := sup
ξ 6=η∈O , (x,y,w)∈D(s,r)

‖X(η)−X(ξ)‖s,r
|η − ξ|

,

(18) ‖X‖s,r,O = ‖X‖s,r := sup
O×D(s,r)

‖MX‖V , ‖X‖λs,r = ‖X‖s,r,O + λ‖Xf‖lips,r,O

where λ is a parameter proportional to |O|. Correspondingly for a parameter dependent
sequence f = {fm(ξ)}m∈I , here I is any index set, we define:

(19) |f |∞ := sup
ξ∈O

sup
m∈I
|fm(ξ)| , |f |lip∞ := sup

ξ 6=η∈O
sup
m∈I

|fm(ξ)− fm(η)|
|η − ξ|∞

,
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Definition 3.2. We define by Hs,r,O = Hs,r the space of regular analytic Hamiltonians
depending on a parameter ξ ∈ O with the norm2

(20) ‖F‖λs,r := ‖XF ‖λs,r <∞.

We denote by I = Zn × Nn × NSc × NSc the indexing set of the monomials, that is
k, i, α, β is associated to ei(k,x)yizαz̄β . For all I ⊂ I we define the projection ΠI as the
linear operator which acts as the identity on the monomials associated to I and zero
otherwise. In particular we define Π|k|<K to be the projection relative to the set I of

k, i, α, β with |k| < K, same for Π|k|≥K , similarly we define Π(`) as the projection on the

k, i, α, β with 2i+ |α|+ |β| = `, same for Π(≥`) and Π(≤`).
The main properties of the majorant norm are contained in the following statements,

proved in [2], Lemma 2.10, 2.15, 2.17.

Proposition 3.3. Let H,K ∈ Hs,r. Then, for all r/2 ≤ r′ < r, s/2 ≤ s′ < s, λ′ ≤ λ:

(21) ‖XH‖λ
′

s′,r′ ≤ 4‖XH‖λs,r ,

(22) ‖X{H,K}‖λs′,r′ = ‖ [XH , XK ] ‖λs′,r′ ≤ 22n+3δ−1‖XH‖λs,r‖XK‖λs,r
where δ is defined by:

(23) δ := min
{

1− s′

s
, 1− r′

r

}
.

Let r/2 ≤ r′ < r, s/2 ≤ s′ < s, and F ∈ Hs,r with

(24) ‖XF ‖λs,r < δ/(22n+6e)

with δ defined in (23). Then the time 1-Hamiltonian flow

Φ1
F := ead(F ) : D(s′, r′)→ D(s, r)

is well defined, analytic, symplectic, and, ∀H ∈ Hs,r, we have H ◦ Φ1
F ∈ Hs′,r′ and

(25) ‖XH◦Φ1
F
‖λs′,r′ ≤ 2‖XH‖λs,r , ‖XH◦Φ1

F
−XH‖λs′,r′ ≤ 2‖XF ‖λs,r‖XH‖λs,r .

For all I ⊂ I and, ∀H ∈ Hs,r, we have

(26) ‖ΠIXH‖λs,r ≤ ‖XH‖λs,r .

In particular we have the smoothing estimates: s′ < s,

(27) ‖Π|k|≥KXH‖λs′,r ≤
s

s′
e−K(s−s′)‖XH‖λs,r ,

and the degree estimates

(28) ‖XΠ(l≥d)H‖λs,r′ ≤ (
r′

r
)d−2‖XH‖λs,r .

Remark 3.4. For a diagonal quadratic Hamiltonian F =
∑
m ϑm(ξ)zmz̄m we have

XF = i(
∑
m

ϑm(ξ)zm
∂

∂zm
−
∑
m

ϑm(ξ)z̄m
∂

∂z̄m
)

MXF =
∑
m

|ϑm(ξ)|(zm
∂

∂zm
+ z̄m

∂

∂z̄m
), ‖MXF ‖λs,r = |ϑ|∞ + λ|ϑ|lip∞ .

2in fact Hamiltonians should be considered up to scalar summands and then this is actually a norm
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Lemma 3.5. For c1ε > r > ε3, the perturbation P of Definition 2.2 is in Hs,r and
satisfies the bounds

(29) ‖XP ‖λs,r ≤ C(εr + ε5r−1) ,

where C does not depend on r and depends on ε, λ only through λ/ε2.

Proof. This is item iv) of Theorem 1 of [18]. The fact that we are using the majorant
norm only changes the constant and not the order of magnitude. �

4. The normal form

We will work with many quadratic Hamiltonians in the variables w (thought as a row
vector). We represent a quadratic form F by a matrix F as

(30) F(w) =
1

2
(w,wJF t) = −1

2
wFJwt ,

where J := −i{wt, w} is the standard matrix of the symplectic form which expresses the
action by Poisson bracket.

By explicit computation, and under simple generiticity conditions, the normal form N
of Definition 2.2 is as follows:

(31) (ω(ξ), y) +
∑
k∈Sc

|k|2|zk|2 +Q(ξ;x,w) , ωi(ξ) = |ji|2 − 2ξi

here Q(ξ;x,w) is a quadratic Hamiltonian in the variables w with coefficients trigonomet-
ric polynomials in x given by Formula (30) of [18]:

(32) Q(ξ, w) = 4

∗∑
1≤i6=j≤m
h,k∈Sc

√
ξiξje

i(xi−xj)zhz̄k+

+2

∗∗∑
1≤i<j≤m
h,k∈Sc

√
ξiξje

−i(xi+xj)zhzk + 2

∗∗∑
1≤i<j≤m
h,k∈Sc

√
ξiξje

i(xi+xj)z̄hz̄k.

Here
∑∗

denotes that (h, k, vi, vj) satisfy:

{(h, k, vi, vj) |h+ vi = k + vj , |h|2 + |vi|2 = |k|2 + |vj |2}.

and
∑∗∗

, that (h, vi, k, vj) satisfy:

{(h, vi, k, vj) |h+ k = vi + vj , |h|2 + |k|2 = |vi|2 + |vj |2}.

Notice that in the sums
∑∗∗

each term appears twice.

This is a very complicated infinite dimensional quadratic Hamiltonian, by applying
the results of [18], we decompose this infinite dimensional system into infinitely many
decoupled finite dimensional systems corresponding to the connected components of a
graph (which is recalled in §4.1). One of the main results of [18] is the construction of an
explicit symplectic change of variables which reduces N to constant coefficients.

Since this construction is needed in the following we recall quickly Theorem 2 of [18]
adapted to the case of the cubic NLS. In the cubic case we also apply the more precise
results of [20].
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Theorem 2. For all generic choices S = {j1, . . . , jn} ∈ Znd of the tangential sites, there
exists a map

Sc 3 k → L(k) ∈ Zn , |L(k)| ≤ d+ 1

such that the analytic symplectic change of variables:

zk = e−i(L(k),x)z′k, y = y′ +
∑
k∈Sc

L(k)|z′k|2, x = x′.

Ψ : (y′, x)× (z′, z̄′)→ (y, x)× (z, z̄)

from D(s, r/2) → D(s, r) has the property that N in the new variables has constant
coefficients, namely:

(33) N ◦Ψ = (ω(ξ), y′) +
∑
k∈Sc

Ω̃k|z′k|2 + Q̃(w′) ,

where ω(ξ) is defined in (31) and furthermore:

i) Asymptotic of the normal frequencies: We have Ω̃k = |k|2 +
∑
i |ji|2L(i)(k).

ii) Reducibility: The matrix Q̃(ξ) which represents the quadratic form Q̃(ξ, w′) (see
formula (30)) depends only on the variables ξ and all its entries are homogeneous of
degree one in these variables. It is block–diagonal with blocks of dimension ≤ d + 1 and
satisfies the following properties:

All of the blocks except a finite number are self adjoint.
All the (infinitely many) blocks are chosen from a finite list of matrices M(ξ).

iii) Smallness: If ε3 < r < c1ε, the perturbation P̃ := P ◦Ψ is small, more precisely we
have the bounds:

(34) ‖XP̃ ‖
λ
s,r ≤ C(εr + ε5r−1) ,

where C is independent of r and depends on ε, λ only through λ/ε2.

The smallness condition implies that, if r is of the order of ε2 and λ/ε2 is of order one,
then ‖XP̃ ‖λs,r is of order ε3. As we shall see this is exactly a type of smallness required in
order to insure the success of the KAM algorithm (cf. Theorem 7).

Warning In Zn we always use as norm |l| the L1 norm
∑n
i=1 |l(i)|. On the other

hand in Zd, and hence in Sc, we use the euclidean L2 norm.

4.1. The geometric graph ΓS. It is important to recall that the term Q̃(ξ, w′) comes
from the sum of two contributions, the term Q(ξ, x, w), in the new variables and the

contribution −2
∑
k∈Sc ξ · L(k)|z′k|2 (coming from the y variables). Hence Q̃(w′) =

(35)

− 2
∑
k∈Sc

ξ ·L(k)|z′k|2 + 4

∗∑
1≤i6=j≤m
h,k∈Sc

√
ξiξjz

′
hz̄
′
k + 2

∗∗∑
1≤i<j≤m
h,k∈Sc

√
ξiξjz

′
hz
′
k + 2

∗∗∑
1≤i<j≤m
h,k∈Sc

√
ξiξj z̄

′
hz̄
′
k.

In its matrix description the two terms will give the off diagonal and the diagonal terms
respectively.

The off diagonal terms are described through a simple geometric construction (which
gives a complicated combinatorics). Given two distinct elements ji, jj ∈ S construct
the sphere Si,j having the two vectors as opposite points of a diameter and the two
Hyperplanes, Hi,j , Hj,i, passing through ji and jj respectively, and perpendicular to the
line though the two vectors ji, jj .
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From this configuration of spheres and pairs of parallel hyperplanes we deduce a geo-
metric colored graph, denoted by ΓS , with vertices the points in Sc and two types of edges,
which we call black and red.

• A black edge connects two points p ∈ Hi,j , q ∈ Hj,i, such that the line p, q is
orthogonal to the two hyperplanes, or in other words q = p+ jj − ji.

• A red edge connects two points p, q ∈ Si,j which are opposite points of a diameter
(p+ q = ji + jj).

a

b

c

d

e

f

H

S

m

l

Figure 1. the plane Hi,j and the sphere Si,j . The points

a1, b1, jj , ji form the vertices of a rectangle. Same for the points
a2, jj , b2, ji

The condition for two points p, q to be the vertices of an edge is given by algebraic
equations. Visibly p ∈ Hi,j means that (p − vi, ji − jj) = 0, the corresponding q =
p+ jj − ji, while p ∈ Si,j is given by (p− ji, p− jj) = 0 and the corresponding opposite
point q is given by p+ q = ji + jj .

We thus have two types of constraints describing when two points are joined by an edge,
a linear q− p = jj − ji or p+ q = ji + jj and a quadratic constraint (p− ji, ji − jj) = 0
or (p− ji, p− jj) = 0. Given a connected component A of the graph we can choose one
vertex x ∈ Sc and use the linear constraints in order to write all the equations which
define A by linear or quadratic equations on x. We keep track of the linear constraints by
marking the edges by jj − ji for black edges and jj + ji for red ones.

Now each connected component A has a purely combinatorial description which encodes
the information on the edges which connect the vertices of A. We obtain an abstract graph
with two types of edges (black, red) marked with pairs i, j ∈ [1, . . . , n].

A connected component of the geometric graph is a solution of a system of equations
(associated to the graph) having the vertices as unknowns. It is easily seen that these
equations may be all expressed on a single vertex (which we call the root r), more precisely,
as seen in [18] we obtain one equation (with unknown r) for each vertex v 6= r. A



A KAM ALGORITHM FOR THE NLS 13

combinatorial graph of this type is admissible if its equations admit a solution r ∈ Rd for
generic values of the tangential sites.3

In [18] we have seen that such graphs have at most 2d vertices hence we have a finite
list of combinatorial graphs (which we have described explicitly in terms of a Cayley
graph, since we do not need it here we do not recall it). In [20] we have strengthened
this estimate, shown that for a generic choice of S the vertices of the geometric graph,
corresponding to an admissible combinatorial graph, are affinely independent and hence
at most d + 1. This stronger estimate is necessary for the proof of the second Melnikov
condition.

We denote by A the combinatorial graph associated to A, note that A encodes the
information on the equations which the vertices of A must solve so naturally there may
be many A wich have the same A.

Example 4.2.

r− j1 + j3OO
2,1

r− j2 + j3

r

3,2

::

��

3,1

1,2
−r + j1 + j2

2,3

1,3

r− j1 + j2 + j4 + j3

r− j2 + j3

r

3,2

77

1,2
−r + j1 + j2

4,3

1,3

the equations that r has to satisfy are:

(r, j2 − j3) = |j2|2 − (j2, j3) (r, j2 − j3) = |j2|2 − (j2, j3)
|r|2 − (r, j1 + j2) = −(j1, j2) |r|2 + (r, j1 + j2) = −(j1, j2)
(r, j1 − j3) = |j1|2 − (j2, j3) (r, j1 − j2 − j3 − j4) = −|j1|2 + (j1, j2) + (j1, j3)

−(j2, j3) + (j1, j4)− (j2, j4)− (j3, j4)

In case the graph has no red edges the equations for the vertex x are all linear. This
implies that the connected components of ΓS which correspond to a given combinatorial
graph with a chosen vertex are all obtained from a single one by translations by vectors
which are orthogonal to the edges of the graph.

By convention we also have chosen a preferred vertex, called the root, in each connected
component, in such a way that the roots of the translates are the translates of this root.

Formalizing,

• we have a map r : Sc → Sc with image the chosen set Sc,r of roots.
• The fibers of this map are the connected components of the graph ΓS .
• When we walk from the root r(k) to k (inside the corresponding connected com-

ponent) we count the parity ±1 of the number of red edges on the path, this is
independent of the path and we denote by σ(k) (the color of k).

• There are only finitely many elements k with σ(k) = −1, the finitely many corre-
sponding roots are exactly the roots of the components with red edges.

• In any case the color of the root is always 1 (black).

At this point we can explain how to construct the elements L(k) which tell us how to
go from the root, of the component A of the graph ΓS to which k belongs, to k. The
equations defining the component A imply that

3we are interested only in solutions in Sc but it is more convenient to extend the possible solutions to
Rd.
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(36)

k +
∑
i

Li(k)ji = σ(k)r(k) , |k|2 +
∑
i

Li(k)|ji|2 = σ(k)|r(k)|2 , σ(k) = 1 +
∑
i

Li(k).

Note that the first of the equations (36) defines the L(k), which depend only on the
combinatorial graph. The fact that this definition is well posed even if A is not a tree is
a consequence of our genericity conditions.

The main fact is that

Proposition 4.3. The Hamiltonian Q(ξ, x, w′) in the new coordinates z′ is the sum∑
`Q`(ξ, w′) over all edges ` of the geometric graph of the following elements

• Q`(ξ, w′) := 4
√
ξiξj(z

′
hz̄
′
k + z′kz̄

′
h) if h, k are joined by a black edge ` marked i, j

• Q`(ξ, w′) := 4
√
ξiξj(z

′
hz
′
k + z̄′hz̄

′
k) if h, k are joined by a red edge ` marked i, j.

Form the previous remarks there are only finitely many elements of the second type.

4.3.1. The matrix blocks of Q̃ and ad(N ). According to Proposition 4.3, the graph has

been constructed in such a way that we can group Q̃ =
∑
A Q̃A (cf. (35)) where the sum

runs over all blocks A ∈ ΓS and, if E(A) denotes the set of edges in A:

Q̃A :=
∑
k∈A

−2ξ · L(k)|z′k|2 +
∑

`∈E(A)

Q`(ξ, w′)

is a quadratic Hamiltonian in the variables w′A = z′k, z̄
′
k with k running over the vertices

of A. The matrix of Q̃A has a natural block diagonal structure in two conjugated blocks,
corresponding to two Lagrangian subspaces in the symplectic space generated by the
variables z′k, z̄

′
k, k ∈ A appearing in it. We can thus divide w′A into two conjugate

components w′A = (u′, ū′) where u′k = (z′)
σ(k)
k then − i

2 Q̃A has as matrix denoted by
CA ⊕−CA. By convention in the first block the root r corresponds to z′r.

Given two vertices u′h, u
′
k h 6= k ∈ A we have that the matrix element cu′h,u′k of CA is

non zero if and only if h, k are joined by an edge (marked say (i, j)) and then

(37) cu′h,u′k = 2σ(k)
√
ξiξj , cu′k,u′k = −σ(k)(ξ, L(k)).

By definition L(k) depends only on the combinatorial graph A of which A is a realiza-
tion, therefore the matrix CA = CA depends only on the combinatorial block A.

Remark 4.4. One may choose the root of each combinatorial graph so that any other
vertex is connected by a path with at most [(d+ 1)/2] edges. One deduces the estimates∑
i |Li(k)| ≤ d+ 1, for all k.

4.4.1. The space F 0,1. In the KAM algorithm we shall need to study in particular the
action by Poisson bracket of N on a special space of functions called F 0,1, so we recall
some of this formalism.

Definition 4.5. We set F 0,1 to be the space of functions spanned by the basis elements

eiσσ(k)ν·xz′k
σ = eiσ([σ(k)ν+L(k)]·x)zk

σ

which preserve mass and momentum. 4

4we deviate from the notations of [18] and in F 0,1 we also impose zero mass
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One easily sees that F 0,1 is a symplectic space under Poisson bracket. The formulas
for mass and momentum in the new variables are

(38) {L, eiσσ(k)ν·xz′k
σ} = iσσ(k)(

∑
i

νi + 1) eiσσ(k)ν·xz′k
σ,

{M, eiσσ(k)ν·xz′k
σ} = iσσ(k)(

∑
i

νiji + r(k)) eiσσ(k)ν·xz′k
σ,

hence the conservation laws tell us that for an element eiσσ(k)ν·xz′k
σ ∈ F 0,1 the vector

ν ∈ Zd is constrained by the fact that −
∑
i νiji must be in the set of roots in Sc and

moreover the mass constraint
∑
i νi = −1.

For each connected components A of the graph ΓS with some root r any solution ν
of
∑
i νiji + r = 0 determines in the space F 0,1 a block denoted A, ν with basis the

elements eiσσ(k)ν·xz′k
σ with z′k

σ the corresponding basis of the two Lagrangian blocks
corresponding to A.

From the previous formulas we have thus that this space decomposes again into blocks
indexed by pairs A, ν with A a connected component of the graph ΓS and ν any solution
of
∑
i νiji + r = 0 where the mass of ν is −1, each such block is a symplectic space

decomposed into a pair of − i
2N stable Lagrangian subspaces.

Given thus such a pair of a component A and a frequency ν, notice that in fact A is de-
termined by its root which is determined by ν by the conservation law. We have to under-

stand the action of − i
2ad(N ), on the block of F 0,1 with basis the elements ei

∑
j νjxjz′m

σ(m)

with r(m) = −
∑
i νiji, (on its conjugate Ā it is the minus transpose). The action of Q̃

does not depend on ν and as before it is only through Q̃A and gives the matrix CA, we
need then to understand the elements (ω(ξ), y′) +

∑
k∈Sc Ω̃k|z′k|2. By Formula (36), the

term
∑
k∈Sc Ω̃k|z′k|2 contributes on the first block the scalar |r(m)|2. As of (ω(ξ), y′) it

also contributes by a scalar, this time
∑
i νi|ji|2 − 2

∑
i νiξi. Summarizing

Proposition 4.6. The matrix of − i
2ad(N ) on the block A, ν is the sum of the matrix CA

plus the scalar matrix [ 1
2 (|r(m)|2 +

∑
i νi|ji|2)−

∑
i νiξi] IA.

4.6.1. The standard form. By the rules of Poisson bracket we have on the real space
spanned by z, z̄ that {a, b̄} = −{ā, b} = {b, ā} is imaginary so {ā, b̄} = −{a, b} = {a, b}
and

Definition 4.7. (a, b) := i{a, b̄} is a real symmetric form, called the standard form.

For the variables we have (zh, zh) = 1, (z̄h, z̄h) = −1, so the form is positive definite
on the space spanned by the z, negative on the space spanned by the z̄ and of course
indefinite if we mix the two types of variables. Thus we may say that an element a in the
real space spanned by z, z̄ is of type z (resp. z̄) if (a, a) = 1 resp. (a, a) = −1. Now choose
any quadratic real Hamiltonian H = H̄. We have {H, {a, b̄}} = 0 by the Jacobi identity,
moreover the map x 7→ i{H, x} preserves the real subspace spanned by z, z̄ hence we have
(39)

(a, i{H, b}) = i{a, i{H, b}} = {a, {H, b̄}} = −{{H, a}, b̄} = i{i{H, a}, b̄} = (i{H, a}, b).
Formula (39) tells us that the operator i{H,−} is symmetric with respect to this form.

4.7.1. The case of − i
2{Q̃,−}. We apply the previous analysis to H = − 1

2Q̃ and its block
decomposition. When we have red edges each of the two Lagrangian blocks contains both
variables z and z̄ and by convention we take as first block the one in which the variable
corresponding to the root is of type z. The standard form (a, b) := i{a, b̄} is indefinite.
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By assumption the operator − i
2{Q̃,−} can be put in normal form by a change of basis

preserving the form (a, b). Thus the new basis is formed still by elements which we have
called of types z and z̄.

From all these considerations one has:

Lemma 4.8. For all combinatorial blocks A which do not contain red edges, the matrix
CA is self–adjoint for all ξ ∈ Rn+. If A contains red edges then each vertex k has a sign

and corresponds to an element u′k = (z′)
σ(k)
k .

The diagonal matrix of signs σA = diag(σ(k)) is the matrix of the standard form in

the basis u′k = (z′)
σ(k)
k and CA is self–adjoint with respect to the indefinite form defined

by σA.

The orthogonal group of the standard form acts on the entire symplectic block preserv-
ing the two Lagrangian subspaces and thus it has a mixed invariant which we still call the
standard form

(40)
∑

k | r(k)=r

σ(k)|zk|2 =
∑

k | r(k)=r

σ(k)|z′k|2.

Lemma 4.9 (conservation laws). In the new variables the conserved quantities are:

L =
∑
i

y′i +
∑
k

σ(k)|z′k|2 , M =
∑
i

jiy
′
i +
∑
k

σ(k)r(k)|z′k|2 ,

K =
∑
i

|ji|2y′i +
∑
k

σ(k)|r(k)|2|z′k|2

note that all of these three quadratic Hamiltonians are represented by a scalar matrix on
each component of w′A.

Proof. We substitute the new variables and use the identities (36). �

5. Normal form reduction

We now want to simplify − i
2N on each pair of stable Lagrangian subspaces described

in Proposition 4.6, using the standard Theory of canonical form of symplectic matrices.
The main ingredient we need is :

Theorem 3. [Proposition 1 of [20]] i) For all combinatorial blocks A, CA has distinct
eigenvalues, namely it is regular semisimple for values of the parameters ξi outside a real
hypersurface (the discriminant).

ii) For any pair of distinct blocks (A1, ν1), (A2, ν2) the resultant of the characteristic
polynomials of the two matrices of the action of − i

2ad(N ) is non–zero, hence outside this
hypersurface the eigenvalues of these two blocks are distinct.

The algebraic hypersurface union of all discriminant varieties for all the combinatorial
matrices CA will be denoted by A and called discriminant. It is given by a homogeneous
polynomial equation, thus (R+)n \ A is a union of finitely many connected open cones
(R+)n1 , . . . , (R+)nM where the number of real, resp. complex eigenvalues of any given
combinatorial matrix CA is constant. On each of these regions (R+)nα we can thus describe
a normal form.

Since our normal form, thought of as operator has possibly also complex eigenvalues
let us recall the basic normal form of the simplest Hamiltonians.
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Consider Hϑ := a(|z1|2 − |z2|2) + b(z1z2 + z̄1z̄2), setting ϑ = a+ ib. On the space with
basis z1, z̄2, z̄1, z2 (symplectic form J) the operator −iad(H) has matrix.

Mϑ =

∣∣∣∣∣∣∣∣
a −b 0 0
b a 0 0
0 0 −a b
0 0 −b −a

∣∣∣∣∣∣∣∣ , J =

∣∣∣∣∣∣∣∣
0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

∣∣∣∣∣∣∣∣
with eigenvalues ±ϑ,±ϑ̄, ϑ = a+ ib. One easily sees that a 4× 4 real symplectic matrix
commuting with this matrix, when the 4 eigenvalues ±ϑ,±ϑ̄ are distinct, has the same
block form Mβ for some complex number β = c + id and so it is represented by the
Hamiltonian Hβ = c(|z1|2 − |z2|2) + d(z1z2 + z̄1z̄2).

Now we need to decompose the various combinatorial blocks that we previously de-
scribed. We have already defined the discriminant hypersurface A. It is now convenient
to choose the compact domain K of Formula (2.1) to be a union of compact domains

(41) K = ∪αKα
each contained in the corresponding open connected component (R+)nα of (R+)n \A. For
each combinatorial matrix CA the standard form σA on (R+)nα has constant signature and
we have:

Proposition 5.1 (cf. Williamson [23]). On each region (R+)nα the eigenvalues of the CA
are analytic functions of ξ, say ϑ1, . . . , ϑdim(A).

For all ξ ∈ (R+)nα there exists a linear symplectic change of coordinates u′ → UA(ξ)u′ =
u′′ such that:

1. UA(ξ) is orthogonal with respect to σA
2. UA(ξ) is analytic in ξ.
3. UA(ξ) conjugates CA into the following normal form:
For each real eigenvalue ϑ , CA acts as ϑI on the (one dimensional) eigenspace of ϑ

in uA.
For each pair of conjugate complex eigenvalues ϑ± = a± ib, we have a real two dimen-

sional space such that the two complex eigenvectors lie in its complexification. Then we
have a basis of this subspace such that CA restricted to this subspace is a 2× 2 matrix(

a −b
b a

)
.

