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linear Schrödinger equation on a torus described in [12]. The discussion is essentially combinatorial
and algebraic in nature.†

Key words: Normal form, NLS equation, Cayley graphs, stability.

Mathematics Subject Classification: 35Q55, 37K55, 05C31.

Contents

1. Introduction 230
1.1. Structural stability 232
2. Preliminaries 236
2.1. An elementary geometric problem 236
2.3. Some background 237
2.4. The operator adðNÞ 239
2.7. The Cayley graphs 240
Part 1. Sphere and hyperplanes problem 244
3. The geometric problem 244
3.2. Equations for the root 245
3.5. Relations 246
3.10. Degenerate resonant graphs 247
4. Resonant graphs 249
4.1. Encoding graphs 249
4.3. Minimal relations 250
5. The resonance 252
5.1. The resonance relation 252
6. The contribution of an index u 257
6.11. The extra edge 270
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1. Introduction

In this paper we study the completely resonant cubic Nonlinear Schrödinger
equation (NLS):

iut � Du ¼ juj2uð1Þ

on the n dimensional torus Tn. More precisely we analize the quadratic Normal
form Hamiltonian, introduced in [12], of the NLS equation (1), with the purpose
of proving non-degeneracy and stability results for its dynamics. Our dynamical
results are summarized in Propositions 1.2 and 1.3 which in turn follow from
our main Theorem 1. This theorem, whose lenghtly proof occupies most of the
paper, is of algebraic, combinatorial and geometric nature, and can in principle
be formulated with no previous knowledge of the NLS. In the first ten pages we
recall, for convenience of the reader, the results on the NLS normal form proved
in [12], and we show how to deduce our dynamical results from Theorem 1. Let
us briefly- and somewhat naı̈vely- recall the theory of Poincaré-Birkho¤ Normal
Form. The Birkho¤ normal form reduction was developed in order to study the
long-time behaviour of the solutions of a dynamical system close to an equilib-
rium and represents a non-linear analog to the canonical form for matrices. For
a classical introduction see [1], [5], [10], [8]; for the application to PDEs see for
instance [4].

At a purely formal level, consider a non-linear Hamitonian dynamical system
with an elliptic fixed point:

Hðp; qÞ ¼
X
j A I

ljðp2j þ q2j Þ þH>2ðp; qÞ; lj a R

here the index set I is finite or possibly denumberable while H>2ðp; qÞ is some
polynomial with minimal degree > 2. By definition the normal form reduction at
order N is a symplectic change of variables CN which reduces H to its resonant
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terms:

Hðp; qÞ �CN ¼
X
j

ljðp2j þ q2j Þ þH>2
Resðp; qÞ þHNðp; qÞ

where H>2
Res Poisson commutes with

P
j ljðp2j þ q2j Þ while HNðp; qÞ is a formal

power series of minimal degree > N þ 1.
There are two classes of problems in this scheme:
(i) Even though HN is of minimal order N þ 1 its norm may diverge as

N !l, due to the presence of small divisors.
(ii) If I is an infinite set it is not trivial, even when N ¼ 1, to show that CN is

an analytic change of variables.
Note that if the lj are rationally independent then the normal form

HBirk ¼
P

j ljðp2j þ q2j Þ þH>2
Resðp; qÞ is integrable, a feature which is used in prov-

ing for instance long time stability results.
If the lj are resonant then HBirk may not be integrable but it is possible that its

dynamics is simpler than the one of the original Hamiltonian.
In particular in many examples, including the NLS, one can see that HBirk has

invariant tori of the form

p2i þ q2i ¼ xi; i a SH I ; pj ¼ qj ¼ 0; j a Sc :¼ InSð2Þ

on which the dynamics is of the form c! cþ oðxÞt with oðxÞ a di¤eomor-
phism.

One wishes to obtain information on solutions of the complete Hamiltonian
close to these tori. As is well known in order to obtain results one needs to study
the Hamilton equations of H linearized at this family of invariant tori. That is
one needs to study the dynamics induced on the normal bundle to these tori.
This is described by a family of linear operators (between normal spaces) para-
metrized by the family and the points on the tori.

In terms of equations this is described by a quadratic Hamiltonian with co-
e‰cients depending on the parameters x and on the angle variables of the tori.
The matrix obtained by linearizing HBirk at the solutions (2) is referred to as the
normal form matrix (or normal form). One of the main results of [12] exhibits, for
the NLS and for generic choices of S, a symplectic change of variables which re-
moves the dependence from the angles, this decouples the dynamics into the one
on the tori and one on the normal space. Moreover in our infinite dimensional
case the matrices of the normal form are block diagonal with blocks uniformly
bounded. Thus one has a reduction to an infinite list of decoupled linear equa-
tions (depending on the parameters x).

In order to perform perturbation theory algorithms, to obtain informations
on the solutions of H, one generally uses non-degeneracy conditions. One of the
strongest requirements is that the matrix of the normal form has non-zero and
distinct eigenvalues. This property is an instance of structural stability. In this
paper we prove that this condition is satisfied for the normal forms of the NLS
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previously introduced provided the parameters x are taken outside a countable
union of real hypersurfaces.

1.1. Structural stability. Structural stability, for an orbit of a dynamical system
or a solution of a di¤erential equation is a basic, and delicate, question both for
theoretical and practical reasons. It essentially means that the qualitative be-
havior of the trajectories, close to the given solutions, is una¤ected by small per-
turbations both of the initial data and of the system itself.

In the simplest case of the class of linear di¤erential equation _xx ¼ Ax, where A
is a real n� n matrix, the nature of the orbits depends upon the Jordan canonical
form of A. In particular the discriminant of A is an hypersurface (in the space of
all matrices) which contains all special normal forms; its complement is the set of
matrices with distinct eigenvalues which decomposes into connected components.
On each such component the number of real eigenvalues is constant, thus these
regions are the regions of structural stability. Of course if the matrix A is subject
to some restrictions (as being symmetric, symplectic etc.) the normal forms are
further constrained [2].

1.1.1. Stability for the NLS. The normal form of the NLS is described by an
infinite dimensional Hamiltonian which determines a linear operator adðNÞ,
depending on a finite number of parameters xi (the actions of certain excited
frequencies), and acting on a certain infinite dimensional vector space F ð0;1Þ (see
2.6.1) of functions.

Stability for this infinite dimensional operator will be interpreted in the same
way as it appears for finite dimensional linear systems, that is the property that
the linear operator is semisimple with distinct eigenvalues.

This will be shown to be true outside a zero measure set of parameters, further
on a smaller set of positive measure we shall show that the dynamic is elliptic.
This condition in a more precise quantitative form (which will be discussed else-
where) in the Theory of dynamical systems is referred to as the second Melnikov
condition. We shall apply this in [11] in order to prove, by a KAM algorithm, the
existence and stability of quasi-periodic solutions for the NLS (not just the nor-
mal form).

The fact that this non-degeneracy condition makes at all sense depends on the
fact that the normal form matrix decomposes into an infinite direct sum of finite
dimensional blocks. Furthermore, these finite dimensional blocks are described
by translating, with suitable scalars, a finite number of combinatorially defined
matrices, constructed from certain combinatorial objects called marked colored
graphs (cf. Definition 2.8 and Remark 2.10). Thus the matrices appearing as
blocks of the normal form matrix can be combinatorially classified and, in prin-
ciple, computed. Indeed given a specific graph computing the associated matrix
block is quite simple, so that the question is essentially that of classifying the pos-
sible graphs which describe blocks of the normal form.

The characteristic polynomials detðt� adðNÞGÞ of the normal form operator
adðNÞ restricted to the infinitely many blocks G are all polynomials in the vari-
ables xi and t with integer coe‰cients. The issue is thus to prove that a rather
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complicated infinite list of polynomials in a variable t, of degree increasing with
the space dimension, and with coe‰cients polynomials in the parameters xi have
distinct roots for generic values of the parameters.

In general, in order to prove that a single polynomial has distinct roots, one
has to prove the non-vanishing of its discriminant, for two polynomials to have
di¤erent roots the condition is the non-vanishing of the resultant. In our case
we can consider all the characteristic polynomials as having coe‰cients in the
field of rational functions in the parameters xi, its algebraic closure is a field
of algebraic functions. Thus if the discriminant DðxÞ of a given polynomial and
the resultant RðxÞ of two distinct polynomials in Qðx1; . . . ; xmÞ½t� are non-zero
as polynomials in the x we have that outside the real hypersurfaces RðxÞ ¼ 0,
DðxÞ ¼ 0 the two polynomials have distinct roots. Although both the discrimi-
nant and the resultant can be computed by explicit formulas a proof of their
non-vanishing for the infinite list of complicated polynomials appearing seems
to be a hopeless task.

We thus followed a di¤erent approach. Remark that, if we have a list of dif-
ferent polynomials in one variable t, with coe‰cients in a field F of characteristic
0, a su‰cient condition that all their roots (in the algebraic closure F of F ) be
distinct is that they are all irreducible (over F ) and distinct. This follows immedi-
ately from the fact that an irreducible polynomial f ðtÞ is uniquely determined as
the minimal polynomial of each of its roots (cf. [3]) and, in characteristic 0, its
derivative f 0ðtÞ is non-zero. By the irreducibility of f ðtÞ the greatest common di-
visor between f ðtÞ, f 0ðtÞ is 1 so all the roots of f ðtÞ are distinct.

Therefore by a rather complex induction (setting some variables xi equal to
zero) we prove:

Theorem 1 (Separation and Irreducibility Theorem). The characteristic poly-
nomials of the possible graphs giving blocks of the normal form of the NLS are
all distinct, and irreducible as polynomials with integer coe‰cients, that is in
Z½x1; . . . ; xm; t�HQðx1; . . . ; xmÞ½t�.

In general proving that a polynomial in several variables is irreducible is not
an easy task, few general methods are available and none of these seems to apply
to our case. For a given polynomial with integer coe‰cients there exist reason-
able computer algebra algorithms to test irreducibility but this is not a practical
method in our case where the polynomials are infinite and their degrees also tend
to infinity. Fortunately the combinatorics comes to our help as follows. We start
from one of the matrices describing the Hamiltonian for a block associated to a
given graph G. If we set one of the parameters xi ¼ 0 it is easy to verify that the
matrix specializes to a direct sum of smaller blocks of the same type for less pa-
rameters (cf. Corollary 8.3). This remark gives a powerful tool for induction. The
characteristic polynomial specializes to the product of the characteristic polyno-
mials of the blocks and, by induction, we may assume that these factors are irre-
ducible. We thus obtain a factorization for the specialized polynomial.

We repeat the argument with a di¤erent variable obtaining a di¤erent special-
ization and a di¤erent factorization. It is possible that these two factorizations
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cannot arise from the same factorization of the given polynomial. If this happens
we are sure that the polynomial we started with is irreducible. This is the method
we follow in order to prove Theorem 1 and it is the content of Part 2.

Unfortunately this still requires a rather tedious and lengthy case analysis and
a reduction to some basic cases which we treat by computer algebra algorithms.

The fact that the polynomials are distinct (cf. Lemma 9.2) is based by induc-
tion on the irreducibility theorem and it is relatively easy to prove.

There is another delicate point in this proof, in order for the induction to work
we need to have a complete control on the graphs that may appear, which is not
proved in [12] and which we do not know for q > 1. We need to know that the
possible graphs satisfy a geometric non-degeneracy or non resonance restriction,
given by Proposition 2.2. Precisely one of the presentations of our graphs is by
describing the vertices as integral vectors (in Zm), then the non degeneracy con-
dition is that these vectors are a‰nely independent. The possible graphs are
obtained by associating to the combinatorial graphs a system of d linear and qua-
dratic equations, in n variables, which depend on the tangential sites in a qua-
dratic way, where d þ 1 is the number of vertices. The graph is thus admissible
if and only if these equations have solutions in ZnnS, this arithmetic analysis is
too di‰cult to perform and we study wether they have solutions in RnnS. The
idea is that if these equations are independent then they can be at most n. In
fact for a geometrically non degenerate graph the condition of independence is
fulfilled when da n, the case d > n has been treated completely by methods of
algebraic geometry in [12], in the same paper we proved only a partial result on
degenerate graphs. Here, by restricting to the case q ¼ 1, we are able to show
that, for generic choices of S, a resonant graph gives a system which has no solu-
tions in RnnS. Note that a resonance, namely a relation between the vertices of
the graph, implies a linear relation among the linear terms of the system of equa-
tions. Such a relation may correspond either to a relation on the equations or an
incompatibility condition for the system. So first we reduce to minimal cases
(only one resonance), and then we study those graphs for which the equations
are generically compatible. This produces two cases, either the system has only
solutions in S or only in CnnRn, this concludes the proof.