The matrix σA of the standard form on this basis is diag(1,−1) so one of the variable is
a z and the other a z̄.

Remark 5.2. We note that the matrices CA have entries wich are homogeneous of degree
one in ξ. Therefore given any compact domain O which does not intersect A the entries
of the matrices UA(ξ), UA(ξ)−1, ∂ξUA(ξ) can be uniformly bounded in ρO independently
of ρ, in particular this applies to each Kα.

Since the UA is determined by A we denote its matrix elements by [UA]a,b where a, b
run over the vertices of A. Namely on a given geometric block A isomorphic to A, [UA]a,b
is the entry relative to the elements zσk associated to a, b respectively.

Given a geometric block A let A be the corresponding combinatorial block. In each
connected component, the non-unique choice of the matrix U , putting in canonical form
the matrix CA determines a symplectic change of variables for all blocks A with combi-
natorial block A, we do this for all the finitely many A. We may then index the new
variables still by Sc and decompose Sc in two sets: an infinite set Scr , which indexes the



18 M. PROCESI*, AND C. PROCESI**.

real eigenvalues, namely uk is an eigenvector of − i
2Q of real eigenvalue ϑk(ξ). Then a fi-

nite set Sci which indexes the complex eigenvalues (note that by the special block structure
of the Hamiltonian there are no purely imaginary eigenvalues). By the reality condition
each two by two block corresponding to a pair of conjugate eigenvalues is indexed by
a pair (h, k) of elements of Sci . We write the conjugate eigenvalues as ϑh,k, ϑ̄h,k with
ϑh,k = ah,k + ibh,k. Note that for (h, k) ∈ Sci we have σ(h) = 1 and σ(k) = −1. By abuse
of notation we still call x, y, zk, z̄k the new variables. We have finally the final diagonal
form of the Hamiltonian

Theorem 4. i) For each connected component of (R+)nα on ε2Kα we have a symplectic
change of variables Ξ (depending analytically on ξ) which puts the Hamiltonian N in the
canonical diagonal form N = K + 2K1 where

(42) K1 = −
n∑
i=1

ξiyi +
∑
k∈Scr

σ(k)ϑk|zk|2 +
∑

(h,k)∈Sci

ah,k(|zh|2 − |zk|2) + bh,k(zhzk + z̄hz̄k)

The elements ϑk, ah,k, bh,k are analytic functions of ξ and homogeneous of degree one..
ii) [Elliptic open set] There exists a connected component (hence a non empty open

cone) of Rn+ such that in this region all the eigenvalues are real i.e. Sci is empty ([20],
proposition 1.13).

Remark 5.3. In order to simplify the notations we shall write the final variables as zk
since no confusion should arise with the initial variables.

We claim that for L,M,K we have still

(43) L =
∑
i

yi +
∑
k

σ(k)|zk|2 , M =
∑
i

jiyi +
∑
k

σ(k)r(k)|zk|2 ,

K =
∑
i

|ji|2yi +
∑
k

σ(k)|r(k)|2|zk|2.

In fact it is enough to compare the contribution of each block of given root r, to these
three quantities, it is the sum

∑
k | r(k)=r σ(k)|zk|2 times 1, r(k), |r(k)|2 respectively. So

it is enough to see that the quadratic expression
∑
k | r(k)=r σ(k)|zk|2 remains invariant.

This expression is in fact the standard form (40) and in our case we can diagonalize the
matrix block by an orthogonal transformation with respect to this form, the claim follows.

Corollary 5.4. i) Let (R+)ne be the elliptic open region, where all eigenvalues of all
combinatorial matrices are real and Ke the corresponding domain.

ii) For all ξ ∈ ε2Ke the NLS normal form is

(ω, y) +
∑
k

Ωk|zk|2 ,

where
ωi = |ji|2 − 2ξi , Ωk = σ(k)(|r(k)|2 + 2ϑk).

The functions ϑk are real valued and analytic.

5.4.1. Complex coordinates. Although it is not strictly necessary it is convenient to diag-
onalize also the blocks with complex eigenvalues, although this implies the introduction
of non real symplectic transformations.

We write everything in possibly complex coordinates as N = (ω, y) +
∑
k∈Sc Ωk|ζk|2,

where ζk = zk if k ∈ Scr . In order to do this we have to define ζk for k ∈ Sci . Consider

one of the terms , say K1
(h,k) := ah,k(|zh|2 − |zk|2) + bh,k(zhzk + z̄hz̄k) and set ϑk :=
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ah,k + ibh,k, ϑh = ah,k − ibh,k . Think of z 7→ z̄ as a C linear map on polynomials! so that

zh + iz̄k = z̄h + izk and thus setting ζh := zh+iz̄k√
2
, ζk := z̄h−izk√

2
we have that ζh, ζ̄h (resp.

ζk, ζ̄k) are eigenvectors with opposite eigenvalues for ad(K1):

{K(h,k)
1 , ζσh} = σiϑhζ

σ
h , {K(h,k)

1 , ζσk } = −σiϑkζ
σ
k

{ζσ1

h , ζσ2

k } = 0, {ζ̄h, ζh} = {ζ̄k, ζk} = i, ᾱ|ζh|2 + α|ζk|2 = K(h,k)
1 .

Moreover in these coordinates the three quantities L,M,K are still in the form of For-
mula (43). In fact the same argument that we gave before applies since the complex
transformation that we have used is in the orthogonal group of the form.

We can finally claim that we can use the notation zk also for complex coordinates and
write N = (ω, y) +

∑
k∈Sc Ωk|zk|2 we assume that the Ωk are all distinct and the complex

ones come together with their conjugates according to the previous rules.

Summarizing:
A monomial m = ei(k,x)ylzαz̄β has momentum iπr(m) with

(44)

πr(m) := πr(k, α, β) = π(k)+
∑
j∈Sc

(αj−βj)σ(j)r(j) = π(k, α, β)+
∑
j∈Sc

(αj−βj)(σ(j)r(j)−j)

and it satisfies momentum conservation if πr(k, α, β) = 0. Note that given functions f, g
which are eingenvectors of momentum we have πr({f, g}) = πr(f) + πr(g). Given k ∈ Sc
(corresponding to the eigenvalue ϑk of CA) the monomial eiσσ(k)ν·xzσk is an eigenvector
for all our operators with eigenvalues:

{L, eiσσ(k)ν·xzσk } = iσσ(k)(
∑
i

νi + 1) eiσσ(k)ν·xzσk ,

{M, eiσσ(k)ν·xzσk } = iσσ(k)(
∑
i

νiji + r(k))eiσσ(k)ν·xzσk

{K, eiσσ(k)ν·xzσk } = iσσ(k)(
∑
i

νi|ji|2 + |r(k)|2) eiσσ(k)ν·xzσk ,

{K1, eiσσ(k)ν·xzσk } = iσσ(k)(−
∑
i

νiξi + ϑk) eiσσ(k)ν·xzσk ,

6. The kernel of ad(N )

6.0.2. Non-degenerate quadratic Hamiltonians. Consider a quadratic Hamiltonian

(45) Q = (ω, y) +
∑
k∈Scr

ak|zk|2 +
∑

(h,k)∈Sci

ah,k(|zh|2 − |zk|2) + bh,k(zhzk + z̄hz̄k)

we want to study the kernel of ad(Q) on the space of Hamiltonians of degree ≤ 2. We set
ϑh,k := ah,k+ibh,k so that ±ϑh,k,±ϑ̄h,k are the four eigenvalues of ad(ah,k(|zh|2−|zk|2)+
bh,k(zhzk + z̄hz̄k)) acting on the space spanned by zh, zk, z̄h, z̄k. It is convenient to write
z1 = z, z−1 = z̄ so if we do not want to specify if a variable is z or z̄ we write is as zσ

where σ can be ±1.
Next the operator iQ acts on the real space spanned by the elements eiσν·xzσk (we need

some convergence conditions given by its norm). If as in our case Q commutes with the
mass and momentum then it acts also on the subspace F 0,1 where

Definition 6.1. We denote by F 0,1 the space of functions spanned by the elements
eiσν·xzσk with zero mass and momentum. I.e.

∑
i νi = −1,

∑
i νiji + k = 0.
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Definition 6.2. We say that Q is non-degenerate5 if the coordinates ωi are linearly
independent over Q and its eigenvalues for the action on F 0,1 are all non–zero and distinct.

It is then not difficult to analyze the kernel of i ad(Q), i.e. the elements which Poisson
commute with i ad(Q), on the space of Hamiltonians of degree ≤ 2 commuting with mass
and momentum, we have:

Proposition 6.3. If Q is non-degenerate then a (real) Hamiltonian of degree ≤ 2, which
commutes with mass, Poisson commutes with Q if and only if it is of the form:

(46) Q′ = (ω′, y) +
∑
k∈Scr

a′k|zk|2 +
∑

(h,k)∈Sci

a′h,k(|zh|2 − |zk|2) + b′h,k(zhzk + z̄hz̄k)

with a′k, a
′
h,k, b

′
h,k ∈ R.

Proof. It is immediate that a Hamiltonian of the form of Formula (46) commutes with Q
we need to show the converse.

Degree zero in w: Monomials of degree ≤ 2 and of degree 0 in w are of the form
y`eiν·x, ` = 0, 1 and for the eigenvalues we have:

(47) {Q, y`eiν·x} = −i(ω, ν) y`eiν·x

By hypothesis of linear independence over Q these eigenvalues are 0 if and only if ν = 0,
hence the Kernel of ad(N ) is x independent and hence of the form c+ (ω′, y).

Degree one in w: By definition the eigenvalues of the adjoint action of Q on F 0,1 are
non-zero.

Degree two in w: We write everything in possibly complex coordinates as Q =
(ω, y)+

∑
k∈Sc ak|ζk|2 as in the previous paragraph. We assume that the ak are all distinct

and the complex ones come together with their conjugates according to the previous rules.
Then we can write any monomial of degree 2

M = eiν·xζσ1

h ζσ2

k , {Q, M} = i[(ω, ν) + σ1ah + σ2ak]M

conservation of mass η(ν) + σ1 + σ2 = 0 implies that we can write ν = ν1 + ν2 with
η(ν1)+σ1 = η(ν2)+σ2 = 0. Then (ω, ν1)+σ1ah and (ω, ν2)+σ2ak are two eigenvalues of
elements in F 0,1 since the eigenvalues are all distinct we must have that the corresponding
eigenvectors are one the conjugate of the other and then M is of the form |ζk|2 for some k.
Finally if we assume that the Hamiltonian is real the two terms associated to a pair h, k
giving complex eigenvalues must have conjugate coefficients so that in real coordinates
they give a term of type a′h,k(|zh|2 − |zk|2) + b′h,k(zhzk + z̄hz̄k). �

Warning From now on even if we shall use complex coordinates we shall denote them
by zk and not ζk.

6.4. Eigenvalues and eigenvectors. The fact that the HamiltonianN is non-degenerate
for generic values of ξ is essentially a consequence of Theorem 3, we state it as:

Proposition 6.5. The normal form N is non-degenerate for all ξ outside countably many
algebraic hypersurfaces.

5in the usual language we should say regular semisimple.
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Proof. We have ωi = |ji|2 − 2ξi which are linearly independent over the rationals outside
countably many algebraic hypersurfaces (the dependency relations).

The eigenvalues of the action on F (0,1) are the roots of the characteristic polynomials
of the blocks into which this space decomposes. We have seen that these polynomials are
all irreducible and distinct. For a block of size > 1 irreducibility implies that the constant
term of the characteristic polynomial is a non–zero polynomial in ξ so the eigenvalues are
non–zero outside the hypersurfaces given by these determinants. Moreover it is immediate
that for the blocks of size 1 the eigenvalues are non–zero linear polynomials.

In order to have that all the eigenvalues be distinct we have to remove the discrimi-
nant A, and countably many resultants which are all non–zero polynomials in ξ by the
irreducibility and separation Theorem. �

Remark 6.6. In the course of the KAM algorithm of Part 3 we shall see that the non-
degeneracy of the Normal form plays a fundamental role. Imposing the non-degeneracy
however requires removing a countable number of proper hypersurfaces hence working on
complicated sets in parameter-space. In order to avoid this problem, we impose that the
compact domains Kα of Formula (41), should be disjoint from finitely many resultants,
i.e. we fix an integer S0 and impose ∀ξ ∈ ∪αKα:

−(ξ, k) + ϑi(ξ)± ϑj(ξ) 6= 0 .

for all the couples of eigenvalues of (different) combinatorial matrices and forall k ∈
Zn , |k| < S0 .

We would like to choose coordinates, independent of ξ, which are eigenvectors for M,
L, N so that

Lemma 6.7. A regular analytic function F Poisson commutes with N , M, L for generic
values of ξ if and only if each monomial appearing in F Poisson commutes with M, L, K
and K1.

Proof. An element commutes with N if and only if it commutes with both homogeneous
parts of degree 0,1 that is K and K1. �

Part 2. Quasi Töplitz functions

7. Optimal presentations cuts and Good Points

Let us recall the definition of N -optimal presentations, cuts, good points as given in
[24], we omit most proofs.

7.1. N-optimal presentations. An affine space A of codimension ` in Rd can be defined
by a list of ` equations A := {x | (vi, x) = pi} where the vi are independent row vectors
in Rd. We will write shortly that A = [vi; pi]`. We will be interested in particular in
the case when vi, pi have integer coordinates, i.e. are integer vectors6 and the vectors vi
lie in a prescribed ball BN of radius some constant κN . Recall that, (8), we have set
κ := maxi |ji|. We denote by

〈vi〉` = Span(v1, . . . , v`;R) ∩ Zd , BN := {x ∈ Zd \ {0} | |x| < κN},

here N is any large number. In particular we implicitly assume that BN contains a basis
of Rd.

6such a subspace is usually called rational.
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For given s ∈ N, in the set of vectors Zs we can define the sign lexicographical order ≺
as in [24] as follows.

Definition 7.2. Given a = (a1, . . . , as) set (|a|) := (|a1|, . . . , |as|) then we set a ≺ b if
either (|a|) < (|b|) in the lexicographical order (over N) or if (|a|) = (|b|) and a > b in the
lexicographical order in Z.

With this definition every non empty set of elements in Zs has a unique minimum.
Notice that, by convention, among the finite number of vectors with a given prescribed

value of (|a|) we have chosen as minimum the one with non negative coordinates.

In particular consider a fixed but large enough N .

Definition 7.3. We set HN to be the set of all affine spaces A which can be presented
as A = [vi; pi]` for some 0 < ` ≤ d so that that vi ∈ BN , pi ∈ N.

We denote the subset of HN formed by the subspaces of codimension ` by H`N .

We display as (p1, . . . , p`; v1, . . . , v`) a given presentation, so that it is a vector in Z`(d+1).
Then we can say that [vi; pi]` ≺ [wi; qi]` if (p1, . . . , p`; v1, . . . , v`) ≺ (q1, . . . , q`; v1, . . . , v`).

Definition 7.4. The N–optimal presentation [li; qi]` of A ∈ H`N is the minimum, in the
sign lexicographical order, of the presentations of A which satisfy the previous bounds.

Given an affine subspace A := {x |(vi, x) = pi , i = 1, . . . , `} by the notation A
N→[vi; pi]`

we mean that the subspace has codimension ` and the given presentation is N–optimal.

Remark 7.5. i) Note that each pointm = (m1, . . . ,md) ∈ Zd has aN–optimal presentation
(this presentation is usually not the naive one [ei,mi]d where the ei form the standard
basis of Zd).

ii) Thus we may use the ordering given by N–optimal presentations of points in order
to define a new lexicographic order on Zd which we shall denote by a ≺N b or a ≺ b when
N is understood.

Remark 7.6. At this point we extend the definition of ≺ to the elements of HN by using
their N–optimal presentation.

Lemma 7.7. i) If the presentation A = [vi; pi]` is N–optimal, we have

(48) 0 ≤ p1 ≤ p2 ≤ . . . ≤ p`.
ii) For all j < ` and for all v ∈ BN ∩ (〈v1, . . . , v`〉 \ 〈v1, . . . , vj〉), one has:

(49) |(v, r)| ≥ pj+1 , ∀r ∈ A.
iii) Given j < ` set Aj := {x | (vi, x) = pi, i ≤ j}, then the presentation Aj = [vi, pi]j

is N–optimal.
iv) Finally −A has a N–optimal presentation −A = [v′i, pi] with the same constants pi

and (|v′i|) = (|vi|).

Remark 7.8. For fixed N , `, p the number of affine spaces in H`N of codimension ` and
such that p` ≤ p is bounded by (2κN + 1)`d(p+ 1)`.

7.9. A decomposition of Zd. We shall need several auxiliary parameters in the course
of our proof. We start by fixing some numbers

(50) τ0 > max(d2 + n, 12), τ1 := (4d)d+1(τ0 + 1) ,

c ≤ 1

2
, C ≥ 4 , N0 = (d+ 1)!κd+1Cc−1.
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In what follows N will always denote some large number, in particular N > N0.

Using the fixed parameters c, C and the notion of optimal presentation, for each N > N0

we want to construct a decomposition

(51) Zd = ∪di=0Ai(N)

of Zd which will be crucial for the estimates of small denominators (cf. §10.7.1) and given
by the following

Definition 7.10. i) A subspace A
N→[vi; pi]` ∈ H`N with 1 ≤ ` < d is called N–good if

p` ≤ cN
τ1
4d . The set of N–good subspaces of codimension ` < d is denoted by H`,gN .

ii) Given A ∈ H`,gN the set:
(52)
Ag :=

{
x ∈ A ∩ Zd | |r(x)| > CNτ1 , |(v, x)| ≥ Cmax(N4dτ0 , c−4dp4d

` ),∀v ∈ BN \ 〈vi〉`
}

will be called the N−good portion of the subspace A.

Remark 7.11. Notice that every v ∈ BN \ 〈vi〉` gives a non constant linear function (v, x)
on A. Thus the good points of A form a non empty open set complement of a finite union
of strips around subspaces of codimension 1 in A. Note moreover that we are interested
only in integral points and the integral points in A which are not good are formed, by
the finitely many points with |r(x)| ≤ CNτ1 , plus a finite union of affine subspaces of
codimension one in A.

We construct a decomposition of Zd using the following Proposition which is a variation
of [24] Proposition 1).

Proposition 7.12. Each point m
N→[vi, pi] with |r(m)| > CNτ1 and p1 < CN4dτ0 belongs

to the set [vi; pi]
g
` for some choice 0 < ` < d.

Proof. Consider A1 := [v1; p1], since CN4dτ0 ≤ cN
τ1
4d we see that it is N–good, so if

m ∈ Ag1 we are done, otherwise we have that p2 < Cmax(N4dτ0 , c−4dp4d
1 ) ≤ cN

τ1
4d .

Consider A2 := [v1, v2; p1, p2], we see again that it is N–good, so if m ∈ Ag2 we are

done otherwise we have that p3 < Cmax(N4dτ0 , c−4dp4d
2 ) ≤ cN

τ1
4d we continue in this

way and either we show that m ∈ Agi , i < d or we have a sequence of inequalities
pj < Cmax(N4dτ0 , c−4dp4d

j−1). Let k ≥ 1 be the maximum index such pk < CN4dτ0 , if

k < d we have for all pj , j = k + 1, . . . , d that pj < (c−4dC)j−kN (4d)j−k+1τ0 . We then
compute the coordinates of m by Cramer’s rule and by just estimating the numerator we

have a sum of d! terms each of which can be bounded by Nd−1N (4d)dτ0(c−4dC)d−1. This

sum is then bounded by N5d(d−1)+(4d)dτ0 , it follows that |m| ≤
√
dN5d(d−1)+(4d)dτ0 and

r(m) ≤
√
dN5d(d−1)+(4d)dτ0 + dκ. Recall τ1 := (4d)d+1(τ0 + 1) thus we easily see that

|r(m)| < cNτ1 . �

From this proposition to a point m
N→[vi, pi] with |r(m)| > CNτ1 and p1 < CN4dτ0 we

have associated an affine space A ∈ H`,gN such that m ∈ Ag and we set A`(N) to be the
set of points of previous type for which A has codimension `.

The remaining points may be distributed in two sets:

Ad = Ad(N) ⊂ {m ∈ Zd : |r(m)| ≤ CNτ1}
and

(53) A0 := {m ∈ Zd : m
N→[vi; pi] with |r(m)| > CNτ1 , p1 ≥ CK4dτ0}.
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In this way we construct a decomposition of Zd = ∪d`=0A`(N).

Figure 2. A drawing of the standard decomposition in Z2
1.

A0 is Z2
1 minus the dashed lines (each dashed line is described by

an equation [v; p]1). On each dashed line the set [v; p]g1 is signed

in solid boldface. Note that [v; p]g1 is [v; p]1 ∩ Z2
1 minus a finite

number of subspaces of codimension two, i.e. points.

7.13. Cuts. In the previous paragraph a point m which is a good point has an associated
affine space A of some codimension ` which, as we have seen in the proof of Proposition
7.12 corresponds to a jump, or as we shall say a cut, in the optimal presentation. In fact
for technical reasons having to do with the structure of Poisson bracket we need to refine
this notion, introducing auxiliary parameters µ, θ which give a better control on the cut
and allow some flexibility in the constructions. This is the topic of this paragraph.

We assume that N has been fixed. Given a point m we write m
N→[vi; pi] for its optimal

presentation dropping the index ` which for a point equals d, we implicitly also mean that
m ∈ Zd. Set by convention p0 = 0 and pd+1 =∞.

We then make a definition involving three more parameters:

Definition 7.14. The parameters N, θ, µ, τ are called allowable if

τ0 ≤ τ ≤ τ1/(4d), c < θ, µ < C, N > N0.

We need to analyze certain cuts, for the values pi associated to an optimal presentation
of a point. This will be an index ` where the values of the pi jump according to the
following:
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Definition 7.15. The point m
N→[vi; pi] has a cut at ` ∈ {0, 1, . . . , d} with the parameters

p = (N, θ, µ, τ), if ` is such that p` < µNτ , p`+1 > θN4dτ .

The space A := {x | (vi, x) = pi, i = 1, . . . , `} has [vi; pi]` as optimal presentation and
it is called the affine space associated to the cut of m.

Remark 7.16. Note that, by Lemma 7.7, if m
N→[vi; pi] has a (N, θ, µ, τ) cut at ` then

|(m, v)| > θN4dτ for all v ∈ BN \ 〈vi〉l.
Consider a subspace A ∈ HN of codimension ` such that in its optimal presentation

p` < µNτ . The set of points m ∈ A which have ` as a cut with the parameters N, θ, µ, τ
have A as associated affine space, if furthermore |r(m)| > θNτ1 we call them (N, θ, µ, τ)–
good points of A, we write m ∈ Ag(N,θ,µ,τ).

By definition the other affine spaces have no good points with respect to these param-
eters.

Definition 7.17. Given allowable parameters p = (N, θ, µ, τ) we denote by H`p the set

of affine subspaces A ∈ HN of codimension ` such that in their optimal presentation
p` < µNτ . The union of all these sets for 0 < ` < d is denoted by Hp.

Notice that θN4dτ > µNτ (since by (50) we have cN4dτ > CNτ ), so for any given
m ∈ Sc there is at most one choice of ` such that m has a ` cut with parameters θ, µ, τ .

Remark 7.18. 1) The purpose of defining a cut ` is to separate the numbers pi into small
and large. The parameters N, θ, µ, τ give a quantitative meaning to this statement.

2) The set of good points Ag(N,θ,µ,τ), if non–empty, is the complement in A of a finite

number of codimension one subspaces plus finitely many points.
3) Given any rational affine subspace A (i.e. defined by equations over Z) there is an

N̄ so that ∀N ≥ N̄ we have A ∈ HN , its optimal presentation is independent of N , the
set Ag(N,θ,µ,τ) is non-empty.

We need an auxiliary parameter depending on an optimal presentation

Definition 7.19. Given p ≤ cNτ1/(4d), set τ(p) so that Nτ(p) = max(Nτ0 , c−1p).

Notice that τ0 ≤ τ(p) ≤ τ1/(4d). The connection between the notion of good points
Ag, defined in (52), of a given subspace A and the notion just introduced is explained by
the following Lemma.

Lemma 7.20. For all c < θ, µ < C and for all affine subspaces [vi; pi]` ∈ HN such
p` ≤ cNτ1/(4d), we have that every point m ∈ [vi; pi]

g
` is a (N, θ, µ, τ(p`))–good point for

[vi; pi]`. I.e. [vi; pi]
g
` ⊂ ([vi; pi]`)

g
(N,θ,µ,τ(p`))

for all c < θ, µ < C.

Remark 7.21. 1) If m
N→[vi; pi] has a cut at ` for the parameters θ′, µ′, τ then it has also

a cut at ` for parameters θ, µ, τ with θ ≤ θ′, µ′ ≤ µ provided θ, µ, τ are allowable.
If θ ≤ θ′, µ′ ≤ µ we shall say that the allowable parameters θ, µ are less restrictive

than θ′, µ′.

2) If for a given `, τ we have p` ≤ cNτ , p`+1 ≥ CN4dτ , then ` is a cut with parameters
θ, µ, τ for every choice of allowable θ, µ.

Lemma 7.22. [Neighborhood property] Consider m, r ∈ Zd with m
N→[vi; pi], r

N→[wi; qi].
Suppose that m has a cut at ` for the parameters N, θ′, µ′, τ , and suppose there exist
allowable parameters θ < θ′, µ′ < µ:

(54) |r −m| < min(κ−1(µ− µ′)Nτ−1, κ−1(θ′ − θ)N4dτ−1).
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then:
(1) The point r has a cut at ` for all allowable parameters θ, µ, τ for which (54) holds.

(2) 〈w1, . . . , w`〉 = 〈v1, . . . , v`〉.
(3) [wi; qi]` is the N–optimal presentation of [vi; pi]` + r −m.

Corollary 7.23. Consider m
N→[vi; pi], r

N→[wi; qi] such that

(55) |r −m| < κ−1c(N4dτ−1 − cC−1Nτ−1)

and both m, r have a cut with parameters p = (N, θ, µ, τ) then we can deduce:
i) the vectors m, r have the cut at the same `;
ii) the space B associated to the cut of r is the one parallel to A = [vi; pi]` and passing
through r namely

(56) B = A+ r −m.

The previous results explain why we wanted to introduce the parameters µ, θ to define
cuts, in fact

Remark 7.24. With the above lemma we are stating that if m has a ` cut with parameters
θ′, µ′, τ then, for all choices of θ < θ′, µ′ < µ, for which θ, µ are allowable parameters, we
have described a spherical neighborhood B of m such that all points r ∈ B have a ` cut
with parameters θ, µ, τ . The radius of B is determined by Formula (54). Note moreover
that if r has a cut at ` for some parameters then so has −r and with the same parameters.
Then lemma 7.22 holds verbatim if in formula (54) we substitute |m− r| with |m+ r|.

We finally combine 7.20 and 7.23

Lemma 7.25. For all affine subspaces [vi; pi]` with p` ≤ cNτ1/(4d) the following holds.
For all m ∈ Zd with m ∈ [vi; pi]

g
` , for all r ∈ Zd and for all parameters c < θ, µ < C such

that

(57) |r −m| < κ−1(µ− c)Nτ0−1, κ−1(C− θ)N4dτ0−1,

r,m have the same cut ` with parameters θ, µ, τ(p`) with parallel corresponding affine
spaces.

The definitions which we have given are sufficient to define and analyze the quasi–
Töplitz functions, which are introduced in section 8. In the next subsection we collect
some definitions which are useful for the measure estimates and which are independent of
the auxiliary parameters θ, µ.

7.26. Graphs and cuts. Recall that the choice of the vectors S := {ji} determines a
colored marked graph ΓS with vertices in the set Sc.

This graph has finitely many components containing red edges.7 The remaining set
will be denoted by S̄c and it is a union of connected components each combinatorially
isomorphic to a combinatorial graph out of a finite list G := {A1, . . . ,AN} formed only of
black edges. It will be enough to concentrate our analysis only on these black graphs.

Definition 7.27. Given A ∈ G we set ΣA to be the union of all connected components
of ΓS isomorphic to A.

7A rough estimate of a bound on the norm of these points is (2d+ 3)κ.
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The set G is partially ordered by setting Ai ≤ Aj if Ai is isomorphic as marked graph
to a subgraph of Aj .

From the theory developed it follows that, if A ∈ G has dA + 1 vertices we have that
ΣA is a union of translates of any of its components (of the graph ΓS). Moreover ΣA
is the portion of S̄c in a union of dA + 1 parallel affine subspaces of codimension dA
minus a union of finitely many affine subspaces of higher codimension whose points lie in⋃
Ai>AΣAi .
Let us recall how we arrived at this statement. We choose a root in each Ai. Using

the root a geometric realization of some A = Ai is an isomorphic graph, with vertices
in S̄c, in which the image r of the root solves a certain set of dA independent linear
equations (Formula (61) of [18]) and the other vertices are determined by the labels on
the graph A. The components A of ΓS which are isomorphic to A are exactly those
geometric realizations of A which are not properly contained in a larger component.
Recall that we have imposed generic conditions so that the vertices in a component are
affinely independent. Therefore, a component A associated to A, spans an affine subspace
〈A〉 of dimension exactly dA. All other geometric realizations of A are obtained from a
given A by translating the graph A with the integral vectors orthogonal to 〈A〉. This set
is thus a union of dA+1 parallel affine subspaces of codimension dA passing each through
an element m of A, image of a point a ∈ A. It may well happen that a translate of r may
solve also the linear equations defining a larger graph, the points in the corresponding
component lie thus in a stratum ΣAi , Ai > A.

Example 7.28.

x− j1 + j3OO

2,1

equations (x, j1 − j3) = |j1|2 − (j2, j3)

x
3,2
//zz

3,1

x− j2 + j3 (x, j2 − j3) = |j2|2 − (j2, j3)

Notice that this is a subgraph of the graph of example 4.2.
If a ∈ A we let ΣA,a be the subset of ΣA formed by the corresponding elements so that

ΣA is the disjoint union of the strata ΣA,a as a runs over the vertices of A.
The set ΣA,a spans an affine space 〈ΣA,a〉 of codimension dA and, in fact, it is the

complement in this affine space of the points which belong to graphs which contain strictly
A. Thus ΣA,a is obtained from the affine space 〈ΣA,a〉 removing a finite union of proper
affine subspaces.

Thus for any A ∈ G having chosen a root r we have the stratum ΣA,r which is the
complement in an affine space of a finite union of codimension 1 subspaces. Any point
m ∈ S̄c lies in a unique stratum ΣA,a which is parallel to ΣA,r we thus have for m a
corresponding root r(m) ∈ ΣA,r which is the intersection of ΣA,r with the connected
component of the graph AS in which m lies. Thus m − r(m) depends only upon the
stratum ΣA,a.

Definition 7.29. We denote the vector m− r(m) as the type of m.

Remark 7.30. The possible types run on a finite set Z of vectors. The type of a vector
m, as seen in Formula (36) is a linear combination of the elements ji with coefficients the
coordinates of L(m). Hence each u ∈ Z has |u| ≤ dκ. Note that when m ∈ ΣA,a the
element L(m) is fixed (by a), the corresponding type will be denoted by ua. Notice that
ΣA,a = ΣA,r + ua.
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Remark 7.31. Among the combinatorial graphs we have the graph {0} formed by a single
vertex. The corresponding open stratum Σ{0},0 obviously spans Zd, it is formed of all the
points in Sc which do not belong to any of the proper strata ΣA.

We have thus finitely many affine subspaces 〈ΣA,a〉 associated to the pairs (A, a),
these subspaces can be presented using the linear equations associated to the geometric
realization by formulas (61) of [18]. We have a finite number of possible systems of
equations with coefficients depending linearly or quadratically from the set S. We verify
that all the constant coefficients of these equations are < cN0 (in fact the coefficients
can be bound by (2dκ)2). Thus by the bounds chosen each of these subspace lies in
HN , ∀N > N0 and thus has an N–optimal presentation [wi; qi]dA , furthermore each
qi < cN0.

Lemma 7.32. Assume that m ∈ ΣA,a has a cut at ` with parameters θ, µ, τ and associated
space [vi, pi]`. Then [vi, pi]` is contained in the affine space 〈ΣA,a〉 = [wi; qi]dA . In
particular ` ≥ dA.

Proof. Since m is in both spaces it is enough to prove that 〈wi〉dA ⊂ 〈vi〉`. By contradic-
tion if some wj /∈ 〈vi〉` then we have that |(wj ,m)| > cN4dτ0 . This is incompatible with
the estimates on the qi. �

Theorem 5. If m,n have the same cut ` and the same associated affine space [vi, pi]`
then they belong to the same stratum ΣA,a and hence have the same type, i.e. m−r(m) =
n− r(n).

Proof. If both m,n form an isolated component then they belong to the open stratum.
Assume that m ∈ ΣA,a with dA > 0. Thus m satisfies the equations [wi; qi]dA . By the
previous Lemma since n ∈ [vi, pi]` we know that n ∈ [wi; qi]dA . This implies n ∈ ΣA′

where A′ contains A so that dA′ ≥ dA.
Exchanging the roles of m,n we see that m ∈ ΣA′′ where A′′ contains A′. This implies

that A = A′. Since the equations [wi; qi]dA define the affine space spanned by ΣA,a the
claim follows. �

8. Functions

8.1. Töplitz approximation.

8.1.1. Piecewise Töplitz functionsn. Given a parameter N > N0 we will call low momen-
tum variables relative to N , denoted by wL, the zσj such that |r(j)| < CN3. Similarly

we call high momentum variables, denoted by wH , the zσj such that |r(j)| > cNτ1 . No-
tice that by (50) the low and high variables are separated. Furthermore all variables zj
belonging to blocks with red edges are low by choice of the parameters. The remaining
variables will be denoted by wR. Given any set X of conjugate variables by {·, ·}X we
mean the Poisson bracket performed only respect to the variables X (keeping the other
variables as parameters).

Our definitions will depend on several parameters which in turn depend upon the
particular problem treated. We shall denote them by a compact symbol p.

Recall first that a monomial ei(k,x)yizαz̄β has momentum

i(

n∑
i=1

kiji +
∑
j∈Sc

σ(j)r(j)(αj − βi)).

Thus we make a:
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Definition 8.2. (Low-momentum) A monomial ei(k,x)yizαz̄β is (N,µ)-low momentum
if8

(58)
∑
j∈Sc
|r(j)|(αj + βj) < µN3 , |k| < N .

We denote by

Ls,r(N,µ) ⊂ Hs,r
the subspace of functions

(59) g =
∑

gk,i,α,βe
i(k,x)yizαz̄β ∈ Hs,r

whose monomials are (N,µ)-low momentum. The corresponding projection

(60) ΠL
N,µ : Hs,r → Ls,r(N,µ)

is defined as ΠL
N,µ := ΠI where I is the subset of indexes (k, α, β) satisfying (58) (notice

that the exponent i of y plays no role). Finally, given h ∈ Zd, we denote by

Ls,r(N,µ, h) ⊂ Ls,r(N,µ)

the subspace of functions of momentum −ih, i.e. whose monomials satisfy (cf. (44)):

(61) πr(k, α, β) + h = 0 .

By (58), any function in Ls,r(N,µ), c < µ < C, only depends on x, y, wL and therefore

(62) g, g′ ∈ Ls,r(N,µ) =⇒ gg′, {g, g′}, {g, g′}x,y, {g, g′}L do not depend on wH .

Moreover if

(63) |h| ≥ µN3 + κN =⇒ Ls,r(N,µ, h) = 0 .

Definition 8.3. Given N and allowable parameters p = (N, θ, µ, τ) we say that a mono-
mial

(64) m = mk,l,α,β,m,n,σ,σ′ := ei(k,x)ylzαz̄βzσmz
σ′

n

is p = (N, θ, µ, τ)–bilinear if:
1) it satisfies momentum conservation, πr(m) = 0, (44) and:

(65) |k| < N , |r(n)|, |r(m)| > θNτ1 ,
∑
j

|r(j)|(αj + βj) < µN3 .

2) There is an 0 < ` < d so that both m,n have an ` cut with parameters N, θ, µ, τ .

To the high variables m,n of the monomial m we associate the two affine subspaces
A,B associated to their `–cut. By reordering the variables if necessary, we may assume
that A ≺ B and associate to the monomial, or equivalently to the pair m,n, only A.

A monomial which is p bilinear with associated affine space A is also called A, p re-
stricted.

We shall often write m ∈ p− cut to mean that there is an 0 < ` < d so that m has an
` cut with parameters p = (N, θ, µ, τ). If we want to stress the affine space A associated
to the cut we write m ∈ (A, p)− cut.

8For k ∈ Zn, by |k| we always mean the L1 norm
∑

i |ki|. In Zd instead we use the L2 norm.
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Remark 8.4. Note that by momentum conservation and Remark 7.30

0 = |πr(m)|= |σr(m)+σ′r(n)+
∑
j

σ(j)r(j)(αj−βj)+π(k)| ≥ |σm+σ′n|−(2dκ+µN3+κN)

we deduce

(66) |σm+ σ′n| ≤ µN3 + 3dκN.

Thus the monomial m = gzσmz
σ′

n of Formula (64) has g ∈ Ls,r(N,µ, σr(m) + σ′r(n)).

Remark 8.5. Note that under condition 1), in condition 2) it is sufficient to assume that
m,n have a cut with the same parameters N, θ, µ, τ . The fact that the cut is at the same
` follows from Corollary 7.23 since Formula (66) implies Formula (55).

By Theorem 5, for all A, p restricted monomials m with given σm+ σ′n, σ, σ′ we may
deduce r(m)−m from A. By Corollary 7.23 and (66), we deduce

(67) − σσ′A+ σ′(σm+ σ′n) = B.

Note that, by hypothesis, m ∈ Agp, n ∈ Bgp . B in turn fixes r(n) − n and hence the type

of the monomial u(m), defined as

(68) u(m) := u(A, σm+ σ′n, σ, σ′) = σ(r(m)−m) + σ′(r(n)− n),

depends only on the elements A, σm+ σ′n, σ, σ′.

Definition 8.6. Set p = (s, r,N, θ, µ, τ), in Hs,r we consider the space Bp of (N, θ, µ, τ)–

bilinear functions, that is whose monomials are all (N, θ, µ, τ)–bilinear. We call

Πp := Π(N,θ,µ,τ) : Hs,r → Bp
the projection onto this subspace. A function f ∈ Bp is of the form:

(69) f(x, y, z, z̄) =
∑

σ,σ′=±

∑
|r(m)|,|r(n)|>θNτ1 ,

m,n∈p−cut

fσ,σ
′

m,n (x, y, wL)zσmz
σ′

n

with fσ,σ
′

m,n (x, y, wL) ∈ Ls,r(N,µ, σr(m) + σ′r(n)).

By convention we assume fσ,σ
′

m,n (x, y, wL) = fσ
′,σ

n,m (x, y, wL).

Note that, by Definition 8.3, to each element fσ,σ
′

m,n (x, y, w)zσmz
σ′

n is associated an affine
subspace A.

Remark 8.7. Of course, if we take less restrictive parameters θ′, µ′ with θ ≤ θ′, µ′ ≤ µ we
have that the set of (N, θ, µ, τ)–bilinear monomials contains the set of (N, θ′, µ′, τ)–bilinear
monomials. In particular we have, for each s, r:

Π(N,θ′,µ′,τ)Π(N,θ,µ,τ) = Π(N,θ,µ,τ)Π(N,θ′,µ′,τ) = Π(N,θ′,µ′,τ) .

Definition 8.8. Given parameters p and an affine space A ∈ Hp (cf. Definition 7.17),

the space T σ,σ
′

A,p of A, p-restricted Töplitz bilinear functions of signature σ, σ′ is formed by

the functions g ∈ Bp where the coefficients of Formula 69 satisfy:

(70) g =

(A,p)∑
m,n

g(σm+ σ′n)zσmz
σ′

n .
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The apex (A, p), with p = (N, θ, µ, τ), means that the sum is on the A, p–restricted

monomials (cf. 8.3), with bilinear part zσmz
σ′

n . Notice that, by definition of A, p–restricted

monomials, the space T σ,σ
′

A,p is non–zero only if A
N→[vi; pi]` is of codimension ` with 0 <

` < d and p` < µNτ .
For all h = σm+ σ′n we have:

(71) g(h) ∈ Ls,r(N,µ, h+ u(A, h, σ, σ′))

where u(A, h, σ, σ′) is the type, see Formula (68).

Remark 8.9. i) Notice that we have a translation invariance property (which justifies the
name restricted Töplitz). Indeed given A, σ, σ′, h one can choose arbitrarily an element

gσ,σ
′
(A, h) satisfying (71), and use formula (70) to define a function in Bp. One easily

sees that indeed such an expression defines a function in Hs,r.
ii) Note that condition (71) implies that g(sm + σ′n) in (70) has momentum i(σr(m) +
σ′r(n)) hence g has zero momentum (as required).

Finally we define

Definition 8.10. The space Tp of piecewise Töplitz bilinear functions

(72) g =
∑

A∈HN ,σ,σ′=±1

gσ,σ
′
(A), gσ,σ

′
(A) ∈ T σ,σ

′

A,p .

Of particular significance are the piecewise Töplitz diagonal functions

(73) Q(z) =
∑
A∈HN

(A,p)∑
m

Q(A)zmz̄m =
∑
A∈HN

∑
m∈(A,p)−cut

Q(A)zmz̄m ,

in this formula the elements m run over all vectors which have an `-cut with 0 < ` < d
and A is the corresponding affine spaces.

By definition Tp ⊂ Bp is a subspace of the (N, θ, µ, τ) bilinear functions.

Lemma 8.11. Consider f, g ∈ Tp and q ∈ Ls,r(N,µ1, 0), c < µ, µ1 < C. Given any

p′ = (s′, r′, N, θ′, µ′, τ) with s/2 < s′ < s , r/2 < r′ < r, θ′ ≥ θ, µ′ ≤ µ, one has

(74) ΠN,θ′,µ′,τ{f, q}L , ΠN,θ′,µ′,τ{f, q}x,y ∈ Tp′ .

If moreover

(75) κ(µN3 + 3dκN) < (θ′ − θ)N4dτ−1, (µ− µ′)Nτ−1

then

(76) ΠN,θ′,µ′,τ{f, g} = ΠN,θ′,µ′,τ{f, g}H ∈ Tp′ .

Proof. Write f ∈ Tp ⊂ Bp as in (69) where

(77) fσ,σ
′

m,n = fσ,σ
′
(A, σm+σ′n) ∈ Ls,r(N,µ, σm+σ′n+u) = Ls,r(N,µ, σr(m)+σ′r(n)) ,

similarly for g (recall that u = u(A, σm+ σ′n, σ, σ′)), with fσ,σ
′

m,n = fσ
′,σ

n,m .

Proof of (74). Since the variables zσm, zσ
′

n , |r(m)|, |r(n)| > θNτ1 , are high momentum,

{fσ,σ
′
(A, σm+ σ′n)zσmz

σ′

n , q}L = {fσ,σ
′
(A, σm+ σ′n), q}L zσmzσ

′

n .
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The function {fσ,σ′(A, σm + σ′n) , q}L in in Hs′,r′ by (22) and does not depend on wH

by (62). Hence the coefficient of zσmz
σ′

n in ΠN,θ′,µ′{f, q}L is,

ΠL
N,µ′{fσ,σ

′
(A, σm+ σ′n) , q}L ∈ Ls′,r′(N,µ′, σr(m) + σ′r(n))

since πr(q) = 0, πr(f
σ,σ′(A, σm+ σ′n)) = −σr(m)− σ′r(n).

The proof that ΠN,θ′,µ′{f, q}x,y ∈ Ts′,r′,N,θ′,µ′ is analogous.

Proof of (76). A direct computation gives

{f, g}H =
∑

|r(m)|,|r(n)|>θNτ1 ,
m,n∈p−cut

σ,σ′=±∑
pσ,σ

′

m,nz
σ
mz

σ′

n

with

(78) pσ,σ
′

m,n = −2i
∑

l , σ1=±

σ1

(
fσ,σ1

m,l g
−σ1,σ

′

l,n + fσ
′,σ1

n,l g−σ1,σ
l,m

)
,

of course l gives a contribution only if suitably restricted by the bilinearity constraint.
By (62) the coefficient pσ,σ

′

m,n does not depend on wH . Therefore

(79) ΠN,θ′,µ′{f, g}H =
∑

|r(m)|,|r(n)|>θ′Nτ1 , σ,σ′=±

qσ,σ
′

m,nz
σ
mz

σ′

n with qσ,σ
′

m,n := ΠL
N,µ′p

σ,σ′

m,n .

It results qσ,σ
′

m,n ∈ Ls′,r′(N,µ′, σr(m)+σ′r(n)) by (79), (78), and momentum conservation.
It remains to prove the (N, θ′, µ′)-Töplitz property:

(80) qσ,σ
′

m,n = qσ,σ
′(
A, σm+ σ′n

)
for some qσ,σ

′
(A, h) ∈ Ls,r(N,µ′, h+ u)) ,

where A is the affine space associated to the pair m,n (cf. 8.3, 2)).

Let us consider in (78)-(79) the term with m,n fixed and σ = +1, σ′ = −1, σ1 = +1
(the other cases are analogous)

(81) ΠL
N,µ′

∑
l

f+,+
m,l g

−,−
l,n ,

Since by hypothesis f, g ∈ Tp we have that the l that give a contribution have a p-cut

at ` and |r(l)| > θNτ1 . By Remark 8.5 the affine space associated to the cut of l is
A′ = −A + l + m; (while the affine space associated to the cut of n is B = A + n −m).
We may assume without loss of generality that A ≺ B.

We then divide (81) in 3 parts according to the relative position of A′ in the≺ order with
respect to A ≺ B. Note that all these constraints depend only upon A,m− n, j := l+m.
We treat the case A ≺ A′ ≺ B, the other 2 cases are similar.

Since f, g ∈ Tp we have

(82) f+,+
m,l = f+,+

(
A,m+ l

)
∈ Ls,r(N,µ, r(m) + r(l))

(83) g−,−l,n = g−,−
(
A′,−l − n

)
∈ Ls,r(N,µ,−r(l)− r(n)) ,

for all m,n, l which satisfy the bilinearity constraints with parameters p.
By construction m,n satisfy the bilinearity constraints with the more restrictive pa-

rameters p′. Set j := m + l, by formula (66) we have that the elements j, which come

from the elements l which contribute, have |j| < µN3 + 3dκN . On the other hand by
condition (75) we see that these j satisfy:

(84) |j| < κ−1(µ− µ′)Nτ−1, κ−1(θ′ − θ)N4dτ−1.
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thus, by Lemma 7.22 the fact that j satisfies (84) implies that m,n, l satisfy the bilinearity
constraints with parameters p.

Then

ΠL
N,µ′

∑
A≺A′≺B

f+,+
m,l g

−−
l,n

(67)
= ΠL

N,µ′

∑
j∈Zd:|j|<µN3+3dκN
A≺A+j≺A+n−m

f++
(
A, j

)
g−−

(
−A+ j,m− n− j

)
depends only on A and m− n, i.e. (80). �

8.12. Quasi–Töplitz functions. Given f ∈ Hs,r and F ∈ Tp, we define

(85) f̄ = f̄(F) := N4dτ
(
Π(N,θ,µ,τ)f −F

)
,

and for K > N0 set

(86) ‖Xf‖K,θ,µs,r := sup
N,τ:N≥K

p=(s,r,N,θ,µ,τ)

[ inf
F∈Tp

(max(‖XF‖s,r, ‖Xf̄‖s,r))]

Remark 8.13. If we take new parameters K ′, θ′, µ′ with K ≤ K ′, θ ≤ θ′, µ′ ≤ µ we have
by Remark 8.7 that

‖Xf‖K
′,θ′,µ′

s,r ≤ ‖Xf‖K,θ,µs,r .

Definition 8.14. We say that f ∈ Hs,r is quasi- Töplitz of parameters (K, θ, µ) if
‖Xf‖K,θ,µs,r <∞ and we call this number the quasi-Töplitz norm of f .

Remark 8.15. Given f ∈ Hs,r with finite quasi-Töplitz norm and parameters p we say
that a function F ∈ Tp, approximates f at order ε if

(87) ‖XF‖s,r, N4dτ‖XΠ(N,θ,µ,τ)f−F‖s,r < (1 + ε)‖f‖K,θ,µs,r .

Note that by our definitions such approximating functions exist for all allowable parame-
ters p and for all positive ε.

Since in our algorithm we deal with functions which depend in a Lipschitz way on some
parameters ξ ∈ O (a compact set) we take finally a norm which includes also the weighted
Lipschitz norm (cf. (18)) with λ a positive number:

Definition 8.16. We set ~p = (s, r,K, θ, µ, λ,O). We define

(88) ‖Xf‖T~p := max(‖Xf‖K,θ,µs,r , ‖Xf‖λs,r)

We denote by QT~p ⊂ Hs,r the set of functions with finite norm ‖Xf‖T~p .

Remark 8.17. Notice that our definition includes the Töplitz and anti-Töplitz functions,
setting F = Π(N,θ,µ,τ)f and hence f̄ = 0. In the case of Töplitz functions one trivially

has ‖Xf‖T~p = ‖Xf‖λs,r.
The definition includes also functions with fast decay in the coefficients so that, taking

always as Töplitz approximation F = 0, we still have supN N
4dτ‖XΠ(N,θ,µ,τ)f‖λs,r <∞.

8.17.1. Some basic properties. The following Lemmas are proved in [2].

Lemma 8.18. (Projections 1) Set ~p = (s, r,K, θ, µ, λ,O) and p = (s, r,N, θ, µ, τ) with
N ≥ K. Consider a subset of monomials I such that the projection (see (26)) maps

(89) ΠI : Tp → Tp , ∀N ≥ K .

Then ΠI : QT~p → QT~p and

(90) ‖XΠIF ‖T~p ≤ ‖XF ‖T~p , ∀F ∈ QT~p .
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Moreover, if F ∈ QT~p satisfies ΠIF = F , then, ∀N ≥ K, ∀ε > 0, there exists a decomposi-

tion ΠN,θ,µ,τF = F̃ +N−4dτ F̂ with a Töplitz approximation F̃ ∈ Tp satisfying ΠI F̃ = F̃ ,

ΠI F̂ = F̂ and ‖XF̃ ‖s,r, ‖XF̂ ‖s,r < ‖XF ‖T~p + ε.

Lemma 8.19. (Projections 2) For all l ∈ N, K ∈ N, N ≥ K, the projections

(91) Π(l),Π|k|<K ,Πdiag : Tp → Tp .

here Π(l) maps to the space of homogeneous functions of degree l, Πdiag := Π(2)Πk=0.
If F ∈ QT~p then,

(92) ‖XΠ(l)F ‖T~p , ‖XΠ|k|<KF ‖
T
~p , ‖XΠdiagF ‖T~p ≤ ‖XF ‖T~p ,

(93) ‖XF (≤2)‖T~p , ‖XF −XF
(≤2)

|k|<K
‖T~p ≤ ‖XF ‖T~p .