The strategy follows these steps: first we reduce to the case of trees and de-
scribe the resonance in terms of edges (instead of vertices). Next we analyze in a
combinatorial way all the possible minimal resonances (in this analysis the hy-
pothesis q ¼ 1 is essential). Then we prove that we can essentially reduce to those
trees in which all the edges contribute to the resonance. Finally we show that such
trees have at most two trivalent vertices (that is a vertex from which 3 edges orig-
inate), the other vertices have valency 1, 2. At this point one can deduce from the
system a simple equation which has only solutions in S or only in CnnRn by
inspection.

The proof of Proposition 2.2 is the content of Part 1, the proof we found is
rather complex and takes a good 20 pages of detailed combinatorial analysis.

1.1.2. Dynamical consequences. From the fact that the characteristic polyno-
mials of the matrix blocks are described through finitely many graphs we shall
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be able to show the existence of a discriminant variety also in the infinite dimen-
sional setting and show:

Corollary 1.2. There exists an algebraic hypersurface A, in the space Rm of
the parameters x, and a finite number of algebraic functions yiðxÞ homogeneous
of degree 1 on the region RmnA, so that the eigenvalues of Q :¼ � 1

2 iadðNÞ on
F 0;1 are of the form nþ yjðxÞ þ aðxÞ, aðxÞ ¼

P
j njxj , nj a Z,

P
j nj ¼ �1, n a N.

In particular the eigenvalues are all distinct and non-zero outside the countable
union of hypersurfaces yiðxÞ � yjðxÞ � aðxÞA 0 for all iA j and aðxÞ.

Proof. We know that F 0;1 decomposes into the direct sum of infinitely many
blocks corresponding to the connected components of the graph LS defined in
2.12.

From Theorem 1 we have that the characteristic polynomials of the matrices
adðNÞ in the various blocks are irreducible and distinct. In our case we have seen
that, for two distinct blocks, this produces a non zero polynomial whose non van-
ishing is equivalent to the condition that the two blocks have distinct eigenvalues.
In principle this gives countably many hypersurfaces. Since we know that our in-
finite list of matrices is obtained from a finite list by adding a scalar matrix of the
form ðnþ

P
i nixiÞI we obtain a finite number of distinct algebraic function yiðxÞ,

outside an algebraic hypersurface A, which are the eigenvalues of all the combi-
natorial blocks. The condition is yiðxÞ � yjðxÞ � aðxÞA 0 for all iA j and aðxÞ ¼P

j njxj, nj a Z,
P

j nj ¼ 0. r

In [11] we shall refine this Theorem by exhibiting a region of positive measure
where the eigenvalues are explicitly bounded away from 0.

By construction of the matrix Q, real eigenvalues of Q correspond to imagi-
nary eigenvalues of adðNÞ. We have seen that outside a real hypersurface the
eigenvalues of all the combinatorial blocks are distinct. Thus outside this hyper-
surface the cone of the xi decomposes into open regions where the number of real
roots is constant. We can furthermore show (see §2.14.1) that

Proposition 1.3. The open region where all the eigenvalues of Q are real is non
empty in Rm

þ .

As a consequence of Proposition 1.2 one easily sees that one can perform a
symplectic coordinate change so that the Hamiltonian is in diagonal canonical
form, that is we have an infinite sum

P
k ykjzkj

2 corresponding to the real eigen-
values, plus a (possibly empty, depending on the connected region of OdnA
where Od is a small hypercube), finite sum of hyperbolic terms corresponding to
the complex eigenvalues. Then Proposition 1.3 ensures that on an open region of
parameters the Hamiltonian is diagonal and elliptic.

Remark 1.4. No knowledge of the NLS is necessary in order to understand the
Theorems of this paper which may be formulated as purely geometric questions.

Remark 1.5. We should remark that only finitely many of the infinite blocks
are not self adjoint matrices. If one restricts the analysis to the self adjoint blocks
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the proofs simplify drastically, in particular this is true for the first part which
admits a far reaching generalization (cf. Theorem 3).

Remark 1.6. The restriction to q ¼ 1 plays a major role in both parts of the
paper. However for any q and dimension n ¼ 1 all the results of this paper have
been proved in the Ph. D. Thesis of Nguyen Bich Van.

Remark 1.7. In general (q > 1, n > 1) although we do not know that the eigen-
values are distinct we can use a Fitting decomposition with blocks corresponding
to distinct eigenvalues. It turns out that these blocks are uniformly bounded for
generic S.

Remark 1.8. In Proposition 1:3 we have pointed out the existence of an elliptic
region. It is easy to exhibit large regions where there are complex eigenvalues,
which however can be at most a finite number bounded by a function of n, m.

2. Preliminaries

We start by presenting an elementary geometric problem which originates from the
NLS but can be explained and treated in a completely independent way. Then we
briefly describe the NLS normal form and show the origin and importance of the
geometric problem in this context.

2.1. An elementary geometric problem. Given a point p in a sphere in Euclidean
space Rn we can consider its antipode or mirror point p 0. A similar construction
holds in the case of two parallel hyperplanes H1, H2. Given a point p in one of
them, say for instance H1, we can construct a mirror point p 0 a H2 by drawing the
line r perpendicular to H1 through p and taking as p 0 the point of intersection
between r and H2. If we have several spheres S1; . . . ;Sa and pairs of parallel hy-
perplanes ðH 1

1 ;H
1
2 Þ; . . . ; ðHb

1 ;H
b
2 Þ we have, for a point in the intersection of h

such hypersurfaces, h mirror points. Each of them in turn could have several
mirror points. The combinatorics resulting is encoded by a 2-colored graph, hav-
ing as vertices the points of Rn and two types of edges; the edges colored black
represent mirror pairs in parallel hyperplanes while edges colored red represent
antipode points in one of the spheres. The edges are understood as purely combi-
natorial and not as segments of Rn. The combinatorics of this graph can be ex-
tremely complicated and reflects partially the complex relative positions of all the
given hypersurfaces.

In our case a configuration of previous type is associated to a set S (the tan-
gential sites) as follows: given two distinct elements vi; vj a S construct the sphere
Si; j having the two vectors as opposite points of a diameter and the two Hyper-
planes, Hi; j, Hj; i, passing through vi and vj respectively, and perpendicular to the
line though the two vectors vi, vj.

From this configuration of spheres and pairs of parallel hyperplanes we de-
duce, by the previous rules, a combinatorial colored graph, denoted by GS, with
vertices the points in Rn and two types of edges, which we call black and red.
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• A black edge connects two points p a Hi; j, q a Hj; i, such that the line p, q is
orthogonal to the two hyperplanes, or in other words q ¼ pþ vj � vi.

• A red edge connects two points p; q a Si; j which are opposite points of a diam-
eter (pþ q ¼ vi þ vj).

The Problem The problem consists in the study of the connected components of
this graph. Of course the nature of the graph depends upon the choice of S but
one expects a relatively simple behavior for S generic.

It is immediate by the definitions that the points in S are all pairwise con-
nected by black and red edges and it is not hard to see that, for generic values
of S, the set S is itself a connected component which we call the special compo-
nent.

What we expect to have, as explained in §3.2 and proved in Part 1, is:

Proposition 2.2. For generic choices of S the connected components of this
graph, di¤erent from the special component, are formed by a‰nely independent
points.

In particular each component has at most nþ 1 points.

In the next paragraph we explain how this problem arises in the NLS. The
NLS considered in [12] depend upon an integer parameter q but here we con-
centrate in the simplest case when q ¼ 1, which is connected to the previous geo-
metric problem, and we have the cubic NLS the remaining cases are essentially
open.

2.3. Some background. The cubic NLS on a torus is a Hamiltonian system,
the symplectic variables are the Fourier coe‰cients of the functions uðjÞ :¼P

k AZ n uke
iðk;jÞ, the symplectic structure is i

P
k AZn dukbduk and the Hamilto-

nian is

H :¼
X
k AZn

jkj2ukuk e
X

ki AZ
n:T

4
i¼1ð�1Þ

i
ki¼0

uk1uk2uk3uk4 :ð3Þ

We shall choose the sign þ for simplicity of notations. We perform a step
of ‘‘Resonant Birkho¤ normal form’’. Denote by K :¼

P
k AZn jkj2ukuk. A

monomial
Q

i u
ai
ki
u
bi
ki

in the uk, uk is an eigenvector for fK ;�g of eigenvalueP
iðai � biÞjkij

2 and such a step is a symplectic change of variables under which
we cancel all or some of the quartic terms which do not Poisson commute with K ,
to the cost of introducing higher order terms which are then treated as a pertur-
bation. The condition of commuting with K is

P4
i¼1ð�1Þ

ijkij2 ¼ 0. Dropping the
perturbation one has a restricted model.

H :¼
X
k AZn

jkj2ukuk þ
X

ki AZ
n:T

4
i¼1ð�1Þ

iki¼0;
T

4
i¼1ð�1Þ

i jkij2¼0

uk1uk2uk3uk4 :ð4Þ
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Note that the two conditions
P4

i¼1ð�1Þ
i
ki ¼ 0,

P4
i¼1ð�1Þ

ijkij2 ¼ 0 have a geo-
metric interpretation, that is the four points k1, k2, k3, k4 are the vertices of a
rectangle.

As it is well known (cf. Colliander-Tao [6] and Grébert-Thomann [7]) this
restricted model admits infinitely many invariant subspaces defined by requiring
uk ¼ 0 for all k B S where S ¼ fv1; . . . ; vmg, tangential sites, is some (arbitrarily
large) subset of Zn satisfying a completeness condition (cf. [12], 2.1.1). The dy-
namics on these subspaces depends in a subtle way on the geometric properties of
S and, for generic choices of S the behavior is integrable (cf. [12], Proposition 1).
In order to understand how to pass from solutions of the restricted model to true
solutions of the NLS one has to have some structural stability result that is, as we
explained before, control of the dynamics on the normal bundle to the family of
invariant tori in the given invariant subspace. In coordinates we set

uk :¼ zk for k a Sc;ð5Þ

uvi :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi þ yi

p
e ixi ¼

ffiffiffiffi
xi

p �
1þ yi

2xi
þ � � �

�
e ixi for i ¼ 1; . . .m;

considering the xi > 0 as parameters, with jyij < xi, while y; x;w :¼ ðz; zÞ are
dynamical variables. In these variables the Hamiltonian can be decomposed as

H �Fx ¼ ðoðxÞ; yÞ þ
X
k AS c

jkj2jzkj2 þ Qðx; x;wÞ þ Pðx; y; x;wÞ ¼ N þ P:

Where N :¼ ðoðxÞ; yÞ þ
P

k AS c jkj2jzkj2 þ Qðx; x;wÞ, with Qðx; x;wÞ quadratic, is
the normal form and P the perturbation.

We use systematically the fact that this Hamiltonian commutes with momen-
tum M and mass L:

M ¼
X
i

xivi þ
X
i

yivi þ
X
k AS c

kjzkj2; L ¼
X
i

xi þ
X
i

yi þ
X
k AS c

jzkj2;ð6Þ

We have, after some renormalizing, oiðxÞ :¼ jvij2 � 2xi. Finally the quadratic
form is

Qðx; x;wÞ ¼ 4
X�

1aiAjam
h;k AS c

ffiffiffiffiffiffiffiffi
xixj

q
e iðxi�xjÞzhzk þ 2

X��
1ai<jam
h;k AS c

ffiffiffiffiffiffiffiffi
xixj

q
e�iðxiþxjÞzhzkð7Þ

þ 2
X��

1ai<jam
h;k AS c

ffiffiffiffiffiffiffiffi
xixj

q
e iðxiþxjÞzhzk:

Here
P� denotes that ðh; k; vi; vjÞ satisfy:

fðh; k; vi; vjÞ j hþ vi ¼ k þ vj; jhj2 þ jvij2 ¼ jkj2 þ jvjj2g:
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and
P��, that ðh; vi; k; vjÞ satisfy:

fðh; vi; k; vjÞ j hþ k ¼ vi þ vj; jhj2 þ jkj2 ¼ jvij2 þ jvjj2g:

Notice that in the sums
P�� each term appears twice. These constraints describe

exactly the two types of rectangles in which two vertices lie in S and the others in
Sc, thus these last two vertices are joined, by definition, by a black edge in the
first case (in which they are vertices of a side of the rectangle) and a red in the
second (in which they are opposite vertices of the rectangle). Note that the edges
correspond to interacting sites.