Moreover, ∀ 0 < s′ < s, set ~p ′ := (s′, r,K, θ, µ, λ,O):

(94) ‖XΠ|k|≥KF ‖
T
~p ′ ≤ e−K(s−s′) s

s′
‖XF ‖T~p

Finally, ∀ 0 < r′ < r, set ~p ′ := (s, r′,K, θ, µ, λ,O):

(95) ‖XΠ(l≥D)F ‖T~p ′ ≤ (
r′

r
)D−2‖XF ‖T~p

Lemma 8.20. Let Q(z) =
∑
mQmzmz̄m be a quasi-Töplitz diagonal quadratic function

in the variables z, z̄ with constant coefficients. For all allowable choices of p and ε > 0,
there exists a diagonal quadratic function Q(z) ∈ Tp which approximates Q at order ε:

(96) Q(z) =
∑
A∈Hp

(A,p)∑
m

Q(A)zmz̄m ,

so that setting Q̄(z):
N−4dτ Q̄(z) = Π(N,θ,µ,τ)Q(z)−Q(z) ,

for all m which have a cut at ` with parameters (N, θ, µ, τ) associated to A one has

(97) Qm = Q(A) +N−4dτ Q̄m,

and

(98) |Qm|, |Q(A)|, |Q̄m| ≤ (1 + ε)|XQ|T~p .
For all m,m′ with a cut at ` with parameters (N, θ, µ, τ) associated to A we have

(99) |Qm −Qm′ | ≤ N−4dτ2‖XQ‖T~p .
Proof. Since Q is quasi-Töplitz we may approximate it by a function F ∈ Tp; moreover

since Q is quadratic and diagonal by the previous discussion we may choose F of the same
form.

Hence we can we can find a quadratic and diagonal function Q ∈ Tp so that, with

Q̄ = N4dτ (ΠN,θ,µ,τQ−Q), we have ‖XQ‖r, ‖XQ̄‖r ≤ 2‖XQ‖Tr . To conclude, by Formula
(73), we have that a quadratic, diagonal and piecewise Töplitz Q is of the form (96).

Our last statement is proved by noting that (see (17) for the norm of a vector field)

‖XQ‖2r = 2 sup
‖z‖a,p≤r

∑
h∈Sc

|Qh|2
|zh|2

r2
e2a|h||h|2p ≥ |Qj |2

by evaluating at z
(j)
h := δjhe

−a|j||j|−pr/
√

2. The same holds for Q and Q̄. �
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Corollary 8.21. Let Q be as above. Given parameters p for every A ∈ Hp choose a point

mA ∈ Agp. The the function Q(z) ∈ Tp defined as in formula (96) with Q(A) = QmA is a

Töplitz approximant of order ε = 1 for Q.

9. Poisson bracket

9.1. Poisson bracket estimate. Analytic quasi-Töplitz functions are closed under Pois-
son bracket and respect the Cauchy estimates.

More precisely fix allowable ~p = (s, r,K, θ, µ, λ,O):

Proposition 9.2. (i) Given f (1), f (2) ∈ QT~p , quasi-Töplitz with parameters ~p we have

that {f (1), f (2)} ∈ QT~p ′ , for all allowable parameters ~p ′ := (s′, r′,K ′, θ′, µ′, λ,O), with ~p ′

satisfying :

r/2 < r′ < r, s/2 < s′ < s, 2κ < (µ− µ′)K ′2 , κC < (θ′ − θ)K ′4dτ0−4
,

(100) e−(s−s′)K′K ′
τ1 < 1.

We have the bound

(101) ‖X{f(1),f(2)}‖T~p′ ≤ 12 22n+3δ−1‖Xf(1)‖T~p ‖Xf(2)‖T~p

where δ := min(1− s′

s , 1−
r′

r ) < 1.

(ii) Given f (1), f (2) as in item (i), assume that

(102) 3 22n+8 eδ−1‖Xf(1)‖T~p < 1/2,

then the function f (2) ◦φt
f(1) := et ad(f(1))(f (2)), for |t| ≤ 1, is quasi-Töplitz for the param-

eters ~p ′. More precisely f (2) ◦ φt
f(1) ∈ QT~p ′ for all parameters (K ′, θ′, µ′) for which

(103)

e
−(s−s′) K′

(lnK′)2K ′
τ1 < 1 , 2κ < (µ− µ′)K ′2 ln(K ′)−2 , κC < (θ′ − θ)K ′4dτ0−4

ln(K ′)−2,

Finally we have

(104) ‖Xf(2)◦φt
f(1)
‖T~p ′ ≤ 2‖Xf(2)‖T~p

(105) ‖Xf(2)◦φt
f(1)
−Xf(2)‖T~p ′ ≤ 2‖Xf(1)‖T~p ‖Xf(2)‖T~p

Proof. In order to prove this proposition we need some preliminaries. �

9.3. A technical Lemma. We take allowable parameters p := (N, θ, µ, τ) and p′ :=
(N, θ′, µ′, τ) such that

(106) κC < (θ′ − θ)N4dτ−4 , 2κ < (µ− µ′)N2.

Let us set up some notation. In Definition 8.2 we have introduced the notion of a
monomial m = ei(k,x)ylzαz̄β of low momentum with respect to the parameters p and

denoted by ΠL
N,µ the projection on this subspace. Recall that one of the conditions is also

that |k| < N , that is it has also a low frequency.
We shall say instead that m is of N–high frequency if |k| ≥ N and denote ΠU

N the
projection on this subspace.
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We denote its degree in the high variables to be dH(m). We further set

m(M) :=
∑
|r(j)|(αj + βj), mL(M) :=

∑
j low

|r(j)|(αj + βj).

The projection symbol ΠN,θ,µ,τ is given in definition 8.3.
We use a mixed decomposition f = ΠN,θ,µ,τf + ΠL

N,3µ′f + ΠU
Nf + ΠRf where ΠRf is

by definition the projection on those monomials which are neither (N, θ, µ, τ) bilinear nor
of (N, 3µ′)-low momentum nor of N -high frequency.

We hence divide the Poisson bracket in four terms: {·, ·} = {·, ·}y,x + {·, ·}L + {·, ·}H +
{·, ·}R where the apices identify the variables in which we are performing the derivatives.

We need the following technical lemmas and definitions.

Lemma 9.4. Consider a monomial M = ei〈k,x〉Azσm = ei〈k,x〉yjzαz̄βzσm which, with re-
spect to some allowable parameters p, has |k| < N, m(A) < µN3 + κN . Assume that zm
is a high variable i.e. |r(m)| > cNτ1 . Then M cannot satisfy conservation of momentum.

Proof. If we have conservation of momentum π(k) +
∑
j σ(j)r(j)(αj − βj) + σr(m) = 0.

By the hypothesis and the triangle inequality we have

(107) cNτ1 < |r(m)| ≤ m(A) + κN < µN3 + 2κN < (C + κ)N3

a contradiction to Formula (50). �

In order to simplify the notations let us set Π′ := ΠN,θ′,µ′,τ , Π := ΠN,θ,µ,τ . Assume

f (1), f (2) are two functions satisfying conservation of momentum.

Lemma 9.5. The following splitting formula holds:

(108) Π′{f (1), f (2)} = Π′({Πf (1),Πf (2)}H

+{Πf (1),ΠL
N,3µ′f

(2)}y,x + {Πf (1),ΠL
N,3µ′f

(2)}L

{ΠL
N,3µ′f

(1),Πf (2)}y,x + {ΠL
N,3µ′f

(1),Πf (2)}L+

+{ΠU
Nf

(1), f (2)}+ {f (1),ΠU
Nf

(2)} − {ΠU
Nf

(1),ΠU
Nf

(2)})

Proof. We perform a case analysis: we replace each f (i) with a single monomial to show
which terms may contribute non trivially to the projection Π′{f (1), f (2)}.

Consider the expression

(109) Π′{ei(k
(1),x)yl

(1)

zα
(1)

z̄β
(1)

, ei(k
(2),x)yl

(2)

zα
(2)

z̄β
(2)

}.

If one or both of the |k(i)| > N then one or both monomials are of high frequency and we
obtain a term in the last line of (108).

Suppose now that |k(1)|, |k(2)| ≤ N we wish to understand under which conditions on
the α(i), β(i) the expression (109) is not zero.

For a monomial M := ei(k,x)yazαz̄β if Π′(M) 6= 0 we must have dH(M) = 2 (plus
further conditions). For two monomials M1,M2 we see that each term of {M1,M2} has
as degree dH({M1,M2}) equal to:

i) dH(M1) + dH(M2)− 2 if we have contracted conjugate high variables zσj , z
−σ
j .

ii) dH(M1) + dH(M2) otherwise.

In case i) in order to have Π′{M1,M2} 6= 0 we must have dH(M1) + dH(M2) = 4,
this happens either if a) dH(M1) = dH(M2) = 2 or b) dH(M1) = 1, dH(M2) = 3 (resp.
dH(M1) = 3, dH(M2) = 1). Let us show that, by conservation of momentum, case b)
is not possible. Let us denote by Ai, i = 1, 2 the part of the monomials Mi in the



A KAM ALGORITHM FOR THE NLS 37

variables zh which are not high i.e. M1 = ei(k1,x)ya1A1z
±
j , M2 = ei(k2,x)ya2A2z

∓
j z

σ
mz

σ′

n .

In {M1,M2} the part of the monomial in the variables zh which are not high is A1A2 so,
if Π′{M1,M2} 6= 0 we must have m(A1A2) = m(A1) +m(A2) < µ′N3, we are thus in the
hypotheses of Lemma 9.4 for M1 a contradiction.

In case a) we claim that both monomials M1,M2 are N,µ, θ, τ bilinear, so that this
contribution comes from the first line of (108). For this we only need to verify that, if
zj is the variable we contract, then j has a cut at ` for the parameters N, θ, µ, τ . Write

M1 = ei(k1,x)ya1A1z
±
j z

σ
m, M2 = ei(k2,x)ya2A2z

∓
j z

σ′

n . Since Π′{M1,M2} 6= 0 we have

m(A1)+m(A2) ≤ µ′N3. By conservation of momentum |r(j)±r(m)| ≤ µ′N3 +κN hence
|j ±m| ≤ µ′N3 + κN + 4dκ, using (106) we have

|j ±m| ≤ µ′N3 + κN + 4dκ < µ′N3 + 2κN < µN3.

We have that m has a ` cut for the parameters µ′, θ′, τ and the hypotheses in Formula (54)
of Lemma 7.22 are satisfied, hence j has the cut and we obtain the first term in formula
(108).

In case ii) we can have dH(M1) + dH(M2) = 2 either if a) dH(M1) = 2, dH(M2) = 0
(resp. dH(M1) = 0, dH(M2) = 2) or b) dH(M1) = dH(M2) = 1.

We claim that in case a) we obtain the contributions of lines 2,3 of Formula (108).

In fact say that dH(M1) = 2, dH(M2) = 0 and M1 = ei(k1,x)yaA1z
σ
mz

σ′

n , M2 =
ei(k2,x)ybA2 where Ai do not contain high variables. We have that |ki| < N by hypothesis,
the high variables of M1 have a N,µ′, θ′, τ cut also by hypothesis and so also a N,µ, θ, τ
cut, finally if we contract variables x, y we have m(A1),m(A2) ≤ mL{M1,M2} < µ′N3.
Assume we contract conjugate variables zh which are not high, let Ai = Biz

±
h so that B1B2

is the part of {M1,M2} in the low variables and m(B1)+m(B2) < µ′N3. By conservation
of momentum for M2 we have |r(h)| ≤ m(B2) + κN , hence m(A2) ≤ 2m(B2) + κN <
2µ′N3 + κN . In both cases we deduce that we we obtain the contributions of lines 2,3 of
Formula (108).

Let us show finally that, by conservation of momentum case b) is not possible. We
are now assuming that for instance M1 = ei(k1,x)ya1B1zhz

±
m with zm high while zh not

high, hence |r(h)| ≤ cNτ1 and m(B1) < µ′N3. We have m(B1zh) ≤ µ′N3 + cNτ1 . So by
conservation of momentum we have.

θ′Nτ1 < |r(m)| ≤ m(B1) + |r(h)|+ κN < µ′N3 + θNτ1 + κN

which implies (θ′ − θ)Nτ1 < µ′N3 + κN contradicting (106). �

9.6. The proof of Proposition 9.2. We use all the notations and hypotheses of 9.2.
We can first use the standard estimates (22) and obtain

(110) ‖X{f(1),f(2)}‖λs′,r′ < 22n+3δ−1‖Xf(1)‖λs,r‖Xf(2)‖λs,r ≤ 22n+3δ−1‖Xf(1)‖T~p ‖Xf(2)‖T~p ,

here δ is defined in (23).

Since the allowable parameters K ′, θ′, µ′ satisfy (100) we have that N, θ′, µ′, τ satisfy
(106) for all N > K ′, τ ≥ τ0. In order to show that {f (1), f (2)} is quasi–Töplitz (with
respect to the chosen parameters), it is enough to provide, for all N > K ′ and the allowable
parameters p′ := (N, θ′, µ′, τ) a decomposition

Π′{f (1), f (2)} = ΠN,θ′,µ′,τ{f (1), f (2)} = F (1,2) +N−4dτ f̄ (1,2)

so that F (1,2) ∈ Tp′ and also

(111) ‖XF(1,2)‖s′,r′ , ‖Xf̄(1,2)‖s′,r′ < 12 22n+3δ−1‖Xf(1)‖Ts,r‖Xf(1)‖Ts,r.
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For ε > 0 take F (i) ∈ Tp, p = (s, r,N, θ, µ, τ) so that setting

(112) f̄ (i) := N4dτ
(
Π(N,θ,µ,τ)f

(i) −F (i)
)
,

we have

(113) max(‖XF(i)‖s,r, ‖Xf̄(i)‖s,r)) < ‖Xf(i)‖T~p + ε.

We thus define the function

F (1,2) := ΠN,θ′,µ′,τ

(
{F (1),F (2)}H +{F (1),ΠL

N,3µ′f
(2)}(y,x)+L+{ΠL

N,3µ′f
(1),F (2)}(y,x)+L

)
where we have denoted {·, ·}(y,x)+L = {·, ·}(y,x) + {·, ·}L. We need to show that it satisfies
the required conditions.

Lemma 9.7. (i) One has F (1,2) ∈ Tp′ .
(ii) Setting f̄ (1,2) = N4dτ (Π′{f (1), f (2)} − F (1,2)) one has that the bounds (111) hold.

Proof. (i) The constraints (74) are satisfied and we just apply Lemma 8.11.
(ii) The estimate (111) for F (1,2) follows by Cauchy estimates since

‖XF(1,2)‖s′,r′ ≤ ‖X{F(1),F(2)}‖s′,r′ + ‖X{F(1),f(2)}‖s′,r′ + ‖X{F(2),f(1)}‖s′,r′

≤ 22n+3δ−1
[
‖XF(1)‖r,s‖XF(2)‖r,s + ‖XF(1)‖r,s‖Xf(2)‖r,s + ‖Xf(1)‖r,s‖XF(2)‖r,s

]
≤ 3 22n+3δ−1‖Xf(1)‖T~p ‖Xf(2)‖T~p .

We now estimate ‖Xf̄(1,2)‖s′,r′ . We have f̄ (1,2) =

N4dτΠ′({f (1), f (2)}−{F (1),F (2)}H−{F (1),ΠL
N,3µ′f

(2)}(y,x)+L−{ΠL
N,3µ′f

(1),F (2)}(y,x)+L)

We substitute in formula (108) Πpf
(i) = F (i) +N−4dτ f̄ (i).

Thus f̄ (1,2) = Π′(Ξ) with

(114) Ξ =
[
{F (1) +N−4dτ f̄ (1), f̄ (2)}H+{f̄ (1)),F (2) +N−4dτ f̄ (2)}H+N−4dτ{f̄ (1), f̄ (2)}H

+{f̄ (1),ΠL
N,3µ′f

(2)}y,x+L + {ΠL
N,3µ′f

(1), f̄ (2))}y,x+L

+N4dτ
[
{ΠU

Nf
(1), f (2)}+ {f (1),ΠU

Nf
(2)} − {ΠU

Nf
(1),ΠU

Nf
(2)}
]

In order to estimate the norm ‖Xf̄(1,2)‖s′,r′ we estimate the norm ‖XΞ‖s′,r′ .
If we have chosen ε sufficiently small in Formula (113) the first two lines of Ξ can be

estimated by 9 22n+3δ−1‖Xf(1)‖T~p ‖Xf(2)‖T~p and the last by the smoothing estimates (27).

‖XΠUNf
‖s′,r′ ≤ 2e−N(s−s′)‖Xf‖s,r,

‖X{ΠUNf(1),f(2)}+{f(1),ΠUNf
(2)}‖s′,r′ ≤ 8 22n+3e−N(s−s′)δ−1‖Xf(1)‖s,r‖Xf(2)‖s,r.

Since by (100) N4dτe−N(s−s′) < 1, the estimate (111) follows. �

Proof. Conclusion of the proof of (proposition 9.2) Proposition 9.2(i) follows from the
previous Lemma. The proof of (ii) is identical to that of Proposition 5 (ii) of [24]. �
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Part 3. The KAM algorithm

10. An abstract KAM theorem

The starting point for our KAM Theorem is a class of Hamiltonians H, variation of
the Hamiltonians considered in [24]:

(115) H := N + P , P = P (x, y, z, z̄, ξ).

N := (ω(ξ), y) +
∑
k∈Scr

Ωk(ξ)|zk|2 +
∑

(h,k)∈Sci

ah,k(|zh|2 − |zk|2) + bh,k(zhzk + z̄hz̄k),

defined in D(s, r)×O, where we take O ⊆ ε2Kα a compact domain of diameter of order
ε2 contained in one of the components of Theorem 4 and subject to the restriction given
in Remark 6.6. The functions ω(ξ),Ωn(ξ), ah,k, bh,k are well defined for ξ ∈ O. In our
examples the set Sci of complex eigenvalues or hyperbolic terms is finite.

It is well known that, for each ξ ∈ O, the Hamiltonian equations of motion for the
unperturbed N admit the special solutions (x, 0, 0, 0)→ (x+ω(ξ)t, 0, 0, 0) that correspond
to invariant tori in the phase space.

Our aim is to prove that, under suitable hypotheses, there is a set O∞ ⊂ O of positive
Lebesgue measure, so that, for all ξ ∈ O∞ the Hamiltonians H still admit invariant tori
(close to the ones of the unperturbed system) with some frequency ω∞(ξ) (close to ω(ξ)).

Given a value ξ of the parameters we have the torus given by the equations y = z = 0. If
the Hamiltonian vector field XH of a Hamiltonian H is tangent to this torus, and if on this

torus it coincides with
∑n
i=1 ω

∞
i (ξ)

∂

∂xi
then the Hamiltonian evolution is quasi–periodic

on this torus, which is called a KAM torus for H.
This condition depends only on the terms H≤2 of H of degree ≤ 2. Denote by H(i,j)

the part of degree 2i in y and j in z, recall that we give degree 0 to the angles x, 2 to y
and 1 to w.:

(116) H≤2 = H0(x) +H0,1(x;w) +H2(x; y, w), H2(x; y, w) = H1,0(x; y) +H0,2(x;w)

For a value ξ giving a KAM torus for H we have that the term H0 must be constant (and
we usually drop it), the term H(0,1) = 0 and finally H(1,0) =

∑n
i=1 ω

∞
i (ξ)yi (there is no

condition on H0,2(x;w)).
Therefore our goal is to find a change of variables (possibly in a smaller domain) so that

we have a large set O∞ of parameters defining KAM tori for H. The precise statement is
contained in Theorem 6.

We start by describing the class of Hamiltonians to which the method applies.

10.1. Compatible Hamiltonians. We consider a class of Hamiltonians stable under
the KAM algorithm.

In the construction there will appear parameters

p = (r, s,K, θ, µ,O, a, S0,M,L), (ε, γ, Θ̄)

playing different roles, where O ⊂ ε2Kα is a compact set of positive measure (of order ε2n)
while all the others are positive numbers such that K > N0 will play the role of a frequency
cut and will grow to ∞ in the recursive algorithm, γ < 1 is an auxiliary parameter which
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we fix at the end of the algorithm and should be thought of as of order smaller than ε2

but larger of the order of the perturbation, and 9:

(µ− c)Kτ0 , (C− θ)K4dτ0 > κK4,

(117) γ ≤ 2ε2M < 1/6 , (8Mε2)−1 > S0 > 4
√
nML , a ≤M , LM < 4.

Recall that κ = max(|ji|) and see (50) for the definition of N0, c, C, τ0.

We consider Hamiltonians, defined in D(s, r)×O, of the form:

(118) H := N + P, N := (ω(ξ), y) +
∑
k∈Scr

Ωk(ξ)|zk|2 + C, P = P (x, y, z, z̄, ξ),

C =
∑

(h,k)∈Sci

ah,k(|zh|2 − |zk|2) + bh,k(zhzk + z̄hz̄k), (ω(ξ), y) =

n∑
i=1

ωi(ξ)yi.

We also may use for the complex eigenvalues the complex coordinates, as explained in
§5.4.1. In that case unless there is a risk of confusion we may write the Hamiltonian in
full diagonal form N := (ω(ξ), y) +

∑
k∈Sc Ωk(ξ)|zk|2 with the understanding that finitely

many zk are complex coordinates which come in pairs and that the corresponding Ωk(ξ)
are complex and in conjugate pairs.

Definition 10.2. We say that a Hamiltonian (118) is compatible with the parameters p
if the following conditions (A1)–(A5) are satisfied:

(A1) Non–degeneracy: The map ξ → ω(ξ) is a lipeomorphism10 from O to its image
with |ω−1|lip∞ ≤ L. Setting vi := |ji|2, for i = 1, . . . , n we have |ω(ξ)− v|∞ ≤Mε2.

(A2) Asymptotics of normal frequency: For all n ∈ Sc we have a decomposition:

(119) Ωn(ξ) = σ(n)(|r(n)|2 + 2ϑn(ξ)) + Ω̃n(ξ).

We assume that the ϑn(ξ) are chosen in a finite list of analytic functions which are

homogeneous of degree one in ξ, moreover the Ω̃ := {Ω̃n}n∈Sc are Lipschitz functions
from O → l∞ with11

(120) |ω|lip∞ + |Ω|lip∞ ≤M and 2|ϑ|lip∞ ≤M , 2|ϑ|∞ ≤Mε2 .

(A3) Regularity and Quasi–Töplitz property: the functions P , ϑ(z) :=
∑
j ϑj |zj |2 and

Ω̃(z) :=
∑
j Ω̃j |zj |2 are M–regular, preserve momentum as in (44), are Lipschitz in the

parameters ξ and quasi-Töplitz with parameters (K, θ, µ) (cf. Definition 8.14). Moreover
for all N ≥ K, τ0 ≤ τ ≤ τ1/4d we have Π(N,θ,µ,τ)

∑
j ϑj |zj |2 ∈ T(N,θ,µ,τ).

We need to control the norms of the above functions, we use the free parameter γ,
whose purpose is to estimate the measure of the various Cantor sets which will appear,
and set ~p = (s, r,K, θ, µ, λ = γM−1,O).

We define:

(121) γ−1‖XP (i)‖T~p := ε(i), i = 0, 1, 2 , ~ε = (ε(0), ε(1), ε(2)), γ−1‖XP ‖T~p := Θ .

We require that

9note that the condition LM < 4 is added only in order to simplify notations, any ε2, r,K independent

constat would be acceptable.
10in our applications all maps will actually be analytic
11recall that on Rn we use the l∞ norm.
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(A4) Smallness condition:12

(122) Θ < 1 , γ−1‖XΩ̃‖
T
~p < 1 , 22n+15|~ε|K4dτ1 < 1.

Note that the definition of Töplitz norm for diagonal matrices and (122) imply

(123) |Ω̃|∞ ≤ ‖XΩ̃‖
T
~p < γ ≤ 2Mε2.

We note moreover that from condition (A3) and by Remarks 8.17,3.4, we have that

‖Xϑ(z)‖T~p = ‖Xϑ(z)‖λs,r = |ϑ|∞ + λ|ϑ|lip∞ = |ϑ|∞ + γM−1|ϑ|lip∞ .

Then (117) and (120) imply ‖Xϑ(z)‖T~p < 2Mε2.

(A5) Non–degeneracy (Melnikov conditions): We denote by ∆ξ,%f = |f(ξ)−f(%ξ)|
(1−%)|ξ| the

variation of f in the radial direction:

(124) inf
%∈R+, ξ∈O
% 6=1, %ξ∈O

|∆ξ,%(〈ω, k〉+Ω·l)| > a , ∀k ∈ Zn, l ∈ ZS
c

, |l| ≤ 2 , |k| ≤ S0 , (k, l) 6= 0 ,

for all (k, l) compatible with momentum conservation and such that, setting V := (Vn)n∈Sc ,
with Vn := σ(n)|r(n)|2, one has (see (A1)):

(125) 〈v, k〉+ V · l = 0.

Observe that 〈v, k〉+ V · l ∈ Z.

Remark 10.3. If H is compatible with the parameters p it is also compatible with all
choices of parameters p′ where

s′ ≤ s , r′ ≤ r , K ′ ≥ K , O′ ⊆ O ,

provided that (122) still holds.

In working with the cubic NLS we will also have (at the first step of the algorithm):

(A2∗) Homogeneity: The functions ω(ξ) − v,Ωm − σ(m)|r(m)|2 are analytic and ho-
mogeneous of degree 1.

Remark 10.4. By the homogeneity of ω(ξ) and ϑ we may easily see that M,L, a can be
taken ε independent. These 3 paramters will remain bounded away from 0,∞ in the
course of the algorithm. If the condition (A2∗) were that the functions are homogeneous
of degree q > 1 then we would only have ML,Ma−1 as ε independent constants.

12by |~ε| := |ε(0)| + |ε(1)| + |ε(2)| we mean its L1 norm note that |~ε| < 3Θ.
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10.4.1. Infinite dimensional KAM theorem. Now we state our infinite dimensional KAM
theorem. We use the symbol l to mean that we have ≤ cost where cost depends only on
n, d, κ. We use the same symbols ∗ as in the previous paragraph but with a ∗0.