We have described a very complicated infinite dimensional quadratic Hamil-
tonian which we wish to decompose into infinitely many decoupled finite di-
mensional blocks, corresponding to the components of the geometric graph GS

defined in the previous paragraph. In [12] we show that this is possible and we
also proved the existence of a symplectic change of variables which makes the
angles disappear.

2.4. The operator adðNÞ.

Definition 2.5. Denote by Zm :¼ f
Pm

i¼1 aiei; ai a Zg the lattice with basis the
elements ei.

Consider the mass h and the momentum p (the name comes from dynamical
considerations):

h : Zm ! Z; hðeiÞ :¼ 1; p : Zm ! Zn; pS ¼ p : ei 7! vi:

At this point it is useful to formalize the idea of energy transfer in a combina-
torial way. Let S2½Zm� :¼ f

Pm
i; j¼1 ai; jeiejg, ai; j a Z be the polynomials of degree

2 in the ei with integer coe‰cients. We extend the map p and introduce a linear
map from Zm to S2ðZmÞ denoted a 7! að2Þ as:

pðeiÞ ¼ vi; pðeiejÞ :¼ ðvi; vjÞ; �ð2Þ : Zm ! S2ðZmÞ; ei 7! e2i :ð8Þ

We have pðABÞ ¼ ðpðAÞ; pðBÞÞ, EA;B a Zm:

Remark 2.6. Notice that we have að2Þ ¼ a2 if and only if a equals 0 or one of
the variables ei.

2.6.1. The space F 0;1. We start from the space V 0;1 of functions with basis the
elements

e iTj
njxj zk; e�iTj

njxj zk; k a Sc:

In this space the conditions of commuting with momentum, resp. with mass
select the elements, called frequency basis
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FB ¼ e iTj
njxj zk; e�iTj

njxj zk; k a Scð9Þ X
j

njvj þ k ¼ pðnÞ þ k ¼ 0; resp:
X
j

nj þ 1 ¼ 0:

Denote by F 0;1 the subspace of V 0;1 commuting with momentum and mass.*
An element of FB is completely determined by the value of n and the fact that

the z variable may or may not be conjugated. By construction n a Zm
c where

Zm
c :¼ fm a Zm j �pðmÞ a Scg:ð10Þ

Denote by YHZm the kernel of pS : ei 7! vi then, by Formula (10), we have
Zm
c ¼ Zmn

S
i �ei þY.

Now adðNÞ acts on F 0;1, its matrix representation, in the frequency basis, de-
composes into infinitely many finite dimensional blocks described by matrices
with coe‰cients quadratic polynomials in the variables

ffiffiffiffi
xi
p

. One easily sees that
in the characteristic polynomial of each one of these matrices the square roots
disappear (Lemma 2.14).

2.7. The Cayley graphs. We recall how we have found useful to cast some of the
description of the operator adðNÞ into the language of group theory and in par-
ticular of the Cayley graph (cf. [9]). In fact to a matrix C ¼ ðci; jÞ we can always
associate a graph, with vertices the indices of the matrix, and an edge between i, j
if and only if ci; j A 0. For the matrix of adðNÞ in the frequency basis the relevant
graph comes from a special Cayley graph.

Let G be a group and X ¼ X�1 HG a subset.

Definition 2.8. An X -marked graph is an oriented graph G such that each ori-
ented edge is marked with an element x a X .

a �!x b a �x
�1

b

We mark the same edge, with opposite orientation, with x�1. Notice that if
x2 ¼ 1 we may drop the orientation of the edge.

A typical way to construct an X -marked graph is the following. Consider an
action G � A! A of G on a set A, we then define.

Definition 2.9 (Cayley graph). The graph AX has as vertices the elements of A
and, given a; b a A we join them by an oriented edge a!x b, marked x, if b ¼ xa,
x a X .

In our setting the relevant group is the group of transformations of Zm gen-
erated by translations a : x 7! xþ a and sign change t : x 7! �x. Thus G :¼
Zm zZ=ð2Þ is the semidirect product, and t :¼ ð0;�1Þ, G ¼ Zm AZmt and the

*this convention is di¤erent from [12] where we only impose commutation with momentum
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product rule is at ¼ �ta, Ea a Zm (notice that this implies ðatÞ2 ¼ ð0; 1Þ). We
think of an element a ¼ e iTj

njxj zk as being associated to the group element which,
by abuse of notation, we still denote by a ¼

P
j njej a Zm. Then a ¼ e�iTj

njxj zk is
associated to the group element at ¼

�P
j njej

�
t a Zmt.

Thus the frequency basis is indexed by elements of G1n
S

if�ei þY;
ð�ei þYÞtg where

G1 :¼ fa; at; a a Zm j hðaÞ ¼ �1g:

We now consider the Cayley graph GX of G with respect to the elements

X 0 :¼ fei � ej; iA j a ½1; . . . ;m�g; X �2 :¼ fð�ei � ejÞt; iA j a ½1; . . . ;m�g:

If p a Z it is easily seen that the set Gp :¼ fa; hðaÞ ¼ 0; at j hðaÞ ¼ pg form a sub-
group. In particular

Remark 2.10. G�2 is generated by the elements X :¼ X 0 AX�2, its right cosets
are the connected components of the Cayley graph.

In the action of G�2 on Zm the orbit of 0 is identified to G�2 and it is formed
by the elements a a Zm j hðaÞ a f0;�2g. We can thus identify the Cayley graph
on G�2 with the corresponding graph on this set of elements.

We distinguish the edges by color, as X 0 to be black and X�2 red, hence the
Cayley graph is accordingly colored; by convention we represent red edges with
an unoriented double line: g ¼ ð�ei � ejÞt, a

g
ga (recall that g ¼ g�1).

The set G1 is also a right coset of G�2 and thus it is also a connected compo-
nent of the Cayley graph GX .

2.10.1. The matrix structure of adðNÞ :¼ 2iQ. This is encoded in part by the
Cayley graph GX of G with respect to the elements X :¼ fei � ej; ð�ei � ejÞtg.

Given a ¼
P

i aiei, s ¼e1 set for u ¼ ða; sÞ

Cðða; sÞÞ :¼ s

2
ða2 þ að2ÞÞ ¼ s

2

��X
i

aiei

�2
þ
X
i

aie
2
i

�
;ð11Þ

Kðða; sÞÞ :¼ pðCðuÞÞ ¼ s

2

X
i

aivi

�����
�����
2

þ
X
i

aijvij2
0
@

1
A:

Sometimes we call KðuÞ the quadratic energy of u, notice that CðuÞ has integer
coe‰cients. In particular if a a Zm

c we have KðatÞ ¼ �KðaÞ and we set for
a; b a Zm

c

Qa;a ¼ KðaÞ �
X
j

ajxj ; Qat;at ¼ KðatÞ þ
X
j

ajxjð12Þ

Qat;bt ¼ �2
ffiffiffiffiffiffiffiffi
xixj

q
; Qa;b ¼ 2

ffiffiffiffiffiffiffiffi
xixj

q
;ð13Þ

if a; b are connected by an edge ei � ej
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Qa;bt ¼ �2
ffiffiffiffiffiffiffiffi
xixj

q
; Qat;b ¼ 2

ffiffiffiffiffiffiffiffi
xixj

q
;ð14Þ

if a; bt are connected by an edge ð�ei � ejÞt

We have shown in [12] that the blocks Q on F 0;1 come into pairs of con-
jugate Lagrangian blocks G, Gt. With respect to the frequency basis the blocks
are described as the connected components of a graph LS which we now de-
scribe.

Definition 2.11. Given an edge u!x v, u ¼ ða; sÞ, v ¼ ðb; rÞ ¼ xu, x a Xq, we
say that the edge is compatible with S or p if KðuÞ ¼ KðvÞ.

Remark now that, if g a G we have CðgÞ ¼ 0 if and only if g ¼ �ei;�eit. We
call the elements f�ei;�eitg the special component.

Definition 2.12. The graph LS is the subgraph of GX inside G1n
S

if�ei þY;
ð�ei þYÞtg in which we only keep the compatible edges.

Observe that the graph LS is invariant under translations by Y. We then
have

Theorem 2. The indecomposable blocks of the matrix Q in the frequency basis
correspond to the connected components of the graph LS.

In a block the entries of Q are given by (12), (13), (14).

The fact that in the graph LS we keep only compatible edges implies in par-
ticular that the scalar part Kðða; sÞÞ (which is an integer) is constant on each
block. On the other hand, in general, there are infinitely many blocks with the
same scalar part. It will be convenient to ignore the scalar term diagðKðða; sÞÞÞ,
given a compatible connected component A we hence define the matrix CA ¼
QA � diagðKðða; sÞÞÞ.

One of the main ingredients of our work is to understand the possible con-
nected components G of the graphs LS for S generic (but not necessarily fixed),
we do this by choosing a vertex u a G which we call the root and analyzing such a
component as a translation G ¼ Au where A is now a complete subgraph of the
Cayley graph contained in G�2 and containing the element ð0;þÞ ¼ 0. If u a Zm

the matrix CAu is obtained from CA by adding the scalar matrix �uðxÞ ¼ �ðu; xÞ
while CAt ¼ �CA.

Example 2.13. Consider the following complete subgraph containing ð0;þÞ.

A ¼ ð�e1 � e2;�Þ
ð�e1�e2Þt ð0;þÞ �����!e1�e2 ðe1 � e2;þÞ:

A translation by an element ðu;þÞ is hence

Aðu;þÞ ¼ ð�e1 � e2 � u;�Þ ð�e1�e2Þt ðu;þÞ �����!e1�e2 ðe1 � e2 þ u;þÞ
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so we get that the matrices associated to these graphs are:

CA ¼
�x1 � x2 2

ffiffiffiffiffiffiffiffiffi
x1x2
p

0

�2
ffiffiffiffiffiffiffiffiffi
x1x2
p

0 2
ffiffiffiffiffiffiffiffiffi
x1x2
p

0 2
ffiffiffiffiffiffiffiffiffi
x1x2
p

x2 � x1

0
B@

1
CA;

CAu ¼
�x1 � x2 � uðxÞ 2

ffiffiffiffiffiffiffiffiffi
x1x2
p

0

�2
ffiffiffiffiffiffiffiffiffi
x1x2
p

�uðxÞ 2
ffiffiffiffiffiffiffiffiffi
x1x2
p

0 2
ffiffiffiffiffiffiffiffiffi
x1x2
p

x2 � x1 � uðxÞ

0
B@

1
CA

In particular we have shown (cf. [12], §9) that A can be chosen among a finite
number of graphs which we call combinatorial. Note that we do not impose the
compatibility constraint on A but only on its translations. It is convenient, in
drawing the graphs to drop the labels on the edges since they can be deduced
from the vertices. In a combinatorial graph the color of a vertex is black if its
mass is 0 and red if it is �2. Then in the vertices we drop the signe, since this
information can be deduced from the mass or from the parity (number of red
edges) of the path connecting the vertex with the root. So the graph of the previ-
ous example will be denoted by:

A ¼ �e1 � e2 0! e1 � e2:

Note that in all the combinatorial graphs the root is by convention set to 0.
Let us show that:

Lemma 2.14. The characteristic polynomial of a matrix CA is in Z½x1; . . . ; xm; t�
(the square roots disappear).

Proof. By definition the determinant of an n� n matrix with entries ai; j is
the sum with sign, over all permutations s of the n indices, of the products
a1;sð1Þ . . . an;sðnÞ. It is convenient to rearrange this product using the cycle struc-
ture of s, each cycle ði1; . . . ; ikÞ determines a factor ai1; i2 . . . aik ; i1 . Let us show
that in each of these factors the square roots disappear. In fact, if the cycle is
reduced to a single element it corresponds to a diagonal entry, which has no
roots. Otherwise it corresponds to a sequence of edges forming a closed path.
Then, by the definitions and compatibility, one sees that each index appearing
in the edges appears an even number of times in such a closed path, hence the
claim follows from the formula e2

ffiffiffiffiffiffiffiffi
xixj

p
of the entry corresponding to each

edge. r

2.14.1. Proof of Proposition 1.3. We are ready to prove Proposition 1.3:

Proof. We proceed by induction on the number m of the parameters, for m ¼ 1
the statement is trivial, so assume the statement is true for m� 1 parameters.
Let G be one of the combinatorial graphs, AðGÞ the corresponding matrix and
ða1; . . . ; akÞ the vertices of G.
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Let A be the matrix obtained from AðGÞ by setting xm ¼ 0. We claim that this
matrix is the one associated to the not necessarily connected colored graph G in
m� 1 coordinates obtained by dropping the last coordinate in all the vertices ai,
this is just a consequence of the definitions (see §2.4).

The first thing to be verified is that the vertices of G are all distinct (as colored
vertices). In fact given a vertex a a Zm let a a Zm�1 be the vertex obtained by
dropping the last coordinate am. We can reconstruct a from a and its color using
the mass since hðaÞ ¼ hðaÞ þ am.

Now we claim that the graphs appearing give characteristic polynomials
which are distinct, for this we apply Proposition 9.2. If we had two connected
components of G giving the same characteristic polynomial we should have two
elements a black and b red so that b ¼ ta ¼ �at red. We have a ¼ a� hðaÞem
while ta ¼ �at comes from b ¼ ð�aþ ðhðaÞ � 2ÞemÞt ¼ ð�a� 2emÞt. Thus in
the graph G we cannot have these two vertices, since the presence of two vertices
bþ a ¼ �2em implies that the graph is not allowable by Definition 3.13.

Now we apply the fact that we know that all the blocks appearing in AðGÞ
are distinct and depend on m� 1 variables, furthermore two di¤erent blocks
have di¤erent characteristic polynomials by the previous remark and Lemma
9.2. From the hypotheses made there is an open region Bm�1 in the complement
of the discriminant variety for m� 1 variables where for each of the finitely many
combinatorial blocks all the eigenvalues are distinct and real.

Now this condition is stable so that for AðGÞ there is a non empty open region
complement of the discriminant variety for AðGÞ where all the eigenvalues are
distinct and real containing Bm�1, since we have finitely many combinatorial
graphs G we find an open component of the complement of the discriminant
variety for all graphs G, containing Bm�1, where all the eigenvalues are real. We
further remove the resultants and have that they are also all distinct. r

Part 1. Sphere and hyperplanes problem

In order to understand the possible components of the graph LS we relate it to
the geometric graph GS.

3. The geometric problem

The condition for two points p; q to be the vertices of an edge is given by alge-
braic equations. Visibly p a Hi; j means that ðp� vi; vi � vjÞ ¼ 0, the correspond-
ing q ¼ pþ vj � vi, while p a Si; j is given by ðp� vi; p� vjÞ ¼ 0 and the corre-
sponding opposite point q is given by pþ q ¼ vi þ vj.

We thus have two types of constraints describing when two points are joined
by an edge, a linear q� p ¼ vj � vi or pþ q ¼ vi þ vj and a quadratic constraint
ðp� vi; vi � vjÞ ¼ 0 or ðp� vi; p� vjÞ ¼ 0. The fact that a point x belongs to a
component described by the combinatorial graph is thus expressed by a list of
linear and quadratic equations for x deduced by eliminating all the other vertices
using the linear constraints.
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We describe the linear constraints again through a Cayley graph. The group G
also acts on Rn by setting

ak :¼ �pðaÞ þ k; k a Rn; a a Zm; tk ¼ �kð15Þ

We then have that

Remark 3.1. X defines also a Cayley graph on Rn and in fact the graph GS is a
subgraph of this graph.

3.2. Equations for the root. From the very construction of the graph it is conve-
nient to mark the edges by vj � vi in the first case and vj þ vi in the second (notice
the sign change due to Formula (9)). In fact we use a more combinatorial way
of marking which is illustrated in the next example. It is then clear that each con-
nected component of this graph has a combinatorial description which encodes
the information on the various types of edges which connect the vertices of the
component.

The connection with the graph LS comes from the fact that these equations
are exactly the ones which define compatible edges.

Example 3.3. The equations that x has to satisfy are:

In fact it should be clear that a graph in GS is obtained starting from a point x
and then applying the elements of a complete sub graph AHGX of the Cayley
graph containing 0. One the results of [12] (Theorem 3) is that in this fashion we
have always isomorphisms between components of LS and components of GS.

The question is thus to understand when, given x a Rn, the elements hx, h a A
describe the vertices of a corresponding geometric graph with root x in GS.

One can easily verify that

Proposition 3.4. The elements hx, h a A describe the vertices in a component C
of the geometric graph GS if and only if, for each h ¼ ða; sÞ a A we have:

ðx; pðaÞÞ ¼ KðhÞ if s ¼ 1

jxj2 þ ðx; pðaÞÞ ¼ KðhÞ if s ¼ �1

�
:ð16Þ

Therefore the question that we have to address is: for which graphs AHGX

we can say that these equations have a solution in RnnS for generic values of
the points vi? Such a graph is called compatible.
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A main result in [12] is that if the edges of the combinatorial graph span a lat-
tice of dimension > n then the only geometric realizations of this graph can be in
the special component S.

It remains to analyze graphs with linearly dependent edges. In order to ad-
dress this question we need to develop a more combinatorial approach.

3.5. Relations. Take a connected complete subgraph A, in the subgroup G�2 of
G generated by X , of the Cayley graph GX . By taking the first coordinates we
identify its vertices with a subset, still denoted by A, of the set of elements in Zm

with hðaÞ ¼ 0;�2 (the orbit of 0 under G�2).

Definition 3.6.

• A graph A with k þ 1 vertices is said to be of dimension k.

• We call the dimension of the a‰ne space spanned by A in Rm the rank, rkA,
of the graph A.

• If the rank of A is strictly less than the dimension of A we say that A is degen-
erate.

Once we choose a root r for A we can translate A so that r ¼ 0 then instead of
the a‰ne space spanned by A we may consider the lattice spanned by the non-
zero elements in A, it is natural to color all remaining vertices with the rule that
a vertex a is black if hðaÞ ¼ 0 or, equivalently, it is joined to the root by an even
path and red otherwise. if hðaÞ ¼ �2. Then we can extend the notion of black
or red rank, and corresponding degeneracy. When we change the root we have a
simple way of changing colors that we leave to the reader and the two ranks may
just be exchanged.

If A is degenerate then there are non trivial relations,
P

a naa ¼ 0, na a Z
among the elements a a A.

Remark 3.7. It is also useful to choose a maximal tree T in G. There is a trian-
gular change of coordinates from the vertices a to the markings of T . Hence the
relation can be also expressed as a relation between these markings.

We must have by linearity, for every relation
P

a naa ¼ 0, na a Z that 0 ¼P
a naa

ð2Þ, 0 ¼
P

a napðaÞ and moreover we have:

0 ¼
X

a; j hðaÞ¼�2
na:ð17Þ

Applying Formula (16) we deduce that we must have, with a ¼ gax for all
vertices a

X
a

naKðgaÞ ¼ 2
�
x;
X
a

napðgaÞ
�
þ

X
a j hðaÞ¼�2

na

2
4

3
5ðxÞ2ð18Þ

¼ 2
�
x;
X
a

napðgaÞ
�
¼ 0:
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The expression
P

a naKðgaÞ is a linear combination with integer coe‰cients of
the scalar products ðvi; vjÞ. We can prevent the occurrence of the component G
by imposing it as avoidable resonance. We need to formalize the setting.

Let us use for the elements of G in the subgroup G2 just their coordinate
a a Zm, hðaÞ a f0;�2g. Then we have

P
a naKðaÞ ¼ p

�P
a naCðaÞ

�
hence we

easily deduce:

Proposition 3.8. The equation (18) is a non trivial constraint if and only ifP
a naCðgaÞA 0. In this case we say that the graph has an avoidable resonance.

Corollary 3.9. If we have an avoidable resonance of previous type associ-
ated to G then, for a generic choice of the S :¼ fvig, G as no geometric real-
izations.

The main Theorem on this topic proved in [12] is:

Theorem 3. Given a compatible connected X-marked graph, with a chosen root
and of rank k for a given color, then either it has exactly k vertices of that color or
it produces an avoidable resonance.

Proof. Let us recall the proof for convenience of our treatment. Assume by
contradiction that we can choose k þ 1 distinct vertices ða0; a1; . . . ; akÞ, di¤erent
from 0 of the given color so that we have a non trivial relation

P
i niai ¼ 0 and

the elements ai, i ¼ 1; . . . ; k are linearly independent. Set na ¼ ni; if a ¼ ai and
na ¼ 0 otherwise. If all these vertices have sign þ, we have

P
a naa

2 ¼ 0. Simi-
larly, if they are have sign � we have �

P
a naa ¼

P
a nasðaÞa ¼ 0 and alsoP

a naa
ð2Þ ¼ 0 so again

P
a naa

2 ¼ 0.
We can consider thus the elements xi :¼ ai; i ¼ 1; . . . ; k as new variables and

then we write the relations
P

a naa ¼
P

a naa
2 ¼ 0 as

0 ¼ akþ1 þ
Xk

i¼1
pixi; )

�Xk
i¼1

pixi

�2
þ
Xk

i¼1
pix

2
i ¼ 0:

Now
Pk

i¼1 pix
2
i does not contain any mixed terms xhxk, hAk therefore this

equation can be verified if and only if the sum
Pk

i¼1 pixi is reduced to a single
term pixi, and then we have pi ¼ �1 and a0 ¼ ai, a contradiction. r

Unfortunately there are examples of unavoidable resonances as we shall dis-
cuss in the next paragraph.

3.10. Degenerate resonant graphs.

Definition 3.11. We say that a graph A is degenerate-resonant, if it is degen-
erate and, for all the possible linear relations

P
i niai ¼ 0 among its vertices we

have also
P

i niCðaiÞ ¼ 0:
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What we claim is that a degenerate-resonant graph A has no geometric real-
izations outside the special component.

Remark 3.12. One may easily verify that the previous condition, although ex-
pressed using a chosen root, does not depend on the choice of the root.

One of the obstacles we have is that the proof of Theorem 3 breaks down in
general since in fact there are non trivial degenerate-resonant graphs, the simplest
of them is the minigraph

ð19Þ

Relation is ð�e2 þ e1Þ � ð�e2 � e1Þ þ ð�2e1Þ ¼ 0, we have

Cð�e2 þ e1Þ ¼ e21 � e1e2; Cð�e2 � e1Þ ¼ �e1e2; Cð�2e1Þ ¼ �e21
e21 � e1e2 � ð�e1e2Þ � e21 ¼ 0:

A more complex example is

What is common of these two examples is that in each there is a pair of vertices
a, b, of distinct colors, with aþ b ¼ �2ei for some index i.

Definition 3.13. We shall say that a connected graph G is allowable if there is
no pair of vertices a; c a G with ac�1 ¼ c�1a ¼ ð�2ei; tÞ; or ð�3ei þ ej; tÞ, other-
wise it is not allowable.

We may assume a a Zm black and c ¼ bt, b a Zm red. We then easily see that

Proposition 3.14. If a graph is not allowable then it has no geometric realiza-
tion outside the special component (i.e. it is not compatible).

Proof. We write the quadratic equation (16), for a vertex x, corresponding to
the root a, given by the vertex b ¼ �2ei. Since Cð�2eiÞ ¼ �e2i , Kð�2eiÞ ¼ �jvij

2

we get

0 ¼ jxj2 þ ðx; pð�2eiÞÞ � Kð�2eiÞ ¼ jxj2 � 2ðx; viÞ þ jvij2 ¼ jx� vij2:

Hence the only real solution of jx� vij2 ¼ 0 is x ¼ vi. Then we apply Remark 15
of [12] where we have shown that the special component is an isolated component
of the graph.
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In the other case x is in a sphere whose square radius is pðAÞ

A ¼ ð�3ei þ ejÞ2

4
þ Cð�3ei þ ejÞ ¼ �

1

4
½ð�3ei þ ejÞ2 þ 2ð�3e2i þ e2j Þ�

¼ � 1

4
½9e2i � 6eiej þ e2j � 6e2i þ 2e2j � ¼ �

3

4
½ei � ej�2

clearly pðAÞ ¼ � 3
4 jvi � vj j2 < 0, Evi A vj: r

What we conjectured and shall prove in this paper is (cf. §5):

Theorem 4. A degenerate-resonant graph A is not allowable hence it has no
geometric realizations outside the special component.

From this Theorem Proposition 2.2 follows.