Theorem 6. Assume that a Hamiltonian N0 +P0 in (118) is compatible with the param-
eters p0 = (r0, s0,K0, θ0, µ0,O0 = ε2Kα, a0, S0,M0, L0), i.e. satisfies (A1 − A5), (A2∗),
and that:

(126) c ≤ µ0

2
, C ≥ 2θ0 , M0L0 = 2 , S0 = 8

√
nM0L0 = 16

√
n

and that K0 is sufficiently large (depending only on the remaining parameters p0).
There exists 0 < Θ̄ < 1 and a positive constant B := B(K0) such that if furthermore

Θ0 < Θ̄ (cf. (121)) and for all γ such that Bε2(n−1)γ < |O0|a0, we may construct:

• (Frequencies) Lipschitz functions ω∞ : O0 → Rn, Ω(∞) : O0 → `∞, satisfying

(127) |ω∞ − ω0|λ , |Ω(∞) − Ω(0)|λ∞ ≤ γ|~ε0|Θ̄−1

where ~ε0 is defined by Formula (121) and |ω∞|lip, |Ω(∞)|lip∞ ≤ 2M0.

• (Cantor set) A Cantor set O∞

(128) |O0 \ O∞| ≤ Bε2(n−1) γ

a0
,

the smallness condition on γ ensures that O∞ has positive Lebesgue measure.

• (KAM normal form) A Lipschitz family of analytic symplectic maps

(129) Φ : D(s/4, r/4)×O∞ 7→ D(s, r)

of the form Φ = I + Ψ with ‖Ψ‖r/4,s/4 l |~ε0|, where O∞ is defined in the previous item,
such that,

(130) H∞(·; ξ) := H ◦ Φ(·; ξ) = ω∞(ξ)y∞ + Ω(∞)(ξ)z∞z̄∞ + P∞ has P∞≤2 = 0.

Formula (130) tells us that the final Hamiltonian has invariant KAM tori parametrized
by ξ ∈ O∞.

Remark 10.5. We will use the freedom given by Remark 10.3 to choose K0 large enough
so that some necessary bounds, which appear in the proof, hold.

It is important to notice that all the conditions which we shall impose on K are inde-
pendent of r0 and O0.

Theorem 6 is proved by an iterative procedure, which occupies the rest of this long
section. We produce a sequence of Hamiltonians Hν = Nν+Pν , each of these Hamiltonians
will satisfy the properties (A*) of Section 10.1 for suitable parameters pν .

In particular for the compact sets Oν and for the domains D(sν , rν) we have the
telescoping Oν ⊂ Oν−1, D(sν , rν) ⊂ D(sν−1, rν−1).

We set O∞ = ∩νOν , D(s∞, r∞) = ∩νD(sν , rν) and the construction will be such that
O∞ has positive measure while s∞ = s/4, r∞ = r/4.

We have a sequence of symplectic transformations Φν : Hν−1 := Hν , where Φν is the
value at 1 of the flow generated by the Hamiltonian vector field XFν−1 associated to the
generating function Fν−1 determined as the unique solution of the Homological equation,

and depending on P≤2
ν−1. The transformation is well defined on the domain D(sν , rν)×Oν ,
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with D(sν , rν) ⊂ D(sν−1, rν−1). At each step, the perturbation remains bounded while
the part P≤2

ν becomes smaller. We also denote D(sν , rν) = Dν . The Töpliz norm of a
function G defined on Dν ×Oν and relative to the parameters extracted from the pν will
be denoted by ‖G‖ν .

The goal is to pass to a limit Hamiltonian H∞ = N∞ + P∞ with the property that
P≤2
∞ = 0 so that the Hamiltonian vector field on the family of tori parametrized by the

parameters ξ ∈ O∞, where the normal coordinates are 0, coincides with the Hamiltonian
vector field of N∞.

The relevant estimates to be performed are the following.

• We have to estimate the norm of each Fν−1 so to make sure that the value Φ1
ν−1

at 1 of the flow generated by the Hamiltonian vector field XFν−1
is well defined

on Dν ×Oν .
Here the problem is that of small denominators since we have to divide by

eigenvalues. Here the quasi-Töpliz properties play a major role and the key is
Proposition 10.16.

• While we establish the previous item we have to estimate the measure of the set
Oν , Lemma 10.12.

• We have to perform all the estimates on the new parameters pν , this is done in
§10.17.

• We have to estimate the norm of the part P≤2
ν , for this we have to control simul-

taneously the three parts in which it naturally decomposes.
• We need to prove that the set O∞ has positive measure, Corollary 10.21.
• We need to prove that on the set O∞ we have a limit change of coordinates Φ1

∞
giving rise to the limit Hamiltonian 10.21.

Warning In order for this Theorem to give a non–empty statement we need to have
conditions which ensure that the constraints on γ can be satisfied. These constraints
amount to a smallness condition on the perturbation, (cf. Theorem 7). In the applications
to the NLS this condition is satisfied by suitably restricting the domain of definition of
H.

10.6. KAM step.

10.6.1. Formal KAM step. The input of a KAM step is a Hamiltonian H of the previous
form with parameters p. Of particular relevance is the parameter K ≥ K0 which gives a
frequency cut. The output must produce a new Hamiltonian H+ of the previous form with
parameters p

+
. Thus we need to start from a subset O+ ⊂ O of the parameters ξ, two

new values for the radii of the domain s+ ≤ s, r+ ≤ r and a symplectic transformation Ψ :
D(s+, r+)×O+ → D(s, r) of type Ψ = ead(F ), so that finally we have a new Hamiltonian
H+ = H ◦ Ψ which we expect to be a simplified version of H by evaluating the new
parameters p

+
. After iterating infinitely many times the KAM step, we hope to arrive

at the desired final Hamiltonian which shows the existence of quasi–periodic orbits as in
Theorem 6.

The function F is obtained by solving the homological equations. In order to explain
this it will be convenient to write explicitly the terms of P (2)(x, y, w):

P (1)(x;w) =
∑

m∈Sc, σ=±, k

P
(1)
k,m,σe

i(k,x)zσm



44 M. PROCESI*, AND C. PROCESI**.

P (0)(x) =
∑
k

P
(0,0)
k ei(k,x) , P (1,0)(x; y) =

∑
k

P
(1,0)
k · yei(k,x),

P (0,2)(x;w) =
∑

n,m∈Sc , σ,σ′=± , k

P
(0,2)
k,m,σ,n,σ′e

i(k,x)zσmz
σ′

n

Only those terms which satisfy conservation of mass and momentum may appear. We set

(131) [P≤2] = (P
(1,0)
0 , y) +

∑
m∈Scr

P
(0,2)
0,m,+,m,−|zm|2 + P.

Where P is diagonal only in the complex notation and arises from the term C of the
normal form N (see (118)).

On the space of quadratic Hamiltonians ad(N ) has a basis of eigenvectors described
in §6.4. On the space relative to the non-zero eigenvalues ad(N ) is formally invertible,
hence for those ξ for which the Melnikov resonances do not occur, [P≤2] is the projection

of P≤2
≤K on the kernel of ad(N ). We define

(132) F := ad(N )−1(P≤2
≤K − [P≤2]) =⇒ ad(F )N = [P≤2]− P≤2

≤K

and since ad(N )−1 is diagonal (at least in complex coordinates) this definition can be
given degree by degree, thus defining F 0, F (1), F (2). Notice that even if we use complex
coordinates F is always real.

10.6.2. Estimates. Formula (132) defines F as a formal expression. We now impose a
lower bound on the eigenvalues of ad(N ) on the space of functions of degree ≤ 2 which
implies that F is analytic. Let us restrict our attention, for instance, to the set O′ of
ξ ∈ O such that: for all k ∈ Zn, |k| ≤ K and l ∈ ZSc , |l| ≤ 2 which satisfy momentum
conservation, we have

(133) |〈ω, k〉+ (l,Ω)| ≥ γK−2dτ1 .

Lemma 10.7. We have:

(134) ‖XF i‖λs,r,O′ ≤ K2dτ1γ−1‖XP i‖λs,r,O , i = 0, 1, 2 .

Proof. We first notice that (133) implies that P≤2
≤K − [P≤2] is a sum of eigenvectors of

ad(N ) with eigenvalues bounded from below (in absolute value) by γK−2dτ1 , therefore
since we are using the Majorant norm we have

‖XF i‖λs,r ≤ K2dτ1γ−1‖XP (i)−[P (i)]‖λs,r ≤ K2dτ1γ−1‖XP (i)‖λs,r , i = 0, 1, 2.

�

Then by Proposition 3.3 F defines a symplectic transformation e(ad(F )) on a domain
D(s′, r′) × O′, since by (122) the condition 22n+3eδ−1‖XF ‖s′,r′ < 1 holds for a suitable
choice of s′, r′ and possibly restricting to a subset O′ of the parameters. More precisely
in the next paragraph we will define a set O+ ⊂ O (see Definition 10.10) and show in
Lemma 10.12 that, provided γ is sufficiently small, this set has positive measure. On this
set we shall prove in Proposition 10.13 that the inequalities (133) hold. In order to iterate
this procedure we need to be sure that F is quasi-Töplitz and estimate its norm, this
will be proved in Proposition 10.16. So for the procedure to succeed we need that the
perturbation P (i), i ≤ 2 be rather small.
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10.7.1. KAM step. For simplicity, below we always use the same symbol cost to denote
constants independent on the iteration and on the parameters of the Hamiltonian.

We now start from a Hamiltonian in the class of Definition 10.2 and describe a procedure
which produces a change of variables under which the Hamiltonian is still in the same
class with new parameters which we estimate explicitly.

KAM Step 1. (1) We Define in 10.10, a compact set O+ ⊂ O such that

(135) |O \ O+| ≤ Γ
γ

a
ε2(n−1)K−τ0+n+d/2,

where Γ is a constant depending only on n, d, κ.
(2) We construct, by Formula (132), the function F . We prove in Proposition 10.16

that F is quasi-Töplitz with parameters K, θ, µ for all ξ ∈ O+.
For all positive numbers r+ < r and s+ < s for which:

(136) 22n+14(min(1− r+

r
, 1− s+

s
))−1|~ε|K4dτ1 <

1

2
,

we show that F generates a 1–parameter group of analytic symplectic transformations
ΦtF : D(s+, r+)→ D(s, r), well defined for all t, |t| ≤ 1 and for all ξ ∈ O+.

(3) Applying Proposition 9.2 ii) with p′  p+ = (N+, µ+, θ+, s+, r+) we show that

Φ1
FH := H+ = N++P+ is quasi-Töplitz for all choices of parameters K+, θ+, µ+ satisfying

(103).

Remark 10.8. In order to make sure that O+ is non–empty we need the corresponding
constant B = ΓK−τ0+n+d/2 should satisfy Bε2(n−1)γ < |O|a which we shall satisfy by
imposing a smallness condition on γ since K ≥ K0.

The core of the construction is to compute the parameters M+, L+, a+, see (165), and
Θ+,~ε+, see (169) relative to the new Hamiltonian. The iterative KAM algorithm is based
on the fact that if Θ̄ in Theorem 6 is small enough then H+ is compatible with the
parameters ~p+ and respects the smallness condition (A3∗), so one may iterate the step.

10.9. The set O+.

Definition 10.10. O+ = O+,γ is defined to be the subset of ξ ∈ O where the following
Melnikov non–resonance conditions are satisfied:

i) For all k ∈ Zn, |k| ≤ K and h ∈ Z, so that (h, k) 6= (0, 0):

(137) |〈ω(ξ), k〉+ h| ≥ 2γK−τ0 .

ii) For all k ∈ Zn, |k| ≤ K, m ∈ Sc, with π(k)± r(m) = 0:

(138) |〈ω(ξ), k〉 ± Ωm| ≥ 2γK−τ0 .

iii) For all |k| ≤ K,m, n ∈ Sc such that min(|r(m)|, |r(n)|) ≤ CKτ1 and π(k)±(r(m)+
σr(n)) = 0 with σ = ±1:

(139) |〈ω(ξ), k〉 ± (Ωm + σΩn)| ≥ 2γK−2dτ1 .

For all |k| ≤ K,m, n ∈ Sc |r(m)|, |r(n)| > CKτ1 and π(k)± (r(m) + r(n)) = 0

(140) |〈ω(ξ), k〉 ± (Ωm + Ωn)| ≥ 2γK−2dτ1

iv) For all affine spaces A = [vi, pi]` in HK (1 ≤ ` < d) with p` < cKτ1/4d we choose
a point mA ∈ [vi; pi]

g
` with |r(mA)| > CKτ1 . For all such mA and for all k such

that |k| ≤ K, we require:

(141) |〈ω(ξ), k〉+ ΩmA − Ωn̄| ≥ 2γmin(K−2dτ0 , c2dp−2d
` ),
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for all n̄ such that r(n̄) = r(mA) + π(k).

In order to analyze O+ we need a first Lemma for the measure estimates. We define

Rτk,l :=
{
ξ ∈ O| |〈ω, k〉+ (l,Ω)| < γK−τ

}
, l ∈ ZS

c

.

Lemma 10.11. For all (k, l) 6= (0, 0) |k| ≤ K and |l| ≤ 2, which satisfy momentum
conservation, one has

(142) |Rτk,l|l
γ

a
ε2(n−1)K−τ .

Proof. Let us first state a general fact. Let f be a Lipschitz function on the domain
O ⊂ ε2K such that

|f(x, ξ2, . . . , ξn)− f(y, ξ2, . . . , ξn)| > a|x− y|

for all x 6= y such that (x, ξ2, . . . , ξn), (y, ξ2, . . . , ξn) ∈ O.
We consider the map F : ξ 7→ (f(ξ), ξ2, . . . , ξn) which maps O bijectively to some set

B. F is a lipeomorphism and its inverse has Lipschitz constant < max(1, a−1). In B, f
is a coordinate and the level surfaces of f are contained in a hypercube of volume ε2(n−1)

therefore the volume of the set where |f | < c can be estimated by 2ε2(n−1)c hence on
O it can be estimated by 2a−1ε2(n−1)c. A similar argument is valid if we work in polar
coordinates, x, y are radii and the other ξi coordinates on the unit sphere.

If |k| ≤ S0, we have assumed that, for all functions fk,l(ξ) = 〈ω, k〉 + (l,Ω(ξ)) which
satisfy (125) we have infξ 6=η∈O |∆ξ,%fk,l| > a. So we may apply the previous argument.

If, on the other hand, fk,l does not satisfy (125) (but |k| ≤ S0) then we may write

fk,l(ξ) = n + Fk,l(ξ),

where n is the non–zero integer computed in (125) and

|Fk,l| ≤ |〈ω(ξ)− v, k〉|+ 4 sup
n
|ϑn(ξ)|+ 2|Ω̃|∞,

by hypothesis |k| < S0 (in particular S0 > 1) while 2|ϑ|∞, |ω − v|∞ ≤ Mε2. So, by
(123) and (117), we have |fk,l| ≥ |n| − (S0 + 4)Mε2 > 1

2 and we may deduce that Rτk,l is

empty. Finally if |k| ≥ S0 then we change the variables form ξ to ω and study Gk,l(ω) :=
〈ω, k〉 + (Ω(ξ(ω)), l). Let ek be the versor of k, we may perform an orthogonal change
of variables in ω so that ek is the first vector in the standard basis. Then the Lipschitz
norm of 〈ω, k〉 is the absolute value of the vector k which can be bounded below by
|k|√
n
≥ S0√

n
> 4ML. Then we repeat our argument with respect to ω, indeed

|(Ω(ξ(ω)), l)|lip∞ ≤ |Ω(ξ)|lip∞ |ω−1|lip∞ ≤ML

so that

|Gk,l(x, ω2, . . . , ωn)−Gk,l(y, ω2, . . . , ωn)

x− y
| > 4ML−ML = 3ML ,

for all vectors (x, ω2, . . . , ωn) 6= (y, ω2, . . . , ωn) in ω(O). Thus the volume of the set
where |Gk,l(ω)| < c can be estimated by (ML)−1(Mε2)(n−1)c. The corresponding volume

in the space of the parameters ξ is therefore estimated by Ln(ML)−1(Mε2)(n−1)c =
(LM)n−1M−1ε2(n−1)c. Since by (117) ML < 4,M > a the estimate follows. �

Lemma 10.12. The set O+ is compact and one has

(143) |O \ O+| ≤ Γ
γ

a
ε2(n−1)K−τ0+n+d+1.
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Proof. Since k runs on a finite set the functions |〈ω(ξ), k〉| are bounded on O, hence the
first formula (137) is satisfied for |h| large, for instance |h| > 2|ω|∞K. So (137) is actually
implied by a finite number of inequalities.

Formulas (138) and (139) are a finite number of inequalities by definition. Formula
(140) is a priori an infinite list of inequalities, we note however that |(ω, k)±(Ωm+Ωn)| >
|ω|∞K is large when |Ωm + Ωn| > 2|ω|∞K.

Next Ωm has an integral part σ(m)|r(m)|2, but σ(m) = 1 as soon as |r(m)| > CKτ1 .
This implies that Ωm + Ωn is large, and hence no condition is imposed, except possibly
for finitely many values of m,n. Finally (141) is given only for finitely many elements; in
fact in iv), for each [vi, pi]

g
` and k, we impose only a fixed finite number of condition by

choosing a point mA and a type u = r(n̄) − n̄ ∈ Z. Finally by Remark 7.8 there are a
finite number of [vi, pi]

g
` . Thus O+ is compact.

Let us prove the measure estimates. By definition O+ is obtained from O by removing a
finite list of strips Rτpp where p runs in a suitable set of pairs k, l. For a given set of indices
I denote by RτI := ∪p∈IRτp and, by Lemma 10.11, we estimate |RτI | ≤ |I|γa−1ε2(n−1)K−τ .
The Lemma will thus follow from an estimate on the cardinality of I for the various cases
considered.

Recall that the elements m ∈ Zd with σ(m) = −1 are a finite set of some cardinality
depending only on κ, n similarly their norm can be bounded by some κ̄ of the order of
κ2. By Hypothesis (A1), |ω|∞ < κ2 + 1, and we may assume that K is large so that

κ̄ ≤
√

2(κ2 + 1)K.

i) Is previously remarked we have to impose (137) with |h| ≤ |ω|∞K ≤ (κ2 + 1)K we
have:

I0 := {(k, h) |, |k| ≤ K , |h| ≤ (κ2 + 1)K}, |I0| ≤ (κ2 + 1))(2K)n+1

|RτI0 |l ε2(n−1)γa−1K−τ0+n+1.

ii) In (138), by momentum conservation l = ±em implies that ±r(m) = −π(k). Hence
to impose (138) we have to remove the list indexed by I1:

I1 := {(k, l) |, |k| ≤ K , l = ±em, ∃u ∈ Z : m+ u = ∓π(k)} , |I1| ≤ (2K)nd.

|RτI1 |l ε2(n−1)γa−1K−τ0+n+1.

iii) If l = ±(em + en) and σ(m) = σ(n) = 1, the index (k, l) can contribute only if we
have the condition

| ± 〈ω, k〉+ |r(m)|2 + |r(n)|2 + 2ϑm + 2ϑn + Ω̃m + Ω̃n| <
1

2
.

From (120) and (123) this condition implies | ± 〈ω, k〉 + |r(m)|2 + |r(n)|2| < 1 hence
|r(m)|2 + |r(n)|2 < 2|ω|∞K. Setting

I2 := {(k, l) |, |k| ≤ K , l = ±(em + en) , |r(m)| ≤
√

2(κ2 + 1)K ,

∃u, v ∈ Z : m+ n+ v + u = ∓π(k)},

|I2| < (2
√

2(κ2 + 1)K + 1)dd2, |RτI2 |l ε2(n−1)γa−1K−τ0+n+d/2.

iv) Setting

I3 := {(k, l) |, |k| ≤ K , l = em − en , |r(m)| ≤ CKτ1 , ∃u, v ∈ Z : m− n+ u− v = ∓π(k)}

One has

|I3|l Kdτ1+n =⇒ |R2dτ1
I3
|l γa−1ε2(n−1)K−dτ1+n.
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v) To deal with the last case, for all affine subspaces [vi; pi]` ∈ HK with p` ≤ CK
τ1
4d , for

all |k| ≤ K and for all types u ∈ Z we set n̄ = r(m) + u+ π(k) and define

Rk,[vi;pi]`,u := {ξ | |〈ω, k〉+ ΩmI − Ωn̄| < 2γmin(K−2dτ0 , c2dp−2d
` )}(144)

Following Lemma 10.11, |Rk,[vi;pi]`,u|l γa−1ε2(n−1) min(K−2dτ0 , c2dp−2d
` ).

We distinguish the two cases. First when min(K−2dτ0 , c2dp−2d
` ) = K−2dτ0 we are in

IK1 := {(k, [vi; pi]`, u) ||k| < K , [vi; pi]` ∈ HK : p` ≤ cKτ0 , u ∈ Z}

when min(K−2dτ0 , c2dp−2d
` ) = c2dp−2d

` we are in

IK2 := {(k, [vi; pi]`, u) ||k| < K , [vi; pi]` ∈ HK : cKτ0 < p` ≤ CK
τ1
4d , u ∈ Z}

By Remark 7.8 we have |IK1 |lK(d+τ0)(d−1)+n hence

|RIK1 |l γa−1ε2(n−1)Kd(d−1)+τ0(−d−1)+n ≤ γa−1ε2(n−1)K−dτ0

as for IK2 we use again Remark 7.8 to bound with (2κK)d
2

(2p)d−1 the number of subspaces
with given p = p` for all `.

|RIK2 |l γa−1ε2(n−1)
∑

p`>cKτ0

p−2d−1+d
` Kd2Kn l γa−1ε2(n−1)K−dτ0+d2+n

(from (50)). Summing all these contributions, since we can bound all the factors by
ε2(n−1)γa−1K−τ0+n+d+1, our Lemma is proved. �

We arrive now to the key estimate which handles small denominators and for which we
have introduced all the formalism of cuts and quasi–Töplitz functions.

Proposition 10.13. For all ξ ∈ O+, for all k ∈ Zn, |k| ≤ K and l ∈ ZSc , |l| ≤ 2 which
satisfy momentum conservation, we have

(145) |〈ω, k〉+ (l,Ω)| ≥ γK−2dτ1 .

Proof. By Definition 10.10 the cases i), ii), iii) follow trivially since 2dτ1 is large with
respect to τ0.

We are left with the case ` = em − en with |r(m)|, |r(n)| > CKτ1 . To start we have

|〈ω, k〉+ Ωm − Ωn| ≥ |〈ω, k〉+ |r(m)|2 − |r(n)|2| − 4|ϑ|∞ − 2|Ω̃|∞.

We bound the two terms 4|ϑ|∞ + 2|Ω̃|∞| ≤ Mε2 + 4Mε2 by (120). We need to estimate
|〈ω, k〉 + |r(m)|2 − |r(n)|2|, by momentum conservation r(n) = r(m) + π(k). First note
that, setting v := m− r(m) the type of m, we have:

(146) 〈ω, k〉+ |r(m)|2 − |r(n)|2 = 〈ω, k〉 − |π(k)|2 − 2〈π(k), r(m)〉 =

= 〈ω, k〉 − |π(k)|2 + 2〈π(k), v〉 − 2〈π(k),m〉.

Note that π(k) ∈ BK ∪ {0}. Let m
K→[vi; pi], we distinguish two cases: p1 ≥ CK4dτ0 or

p1 < CK4dτ0 .

Case 1: p1 ≥ CK4dτ0 .
If p1 ≥ CK4dτ0 then m has a cut at ` = 0. By Lemma 7.32 we have that m is

on the open stratum and r(m) = m, v = 0. If π(k) = 0 we have m = n and the
denominator is covered by the bound (137) with h = 0. If π(k) 6= 0 then by definition
|〈π(k), r(m)〉| = |〈π(k),m)〉| ≥ p1. (A1) implies |ω|∞ < 2κ so:

|〈ω, k〉+ Ωm − Ωn| ≥ |〈ω, k〉+ |r(m)|2 − |r(n)|2| − 4|ϑ|∞ − 2|Ω̃|∞ >
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|〈ω, k〉 − |π(k)|2 − 2〈π(k),m〉| − 5Mε2 > 2CK4dτ0 − 2κK − κ2K2 − 5Mε2 > 1.

Case 2: p1 < CK4dτ0 . By hypothesis the point m has |r(m)| > CKτ1 and p1 <

CK4dτ0 , thus by Proposition 7.12 m belongs to some Ag where A
K→[vi; pi]`, 1 ≤ ` < d.

Write m = r(m) + v and n = r(n) + u = r(m) + π(k) + u for two types u, v ∈ Z.

Let us first notice that (133) with l = em − en is surely satisfied if |(π(k), r(m))| ≥ K3

because in that case the absolute value of (146) is greater than 2K3−κ2K2−|ω|K−8dK >
K3 by assumption (117) (K > N0) and since (A1) implies |ω|∞ < 2κ.

If on the other hand |(π(k), r(m))| < K3, then π(k) ∈ BK ∪ {0} is in 〈vi〉`. In fact
otherwise we would have |(π(k),m)| > cK4dτ0 by definition of Ag, hence |(π(k), r(m))| >
cK4dτ0 − 2dκ2K > K3 by Formula (117) and (A1), a contradiction.

In Ag we have chosen a point mA, to the points m,mA we can apply Lemma 7.20, thus
they have a cut at ` for parameters (K, θ, µ, τ(p`)) where θ, µ are only restricted to be
allowable. Then they satisfy the hypotheses of Theorem 5 hence we have mA = r(mA)+v.

Consider then n = m+π(k)−v+u and let n
K→[wi; qi]. We have |m−n| = |π(k)−v+u| ≤

κ(K + 2d) ≤ 2κK. We now can impose that the allowable θ, µ satisfy the constraints
given by Formula (117) hence we have the inequality (57) for n in place of r hence,
by Lemma 7.25, n has an ` cut [wi; qi]` with parameters N, θ, µ, τ(p`) and moreover
[wi; qi]` = A+π(k)−v+u. The same argument shows that, setting n̄ := mA+π(k)−v+u =
mA +n−m, both n and n̄ have a cut with the same parameters and the same associated
subspace [wi; qi]`.

We thus can apply again Theorem 5 and see that r(n̄) = r(mA) + π(k). By (A3) we
know that ΠK,θ,µ,τ

∑
a ϑa|za|2 is Töplitz, for the chosen parameters K, θ, µ, τ(p`), hence

we deduce that ϑm = ϑmA and ϑn = ϑn̄. We deduce that if π(k) ∈ 〈vi〉`:

|r(m)|2−|r(n)|2−|r(mA)|2+|r(n̄)|2=−|π(k)|2−2〈π(k), r(m)〉+|π(k)|2+2〈π(k), r(mA)〉=0

Finally since ϑm = ϑmA and ϑn = ϑn̄ we have:

|Ωm − Ωn − ΩmA + Ωn̄| = |Ω̃m − Ω̃n − Ω̃mA + Ω̃n̄| =⇒

(147) |〈ω, k〉+ Ωm − Ωn| ≥ |〈ω, k〉+ ΩmA − Ωn̄| − |Ω̃m − Ω̃n − Ω̃mA + Ω̃n̄|.

By (A4) we also know that Ω̃(z) :=
∑
b Ω̃b|zb|2 is quasi-Töplitz with parameters K, θ, µ

which satisfy (117) hence, we may apply Lemma 8.20 with Q(z) = Ω̃(z). Lemma 7.20
ensures that, for any allowable θ, µ, all m ∈ Ag satisfy the conditions needed to obtain
formula (97) with N = K, τ = τ(p`), and also the estimate (99) (with τ = τ(p`)):

|Ω̃m − Ω̃mA | < 2‖Ω̃‖T~pK−4dτ(p`).

Similarly we have

|Ω̃n − Ω̃n̄| < 2‖Ω̃‖T~pK−4dτ(p`).

In conclusion when π(k) ∈ 〈vi〉` we have

|Ωm − Ωn − ΩmA + Ωn̄| < 4‖Ω̃‖T~pK−4dτ(p`),

where by definition Kτ(p) = max(Kτ0 , c−1p). We now apply the constraint (141) and
hence:

(148) |〈ω, k〉+ Ωm − Ωn| ≥ |〈ω, k〉+ ΩmA − Ωn̄| − 4‖Ω̃‖T~pK−4dτ(p`) ≥

2γmin(K−2dτ0 , c2dp−2d
` )− 4‖Ω̃‖T~p min(K−4dτ0 , c4dp−4d

` ).
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By (122), ‖Ω̃‖T~p < γ, and clearly 4 min(K−4dτ0 , c4dp−4d
` ) < min(K−2dτ0 , c2dp−2d

` ). Hence

|〈ω, k〉+ Ωm − Ωn| ≥ γmin(K−2dτ0 , c2dp−2d
` ),

so in order to we get the desired inequality we need to show that min(K−2dτ0 , c2dp−2d
` ) ≥

K−2dτ1 i.e. that c2dp−2d
` ≥ K−2dτ1 . Since p` ≤ CKτ1/4d =⇒ c2dp−2d

` ≥ (cC−1)2dK−τ1/2

and (cf. (50)) K ≥ N0 > Cc−1 implies (cC−1)2dK−τ1/2 ≥ K−τ1/2−2d ≥ K−2dτ1 .
�

Remark 10.14. This Proposition essentially says that, by imposing only one non resonant
condition (141), we impose all the conditions (133) with l = em−en such that m ∈ [vi; pi]

g
j

and n = m+ π(k).

10.15. The Töplitz property for the generating function F . The function F has
been obtained by solving the homological equation for a hamiltonian H compatible with
the parameters (K, θ, µ) and given in Formula (132). Recall we are using parameters
~p = (s, r,K, θ, µ, λ = γ−1M,O). We now prove:

Proposition 10.16. For ξ ∈ O+ the solution of the homological equation F is quasi-
Töplitz for parameters (K, θ, µ), moreover one has the bound (cf. (121):

(149) ‖XF (i)‖T~p ′ ≤ γ−1K‖XP (i)‖T~p = Kε(i), K = 5K4dτ1+1 ,

where ~p ′ = (s, r,K, θ, µ, λ = γ−1M,O+).

Proof. We have given in Formula (134) a better bound on the norm ‖XF (i)‖s,r hence in or-

der to prove our statement we only need to consider the quasi-Töplitz norm ‖XF (i)‖(K,θ,µ)
s,r

and the Lipschitz norm.
The quasi–Töplitz property is a condition for N ≥ K, on the (N, θ, µ, τ)–bilinear part

of F (i). Hence if i = 0, 1 the Töplitz norm coincides with the usual majorant norm and
(149) follows from the bounds (134).

We are reduced to proving our statement on the quadratic terms:

Π(N,θ,µ,τ)F
(2) =

∑
|k|≤N ,

min(|r(n)|,|r(m)|)>θNτ1 , m,n∈p−cut

Fk,m,ne
i(k,x)zmz̄n+Bk,m,ne

i(k,x)zmzn +Ck,m,ne
i(k,x)z̄mz̄n

with
(150)

Fk,m,n =
Pk,0,em,en

〈k, ω〉+ Ωm − Ωn
, Bk,m,n =

Pk,0,em+en,0

〈ω, k〉+ Ωm + Ωn
, Ck,m,n =

Pk,0,0,em+en

〈ω, k〉 − Ωm − Ωn
.

By hypothesis min(|r(m)|, |r(n)|) > θNτ1 so in the case of Bk,m,n one has

|Bk,m,n| =
|Pk,0,em+en,0|

|〈k, ω〉+ |r(m)|2 + |r(n)|2 + 2ϑm + 2ϑn + Ω̃m + Ω̃n|
≤ c−1|Pk,0,em+en,0|N−τ1 ,

since

|〈k, ω〉+|r(m)|2+|r(n)|2+2ϑm+2ϑn+Ω̃m+Ω̃n| > 2cNτ1−|ω|N−4|ϑ|∞+2|Ω̃|∞ > cNτ1 .

Since N4dτ−τ1 < 1 this means that
∑
k,m,nBk,m,ne

i(k,x)zmzn is quasi-Töplitz, and we may

take the “Töplitz approximation” equal to zero (cf. Remark 8.17). Since cK2dτ1 > 1 > γ
the final estimate follows by formula (134)

‖
∑
k,m,n

Bk,m,ne
i(k,x)zmzn‖K,θ,µ,τs,r ≤ max(K2dτ1γ−1, c−1)‖XP (i)‖λs,r = K2dτ1γ−1‖XP (i)‖λs,r.
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Same argument for
∑
k,m,n Ck,m,ne

i(k,x)z̄mz̄n.

We thus have to study
∑
k,m,n Fk,m,ne

i(k,x)zmz̄n. Take N ≥ K, denote by p :=
N, θ, µ, τ , we wish to decompose

(151) Fk,m,n = Fk(m− n, [vi; pi]`) +N−4dτ F̄k,m,n,

so that Fk is the k Fourier coefficient of a Töplitz approximation F ∈ Tp.
By momentum conservation we have π(k) + r(m)− r(n) = 0 hence

(152) |r(m)|2 − |r(n)|2 = −|π(k)|2 − 2〈π(k), r(m)〉.

For the denominator in the first term of (150) we have

〈k, ω〉+ Ωm − Ωn = 〈k, ω〉+ |r(m)|2 − |r(n)|2 + 2ϑm − 2ϑn + Ω̃m − Ω̃n

(153) = 〈k, ω〉 − |π(k)|2 − 2〈π(k), r(m)〉+ 2ϑm − 2ϑn + Ω̃m − Ω̃n.

If K is sufficiently large we can estimate |〈k, ω〉 − |π(k)|2 + 2ϑm − 2ϑn + Ω̃m − Ω̃n| < K3.
From this we see that if 2|(π(k), r(m))| > cN4dτ we may again set Fk = 0.

So we are reduced to the case in which 2|(π(k), r(m))| ≤ cN4dτ .

By assumption m,n have a cut at ` with parameters (N, θ, µ, τ) and

|r(m)|, |r(n)| ≥ θNτ1 , m
N→[vi; pi] , n

N→[wi; qi] ,

(154) q`, p` ≤ µNτ , q`+1, p`+1 ≥ θN4dτ , A := [vi; pi]` ≺ B := [wi; qi]` ,

hence, by Corollary 7.23, 〈v1, . . . , v`〉 = 〈w1, . . . , w`〉. We distinguish two cases:
Case 1: π(k) /∈ 〈vi〉`. If π(k) /∈ 〈vi〉` then by the definitions of cut 7.15, and of

optimal presentation we have 2|(π(k), r(m))| > cN4dτ contrary to our hypothesis.

Case 2: π(k) ∈ 〈vi〉`. We recall that ϑm (resp. ϑn) are constant on all the m
which have the same affine space A = [vi; pi]` associated to its `-cut. Moreover, setting
h = n−m, we know that n has an `-cut with associated affine space B = A+h = [wi; qi]`.

By lemma 8.20 and Ω̃ has a Töplitz approximation, Ω̃ see Formula (96). By Corollary
8.21 we can choose a point mA ∈ Agp so that mA + h ∈ (A+ h)gp then we may choose the

Töplitz approximant of order one with Ω̃(A) = Ω̃mA
and Ω̃(A + h) = Ω̃mA+h :

(155) |Ω̃m − Ω̃(A)| , |Ω̃n − Ω̃(A + h)| < 2‖Ω̃‖Tp̃ N−4dτ .

Denote by Dk,m,n = 〈k, ω〉+ Ωm − Ωn the denominator of the term Fk,m,n , we define

(156) Dk,h,A := Dk,mA,mA+h , =⇒ |Dk,h,A| ≥ γK−2dτ1 , (133).

Finally, since P (2) is quasi-Töplitz, we may set

Fk(h,A) =
P(2)
k (h,A)

Dk,h,A
, F̄ = N4dτ (F −F)

where P = P(2) ∈ Tp is a piecewise–Töplitz approximation of Pk,0,em,en so that for

P̄ (2) = N4dτ (P (2) − P(2)) we have the bounds ‖P(2)‖r,s, ‖P̄ (2)‖r,s ≤ ‖P (2)‖T~p + ε where

ε > 0 can be taken arbitrarily small (see Lemma 8.20).
We notice that by (155)

(157) N4dτ |Dk,h,A −Dk,m,n| = N4dτ |Ω̃m − Ω̃(A)− Ω̃n + Ω̃(A + h)| < 4‖Ω̃‖Tp̃ .
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If the denominators are bounded away from zero then (cf. (151)):

F̄k,m,n = N4dτ (Fk,n,m −Fk(h,A)) =
P̄

(2)
k,m,n

Dk,m,n
+ P(2)

k (h,A)
N4dτ (Dk,h,A −Dk,m,n)

Dk,h,ADk,m,n
,

is bounded.
Summing over the indexes k,m, n such that m has a cut with parameters (N, θ, µ), we

obtain

‖F‖s,r ≤
‖P(2)‖s,r

infk,n,mDk,h,A
, ‖F̄‖s,r ≤

‖P̄ (2)‖s,r
infk,n,m |Dk,h,A|

+
4‖Ω̃‖Ts,r‖P(2)‖s,r

infk,n,m |Dk,m,nDk,h,A|
This we may rephrase as

(158) ‖F (2)‖T~p ′ ≤ ‖P (2)‖T~p sup
ξ∈O+

sup
k,n,m:|k|<K

(
1

|Dk,m,n|
+

4‖Ω̃‖T~p
|Dk,m,nDk,m,n|

+ λ
M(|k|+ 2)

D2
k,m,n

).

By the Smallness condition, (A4) formula (122), we have ‖Ω̃‖T~p ≤ γ. The denominators

|Dk,m,n|, |Dk,m,n| are > γK−2dτ1 uniformly in O+ by Formulas (133) and (156). Recalling
that λ = γM−1, we deduce that

‖F (2)‖T~p ′ ≤ ‖P (2)‖T~p γ−1(K2dτ1 +K4dτ1+1 + 4K4dτ1) ≤ 5‖P (2)‖T~p γ−1K4dτ1+1.

�

10.17. The new Hamiltonian H+. Recall we have set ~p = (s, r,K, θ, µ, λ,O), ~p+ =
(s+, r+,K, θ+, µ+, λ+,O+). By Propositions 9.2 and 10.16, F defines a M-analytic sym-
plectic quasi-Toplitz change of variables from D(s+, r+) to D(s, r), where r+, s+ are de-
termined by (136).

The change of variables is of the form Φ = I + Ψ with the bounds (cfr. (105))

(159) ‖Ψ‖T~p+ ≤ 2‖XF ‖T~p
and for any function f ∈ Tp we have that ead(F )f ∈ T~p+ where ~p+ satisfy (103).

We now analyze H+ := ead(F )(H), recall that by definition ad(F )(N ) = −P≤2
≤K+[P≤2].

(160) H+ := ead(F )(N + P ) = H + ad(F )H +
∑
j≥2

ad(F )j

j!
(H) =

= N + P − P≤2
≤K + [P≤2] + ad(F )P +

∑
j≥2

ad(F )j

j!
(H)

We call N + [P≤2] := N+ and the rest of the Hamiltonian P+, so that

(161) P+ := (P − P≤2
≤K) + {F, P}+

∑
j≥2

ad(F )j

j!
P +

∑
j≥2

ad(F )j−1

j!
(−P≤2

≤K + [P≤2
≤K ]).

By formula (131),

ω+ := ω + P 1,0
0 , Ω̃+

n := Ω̃n + P 0,2
0,n,+,n,− ,

(162) Ω+
n = σ(n)|r(n)|2 + 2ϑn + Ω̃+

n = Ωn + P 0,2
0,n,+,n,− , C+ = C + P.

Recall that C is the finite complex part of the normal form, same for P as defined in (131).
We need to

• Prove that H+ satisfies conditions (A1)− (A5).
• Estimate all the new parameters ~p+.
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10.17.1. Lipschitz estimates M+, L+, λ+. We have

|ω+|lip + |Ω+|lip = |ω + P 1,0
0 |lip + sup

n
|Ωn + P 0,2

0,n,+,n,−|lip ≤

|ω|lip + sup
n
|Ωn|lip + |P 1,0

0 |lip + sup
n
|P 0,2

0,n,+,n,−|lip ≤M + |P 1,0
0 |lip + sup

n
|P 0,2

0,n,+,n,−|lip,

by definition of M .
In the same way

(ω+)−1 = (ω + P 1,0
0 )−1 = (ω ◦ (Id+ P 1,0

0 ◦ ω−1))−1 = (Id+ P 1,0
0 ◦ ω−1)−1 ◦ ω−1,

so that ω+ is invertible as a Lipschitz function provided that L|P 1,0
0 |lip < 1 with the

bound

(163) |(ω+)−1|lip ≤ L

1− L|P 1,0
0 |lip

.

In order to estimate a+, defined in Formula (124), we note

(164) |∆ξ,%(〈ω+(ξ), k〉+ (Ω+(ξ), l))|

≥ |∆ξ,%(〈ω(ξ), k〉+ (Ω(ξ), l))| − |∆ξ,%(〈P 1,0
0 (ξ), k〉+ (P 0,2

0,n,+,n,−, l))|

≥ a− S0|P 1,0
0 (ξ)|lip + 2|P 0,2

0,n,+,n,−|lip

We recall that ‖ · ‖λ = ‖ · ‖+ λ‖ · ‖lip, hence

|P 1,0
0 |lip, |P

0,2
0,n,+,n,−|lip ≤ λ−1‖P (2)‖λs,r ≤M |~ε|

since λ = γM−1. We define

(165) M+ := M(1 + 2|~ε|) , L+ := L(1−ML|~ε|)−1, a+ := a− (S0 + 2)M |~ε|

notice that L+ is well defined since by (A4) LM |~ε| < 1. By construction

|ω+|lip + |Ω+|lip ≤M+ , |(ω+)−1|lip ≤ L+ ,

finally we have:

|ω+ − v| ≤ |ω − v|+ |P 1,0
0 | ≤Mε2 + γ|~ε| ≤M+ε

2,

since γ < 2Mε2. We finally set λ+ := γ(M+)−1 we have λ+ < λ since M+ > M .

10.17.2. Töplitz estimates ~ε+,Θ+. We wish to show P+ is quasi–Töplitz and bound

ε
(h)
+ := γ−1‖XPh+

‖T~p+ , for h = 0, 1, 2 ; Θ+ := γ−1‖XP+
‖T~p+ .

We have that (cf. (161)) P+ = (P − P≤2
≤K) +A+B where

A :=
∑
j≥2

ad(F )j−1

j!
(−P≤2

≤K + [P≤2
≤K ]), B = {F, P}+

∑
j≥2

ad(F )j

j!
P,

We argue as in Proposition 5 of [24] or in Proposition 9.2. By Formula (149) ‖XF ‖T~p ≤
5K4dτ1 |~ε|, the hypothesis (136) implies that we have the conditions of (102), that is
22n+14δ−1‖XF ‖T~p < 1/2, where δ = min(1− s+

s , 1−
r+
r ). Therefore we have that

(166) ‖XA‖T~p+ ≤ 2δ−1‖XF ‖T~p ‖XP≤2‖T~p , ‖XB‖T~p+ ≤ 2δ−1‖XF ‖T~p ‖XP ‖T~p
Using (149) we rewrite (166) as

(167) γ−1‖XA‖T~p+ l δ−1K|ε|2 , γ−1‖XB‖T~p+ l δ−1K|ε|Θ ,
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We obtain:

(168) ‖XP+‖T~p+ ≤ ‖XP ‖T~p + 4δ−1‖XF ‖T~p ‖XP ‖T~p i.e. Θ+ −Θ l δ−1K|~ε|Θ .

Let us now compute the terms of order ≤ 2 in P+, we have:

P
(h)
+ = P

(h)
>K + (A+ {F, P>2}+ {F, P≤2}+

∑
j≥2

ad(F )j

j!
P )(h).

Again from (149), denoting E =
∑
j≥2

ad(F )j

j! P , we have the bounds:

‖X{F,P≤2}‖T~p+ ≤ 2δ−1‖XF ‖T~p ‖XP≤2‖T~p l δ−1Kγ|~ε|2,

‖XE‖Ts+,r+ l δ−2(‖XF ‖T~p )2‖XP ‖T~p l δ−2K2|~ε|2Θ

The contributions from {F, P>2} are

Π0{F, P>2} = 0 , Π1{F, P>2} = {F (0), P (3)} ,

Π2{F, P>2} = {F 0, P (4)}+ {F (1), P (3)} ,
so applying the Cauchy estimates we have, setting z := const.(δ−1K)2:

ε
(0)
+ ≤ z|~ε|2(1 + Θ) + 2ε(0)e−(s−s+)K

ε
(1)
+ ≤ z

(
Θ ε(0) + |~ε|2(1 + Θ)

)
+ 2ε(1)e−(s−s+)K

ε
(2)
+ ≤ z

(
Θ(ε(0) + ε(1)) + |~ε|2(1 + Θ)

)
+ 2ε(2)e−(s−s+)K .

Note that the terms 2ε(h)e−(s−s+)K come from P
(h)
>K via the smoothing estimates 94.

We write in matrix form, denoting by ~ε the three dimensional column vector of coor-
dinates (ε(0), ε(1), ε(2)) and 1 := (1, 1, 1) we have

(169)
~ε+ ≤ z

(
ΘL~ε+ |~ε|2(1 + Θ)1

)
+ 2e−(s−s+)K~ε

Θ+ ≤ Θ + zΘ|~ε|
where the matrix L is

(170) L =

0 0 0
1 0 0
1 1 0

 =⇒ L2 =

0 0 0
0 0 0
2 0 0

 , L3 = 0

and the vector inequality means that the inequality is true for all three coordinates.

10.18. Iteration.

10.18.1. A useful inequality. Now we need to be able to handle in a recursive way the
inequalities obtained so far, we start with a formal inequality which is a variation of
Lemma 5.8 of [2].

We fix χ such that

(171) 1 < χ < 2
1
3 .

and a, b, c three positive numbers satisfying:

(172) a, b, c > 1 , 12b2 ≤ min
i∈N

ea2i−2+χi−2−χi+1

c2i−1
,

and set

(173) i := min
i∈N

(
eχ

i

2b(2c)i
,
e(2−χ3)χi−2

32b3c3i−3
) > 0.
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Lemma 10.19. For j ∈ N consider a sequence (~εj ,Θj) with ~εj := (ε
(0)
j , ε

(1)
j , ε

(2)
j ) a vector

and Θj a number, all with positive components. Set |~εj | := ε
(0)
j + ε

(1)
j + ε

(2)
j .

Suppose that for ( L as in (170)) we have:

(174)

{
~εj+1 ≤ bcj(ΘjL~εj + |~εj |2(1 + Θj)1) + e−a2j~εj
Θj+1 ≤ Θj + bcjΘj |~εj |.

There exist C0 := C0(c, χ, a, b) > 1 such that for all Θ̄ > 0 satisfying

(175) 2Θ̄C0 < min(1/3, i)

we have that

(176) 1/3|~ε0|,Θ0 < Θ̄ =⇒ |~εj | ≤ C0|~ε0|e−χ
j

, Θj ≤ Θ0(1 + C0

∑
0<l≤j

2−l) , ∀ j ≥ 0.

Let i0 be the value of i for which the minimum i in (173) is achieved. One easily sees
that, since |~ε0|,Θ0 ≤ 3Θ̄ < 1 we can find a value C0 (depending only on a, b, c, χ) for which
both relations (176) hold for all i ≤ i0 and |~ε0| < 1.

We now work by induction and suppose that both relations hold up to some i ≥ i0.
Then Θi ≤ Θ0(1 + C0

∑
1≤l≤i 2−l) < 2Θ0C0 and, assuming 2Θ0C0 ≤ 2Θ̄C0 ≤ i, we have

bci2i+1e−χ
i ≤ i−1 ≤ (2Θ0C0)−1 estimate :

Θi+1 ≤ Θ0(1 + C0

∑
l≤i

2−l + bci2Θ0A
2
0e
−χi) ≤ Θ0(1 + C0

∑
1≤l≤i+1

2−l).

Notice that the constraint (175) and the inequality (176) imply Θj < 1 for all j. We now
substitute Θj < 1 for all j ≤ i in the first relation and get

~εj+1 ≤ bcj(L~εj + 2|~εj |21) + e−a2j~εj

we obtain a bound for ~εi+1 in terms of ~εi, ~εi−1 and ~εi−2.
We now assume by induction that the bounds in (176) are satisfied for all j ≤ i and

then:

~εi+1 ≤ b2c2i−1(L2~εi−1 + 2|~εi−1|2L1) + bcie−a2i−1

L~εi−1 + 2bci|~εi|21 + e−a2i~εi ≤

~εi+1 ≤ b2c2i−1L2~εi−1 + 2b2c2i−1|~εi−1|2L1 + bcie−a2i−1

L~εi−1 + 2bci|~εi|21 + e−a2i~εi ≤

2b3c3i−3|~εi−2|2L21 + b2c2i−1e−a2i−2

L2~εi−2 + 2b2c2i−1|~εi−1|2L1

+bcie−a2i−1

L~εi−1 + 2bci|~εi|21 + e−a2i~εi.

This in turn implies, since |L| = 3, |L2| = 2, that

|~εi+1| ≤ 4b3c3i−3|~εi−2|2 + 6b2c2i−1|~εi−1|2 + 6bci|~εi|2

+2b2c2i−1e−a2i−2

|~εi−2|+ 3bcie−a2i−1

|~εi−1|+ e−a2i |~εi| ≤

|~εi+1| ≤ |~ε0|2C0
2(4b3c3i−3e−2χi−2

+ 6b2c2i−1e−2χi−1

+ 6bcie−2χi)+

|~ε0|C0(2b2c2i−1e−a2i−2−χi−2

+ 3bcie−a2i−1−χi−1

+ e−a2i−χi) ≤

|~ε0|C0[16|~ε0|C0b
3c3i−3e−2χi−2

+ 6b2c2i−1e−a2i−2−χi−2

] ≤ |~ε0|C0e
−χi+1

This is achieved provided that,

[16Θ̄C0b
3c3i−3e−2χi−2

+ 6b2c2i−1e−a2i−2−χi−2

] ≤ e−χ
i+1

and this in turn is valid if we assume the constraint (172).
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We will apply this to

(177) c := 41+4dτ1 , b := costK8dτ1 , a :=
Ks0

32
.

We note that, with this choice of parameters, condition (172) amounts to a largeness
condition on K.

10.19.1. Parameters in the iteration. Let H0 = N0 +P0 : D0×O0 → C be as in Theorem
6. Define

(178) ε
(h)
0 :=

‖X
P

(h)
0
‖T~p0

γ
≤ Θ0 :=

‖XP0
‖T~p0

γ
=
‖XP0‖0

γ
.

We have the estimate e−1 ≤ maxν e
−χν2ν(1+4dτ1) < ∞ since, for any p > 0, we have

that limν→∞ 2p νe−χ
ν

= 0. We define:

(179) C? = 22n+10eC0M0a
−1
0 κK4dτ1

0 max
ν

e−χ
ν

2ν(1+4dτ1) ,

here C0 is the constant of Lemma 10.19 with the choice of parameters (177), note that
it depends only on K0, κ, d, n, τ1, τ0, s0 and M0a

−1
0 . Recall that, as we have stated in

Remark 10.4 M0a
−1
0 > 1 is an ε independent constant of the problem.

We now fix Θ̄ := Θ̄(K0, κ, d, n, τ1, τ0, s0, a0) in order to ensure the smallness conditions:

(180) C?Θ̄ < (12 e)−1,
∏
ν

(1 + C?Θ̄e
−χν−1

) <
√

2.

together with the condition (175) of Lemma 10.19.
We now need to estimate all the parameters in the iteration. For the parameters which

increase we exhibit bounds from above and for the ones which decrease bounds from
below. Thus for ν ∈ N we define

• δν := 2−ν−3 , rν+1 := (1− δν)rν , sν+1 := (1− δν)sν , Dν := D(sν , rν) ,

• Mν := Mν−1(1 + C?|~ε0|e−χ
ν−1

) ≤
√

2M0 , λν := γ
Mν

,

• Lν := Lν−1(1− C?|~ε0|e−χ
ν−1

)−1 ≤
√

2L0

• Kν := 4νK0 , , θν = θ0(1 +
∑
j≤ν 2−j) , µν = µ0(1−

∑
j≤ν 2−j) ,

• aν := a0(1− C?|~ε0|
∑
j≤ν 2−j),

• zν = const.δ−2
ν K2

ν = bcν .