4. Resonant graphs

4.1. Encoding graphs. In order to understand relations, consider the complete
graph Tm on the vertices 1; . . . ;m. If we are given a marked graph G we associate
to it the subgraph L of Tm, called its encoding graph in which we join the vertices
i, j with a black edge if G contains an edge marked ej � ei and by a red edge edge
if G contains an edge marked �ej � ei. We mark ¼ the red edges.

For each connected component of the encoding graph consider the subspace
spanned by its edges. It is easily seen that these subspaces form a direct sum.
Hence the encoding graph of a minimal relation is connected. Moreover a circuit
in the encoding graph corresponds to a relation between the corresponding edges
if and only if it contains an even number of red edges and we call it an even
circuit.

This follows from the basic relations with which we can substitute two consec-
utive edges with a single one:

ðei � ejÞ þ ðej � ekÞ þ ðek � eiÞ ¼ 0;

ðei � ejÞ � ð�ej � ekÞ þ ð�ek � eiÞ ¼ 0;

�2ei ¼ �ðei � ejÞ þ ð�ei � ejÞ:

Thus for each index i of an odd circuit a sum, with coe‰cientse1, of its edges
equals to �2ei. The edges of an even circuit have a linear relation (unique up to
sign) given by a sum with coe‰cientse1 equal 0. If we have a list of edges of G
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which are linearly dependent and minimal (with respect to this property) then we
claim that the corresponding elements in the encoding graph from a circuit, with
some provisos due to the presence of red edges. More precisely we may have a
simple circuit in which an even number of red edges appear or two odd circuits
joined by a segment (possibly reduced to a point).

Example 4.2. An even and a doubly odd encoding graph:

This can be easily justified. Recall that the valency of a vertex is the number
of edges which admit it as vertex. If the given edges give a minimal relation their
encoding graph must be connected, furthermore it cannot have any vertex of
valency 1 since the corresponding edge is clearly linearly independent from the
others. Finally it cannot have more than 2 simple circuits otherwise we easily
see that we have at least 2 relations.

For a connected graph the number c of independent circuits is the dimension
of its first homology group and thus given, using the Euler characteristic, by
c ¼ e� vþ 1 where e; v are the number of edges and vertices respectively. In
our setting all vertices have valencyb 2 and we denote the valency of the vertex
i by Vi ¼ vi þ 2 (with vi b 0). We have 2e ¼

P
i Vi ¼

P
i vi þ 2v so that we haveP

i vi ¼ 2c� 2. If c ¼ 1 the encoding graph is a simple circuit. If c ¼ 2 we deduce
that

P
i vi ¼ 2 hence we have either only one vertex of valency 4 and the others of

valency 2 or two vertices of valency 3 and the others of valency 2. The first case
gives two loops joined in one vertex the second gives either two loops joined by a
segment or two vertices joined by 3 segments. This last case is not possible since
two of these segments will have the same parity and generate an even loop con-
tradicting minimality.

4.3. Minimal relations. We want to study a minimal degenerate resonant graph
G. Observe that for such a graph any proper subgraph is non-degenerate. In par-
ticular we have one and only one relation among the edges of a given maximal
tree T in the graph and a corresponding relation for the vertices.
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A minimal degenerate graph has a special type of relation which comes from
the fact that in a maximal tree we have a minimum number of dependent edges.
Such a situation arises when these edges, call their set E, form in the encoding
graph, a even circuit (where we allow the possibility that we have two odd circuits
matching) as in the previous paragraph. Call jEj the subgraph of T formed by the
edges E, of course it need not be a priori connected but only a forest inside T .

In an even circuit the relation is a sum of edges
P

j djlj ¼ 0, with signs dj ¼e1
in two odd matching circuits we may have some dj ¼e2 corresponding to the
edges appearing in the segment connecting the two odd loops. In any case we
list the edges appearing as li. Each li black is li ¼ ai � bi with ai; bi, its vertices
of the same color while a red is li ¼ ai þ bi with ai red and bi black its vertices.

The relation is thus

X
i black

diðai � biÞ þ
X
j red

djðaj þ bjÞ ¼ 0:ð20Þ

Notice that, by minimality, all the end points of T must be in jEj. We may
think of (20) as a formal relation on the vertices (instead of on the edges), note
that a vertex in E need not appear in (20) however all end-points in E must
appear and, if a vertex v has coe‰cient k in the relation, it must be the vertex of
at least k of the given edges (in the case di ¼e1).

4.3.1. Basic formulas. We work with G�2 identified with elements in Zm either
with hðaÞ ¼ 0, black or hðaÞ ¼ �2 red. We have set CðaÞ ¼ 1

2 ða2 þ að2ÞÞ for a
black and CðaÞ ¼ � 1

2 ða2 þ að2ÞÞ for a red.
In our computations we use always the rules:

• for u, v black, we have uþ v black and

Cðuþ vÞ ¼ 1

2
ððuþ vÞ2 þ ðuþ vÞð2ÞÞ ¼ CðuÞ þ CðvÞ þ uv

• for u black v red, we have uþ v red and

Cðuþ vÞ ¼ � 1

2
ððuþ vÞ2 þ ðuþ vÞð2ÞÞ ¼ �CðuÞ þ CðvÞ � uv

• for u, v red, we have u� v black and

Cðu� vÞ ¼ 1

2
ððu� vÞ2 þ ðu� vÞð2ÞÞ ¼ 1

2
ððu2 þ v2 � 2uvþ ðu� vÞð2ÞÞ

¼ 1

2
ððu2 þ v2 � 2uvþ ðu� vÞð2ÞÞ ¼ �CðuÞ þ CðvÞ þ v2 � uv

• for u black, we have �u black and

Cð�uÞ ¼ CðuÞ � uð2Þ:
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5. The resonance

5.1. The resonance relation. This chapter is devoted to the proof of Theorem 4.
In order to prove it we take a minimal degenerate resonant graph G and inside
it a maximal tree T and then we start studying it. In fact it would be possible
to classify these trees, we arrive a little short of this since we need only to
show 4.

5.1.1. Relations. Associated to T we have its encoding graph and the encoding
graph of the edges E involved in the relation. We index the edges in the relation
and set li ¼ Qiei � eiþ1 where Qi ¼e1 (depending on the color of the edge). As we
explain in course of the proofs we will need to identify some vertices ei.

We distinguish two cases, if the encoding graph of the relation is 1) an even or
2) a doubly odd loop. The simplest case to treat is case 1) which then suggests
how to deal with the other cases.

Case 1. Up to changing notations we may assume that the loop is formed
by the edges li ¼ Qiei � eiþ1, i ¼ 1; . . . ; k � 1, lk ¼ Qkek � e1, (here we identify
e1 ¼ ekþ1). Set

di :¼
Y
jai

Qi ¼ Qidi�1;

we assume we have an even number of Qi ¼ �1, by assumption dk ¼ 1.
We call di the parity of i.

Lemma 5.2. We have the relation:

A ¼
Xk
i¼1

dili ¼ 0:

Proof. Consider an index i > 1, the coe‰cient of ei in A is �di�1 þ diQi. Since
di ¼ di�1Qi for this ei the coe‰cient is 0. For e1 the coe‰cient comes from
d1l1 þ dklk, we have d1 ¼ Q1, dk ¼ 1 so we also get coe‰cient 0. r

Set z : Zm ! Z, zðeiÞ ¼ di�1 (by convention d0 ¼ 1) so that, by linearity,
zðliÞ ¼ Qidi�1 � di ¼ 0:

Lemma 5.3. The li span the codimension 1 subspace of the space e1; . . . ; ek
formed by the vectors a such that

a ¼
X
i

aiei j zðaÞ ¼
X
i

di�1ai ¼ 0:ð21Þ

Proof. zðliÞ ¼ 0, so the li are in this subspace, but they span a subspace of co-
dimension 1 hence the claim. r
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Case 2. For a double loop with k edges, we have either one or two vertices
in the encoding graph of valency > 2 separating the two odd loops, we call these
vertices critical. We start from a odd loop and a critical vertex which we may as-
sume to be 1. We call A ¼ f1; . . . ; hg the indices in the first loop. We then list the
edges l1; . . . ; lh in a circular way and

Lemma 5.4. We may choose the signs di ¼e1 so that for any index ja h we
have:

Xj

i¼1
dili ¼ �djejþ1 � e1;

Xh

i¼1
dili ¼ �2e1;

Xh

i¼jþ1
dili ¼ �e1 þ djejþ1:ð22Þ

Proof. From the first Formula the others follow. We define di ¼ Qidi�1 if i > 1
and set d1 ¼ �Q1. Then if j ¼ 1, d1l1 ¼ d1ðQ1e1 � e2Þ ¼ �e1 � d1e2 and this fol-
lows from the definitions. By induction

Xjþ1
i¼1

dili ¼ �djejþ1 � e1 þ djþ1ljþ1

�djejþ1 � e1 þ djþ1Qjþ1ejþ1 � djþ1ejþ2 ¼ �e1 � djþ1ejþ2: r

For notational convenience we identify ehþ1 ¼ e1. If we have two critical
vertices, call bb hþ 2 the other, we have then a segment joining them formed
by a string of elements lhþ1 ¼ Qhþ1ehþ1 � ehþ2; . . . ; lb�1 ¼ Qb�1eb�1 � eb. We call
B this set of indices and assign to these edges signs d ¼e2 so that

Pb�1
i¼hþ1 dili ¼P

i AB dili ¼ 2½e1 þ Qeb� where Q ¼ 1 if and only if this segment is odd.
We finish with the other odd loop, call C the corresponding set of indices and

assign, as before, signs e1 so that
Pk

i¼b dili ¼
P

i AC dili ¼ �2Qeb. With these
choices the relation is

R :¼
Xk
i¼1

dili ¼ �2e1 þ 2½e1 þ Qebþ1� � 2Qebþ1 ¼ 0:ð23Þ

We have chosen the indices so that we order the edges as they occur in one way of
walking the cycle, starting from the critical vertex 1. We say that an index is crit-
ical if the corresponding vertex is critical. Here 1; hþ 1; b are critical.

Remark 5.5. The non critical indices are divided in 2 or 3 sets (depending if we
have only one critical vertex or two). If u is not critical we have du ¼ Qudu�1.

Lemma 5.6. The li span the sublattice of the lattice spanned by e1; . . . ; ek formed
by those vectors

a ¼
X
i

aiei j hðaÞ ¼
X
i

ai G 0; modulo 2:ð24Þ
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Proof. hðliÞG 0 modulo 2, so the li are in this sub-lattice, the fact that they
span is easily seen by induction. r

5.6.1. Signs. We choose a root r in T and then each vertex x acquires a color
sx ¼e1. The color of x is red and sx ¼ �1 if the path from the root to x has
an odd number of red edges, the color is black and sx ¼ 1 if the path is even.

An edge li is connected to the root r by a unique path pi ending with li we
denote its final vertex xi and we set si :¼ sxi . If li is black we set li ¼ 1 if the
edge is equioriented with the path, that is it points outwards, li ¼ �1 if it points
inwards. Finally we set li ¼ 1 if the edge is red.

r :::::::::::::: . . . !li x li ¼ 1; r :::::::::::::: . . .  li x li ¼ �1:ð25Þ

Definition 5.7. Once we choose a root in T , each red edge li (that is Qi ¼ �1)
appears as edge with one end denoted by ai red and the other denoted by bi black,
we have li ¼ ai þ bi. For a black edge Qi ¼ 1 we define ai, bi so that instead
ai ¼ bi þ li, and ai, bi have the same color. We thus write li ¼ ai � Qibi.

In particular for the resonant trees:

Proposition 5.8.

R :¼
X

i j Qi¼�1
dið�að2Þi � liai þ eieiþ1Þ þ

X
i j Qi¼1

disið�e2iþ1 þ eieiþ1 þ liaiÞ ¼ 0:ð26Þ

X
i j Qi¼�1

diðbð2Þi þ libi � eieiþ1Þ þ
X
i j Qi¼1

disiðe2i � eieiþ1 þ libiÞ ¼ 0

Proof. We start from the relation
P

i dili ¼ 0 and substitute the previous for-
mulas, we deduce

R :¼
X

i j Qi¼�1
diðai þ biÞ þ

X
i j Qi¼1

diðai � biÞ ¼ 0:ð27Þ

We next have by the resonance hypothesis

X
i j Qi¼�1

diðCðaiÞ þ CðbiÞÞ þ
X
i j Qi¼1

diðCðaiÞ � CðbiÞÞ ¼ 0:

We next apply the formulas 4.3.1.
For ai; li ¼ �ei � eiþ1 red, we have bi þ ai ¼ li and bi is black:

CðaiÞ þ CðbiÞ ¼ �1=2ða2i þ a
ð2Þ
i Þ þ 1=2ðb2i þ b

ð2Þ
i Þ

¼ �1=2ða2i þ a
ð2Þ
i Þ þ 1=2ððli � aiÞ2 þ l

ð2Þ
i � a

ð2Þ
i Þ

¼ �1=2ða2i þ a
ð2Þ
i Þ þ 1=2ðl2i � 2liai þ a2i þ l

ð2Þ
i � a

ð2Þ
i Þ

¼ �að2Þi � liai þ eieiþ1 ¼ �að2Þi � liai þ eieiþ1:
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For ai ¼ bi þ li and li ¼ ei � eiþ1 black we have:

CðaiÞ � CðbiÞ ¼ si½1=2ða2i þ a
ð2Þ
i Þ � 1=2ðb2i þ b

ð2Þ
i Þ�

¼ si½1=2ða2i þ a
ð2Þ
i Þ � 1=2ððai � liÞ2 � l

ð2Þ
i þ a

ð2Þ
i Þ

¼ si½�1=2ðl2i � 2liai � l
ð2Þ
i Þ� ¼ si½�e2iþ1 þ eieiþ1 þ liai�:

The second identity follows from the first by substituting. r

5.8.1. Some reductions. Denote by bi ¼
Pm

h¼1 bi;heh and expand the second
Formula (26). Observe that the coe‰cients of the mixed terms eiej, iA j come
all from the sum

B :¼
X

i j Qi¼�1
diðlibi � eieiþ1Þ þ

X
i j Qi¼1

disið�eieiþ1 þ libiÞ:

If h B ½1; . . . ; k�; the coe‰cient of eh in B (which must be equal to 0) is

X
i j Qi¼�1

dilibi;h þ
X
i j Qi¼1

disilibi;h ¼ 0:

By the uniqueness of the relation it follows that this relation is a multiple of (23)
hence the numbers bi;h, Qi ¼ �1 and sibi;h, Qi ¼ 1 are all equal. Since now we can
choose as root one of the elements bi we deduce that all these coe‰cients bi;h
equal to 0. Thus, with this choice of root, bi, ai have support in the vertices of
the encoding graph.

As a consequence we claim that:

Lemma 5.9. In case 2) the edges of the tree coincide with the edges li of the
relation.

In case 1) either the edges of the tree coincide with the edges li of the relation
or we can reduce to the case in which the tree T consists only of the edges involved
in the relation, plus a single special extra edge E with zðEÞ ¼ 2 (see Lemma 5.3 for
the definition of z).

E is either a red edge of the form �ei � ej with i, j of the same value of z or a
black edge of the form �ei þ ej with i, j of the opposite value of z.

Proof. Let T 0 be the forest support of the edges li, if this is a tree it must coin-
cide with T by minimality and we are done, if T 0 is not a tree there is at least one
segment S in T joining two end points in T 0. All the edges in S by definition are
not in the relation. Their sum with suitable signs is supported in ½1; . . . ; k� and in
fact it is either the sum or the di¤erence of two of the elements ai, bj, in particular
it has the form E ¼

Pk
i¼1 aiei.

If we are in case 2) then, by Lemma 5.6, 2E is a linear combination of the li
with integer coe‰cients. This is a new relation containing edges not supported in
½1; . . . ; k� contradicting the hypotheses.
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If we are in case 1) we must have zðEÞA 0 otherwise E is in the span of the
edges li and we have another relation among the edges of T contradicting mini-
mality. By the same reason we cannot have two such segments, since the li span a
subspace of codimension 1 and we still would have a new relation.

Finally we claim that E is an edge.
We look at the encoding graph U of the edges in S, we want to show that they

form a path joining two points in ½1; 2; . . . ; k� so that the loop they generate in
this way is odd.

First remark that every end vertex of U appears with non zero coe‰ciente1
in the vector E hence all end points of U lie in ½1; 2; . . . ; k�.

Next if U contains two di¤erent paths joining points in ½1; 2; . . . ; k� each such
path gives rise by summing with suitable signs to a non-zero linear combination
of elements in ½1; 2; . . . ; k�. Since the span of the edges li has codimension 1 in the
span of the elements ei, if we have two more paths we deduce a new relation.
We deduce that U is either a single path joining two vertices u; v a ½1; 2; . . . ; k�
and not meeting any other point of ½1; 2; . . . ; k� or it may also be a single loop
originating from a vertex u in ½1; 2; . . . ; k�. In this case the loop must be odd
otherwise we have another relation, then we see that if we choose as root one of
the two vertices of T joined by S the other vertex is �2eu and we are finished,
since we have proved that the graph is not allowable i.e. we found the desired
pair of Proposition 3.14.

Otherwise E is an element of mass either 0 or �2 has support in two elements
of ½1; . . . ; k� with coe‰cientse1 hence it is an edge, since we are assuming that it
does not appear in the relation the only possibility is that it must be of the form
eu � ev;�eu � ev. u; v a ½1; 2; . . . ; k� and linearly independent from the edges lh,
this means, by Formula (24), that u; v must have opposite parity in the first case
and the same parity in the second. If S is not equal to the edge E we claim that
the complete graph G we started from was not minimal. Indeed we construct
a tree T 0 by replacing the path S by the single edge E. This is a proper sub-
graph of G by completeness. The complete graph associated to T 0 is resonant-
degenerate (it contains all the vertices appearing in the relation). This is a contra-
diction.

ð28Þ

r

I)

II)

Remark 5.10. In the case 1) with an extra edge joining the indices i, j we shall
say that i, j are critical and divide accordingly the remaining indices in two sets
and all edges in two sets A, B accordingly. Note that in this case for all indices
one has du ¼ Qudu�1.
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Remark 5.11. In case 2) we divide the edges in three sets A, B, C where A are
the edges of the first loop, B (possibly empty) the edges of the segment and C the
ones of the second loop. In case 1) with an extra edge we divide the edges in two
sets A, B separated by the extra edge E.

As for a non critical index u we shall say that u a A resp. u a B;C if the two
edges lu�1, lu are in A (resp. B, C).

5.11.1. Some geometry of trees. Let us collect some generalities which will be
used in the course of the proof. In all this section T will be a tree, for the moment
with no further structure and later related to the Cayley graph.

Given a set A of edges in T let us denote by 3A4 the minimal tree contained in
T and containing A, we call it the tree generated by A. The simplest trees are the
segments in which no vertex has valency > 2. In fact in a segment we have exactly
two end points of valency 1 and the interior points of valency 2.

Lemma 5.12. 1) If A consists of 2 edges then 3A4 is a segment, more generally if
A consists of 2 segments S1, S2 with the interior vertices of valency 2 then again
3A4 is a segment, if moreover S1BS2 contains an edge, then S1 AS2 ¼ 3S1;S24
and all its interior vertices have valency 2.

If we only assume that S2 has interior vertices of valency 2 but we also assume
that S1BS2 contains at least one edge then

2) 3S1;S24 ¼ S1 AS2 and it is a segment.

Proof. 1) Consider S1BS2, if this is empty, there is a unique segment joining
two points in S1, S2 and disjoint from them, then this must join two end points
by the hypothesis on the valency and the statement is clear.

2) Let A be a segment connected component of S1BS2. Unless S2 HS1 one of
the end points a of A is an internal vertex of S1, since this has valency 2 this is
possible only if a is an end point of S1, if also the other end point of A is an in-
ternal vertex of S1 the same argument shows that S1 HS2. The final case is that
the other end of A is also an end point of S2 and then the statement is clear. r

6. The contribution of an index u

6.0.1. The strategy. We want to exploit Formula (26) in order to understand the
graph. We proceed as follows.

Definition 6.1. Given a quadratic expression Q in the elements ei and any
index u we set euCuðQÞ to be the sum of all terms in Q which contain eu but not e

2
u .

Notice that Cu is a linear map from quadratic expressions to linear expressions
in the ei; iA u. By Formula (26) we have CuðRÞ ¼ 0. We observe that only the
terms liai or �eieiþ1 may contribute to CuðRÞ hence:

CuðRÞ ¼
X

i j Qi¼�1
dið�CuðliaiÞ þ Cuðeieiþ1ÞÞ þ

X
i j Qi¼1

disiðCuðeieiþ1Þ þ CuðliaiÞÞ ¼ 0:
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We choose an index u which appears only in lu�1 ¼ Qu�1eu�1 � eu and in lu ¼
Queu � euþ1. This is any index in case 1) with no extra edge while it excludes the
critical indices in the other cases (see Remarks 5.5 and 5.10).

We separately compute the contributions of

�R 0 :¼
X

i j Qi¼�1
dieieiþ1 þ

X
i j Qi¼1

disieieiþ1; R 00 :¼ �
X

i j Qi¼�1
diliai þ

X
i j Qi¼1

disiliai;

since CuðRÞ ¼ CuðR 00Þ � CuðR 0Þ.
We need the following formula for the elements aj, easily proved by induction,

where the black edges l are oriented outwards from the root and sl denotes the
color of the endpoint of the segment ending with l:

aj ¼

�
P

l�lj sll; sj ¼ �1; lj red

�
P

l0lj
sll; sj ¼ 1; lj red

sj
P

l�lj sll; lj ¼ 1; lj black

sj
P

l0lj
sll; lj ¼ �1; lj black

8>>>><
>>>>:

ð29Þ

If iA u� 1; u set muðiÞ to be the coe‰cient of eu in ai then

Lemma 6.2. If iA u� 1; u we have CuðliaiÞ ¼ muðiÞli:
The contribution CuðR 0Þ depends on the two colors of lu�1, lu according to the

following table (see Remarks 5.5, 5.10):

colors contribution of R 0

rr du�1 ¼ �du �du�1eu�1 � dueuþ1 ¼ du½eu�1 � euþ1�
rb du�1 ¼ du �du�1eu�1 � sudueuþ1 ¼ �du½eu�1 þ sueuþ1�
br du�1 ¼ �du �du�1su�1eu�1 � dueuþ1 ¼ du½su�1eu�1 � euþ1�
bb du�1 ¼ du �du�1su�1eu�1 � sudueuþ1 ¼ �du½su�1eu�1 þ sueuþ1�

ð30Þ

Proof. The first statement is clear since the edge li does not contain the term
eu. For the second we see that the contribution to CuðR 0Þ comes from the two
terms eu�1eu, eueuþ1. The term eu�1eu if yu�1 ¼ �1, i.e. lu�1 is red, appears
from Cuð�du�1eu�1euÞ ¼ �du�1eu�1. If yu�1 ¼ 1, i.e. lu�1 is black, appears from
Cuð�su�1du�1eu�1euÞ ¼ �su�1du�1eu�1.

The term eueuþ1, if yu ¼ �1, i.e. lu is red, gives rise to Cuð�dueueuþ1Þ ¼
�dueuþ1 if yu ¼ 1, i.e. lu is black, gives rise to Cuð�sudueueuþ1Þ ¼ �sudueuþ1.

We then use the fact that du ¼ du�1 if du is black, while du ¼ �du�1 if du is red.
r

We thus write

0 ¼ �CuðRÞ ¼
X

i j Qi¼�1; iAu�1;u
dimuðiÞli �

X
i j Qi¼1; iAu�1;u

disimuðiÞli þ Lu
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where Lu is the contribution from CuðR 0Þ and from the terms associated to
au�1lu�1, aulu.

We now choose the root so that the segment Su, generated by the two edges
lu�1, lu, appears as follows:

Su :¼ r
lu . . .

lu�1 xu�1:ð31Þ

The value of Lu depends upon 3 facts, 1) the two colors of lu�1, lu. 2) The
orientation l of the edges lu�1, lu which are black. 3) The color su�1 of xu�1.
We thus obtain 18 di¤erent cases described in §6.2.3.