We have made our definitions so that min(1− rν+1

rν
, 1− sν

sν+1
) = δν . Note that rν+1 ↘

r0

∏∞
ν=0(1 − δν) > r0

2 , sν+1 ↘ s0

∏∞
ν=0(1 − δν) > s0

2 , θν ↗ 3θ0/2 < C = 2θ0 , µν ↘
2µ0/3 > c = µ0/2.

For compactness of notation we will denote

(181) ‖ · ‖j := ‖ · ‖T~pj , p
j

:= (rj , sj ,Oj ,Kj , S0 = 16
√
n, θj , µj , aj ,Mj , Lj , c, C),

where Oj is defined in the course of the proof of Lemma 10.20 .
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Lemma 10.20. (Iterative Lemma) Let C0, C?, Θ̄ be fixed as in formulas (179) and

(180). Let Γ be as in Formula (135) and B = 4ΓK
−τ0+n+d/2
0 . If for the Hamiltonian H0

we can choose γ so that if for Θ0 defined in (178) we have:

(182) Θ0 ≤ Θ̄ , Bγε2n−2a−1
0 < |O0|

are satisfied, then we can construct recursively sets Oj ⊂ O and a Hamiltonian Hj = Nj+

Pj : Dj×Oj → C, Nj := (ω(j)(ξ), y)+
∑
k∈Sc Ω

(j)
k (ξ)|zk|2 with Ω

(j)
n (ξ) = σ(n)(|r(n)|2 +

2ϑn(ξ)) + Ω̃
(j)
n (ξ). So that, if we define

(183) ε
(h)
j :=

‖X
P

(h)
j
‖j

γ
,~εj := (ε

(0)
j , ε

(1)
j , ε

(2)
j ), Θj =

‖XPj‖j
γ

,

the following properties are satisfied for all j:

(S1)j For j > 0, Oj ⊂ Oj−1 is defined by (137)-(141) with ω  ω(j−1) and Ωn  

Ω
(j−1)
n . We have that Hj = Hj−1 ◦Φj where Φj : Dj ×Oj → Dj−1 is a Lipschitz family

of real analytic symplectic maps of the form Φj = I + Ψj with ‖Ψj‖
λj
Dj

< C?Θ̄2−j.

(S2)j The Hamiltonian Hj is compatible with the parameters p
j

(Definition 10.2). The

parameters r+ = rj+1, s+ = sj+1 satisfy the hypotheses (136) of the KAM step and the
set Oj+1 ⊂ Oj satisfies Formula (135), namely, using (50):

|Oj \ Oj+1| ≤ Γγa−1
j ε2(n−1)K

−τ0+n+d/2
j =⇒ |O0 \ Oj+1| ≤ Bγa−1

0 ε2(n−1).

(S3)j There exist Lipschitz extensions ω̂(j), Ω̂(j) of ω(j), Ω̃(j) defined on O0 and, for
j ≥ 1:
(184)

|ω̂(j)−ω̂(j−1)|+λj |ω̂(j)−ω̂(j−1)|lip ≤ γε(2)
j , ‖Ω̂(j)−Ω̂(j−1)‖∞+λj‖Ω̂(j)−Ω̂(j−1)‖lip∞ ≤ γε

(2)
j

(185) |ω̂(j)|lip + ‖Ω̂(j)‖lip∞ ≤Mj , |ω̂(j) − v| < Mjε
2.

(S4)j ~εj ,Θj satisfy (174) and (176) hence |~εj | ≤ C0|~ε0|e−χ
j

.

(S5)j For j > 0 the sequence of composed maps Φ̃j := Φ1 ◦ Φ2 ◦ · · · ◦ Φj = I + Ψ̃j

satisfies ‖Ψ̃ν+1 − Ψ̃ν‖λDj ≤ C?|~ε0|2
−ν , ‖Ψ̃j‖λDj ≤ 2C?|~ε0|.

Proof. We proceed by induction the conditions (Si)0 are satisfied by the hypotheses of
Theorem 6 except that, for (S2)0, once we have chosen K satisfying the constraints of
the previous Lemmas, we have to impose a further smallness condition on Θ̄ deduced by
formula (136).

Then, by induction, we prove the statements (Si)ν+1, i = 1, . . . , 5, by assuming the
validity of (Si)j for j ≤ ν.

(S1)ν+1. We apply the KAM step with H = Hν . By (S2)ν , we have that Hν is
compatible with the parameters pν . In order to implement the KAM step, and deduce
(S1)ν+1 we need to verify the constraints of Formulas (100), (103) and (136) are satisfied
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for r+, s+,K+, θ+, µ+ = rν+1, sν+1,Kν+1, θν+1, µν+1,K = Kν ,~ε = ~εν . Substituting in
(100), (103) we easily see that this amounts to a lower bound on K, depending only on
τ0, τ1 and the remaining parameters in p0. This we have imposed at the beginning of the
algorithm, as we explained in Remark 10.5.

As for (136), we have by induction the inequality on |~εν | and we have to verify

2κδ−1
ν eC0Θ̄e−χ

ν

Kν
4dτ1 < 1

2 , which is contained in the constraints (180).
Then following the KAM step we construct the set O+ which coincides by definition

with Oν+1. On Oν+1, we define the generating function F = Fν+1. Then we construct
the real analytic symplectic map Φν+1 : Dν+1×Oν+1 → Dν , Lipschitz in Oν+1, generated
by F . We have:

Hν+1 := H+ = Hν ◦ Φν+1 =: Nν+1 + Pν+1 , Nν+1 := Nν + [Pν ] .

and Pν+1 := P+ defined in (160).

(S2)ν+1. By construction Hν+1 is of the form given by Formula (10.2). We want to
apply the results of §10.17 in order to prove that, ∀ξ ∈ Oν+1, the Hamiltonian Hν+1, is
compatible with the parameters pν+1. For this it is enough to show that the constraints
found on p

+
in that section are in this case valid for the parameters pν+1. First we need

to verify (103) which is a largeness condition on K0:
(186)

e
−sν 2νK0

(ln 4νK0)2 4νK0
τ1 < 1 , κ < µ023νK0

2 ln(4νK0)−2 , κC < θ023ν+1K0
4dτ0−4 ln(4νK0)−2.

From Formula (180) we can bound uniformly Mν ≤
√

2M0, Lν ≤
√

2L0 so that we have
for all ν that S0 = 8

√
nM0L0 > 4

√
nMνLν . By exploiting (165) and |~εν | ≤ C0|~ε0|e−χ

ν

,
since 2C0, 2M0L0C0 ≤ C?, we verify that M+ ≤Mν+1 and L+ ≤ Lν+1:

M+ := Mν(1 + 2|~εν |) ≤Mν(1 + 2C0|~ε0|e−χ
ν

) ≤Mν+1

L+ := Lν(1−MνLνC0|~ε0|e−χ
ν

)−1 ≤ Lν+1.

Finally in order to prove that ων+1 is a lipeomorphism we argue as for (163) since

Lν+1|P 1,0
0 |lip ≤

√
2L0C0|~ε0|e−χ

j+1u < 1.

The estimate on Oν+1 follows from Lemma (10.12). We finally show that a+, defined
in Formula (165) is ≥ aν+1, by noting that

aν − a+ ≤ 4S0Mν |~εν |
(179)

≤ 4
√

2S0M0C0|~ε0|e−χ
ν

≤ a0C?|~ε0|2−ν−1 = aν − aν+1.

(S3)ν+1. The frequency maps ω(ν+1), Ω(ν+1) are defined on Oν+1 and, as we have
discussed in the previous item, have Lipschitz seminorm bounded by Mν+1. Then we

may apply Formula (10.17) to deduce the bound (184) (recall that ε
(2)
ν = γ−1‖P (2)

ν ‖ν),

for ω(ν+1) and Ω̃(ν+1). By the Kirszbraun theorem (see e.g. [15]), used component–wise,

ω(ν+1) and Ω̃(ν+1) can be extended to maps– which we denote by ω̂(ν+1), Ω̂(ν+1)– defined
on the whole O0 and preserving the same sup-norm and Lipschitz seminorms,(185) follows.

Moreover this extension may be performed so that ω̂(ν+1) = ω̂(ν) + P̂ (1,0) where P̂ (1,0) is
an extension of P (1,0) which preserves the λ-norm (same for Ω(ν+1)); this verifies (184).

(S4)ν+1 ~εν+1 = ~ε+ satisfies (169), with ζ = ζν and (s− s+)K/2 = σνKν . Recalling the
definition of b, a, c we have that ~εν+1,Θν+1 satisfy the inequality of (174). We are in the
Hypotheses of Lemma 10.19, so that also the bounds (176) holds.
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(S4)ν+1 follows by (182), (S3)ν and Lemma 10.19.

(S5)ν+1. Let us denote by Hλ,Os,r the normed space of functions in Hs,r which depend

in a Lipschitz way from parameters in O with finite ‖.‖λ norm. The estimate of the
norm of the map Ψν+1 : Hλ,Os,r → Hλν ,Oνsν ,rν follows, using (149), ‖XFν‖ν ≤ Kν |~εν | with

Kν = 5(4νK)4dτ1 and hence from (176) (179) and

‖XFν‖ν ≤ 5(4νK)4dτ1C0|~ε0|e−χ
ν

≤ C?|~ε0|2−ν−2n−7.

From (180) and (102)

12 22n+6eδ−1
ν ‖XFν‖ν ≤

1

2
=⇒ ‖Ψν+1‖ ≤ 2‖XFν‖λνsν ,rν .

Now we can estimate

1 + Ψ̃ν =

ν∏
i=1

(1 + Ψi), ‖1 + Ψ̃ν‖ ≤
ν∏
i=1

(1 + ‖Ψi‖) ≤
ν∏
i=1

(1 + 2−i) ≤ 2

(187) Ψ̃ν+1 = Ψ̃ν + (1 + Ψ̃ν)Ψν =⇒ ‖Ψ̃ν+1 − Ψ̃ν‖ ≤ C?|~ε0|2−ν .

Notice that Ψν also maps QTp
ν−1

to QTp
ν

and we have similar estimates using the Töplitz

norms. �

Corollary 10.21. For all ξ ∈ O∞ := ∩ν≥0Oν the sequence Φ̃ν = I + Ψ̃ν converges
uniformly on D(s0/2, r0/2) to an analytic symplectic map Φ = I+Ψ such that the essential
part of the perturbation P∞≤2(·, ξ) = 0. Moreover we have

|O0 \ O∞| ≤ cost γε2n−2.

Proof. The fact that the Ψ̃ν give a Cauchy sequence follows from Formula (187), therefore

the sequence Φ̃ν converges as a sequence of Poisson bracket preserving homomorphisms
from Hs,r to Hs∞,r∞ to a Poisson bracket preserving homomorphism Φ̃∞. The fact that
this is induced by a coordinate change follows from the fact that we can construct the
local inverse, lim Θ̃ν where Θ̃ν = Θν ◦Θν−1 ◦ · · · ◦Θ1 and Θν is the flux at time −1.

Finally P∞≤2(·, ξ) = 0, ∀ξ ∈ O∞, follows by (183) and (S4)ν . �

With this Corollary we finish the proof of Theorem 6.
We can finally conclude that

Theorem 7. If for the Hamiltonian H0 we have on the domains ε2Kα×D(s, r) a uniform
estimate for the perturbation as in (29), i.e. ‖XP0

‖T~p0 , ‖XΩ̃0‖T~p ≤ Cεβ with β > 2, then
for ε sufficiently small, the conditions on γ of the the iterative Lemma can be satisfied.

Proof. The conditions we have imposed on γ are: γ < 1, γ ≤ 2ε2M, ‖XΩ̃0‖T~p ≤ γ

Bε2(n−1)γ < |O0|a0, Θ0 :=
‖XP0

‖0
γ < Θ̄. We have taken O0 = ε2Kα (for some component

of the complement of the discriminant) hence |O0| can be estimated by C1ε
2n, hence we

impose on γ:

(188) (Θ̄)−1Cεβ−2 < γ < min(2M,B−1a0C1)

as soon as εβ−2 < Θ̄C−1 min(2M,B−1a0C1). �
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Part 4. The NLS

In this final part we prove that the NLS is a compatible Hamiltonian (in suitable coor-
dinates) according to Definition 10.2 and therefore we can apply to it the KAM algorithm
and arrive at the conclusions of Theorem 6. Most of our work will be in showing the
Töplitz property of the NLS.

11. The Töplitz property of the NLS

In fact Ad is Töplitz so ‖XAd‖T(R,K,θ,µ) = ‖XAd‖R follows from Remark 8.17.

11.1. Semi normal form. We now analyze the Birkhoff normal form change of variables
defined in (9) with the purpose of proving that it maintains the quasi-Töplitz property.
Note that the initial variables u, ū ∈ `a,pS=∅ = ¯̀a,p × ¯̀a,p. So all the definitions of quasi-
Töplitz functions of Part. 2 hold with S = ∅ and hence n = 0 (i.e. there are no action-angle
variables x, y). Moreover at this step we assume that r(m) = m for all m.

We fix the parameters N0, c, C as in (50). We start by noting that for all d > 0

(189) Ad :=
∑

ki∈Zn:
∑

(−1)iki=0

uk1 ūk2uk3 ūk4 . . . uk2d−1
ūk2d =

∑
α,β∈(Zn)N:
|α|=|β|=d

(
d

α

)(
d

β

)
uαūβ ,

is quasi Töplitz for all allowable (K, θ, µ).
In fact Ad is Töplitz so

(190) ‖XAd‖T(R,K,θ,µ) = ‖XAd‖R ≤ C(d)Rd−2

follows from Remark 8.17 and usual dimensional arguments, see (28). Notice that now
the parameters ~p = (R,K, θ, µ) do not involve λ, s,O.

Proposition 11.2. For all choices of parameters 0 < R < ε0 and for allowable (K, θ, µ),
the generating function FBirk defined in (9) is quasi–Töplitz with ‖XFBirk‖T(R/2,K,θ,µ) ≤
‖XA2

‖T(R,K,θ,µ) ≤ const R2. Then for all (K ′, θ′, µ′) which respect (103) with (K, θ, µ) we

have that H ◦ Ψ(1) = HBirk + P (4) + P (6) with ‖XP (i)‖T(R/4,K,θ,µ) ≤ const Ri−2, i = 4, 6

and ‖XHBirk−K‖T(R/4,K,θ,µ) ≤ const R2 (recall that K is defined in (11))

Proof. We need to compute the projection of FBirk on the space of N, θ, µ, τ–bilinear func-

tions, namely following formula (69) we compute F±,±m,n for all m,n such that m
N→[vi; pi]

and m,n have the cut ` with parameters θ, µ, τ .
By symmetry and reality we may consider just +,+ and +,−. We need to exhibit for

them Töplitz approximations F+.+,F+.−.
In the case +,+ we write α = α0 + em + en, β = β0, in the case +,− we write

α = α0 + em, β = β0 + en, by definition α0, β0 are the exponents of the low variables, and
in our case, since |α2|+ |β|2 = 2, the support of α0, β0 is in S and we have

(191) F+,±
m,n = −i

∗∑
α0,β0∈NS

cα,β
uαūβ∑

j∈S(α0
j − β0

j )|j|2 + |m|2 ± |n|2
.

here cα,β :=
(

2
α

)(
2
β

)
for simplicity of notation, while the symbol

∑∗
summarizes the

conditions of (9), namely:

(192)
∑
j∈S

(α0
j −β0

j )|j|2 + |m|2± |n|2 6= 0 ,
∑
j∈S

(α0
j −β0

j )j+m±n = 0 , |α0|+ |β0| = 2
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In the case +,+ we claim that the denominator is big so that we can choose F+,+
m,n = 0.

Indeed we have |m|2 + |n|2 > 2cNτ1 while |
∑

j∈S(α0
j − β0

j )|j|2| < 2κ2 where κ :=

supj∈S |j|. Since N is large all these denominators are bounded below by cNτ1 . So for

F̄+,+
m,n := N4dτF+,+

m,n we bound ‖XF̄ ‖R ≤ N4dτ−τ1c−1‖XA2‖R ≤ ‖XA2‖R.

In the case +,− we notice that n−m = π(α0, β0) :=
∑

j∈S(α0
j − β0

j )j ∈ BN ∪ {0}. If

m = n the denomiators in (191) are m,n independent, we can take F+,+
m,n = F+,+

m,n . When
m 6= n we write

(193) |m|2−|n|2 = (m−n,m+n) = (m−n, 2m+n−m) = −2(π(α0, β0),m)−|π(α0, β0)|2.

We have to distinguish two types of terms in the sum, that is the ones in which π(α0, β0) :=∑
j∈S(α0

j − β0
j )j /∈ 〈vi〉` and the other terms.

F+−
m,n = −i

∗∑
α0,β0∈NS

π(α0,β0)/∈〈vi〉`

cα,β
uαūβ∑

j∈S(α0
j − β0

j )|j|2 − 2(π(α0, β0),m)− |π(α0, β0)|2

(194) − i

∗∑
α0,β0∈NS

π(α0,β0)∈〈vi〉`

cα,β
uαūβ∑

j∈S(α0
j − β0

j )|j|2 − 2(π(α0, β0),m)− |π(α0, β0)|2
.

In the first terms, since m has a cut at `, we have, by Remark 7.16, |(v,m)| > θN4dτ for
all v /∈ 〈vi〉` hence the denominator is big and we proceed as in the case of F+,+.

In the second terms, the right hand side of formula (193) depends only upon m− n =
π(α0, β0) and on the cut [vi; pi]`. This implies that the constraints in the sum (192) and
the denominators in Formula (194) depend only on m − n and on the cut [vi; pi]` so the
second summand of formula (194) is in TN,θ,µ. The bounds follow by recalling that the
denominators are non-zero integers. Then the bounds on the transformed Hamiltonian
follow from Proposition 9.2 and by the degree considerations (95). �

We fix

(195) θ = C(1− 1

16
) , θ′ = C(1− 1

8
) , µ = c(1 +

1

16
) , µ′ = c(1 +

1

8
)

so that (103) holds for all K = K ′ > N0.

11.3. Action angle variables. The results we need are mostly contained in [2], although
there are some small notational differences and the results in that paper are stated for Z
instead of Zd, but the proofs follow verbatim in our case.

We introduce action-angle variables on the tangential sites S := {j1, . . . , jn} via the
analytic and symplectic map

(196) Φξ(x, y, z, z̄) := (u, ū)

defined by
(197)

ujl :=
√
ξl + yl e

ixl , ūjl :=
√
ξl + yl e

−ixl , l = 1, . . . , n , uj := zj , ūj := z̄j , j ∈ Zd \ S .

Let us consider for ε2 > 0 the set ε2Kα as in Theorem 4
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Lemma 11.4. (Domains) Let s, r, ε, R > 0 satisfy

(198) 2c1r < ε , R = C∗ε with C∗ := 4c2
√
nκpe(s+aκ) .

Then, for all ξ ∈ ε2Kα ∪ 2ε2Kα, the map

(199) Φξ( · ; ξ) : D(s, 2r)→ D(R/2) := BR/2 ×BR/2 ⊂ ¯̀a,p × ¯̀a,p

is well defined and analytic (recall that D(s, 2r) is defined in (13) and κ := supj∈S |j|).

For the proof see [2] Lemma 7.5.

Given a function F : D(R/2) → C, the previous Lemma shows that the composite
map F ◦ Φξ : D(s, 2r)→ C is well defined and regular. The main result of this section is
Proposition 11.5: if F is quasi-Töplitz in the variables (u, ū) then the composite F ◦ Φξ
is quasi-Töplitz in the variables (x, y, z, z̄) (see Definition 8.14).

We write

(200) F =
∑
α,β

Fα,βmα,β , mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)

,

where

u = (u(1), u(2)) , u(1) := {uj}j∈S , u(2) := {uj}j∈Zd\S , similarly for ū ,

(201) (α(1), β(1)) := {αj , βj}j∈S , (α(2), β(2)) := {αj , βj}j∈Sc .
We define

(202) HDR :=
{
F ∈ HR : F =

∑
α(2)+β(2)≥D

Fα,βu
αūβ

}
.

Proposition 11.5. (Quasi–Töplitz) Let ~p = (r, s,K, θ, µ, λ, ε2Kα), with K, θ, µ, µ′ be
admissible parameters and

(203) (µ′ − µ)K3 > K , Kτ12−
K
2κ+1 < 1 .

If F ∈ QTR/2,K,θ,µ′ ∩H
D
R/2, then f := F ◦ Φξ ∈ QT~p and

(204) ‖Xf‖T~p l (8r/R)D−2 λ

ε2
‖XF ‖TR/2,K,θ,µ′ .

For the proof we will need several Lemmas. First let us deduce the main consequence
of Proposition 11.5.

Corollary 11.6. For all ε > 0, c1ε/2 > r > ε3and s > 0 satisfying (198), the perturbation
P of Definition 2.2 is in QT~p for the parameters ~p = (s, r, θ = C(1 − 1

4 ), µ = c(1 +
1
4 ), λ, ε2Kα). Moreover P satisfies the bounds

(205) ‖XP ‖T~p ≤ C
λ

ε2
(εr + ε5r−1) ,

where C does not depend on ε, r.

Proof. We choose µ′ = c(1 + 1
8 ), the perturbation P has contributions from three terms:

1) The term P (4) ◦ Φξ, 2) The term P (6) ◦ Φξ and finally 3) the terms of degree > 2 in
(HBirk −K) ◦ Φξ. By proposition 11.2 with the choice of parameters (195) all the terms
above are quasi-Töplitz with the parameter µ′ and the Bounds of Proposition 11.2 hold.

In item 1) we note that, by definition, P (4) ∈ H3
R so, by Propositions (11.5) and

(11.2), we have ε2

λ ‖XP (4)‖T~p ≤ (r/R)R2 ≤ Cε r. In item 2) we recall that by momentum

conservation the first term of P (6) of degree D = 0 ( P (6) ∈ H0
R \H1

R) is actually of degree
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at least 8. Then we divide P (6) = R+Q where Q ∈ H1
R and R is of degree at least 8 in u, ū.

By Propositions (11.5) and (11.2), we have ‖XR‖T~p ≤ (r/R)−2R6 ≤ Cε8 r−2 ≤ Cε5r−1.

In the same way ‖XQ‖T~p ≤ (r/R)−1R4 ≤ Cε5 r−1.

Finally in 3) we collect the terms of degree 3 and 4 in formula (10), we get the estimates
ε2

λ |XΠ≥3(HBirk−K)|T~p ′ ≤ Cεr. �

The rest of this section is devoted to the proof of Proposition 11.5. Introducing the
action-angle variables (197) in (200), and using the Taylor expansion

(206) (1 + t)g =
∑
h≥0

(
g

h

)
th ,

(
g

0

)
:= 1 ,

(
g

h

)
:=

g(g − 1) . . . (g − h+ 1)

h!
, h ≥ 1 ,

we get

(207) f := F ◦ Φξ =
∑

k,i,α(2),β(2)

fk,i,α(2),β(2)ei(k,x)yizα
(2)

z̄β
(2)

with Taylor–Fourier coefficients

(208) fk,i,α(2),β(2) :=
∑

α(1)−β(1)=k

Fα,β

n∏
l=1

ξ
α
(1)
l

+β
(1)
l

2 −il
l

(α(1)
l +β

(1)
l

2

il

)
.

Lemma 11.7. (M-regularity) If F ∈ HDR/2 then f := F ◦ Φξ ∈ Hs,2r and

(209)

‖Xf‖s,2r,ε2Kα∪2ε2Kα l (8r/R)D−2‖XF ‖R/2 , ‖Xf‖lips,2r,ε2Kα l ε−2(8r/R)D−2‖XF ‖R/2 .

Moreover if F preserves momentum then so does F ◦ Φξ.

Proof. See [2] Lemma 7.7. �

Definition 11.8. For a monomial mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)

(as in
(200)) we set

(210) p(mα,β) :=

n∑
l=1

〈jl〉(α(1)
jl

+ β
(1)
jl

) , 〈j〉 := max{1, |j|} .

For any F as in (200), K ∈ N, we define the projection

(211) Πp≥KF :=
∑

p(mα,β)≥K

Fα,βmα,β , Πp<K := I −Πp≥K .

Lemma 11.9. Let F ∈ HR/2. Then

(212) ‖X(Πp≥KF )◦Φξ‖s,r,ε2Kα ≤ 2−
K
2κ+1‖XF◦Φξ‖s,2r,2ε2Kα .

Proof. See [2] Lemma 7.8. �

Let K, θ, µ, µ′, τ be as in Proposition 11.5. For N ≥ K and F ∈ HR/2 we set

(213) f∗ := ΠN,θ,µ,τ

(
(F −ΠN,θ,µ′,τF ) ◦ Φξ

)
.

Note that ΠN,θ,µ′,τ is the projection on the bilinear functions in the variables u, ū, while
ΠN,θ,µ,τ in the variables x, y, z, z̄.

The next Lemma corresponds to Lemma 7.9 of [2].
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Lemma 11.10. We have

(214) ‖Xf∗‖s,r,ε2Kα ≤ 2−
N
2κ+1‖XF◦Φξ‖s,2r,2ε2Kα .

Proof. We first claim that if F = mα,β is a monomial as in (200) with p(mα,β) < N then
f∗ = 0.

Case 1: mα,β is (N, θ, µ′, τ)–bilinear, see Definition 8.3. Then ΠN,θ,µ′,τmα,β = mα,β
and f∗ = 0, see (213).

Case 2: mα,β is not (N, θ, µ′, τ)–bilinear. Then we have ΠN,θ,µ′,τmα,β = 0 and hence
f∗ = ΠN,θ,µ,τ (mα,β ◦ Φξ), see (213). We claim that mα,β ◦ Φξ is not (N, θ, µ, τ)–bilinear,
and so f∗ = ΠN,θ,µ,τ (mα,β ◦ Φξ) = 0. Indeed,

(215) mα,β ◦ Φξ = (ξ + y)
α(1)+β(1)

2 ei((α(1)−β(1)),x)zα
(2)

z̄β
(2)

is (N, θ, µ, τ)–bilinear if and only if (see Definitions 8.3 and 8.2)

zα
(2)

z̄β
(2)

= zα̃
(2)

z̄β̃
(2)

zσmz
σ′

n ,

(216)
∑

j∈Zd\S

|j|(α̃(2)
j + β̃

(2)
j ) < µN3 , |m|, |n| > θNτ1 , |α(1) − β(1)| < N ,

and n,m have a cut at ` with parameters θ, µ, τ .

We deduce the contradiction that mα,β = (u(1))α
(1)

(ū(1))β
(1)

(u(2))α̃
(2)

(ū(2))β̃
(2)

uσmu
σ′

n is
(N, θ, µ′, τ)-bilinear because (recall that we suppose p(mα,β) < N)

n∑
l=1

|jl|(α(1)
jl

+β
(1)
jl

)+
∑

j∈Zd\S

|j|(α̃(2)
j + β̃

(2)
j )

(210),(216)
< p(mα,β)+µN3 < N +µN3

(203)
< µ′N3 .

For the general case, we divide F = Πp<NF + Πp≥NF . By the above claim

f∗ = ΠN,θ,µ,τ

((
(Id−ΠN,θ,µ′,τ )Πp≥NF

)
◦Φξ

)
= ΠN,θ,µ,τ

((
Πp≥N (Id−ΠN,θ,µ′,τ )F

)
◦Φξ

)
.

Finally, (214) follows by applying Lemma 11.9 to
(
Πp≥N (Id−ΠN,θ,µ′)F

)
◦Φξ and using

the fact that projections may only reduce the norm. �

Lemma 11.11. Let F ∈ TR/2,N,θ,µ′,τ with Πp≥NF = 0. Then F ◦Φξ(·; ξ) ∈ Ts,2r,N,θ,µ′,τ ,

∀ ξ ∈ ε2Kα ∪ 2ε2Kα .

Proof. Recalling Definition 8.8 we have

F =
∑
A∈HN

∗∑
|m|,|n|>θNτ1 ,σ,σ′=±

Fσ,σ
′
(A, σm+σ′n)uσmu

σ′

n with Fσ,σ
′
(A, h) ∈ LR/2(N,µ′, h) .

denoting A = [vi; pi]` the apex ∗ means the sum restricted to those n,m which have a cut
at ` with parameters (θ, µ, τ) and m has associated space A.

Composing with the map Φξ in (197), since m,n /∈ S, we get

F ◦ Φξ =
∑

σ,σ′=± ;|m|,|n|>θNτ1
Fσ,σ

′
(A, σm+ σ′n) ◦ Φξ z

σ
mz

σ′

n .

Each coefficient Fσ,σ
′
(A, σm + σ′n) ◦ Φξ depends on n,m, σ, σ′ only through A, σm +

σ′n, σ, σ′. Hence, in order to conclude that F ◦Φξ ∈ Ts,2r,N,θ,µ′,τ it remains only to prove
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that Fσ,σ
′
(A, σm+σ′n) ◦Φξ ∈ Ls,2r(N,µ′, σm+σ′n), see Definition 8.2. Each monomial

mα,β of Fσ,σ
′
(A, σm+ σ′n) ∈ LR/2(N,µ′, σm+ σ′n) satisfies

n∑
l=1

(αjl + βjl)|jl|+
∑

j∈Zd\S

(αj + βj)|j| < µ′N3 and p(mα,β) < N

by the hypothesis Πp≥NF = 0. Hence mα,β ◦ Φξ (see (215)) is (N,µ′)-low momentum, in

particular |α(1) − β(1)| ≤ p(mα,β) < N . �

Proof. of Proposition 11.5. Since F ∈ QTR/2,K,θ,µ′ (see Definition 8.14), for all N ≥ K,

there is a Töplitz approximation F̃ ∈ TR/2,N,θ,µ′,τ of F , namely
(217)

ΠN,θ,µ′,τF = F̃ +N−4dτ F̂ with ‖XF ‖R/2, ‖XF̃ ‖R/2, ‖XF̂ ‖R/2 < 2‖F‖TR/2,K,θ,µ′ .

In order to prove that f := F ◦ Φξ ∈ QTs,r,K,θ,µ we define its candidate Töplitz approxi-
mation

(218) f̃ := ΠN,θ,µ,τ ((Πp<N F̃ ) ◦ Φξ) ,

see (211). Lemma 11.11 applied to Πp<N F̃ ∈ TR/2,N,θ,µ′,τ implies that (Πp<N F̃ ) ◦
Φξ ∈ Ts,2r,N,θ,µ′,τ and then, applying the projection ΠN,θ,µ,τ we get f̃ ∈ Ts,2r,N,θ,µ,τ ⊂
Ts,r,N,θ,µ,τ . Moreover, by (218) and applying Lemma 11.7 to Πp<N F̃ (note that Πp<N F̃
is either zero or it is in HDR/2 with D ≥ 2 because it is bilinear), we get

‖Xf̃‖s,r,ε2Kα ≤ ‖X(Πp<N F̃ )◦Φξ)‖s,r,ε2Kα
(209)
l (8r/R)D−2‖XΠp<N F̃

‖R/2
(217)
l (8r/R)D−2‖F‖TR/2,K,θ,µ′,τ .(219)

Moreover the Töplitz defect is

f̂ := N4dτ (ΠN,θ,µ,τf − f̃)
(218)
= N4dτ ΠN,θ,µ,τ

(
(F −Πp<N F̃ ) ◦ Φξ

)
= N4dτΠN,θ,µ,τ

(
(F − F̃ ) ◦ Φξ

)
+N4dτΠN,θ,µ,τ

(
(F̃ −Πp<N F̃ ) ◦ Φξ

)
(217),(211)

= ΠN,θ,µ,τ (F̂ ◦ Φξ) +N4dτΠN,θ,µ,τ

((
F −ΠN,θ,µ′F

)
◦ Φξ

)
+N4dτΠN,θ,µ,τ

(
(Πp≥N F̃ ) ◦ Φξ

)
(213)
= ΠN,θ,µ,τ (F̂ ◦ Φξ) +N4dτf∗ +N4dτΠN,θ,µ,τ

(
(Πp≥N F̃ ) ◦ Φξ

)
.

Lemmata 11.9 and 11.10 imply that, since N4dτ2−
N
2κ+1 ≤ 1 ∀N ≥ K by (203),

‖Xf̂‖s,r,ε2Kα ≤ ‖XF̂◦Φξ‖s,r,ε2Kα +N4dτ2−
N
2κ+1(‖XF◦Φξ‖s,2r,2ε2Kα + ‖XF̃◦Φξ‖s,2r,2ε2Kα)

l ‖XF̂◦Φξ‖s,2r,ε2Kα + ‖XF◦Φξ‖s,2r,2ε2Kα + ‖XF̃◦Φξ‖s,2r,2ε2Kα
(209)
l (8r/R)D−2(‖XF̂ ‖R/2 + ‖XF ‖R/2 + ‖XF̃ ‖R/2)(220)

(217)
l (8r/R)D−2‖F‖TR/2,K,θ,µ′(221)

(to get (220) we also note that we can choose F̂ , F̃ so that they belong to the same HDR/2
as F . The bound (204) follows by (209), (219), (221). �
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11.12. Reduction to constant coefficients. For all k ∈ Sc set r(k) := r(A) to be the
root of the component A of ΓS to which k belongs (this is chosen once in one of the graphs
in the same translation class). We have thus associated to each k an element L(k) ∈ Zn ,
see Theorem 2 and formula (36):

(222) zk = e−iL(k).xz′k, y = y′ +
∑
k∈Sc

L(k)|z′k|2, x = x′.

to define a symplectic change of variables Ψ : D(s, r/2) → D(s, r) in which the normal
form has constant coefficients. One may trivially check that

‖XF◦Ψ‖λs,r ≤ 4e2dκs‖XF ‖λs,2r.
We need to see what happens to (N, θ, µ, τ)–bilinear monomials first. Note that the

momentum of z′k is r(k). Take a monomial

m = mα,β,k = ei(k,x)ylzαz̄β .

We have

m ◦Ψ = ei(k′,x)(y′ +
∑
k∈Sc

L(k)|z′k|2)lz′
α
z̄′β , k′ = k −

∑
j

L(j)(αj − βj).

Hence we obtain a sum of monomials

(223) ei(k′,x)(y′)h(z′)α(z̄′)β |z′|2g , h ≤ l , |h|+ |g| = |l|
all with momentum:

(224) πr(k
′, α, β) = π(k′) +

∑
j

(αj − βj)r(j) = π(k′, α, β) +
∑
j

(αj − βj)(r(j)− j).

As in the previous section we define a cut off parameter

p(mα,β,k) := |k|+ 2dκ(|α|+ |β|),
and set

(225) Πp≥KF :=
∑

p(mα,β,k)≥K

Fα,β,kmα,β,k , Πp<K := I −Πp≥K .

In the following Lemmas we assume that s > (2dκ)−1.

Lemma 11.13. For all F ∈ Hs,r we have

(226) ‖X(Πp≥KF )◦Ψ‖s,r ≤ 2−
K

8dκ+2‖XF◦Ψ‖2s,2r .

Proof. When p(mα,β,k) := |k|+ 2dκ(|α|+ |β|) > K we distinguish two cases:
1. 2dκ(|α| + |β|) > K/4. We note that Ψ may only increase the degree in the normal

variables of monomials so the total degree in the new variables is > K/(8dκ) and the
bound follows by the degree bounds 28.

2. Otherwise |k′| > K/2 and the bound follows by the ultraviolet bounds 27. �

Fix parameters
(µ′ − µ)N3 > N , (θ − θ′)Nτ1 > 2dκ.

Lemma 11.14. Take a function F ∈ Hs,r, assume that

Πp≥NF = ΠL
N,µ′F = 0.

Then we have
f∗ := ΠN,θ,µ,τ (F −ΠN,θ′,µ′,τF ) ◦Ψ = 0
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Proof. We may assume that F = mα,β,k is a monomial. If F is (N, θ′, µ′, τ)–bilinear the
statement is clear. Otherwise f∗ is a sum a monomials described by formula 223. If one of
these monomials is bilinear its high variables either come from one of the new exponents g
or already appear in α, β. In the first case this is possible only if m is (N,µ′)–low contrary
to our hypothesis. In fact suppose that g = ḡ+em, where m = n is the high variable with
|r(m)| > θNτ1 , and that ∑

j

|r(j)|(αj + βj + ḡj) < µN3.

Then since ḡj ≥ 0 and |j − r(j)| < 2dκ we have∑
j

|j|(αj + βj) < µN3 + 2dκ(|α|+ |β|) < µN3 +N < µ′N3.

Finally since p < N we have |k| < N , we deduce that m is low.
In the other case the two high variables m,n such that |r(m)|, |r(n)| > θNτ1 already

appear in mα,β,k. We claim that this implies mα,β,k (N, θ′, µ′, τ)-bilinear contrary to the
hypothesis. In fact write α = ᾱ + em, β = β̄ + en. Applying Ψ the monomials appearing
in f∗ are of the form mᾱ+g,β̄+g,k′zmz̄n with |k′| < N and

∑
j |r(j)|(ᾱj + β̄j + 2gj) < µN3.

Then
∑
j |j|(ᾱj + β̄j) < µN3 + 2dκ(|α|+ |β|) < µ′N3. Since |j − r(j)| < 2dκ we have

|m|, |n| > θNτ1 − 2dκ > θ′Nτ1 .

The fact that m,n have the correct cut is trivial, see Remark 8.7. Finally we are assuming
that p(mα,β,k) := |k| + 2dκ(|α| + |β|) ≤ N hence |k| < N and we have that mα,β,k is
(N, θ′, µ′, τ)-bilinear.

�

We next analyze a function F with ΠL
N,µ′F = F and again we may assume that it is a

monomial F = mα,β,k, in this case f∗ := ΠN,θ,µ,τ (F −ΠN,θ′,µ′,τF ) ◦Ψ = ΠN,θ,µ,τF ◦Ψ is
a sum of monomials mα+ḡ,β+ḡ,k′ |zm|2 arising from the terms 223 with g = ḡ + em.

Lemma 11.15. Given a function F with ΠL
N,µ′F = F then f∗ = ΠN,θ,µ,τF ◦Ψ is piecewise

Töplitz and diagonal.

Proof. By the previous remarks we may compute explicitly f∗ as:

ΠL
N,µ

(
∇yF ◦Ψ

)
·

∑
|m|>θNτ1 ,

m∈(N,θ,µ,τ)−cut

L(m)|zm|2 ,

we have that f∗ ∈ T(N,θ,µ,τ) since L(m) is fixed on all the (N, θ, µ, τ)–good points of any
subspace (by Theorem 5). �

Lemma 11.16. Given a function F ∈ T(N,θ′,µ′,τ), then ΠN,θ,µ,τF ◦Ψ ∈ T(N,θ,µ,τ)

Proof. Recalling Definition 8.8 we have

F =
∑
A∈HN

∗∑
|m|,|n|>θ′Nτ1 ,σ,σ′=±

Fσ,σ
′
(A, σm+σ′n)zσmz

σ′

n with Fσ,σ
′
(A, h) ∈ Lr,s(N,µ′, h) .

denoting A = [vi; pi]` the apex ∗ means the sum restricted to those n,m which have a cut
at ` with parameters (N, θ′, µ′, τ) and m has associated space A.
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Composing with the map Ψ in (222), since m,n /∈ S and |r(m)|, |r(n)| > θNτ1 implies
|m|, |n| > θ′Nτ1 , we get Π(N,θ,µ,τ)F ◦Ψ =∑
A∈HN

∗∑
|r(m)|,|r(n)|>θNτ1 ,σ,σ′=±

ΠL
N,µ

(
Fσ,σ

′
(A, σm+σ′n)◦Ψ e−i(σL(m)+σ′L(n),x)

)
(z′m)σ(z′n)σ

′
.

Each coefficient Fσ,σ
′
(A, σm + σ′n) ◦ Φ depends on n,m, σ, σ′ only through A, σm +

σ′n, σ, σ′, same for σL(m) + σ′L(n). �

Proposition 11.17. (Quasi–Töplitz) Let

~p = (r, s,K, θ, µ, λ, ε2Kα), ~p ′ = (2r, 2s,K, θ′, µ′, λ, ε2Kα)

be admissible parameters and

(227) (µ′ − µ)K3 > K , (θ − θ′)Kτ1 > 2dκ > s−1 , Kτ12−
K

8κd+2 < 1 .

If F ∈ QT~p′ , then f := F ◦Ψ ∈ QT~p and

(228) ‖Xf‖T~p l e2dκs‖XF ‖T~p′ .

Proof. Consider N ≥ K and suppose that F has no N,µ′–low terms. In this case the
proof is identical to that of Proposition 11.5 provided we use the corresponding Lemmata
of this section. We conclude the proof by noting that Π(N,θ,µ,τ)

(
ΠL
N,µ′F ◦ Ψ) ∈ TN,θ,µ,τ

by Lemma 11.15. Hence in this case the Töplitz defect is zero. �

11.18. The final step. In the final step we diagonalize block by block the matrices
following Theorem 4. The linear change Ξ has a finite block structure in the sense that
the Hilbert space `a,p is decomposed into an orthogonal sum of subspaces VA,a indexed by
the combinatorial pairs A, a and, if we write a vector as a finite vector with coordinates in
these subspaces, the linear transformation Ξ is given by the finite matrix UA = (Ui,j(ξ))
with entries depending on ξ and uniformly bounded by some value U , see Remark5.2.
Denote by Ξ∗ : F 7→ F ◦ Ξ the map induced on functions. One may trivially see that the
majorant norm

sup
ξ∈ε2Kα

‖MΞz′‖2s,r ≤
∑
i∈Sc

(
∑

j: r(j)=r(i)

sup
ξ∈ε2Kα

|Ui,j(ξ)||z′j |)2e2a|i||i|2p ≤ 22p(d+1)2U2e4dκ|a||z′|2s,r .

We now restrict to thet domain O0 = ε2Kα of measure of order ε2n, which is all contained
in one of the connected components of Theorem 4. Recall that one of the domains Ke is
contained in the elliptic region.

Using the bounds of Remark 5.2 and passing to the majorant norm for vector fields we
have

(229) ‖XΞ∗f‖λs,r ≤ A‖Xf‖λs,Cr , A := (d+ 1)2pU e2dκ|a| .

Next we need to control the Töplitz norms. We remark that, since we are making
linear transformations among variables zk which have the same root, any monomial in
these variables is replaced by a homogeneous sum of monomials in the new variables, all of
which have the same root-momentum, so the space Ls,r(N,µ, h) is mapped into itself. The
bilinear functions Bp, with p := (N, θ, µ, τ) are mapped in Bp1 , with p1 := (N, θ1, µ1, τ),

provided that θ, θ1, µ, µ1 are parameters which satisfy the neighborhood lemma 7.22, so
that if m has a p–cut, also m + u has a p1–cut for all possible types u ∈ Z. The new
estimate on parameters that we need is, using Formula (54) for r −m ∈ Z is:

(230) 2dκ < min(κ−1(µ1 − µ)Nτ−1, κ−1(θ − θ1)N4dτ−1).



A KAM ALGORITHM FOR THE NLS 69

We now claim that for more restricted parameters p′ we have that Ξ∗QTp is contained in

QTp′ . it remains to understand what happens to the space Tp we claim that Πp′Ξ
∗Tp ⊂ Tp′ .

Take thus a function g =
∑(A,p)
m,n g(σm + σ′n)zσmz

σ′

n as in Formula (70). We have that
Agp is contained in some stratum ΣA,a for some combinatorial pair A, a. For the space B

associated to n we have that Bgp is contained in a stratum ΣB,b. Note that the pair B, b
is determined by A, a and σm+ σ′n.

Now the change of variables Ξ acts on zm giving a linear combination of zm−ua+u where
ua is the type of m and u runs over the types appearing in A similarly for B.

Consider
(231)

Πp′Ξ
∗g =

(A,p)∑
m,n

Πp′Ξ
∗g(σm+ σ′n)

∑
v∈A, k1=uv−ua

UA(ξ)a,vz
σ
m+k1

∑
w∈B , k2=uw−ub

UB(ξ)b,wz
σ′

n+k2 .

We have already remarked that Ξ∗g(σm + σ′n) ∈ Ls,r(N,µ, h). Formula (231) gives a

sum
∑
m′,n′ g

σ,σ′

m′,n′z
σ
m′z

σ′

n′ where both m′, n′ have a p′ cut and either the associated space

of m′ precedes that of n′ or the opposite case occurs, moreover m′ ∈ ΣA,v, n
′ ∈ ΣB,w.

Reordering Formula (231) it is easily seen that the coefficient

gσ,σ
′

m′,n′ = UA(ξ)a,vUB(ξ)b,wg(σ(m′ − k1) + σ′(n′ − k2)) =

UA(ξ)a,vUB(ξ)b,wg(σm′ + σ′n′ − σk1 − σ′k2)

depends only upon σm′ + σ′n′ and v hence the claim. Indeed the only thing to make
explicit is how to remove the restriction m′ − k1 ∈ Agp. This follows from the estimate

on the parameters p′ which ensures that, if m′, n′ have a p′ cut at ` then the vectors
m′ − k1,m

′ − k2 have a p cut at `. This we do as usual by the neighborhood Lemma
noticing that |k1|, |k2| ≤ 2dκ since they are differences of two elements in Z (cf. Remark
7.30). So the requirement is by (54):

2dκ < min(κ−1(µ− µ′)Nτ−1, κ−1(θ′ − θ)N4dτ−1.

Summarizing we have performed 4 changes of coordinates called Ψ(1),Φξ,Ψ,Ξ. The

final Hamiltonian is thus H ◦Ψ(1) ◦Φξ ◦Ψ◦Ξ, this by definition is The Hamiltonian of the
NLS in the final coordinates. Recall that the perturbation P refers to the Hamiltonian
H ◦Ψ(1) ◦Φξ = N +P (Definition 2.2) which by abuse of notation we have still called H.

Proposition 11.19. The perturbation of the Hamiltonian of the NLS in the final coor-
dinates is quasi-Töplitz for the parameters ~p0 = (r0 = r/(2A), s0 = s/4, θ0 = C/2, µ0 =
2c,K0 > N0, λ = 2ε2,O = ε2Kα). We have the bounds:

(232) ‖XP◦Ψ◦Ξ‖T~p0 ≤ C(εr + ε5r−1) ,

Proof. By Corollary 11.6 we have that P is quasi-Töplitz with parameters s, r,K, θ =
C 3

4 , µ = c 5
4 , 2ε

2, ε2Kα). Since, by Formula (50):

(
3

2
c− 5

4
c)N2

0 > 4dκ2 , (
3

4
− 3

8
)CNτ1

0 > 4dκ2 , Nτ1
0 2−

N0
2κ +1 < 1

we apply Proposition 11.17 and obtain the desired bounds for P ◦Ψ with the parameters
(s/2, r/2, θ = 3

8C, µ = 3
2c,K > N0, 2ε

2,O0). Then we apply the last change of variables
Ξ we need to satisfy again the neighborhood Lemma and reduce the parameters to θ0 =
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C/2, µ0 = 2c moreover we reduce the analyticity radius by 1
A
. We obtain the desired

result. �

11.20. Final conclusions: solutions of the NLS.

Proposition 11.21. The Hamiltonian of the NLS in the final coordinates is a compatible
Hamiltonian in the sense of Definition 10.2 and satisfies the hypotheses of Theorem 7
provided we choose r = ε2 and ε small.

Proof. The fact that it satisfies the smallness condition in Theorem 7 follows from (232).
We need to verify all the conditions (A1)− (A5).
(A1) Non–degeneracy: The map ξ → ω(ξ) is ξ 7→ v − 2ξ so it is a lipeomorphism from
O0 to its image with |ω−1|lip∞ ≤ 1. We have |ω(ξ)− v| ≤ ε2 since by assumption |ξ| ≤ ε2.

(A2) Asymptotics of normal frequency: For all n ∈ Sc we have a decomposition:

(233) Ωn(ξ) = σ(n)(|r(n)|2 + 2ϑn(ξ)).

In our case we start from Ω̃n(ξ) = 0. We know that the ϑn(ξ) are in a finite list of analytic
functions which are homogeneous of degree one in ξ. As for (120), by homogeneity, we
can fix M ≥ 1 so that 2 + 2|ϑ|lip∞ ≤M , 2|ϑ|∞ ≤Mε2 . This fixes the parameters M,L,
then we fix K0 large enough (independently form r0) and choose γ < min(2M,B)ε2 with
B = B(K0,O0) given in the iterative Lemma.

(A3) Regularity and Quasi–Töplitz property: The function Ω̃(z) = 0. The functions P ,
ϑ(z) :=

∑
j ϑj |zj |2 are M–regular, preserve momentum as in (44), are Lipschitz in the

parameters ξ. Then P is quasi-Töplitz with parameters (s0, r0,K0, θ0, µ0, γ/M, ε2Kα)
by Proposition 11.19, with the bounds (232). Moreover we know that the functions
ϑi are constant of the strata ΣA,a of §7.26 hence ϑ(z) :=

∑
j ϑj |zj |2 is regular, pre-

serve momentum and is quasi–Töplitz and for all N ≥ K0 τ0 ≤ τ ≤ τ1/4d we have
Π(N,θ,µ,τ)

∑
j ϑj |zj |2 ∈ T(N,θ,µ,τ).

(A4) Smallness condition: We compute Θ, |~ε| ≤ Cε3γ−1 by (232). The condition

(234) Θ < 1 , LM |~ε| < 1 , γ−1‖XΩ̃‖
T
~p < 1 , κe|~ε|K4dτ1

0 � 1.

This translates to the condition (188) in which α = 3 by (205) with r = ε2. Finally we

note that the third condition in (A4) is trivial since Ω̃ = 0.

(A5) Non–degeneracy (Melnikov conditions): For all (k, l) 6= 0 compatible with momen-
tum conservation the function 〈ω, k〉+ (Ω, l) is of the form 〈v, k〉+ (V, l)− 2

∑
i kiξi + 2θ

where θ can be 0,±ϑj ,±ϑj±ϑk. From the main result of [20] we know that all the functions∑
i kiξi + θ are analytic, homogeneous of degree 1 and different from 0 and give distinct

eigenvalues on distinct blocks. Hence in each connected component (R+)nα of (R+)n \ A
we can choose a compact domain Kα which does not intersect any of the zero curves of
the functions (〈ω, k〉 + (Ω, l))0 for |k| < 16

√
n, this amunts, as explained in Remark 6.6,

to taking the Kα disjoint from finitely many hypersurfaces describing the resultants given
in that Remark. Now fix Kα, for each k, l as above such that 〈v, k〉 + (V, l) = 0 we have
that 〈ω, k〉 + (Ω, l) is homogeneous of degree one and non zero. Then for all positive ρ
such that ρξ ∈ Kα we have

|〈ω(ρξ), k〉+ (Ω(ρξ), l)− (〈ω(ξ), k〉+ (Ω(ξ), l))|
(|1− ρ||ξ|

=
〈ω, k〉+ (Ω, l)

|ξ|
≥ a > 0
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for some positive a := a(α). We repeat the same argument for all α and we choose
O0 = ε2K.

�

For compatible Hamitonians we have proved in the previous section a general Theorem
7 which ensures the existence of KAM–tori, now we can apply this Theorem to the NLS
and have as final result Theorem ?? .
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