6.2.1. The contribution of aulu. If lu ¼ �eu � euþ1 is red we have au ¼ lu and
CuðduluauÞ ¼ 2dueuþ1. If lu ¼ eu � euþ1 is black we have su ¼ 1, if lu ¼ 1 we
have au ¼ lu and Cuð�dusuluauÞ ¼ 2dueuþ1. If lu ¼ �1 we have au ¼ 0 and
Cuð�dusuluauÞ ¼ 0: Summarizing:

CuðduluauÞ ¼ 2dueuþ1; lu is red

Cuð�dusuluauÞ ¼ 2dueuþ1; lu is black lu ¼ 1

Cuð�dusuluauÞ ¼ 0; lu is black lu ¼ �1

ð32Þ

6.2.2. The contribution of au�1lu�1. In au�1 consider the part au�1 of the sum
formed by the edges li, lu 0 li 0 lu�1.

We have au�1 ¼ au�1 þ ~aau�1 where

~aau�1 ¼

�sululu þ lu�1; if su�1 ¼ �1; lu�1 red

�sululu; if su�1 ¼ 1; lu�1 red

su�1sululu þ lu�1; if lu�1 ¼ 1; lu�1 black

su�1sululu; if lu�1 ¼ �1; lu�1 black

8>>><
>>>:

ð33Þ

We then have

Cuðlu�1au�1Þ ¼ �au�1 þ Cuðlu�1~aau�1Þ

Finally

Cuðlu�1luÞ ¼ Qu�1Queu�1 þ euþ1; Cuðl2u�1Þ ¼ �Qu�12eu�1:

Cuðlu�1~aau�1Þ ¼

�suluCuðlu�1luÞ þ Cuðl2u�1Þ; su�1 ¼ �1; lu�1 red

�suluCuðlu�1luÞ; su�1 ¼ 1; lu�1 red

su�1suluCuðlu�1luÞ þ Cuðl2u�1Þ; lu�1 ¼ 1; lu�1 black

su�1suluCuðlu�1luÞ; lu�1 ¼ �1; lu�1 black

8>>><
>>>:

Cuðlu�1~aau�1Þ ¼

�suluð�Queu�1 þ euþ1Þ þ 2eu�1; su�1 ¼ �1; lu�1 red

�suluð�Queu�1 þ euþ1Þ; su�1 ¼ 1; lu�1 red

su�1suluðQueu�1 þ euþ1Þ � 2eu�1; lu�1 ¼ 1; lu�1 black

su�1suluðQueu�1 þ euþ1Þ; lu�1 ¼ �1; lu�1 black

8>>><
>>>:
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If lu�1 is red we then compute the contribution of du�1lu�1au�1 getting (recall that
su is �1 if lu is red, one otherwise)

�du�1au�1 þ du�1

euþ1 þ 3eu�1; su�1 ¼ �1; lu red

euþ1 þ eu�1; su�1 ¼ 1; lu red

�lu½euþ1 � eu�1� þ 2eu�1; su�1 ¼ �1; lu black

�lu½euþ1 � eu�1�; su�1 ¼ 1; lu black

8>>><
>>>:

ð34Þ

If lu�1 is black we then compute the contribution of �su�1du�1lu�1au�1 getting

ð35Þ

su�1du�1au�1 � su�1du�1

�su�1½euþ1 � eu�1� � 2eu�1; lu�1 ¼ 1; lu red

�su�1½euþ1 � eu�1�; lu�1 ¼ �1; lu red

su�1lu½eu�1 þ euþ1� � 2eu�1; lu�1 ¼ 1; lu black

su�1lu½eu�1 þ euþ1�; lu�1 ¼ �1; lu black

8>>><
>>>:

We thus write if lu�1 is red

0 ¼ �CuðRÞ ¼
X

i j Qi¼�1; iAu�1;u
dimuðiÞlið36Þ

�
X

i j Qi¼1; iAu�1;u
disimuðiÞli � du�1au�1 þ L

If lu�1 is black

0 ¼ �CuðRÞ ¼
X

i j Qi¼�1; iAu�1;u
dimuðiÞlið37Þ

�
X

i j Qi¼1; iAu�1;u
disimuðiÞli þ su�1du�1au�1 þ L:

In both cases by L we denote the contribution from the Formulas (30), (32), and
(34) or (35).

6.2.3. The 18 cases. So now we expand L

1) lu�1; lu both red su�1 ¼ 1:

du½eu�1 � euþ1� þ 2dueuþ1 � duðeuþ1 þ eu�1Þ ¼ 0:

2) lu�1, lu both red su�1 ¼ �1:

du½eu�1 � euþ1� þ 2dueuþ1 � du½euþ1 þ 3eu�1� ¼ �2dueu�1:

3) lu�1 red, lu black su�1 ¼ 1, lu ¼ 1:

�du½eu�1 þ euþ1� þ 2dueuþ1 � du½euþ1 � eu�1� ¼ 0
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4) lu�1 red, lu black su�1 ¼ �1, lu ¼ 1:

�du½eu�1 þ euþ1� þ 2dueuþ1 � du½euþ1 � eu�1� � du2eu�1 ¼ �2dueu�1

5) lu�1 red, lu black su�1 ¼ 1, lu ¼ �1:

�du½eu�1 þ euþ1� þ du½euþ1 � eu�1� ¼ �2dueu�1

6) lu�1 red, lu black su�1 ¼ �1, lu ¼ �1:

�du½eu�1 þ euþ1� þ du½euþ1 � eu�1� þ du2eu�1 ¼ 0

7) lu�1 black, lu red su�1 ¼ 1, lu�1 ¼ 1:

du½eu�1 � euþ1� þ 2dueuþ1 � du½euþ1 � eu�1� � 2dueu�1 ¼ 0

8) lu�1 black, lu red su�1 ¼ �1, lu�1 ¼ 1:

du½�eu�1 � euþ1� þ 2dueuþ1 þ du½euþ1 � eu�1� þ 2dueu�1 ¼ 2dueuþ1:

9) lu�1 black, lu red su�1 ¼ 1, lu�1 ¼ �1:

du½eu�1 � euþ1� þ 2dueuþ1 þ du½euþ1 � eu�1� ¼ 2dueuþ1

10) lu�1 black, lu red su�1 ¼ �1, lu�1 ¼ �1:

du½�eu�1 � euþ1� þ 2dueuþ1 � du½euþ1 � eu�1� ¼ 0:

11) lu�1, lu both black, su�1 ¼ 1, lu�1 ¼ 1, lu ¼ 1:

�du½eu�1 þ euþ1� þ 2dueuþ1 � du½eu�1 þ euþ1� þ 2dueu�1 ¼ 0

12) lu�1, lu both black su�1 ¼ �1, lu�1 ¼ 1, lu ¼ 1:

�du½�eu�1 þ euþ1� þ 2dueuþ1 � du½eu�1 þ euþ1� � 2dueu�1 ¼ �2dueu�1

13) lu�1, lu both black su�1 ¼ 1, lu�1 ¼ �1, lu ¼ 1:

�du½eu�1 þ euþ1� þ 2dueuþ1 � du½eu�1 þ euþ1� ¼ �2dueu�1

14) lu�1, lu both black su�1 ¼ �1, lu�1 ¼ �1, lu ¼ 1:

�du½�eu�1 þ euþ1� þ 2dueuþ1 � du½eu�1 þ euþ1� ¼ 0

15) lu�1, lu both black, su�1 ¼ 1, lu�1 ¼ 1, lu ¼ �1:

�du½eu�1 þ euþ1� þ du½eu�1 þ euþ1� þ 2dueu�1 ¼ 2dueu�1

16) lu�1, lu both black su�1 ¼ �1, lu�1 ¼ 1, lu ¼ �1:

�du½�eu�1 þ euþ1� þ du½eu�1 þ euþ1� � 2dueu�1 ¼ 0
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17) lu�1, lu both black su�1 ¼ 1, lu�1 ¼ �1, lu ¼ �1:

�du½eu�1 þ euþ1� þ du½eu�1 þ euþ1� ¼ 0

18) lu�1, lu both black su�1 ¼ �1, lu�1 ¼ �1, lu ¼ �1:

�du½�eu�1 þ euþ1� þ du½eu�1 þ euþ1� ¼ 2dueu�1

By inspection we see that we have proved the following remarkable:

Corollary 6.3. The contribution of L equals to 0 if and only if su�1 ¼ lu�1lu.
In this case the coe‰cient of eu in the end point xu�1 of the segment Su is 0.

If su�1 ¼ �lu�1lu the contribution of L equals toe2eue1. In this case the co-
e‰cient of eu in the end point xu�1 of the segment Su ise2.

Proof. The first is by inspection, as for the second we check a few cases.
This coe‰cient comes from the two contributions of lu�1, lu. They appear by
su�1½sululu þ su�1lu�1lu�1�. Now sululu ¼ �lu ¼ eu þ euþ1 if lu is red and simi-
larly su�1lu�1lu�1 ¼ eu þ eu�1 if lu�1 is red and su�1 ¼ �1. This is case 2). If lu�1
is black then the coe‰cient of eu in su�1lu�1lu�1 is 1 if and only if su�1lu�1 ¼ �1
and in this case this is equivalent to su�1 ¼ �lu�1lu: These are cases 8, 9.

Similar argument when lu is black. r

Corollary 6.4. If lu�1 0 lj we have muð jÞ ¼ 0 if the contribution of L is 0,
otherwise muð jÞ ¼e2.

6.4.1. Contribution of L equals to 0. We say that u is of type I. We deduce that
the other edges li satisfy a relation, i.e. either (36) or (37). This is impossible
unless this is the trivial relation with all coe‰cients 0. Let us draw the implica-
tions of this. Recall that Su is the minimal segment containing the edges lu, lu�1
(cf. Formula (31)).

Notice that any edge lj comparable with lu and not with lu�1 appears in the
relation, only from the term muð jÞlj (indeed in this case au�1 does not depend on
lj). Since then muð jÞ ¼e1 this is a contradiction. Thus no edge is comparable
with lu and not with lu�1. This means that all internal vertices of Su have valency
2, moreover all edges lj with lu 0 lj 0 lu�1 appear with coe‰cientedu�1 e dj,
coming from au�1du�1 and from edjljmuð jÞ (see formulas (36)–(37)) we thus
must have that this sum equals zero.

Now, in case 2) if we start from u a AAC (see Remark 5.11) this implies that
it is not possible that j a B since the sum of these two coe‰cients is odd and so it
is not zero, so the segment Su is all formed by elements in AAC. If we start from
u a B it is not possible that j a AAC since againedu�1 e dj is odd, so the seg-
ment Su is all formed by elements in B.

Finally in case 1) with an extra edge E it is not possible that E is in between
lu�1, lu otherwise E would appear and only in au�1. Hence the value of z of the
relation would bee2:

262 m. procesi, c. procesi and b. van nguyen



6.4.2. Contribution of L equals toe2dueue1. We say that u is of type II. We thus
have, from (36) or (37), a relation expressing e2dueue1 as linear combination
of the edges lj A lu�1, lu. Now these edges are linearly independent so such an
expression if it exists it is unique. Let us assume for instance that the relation ex-
presses 2eu�1, the other case is identical.

In order to understand which elements appear in Cu, first remark that the
only edges that may contribute to the expression of Cu are those for which
lu 0 lj. If lj is not comparable with lu�1 they contribute by edj. If lu 0 lj 0
lu�1 they contribute by edj e du�1: Finally if lu�1 0 lj they contribute by 0,
e2dj by Corollary 6.4.

Case 1A (single loop) no extra edge: such a relation does not exist. For in-
stance if 2eu�1 is a linear combination

P
j cjlj of the edges lj A lu�1, lu since eu�1

only appears in lu�2 with sign �1 we must have that cu�2 ¼ �2 and then 2eu�2 is
a linear combination

P
j cjlj of the edges lj A lu�2, lu�1, lu, continuing by induc-

tion we reach a contradiction.
Case 1B (single loop) an extra edge: we may assume that the extra edge E ¼

Qe1 � eh, this edge divides the loop into two parts A, B. The edges in A :¼
fl1; . . . ; lh�1g and E form an odd loop as well as the edges in B and E. We
may assume for instance that h < u is an index in B. We know that, for an
odd loop, we can write 2e1 uniquely as the sum of the edges of the odd loop
A, E and then we write 2eu�1 ¼e

Pu�2
k¼1 2dklk e 2e1, let us call R

0 this relation.
The edges appearing in the relation are all the edges of A, E with coe‰ciente1
and all the edges lk, ha ka u� 2 with coe‰cientse2. This relation must be
proportional to either (36) or (37). Notice that E appears in this relation with co-
e‰ciente1.

This is possible if and only if E0 lu�1. Moreover we know that all the edges
in A appear with coe‰ciente1 hence by Corollary 6.4 it follows that they must
be comparable with lu but not with lu�1. Finally for the edges in B we have that
the lk with ha ka u� 2 are comparable with lu and, since they appear with co-
e‰ciente2 in R 0, we must have either lk 0 lu�1 or lu�1 0 lk. All the others are
not comparable with lu.

Denote by TA and TB the two minimal trees generated by A, B respectively.
We have:

Corollary 6.5. 1) If the indices of A and B are all of type I then either TA

and TB form two disjoint segments separated by E, or the edges in AAB form
a segment, the extra edge is outside this segment so the graph is not minimal
degenerate.

2) If there is an index in B (resp. in A) of type II, the two minimal trees TA and
TB generated by A, B respectively are segments and can intersect only in a vertex or
in the edge E. If they intersect in a vertex then all v a A (resp. all v a B) have type I
and the vertex is an end point of E.

Proof. 1) In this case we know that all the segments Su for u non critical are
segments which do not contain E and with the interior vertices of valency 2. By
a simple induction we have that

S
u AA Su and

S
v AB Su are segments which do not
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contain E and with the interior vertices of valency 2 (cf. Lemma 5.12). If these
two segments have an edge in common then, by the same Lemma, their union is
a segment not containing E and thus this segment gives a minimal degenerate
graph and the one we started from is not minimal. The same happens if they
meet in an end point of both. The only remaining case is that TA and TB form
two disjoint segments separated by E.

2) We have just seen that all the edges in A lie in branches originating from
vertices of the segment Su di¤erent from the last vertex of lu�1. On the other
hand the edges in B are in Su and possibly in the other branches originating
from the end points of Su. This implies that the two trees TA and TB can only
have an intersection inside Su.

Take any non critical index v a A, if v is of type I the segment Sv is either dis-
joint from Su or it may intersect Su in a vertex, since Sv has the interior vertices of
valency 2 and it cannot overlap with Su otherwise one or both of its ending edges,
both in A would also be in Su which on the contrary is all formed by edges in B. If
v is of type II we can apply the same analysis to v and deduce that the segment Sv

intersects Su in the edge E.
If all indices in A are of type I by the previous analysis the tree they generate

can meet Su (and also TB) only in one vertex so they lie in a single branch. Apply-
ing Lemma 5.12 it follows that the tree TA is a segment and it intersects Su in a
vertex.

Now suppose that this vertex v is not an end point of E. Call S the segment
from v to E. If lj a S we must have that if j is not a critical index 1, h it must be
of type I (otherwise we could not have that the edges in A follow lj) and thus
lj�1 a S. Also ljþ1 a S otherwise it should be of type II but then we have again
that the vertex v is outside the segment Sjþ1, by induction we arrive at a contra-
diction lu a S.

As for TB we have now proved that it is formed only by the edges in B and by
E. By induction we see that TB ¼

S
a AB Sa and in fact it is a segment. In fact let

T i
B :¼

S
h<jaiak Si, assume T i

B is a segment and consider T iþ1
B ¼ T i

BASiþ1: By
induction and construction these two segments intersect at least in the edge li. If
at least one of the two is only formed from indices of type I we see again by in-
duction that its interior vertices have valency 2 and by Lemma 5.12 we have that
their union is a segment. If i þ 1 is of type II as well as one of the indices j with
h < ja i we have that T i

B contains E. By the previous analysis it follows that
inside the segment T i

B and Siþ1 all interior vertices have valency 2 hence again
Lemma 5.12 applies. r

Case 2. A doubly odd loop is divided in 3 (or 2) parts: the two odd loops A,
C and the segment B (possibly empty) joining them. We divide this into two
subcases:

Assume first u a A (the case u a C is similar). We havee2dueue1 a linear
combination of the edges in B, C with coe‰cient di (or all �di) equal to 2e1
plus, (cf. Formula (22)), 2

Pu�2
i¼1 dili ¼ �2du�2eu�1 � 2e1 from which we have the

required expression for �2eu�1, similarly for �2euþ1. This is the unique expres-
sion R 0 as linear combination of the linearly independent edges lj A lu�1, lu.
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As before this relation must be proportional to either (36) or (37). Inspecting
these relations we first observe that, if j a B;C the edge lj must have coe‰cient
edj. By Corollary 6.4 if lu�1 0 lj we have that muð jÞ ¼e2 hence by inspection we
deduce that lu�1 60 lj.

If lu 0 lj 0 lu�1 the coe‰cient of lj in the two possible relations comes from
two terms, a termedj coming from the first two summands (since in this case
muð jÞ ¼e1), and a termedu�1 from au�1, hence no index in B or C can appear
in au�1 by parity. Since these edges appear in the relation R 0 we deduce that all lj,
j a BAC are in branches which originate from internal vertices of Su. Inside the
segment Su there are only edges of A. If we are in the case L ¼e2dueu�1 all edges
lj with lu�1 0 lj appear with coe‰cient e2dj hence they are in the set i a A,
ia u� 2. The remaining edges li in A with i > u do not appear hence they either
satisfy lu 0 li 0 lu�1 or are not comparable with lu. Similar discussion for L ¼
e2dueuþ1. A similar consideration holds if u a C.

Assume u a B. If u a B the contribution of L ise4eue1. The two cases are
similar.

i) If the contribution ise4eu�1, this comes from a sum 2
P

i AA dili ¼e4e1 plus
2
P

j AB; ja u�2 djlj ¼e4½eu�1 e e1�.
ii) The contributione4euþ1, comes from the sum 2

P
i AC dili ¼e4eb plus a

sum of 2
P

j AB; jbuþ1 djlj ¼e4½euþ1 e eb�.
This formula for L must coincide with that given by (36) or (37).
We claim that there is no edge lj with lu 0 lj and lj is not comparable with

lu�1. Indeed this edge would have muð jÞ ¼e1 and would not appear in au�1.
This is incompatible with the fact that the coe‰cient must be e2dj. Thus we
deduce that all internal vertices of the segment Su have valency 2.

Finally if lu 0 lj 0 lu�1 we have that the coe‰cient of lj in the relation asso-
ciated to Formulas (36) or (37) isedj e du�1. Note that u a B is not critical and
hence lu; lu�1 a B so du�1 ¼e2. If j a AAC we have that this number is odd so
it cannot be one of the coe‰cients appearing in the relation i) or ii). In case i)
finally we deduce that if j a A we have lu�1 0 lj while all the j a C lie in the
branches of the tree from the root di¤erent from the one containing lu.

Corollary 6.6. 1) The edges in B always form a segment, its internal vertices
have valency 2.

2) If there is an index of type II in B all edges in A and all edges in C are sepa-
rated and lie in the two segments originating from the two end points of Su.

3) If there is an index of type II in A (or C) all edges in A and all edges in C are
separated and lie in two segments which can be disjoint or meet in one vertex.

4) If all indices are of type I then either all edges in A and all edges in C are
separated and lie in the two segments originating from the two end points of Su. or
the edges of AAC form a segment.

Proof. 1) The proof is similar to that of Corollary 6.5. We already know that, if
j a B is of type I inside the segment Su there are only edges lj with j a B and its
internal vertices have valency 2, we have proved this now also for type II. The
claim follows from Lemma 5.12.
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2) Assume there is an index u a B of type II with contributione4eu�1. Analyz-
ing the corresponding relation we have then that all edges li with ia u� 2 and
all edges in C precede lu, all edges in A follow lu�1.

Finally if lu�1 0 lj then lj appears in the relation so since in the relation ap-
pear either all the edges in C and none of the edges in A or conversely we must
have that these two blocks lie in the two branches originating from the two end
points of Su.

3) Assume there is an index of type II in A, we then have seen that TC is
formed by branches originating from interior points of Su. Now if u a C is of
type I the segment Su cannot contain edges in A otherwise it would contain inte-
rior vertices of valency > 2. If u a C is of type II the segment Su does not contain
edges in A by the previous argument.

4) If all indices are of type I we have seen that all segments Su for u a AAC
are formed by edges in AAC and their interior vertices have valency 2. Finally
the statement that we have segments follows from Lemma 5.12 as in Corollary
6.5. r

6.6.1. All indices are of type I, L ¼ 0. We have already seen (Case 1) that the
case of the single loop and all indices are of type I is not possible. Let us thus
treat the special case when we are in the doubly odd loop and still all indices of
AAC are of type I or when just the indices of A are of type I but we know that
they form a segment.

If neither SA, SB, SC contains a critical vertex we have seen that the graph
spanned by AAC is a segment as well as SB and we have.

a 0Þ 0 SAAC v
SB w:ð38Þ

In this segment we take as root one on its end points and denote by si, li the
corresponding values of color and orientation (with respect to this root). Recall
that the notation si, li is relative to the segment Su as in the previous discussion
(see Formula (31)). In the next Lemma we analyze the 9 cases in which L ¼ 0.

Lemma 6.7. We claim that every edge lj , j a A (resp. j a C) has the property
that dj ¼ dsj if red and dj ¼ dljsj if black for d ¼ d1s1 (resp. d ¼ dhsh where h is
the minimal element in C).

Proof. By induction du�1 ¼ dsu�1 if red and du�1 ¼ dlu�1su�1 if black.
Look at Su. If lu�1, lu are both red su�1 ¼ 1, (Case 1))

du ¼ �du�1 ¼ �dsu�1 ¼ dsusu�1 ¼ dsu

If lu�1 is red and lu is black we are in Cases 3), 6) and we have su�1 ¼ lu,
du ¼ du�1 ¼ dsu�1. We also have su�1 ¼ �su�1su if lu�1 0 lu and su�1 ¼ su�1su
if lu 0 lu�1.

du ¼ �dsulu ¼ dsulu lu�1 0 lu

dsulu ¼ dsulu lu 0 lu�1

�
:
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If lu�1 is black and lu is red we are in Cases 7), 10) and we have su�1 ¼ lu�1. If
lu�1 0 lu we have lu�1lu�1 ¼ �1, su�1 ¼ susu�1

du ¼ �du�1 ¼ �dsu�1lu�1 ¼ �dsusu�1lu�1 ¼ �dsulu�1lu�1 ¼ dsu:

If lu 0 lu�1 we have lu�1lu�1 ¼ 1, su�1 ¼ �susu�1

du ¼ �du�1 ¼ �dsu�1lu�1 ¼ dsusu�1lu�1 ¼ dsulu�1lu�1 ¼ dsu:

If lu�1, lu are both black we are in Cases 11), 14), 16), 17) and we have
su�1 ¼ lulu�1 by Corollary 6.3. If lu�1 0 lu (in the order of the total segment)
we have lu�1lu�1 ¼ �1, su�1 ¼ susu�1

du ¼ du�1 ¼ dsu�1lu�1 ¼ dsusu�1lu�1 ¼ dsulu�1lu�1 ¼ dsu:

du ¼ �du�1 ¼ �dsu�1lu�1 ¼ dsusu�1lu�1 ¼ dsulu�1lulu�1

Now clearly lu�1lulu�1 ¼ lu. r

Now we take the left vertex of SAAC as in (38) as root, that is we consider it as
the 0 vertex and want to compute first the value of the other end vertex v of SAAC

and then the end vertex w of the total segment appearing in (38). Recall that we
have an even number of red edges so that the end vertex is black, let us say that
this vertex belongs to the last edge lj. We can compute it by using the various
options of formula (29). If lj is red or if it is black and lj ¼ �1 we have that the
last vertex is v ¼ bj and not aj, in the remaining case v ¼ aj. In all cases a simple
analysis shows that v ¼e

P
j ljsjlj. By Lemma 6.7 we have ljsj ¼ ddj henceP

j AA ljsjlj ¼e2e1 and similarly e
P

j AC ljsjlj ¼e2eb. We thus have that
v ¼e2ðe1 � ebÞ or v ¼e2ðe1 þ ebÞ but this is impossible for a black vertex which
has mass 0.

Now a similar argument on the segment SB gives as value of SB either
eðe1 � ebÞ or �e1 � eb.

In the first case we take as root the point v. Now the left and right hand ver-
tices are a ¼eðe1 � ebÞ, b ¼e2ðe1 � ebÞ. The relation is b ¼e2a so the reso-
nance must be CðbÞ ¼e2CðaÞ which we see immediately is not valid.

It remains the possibility a ¼ �e1 � eb, b ¼e2ðe1 � ebÞ, in this case fixing one
end vertex to be 0 the other is aþ b ¼ �e1 � eb e 2ðe1 � ebÞ which also gives a
non allowable graph from Definition 3.13 and Proposition 3.14.

If the edges in A form a segment and are of type I the same argument
shows that fixing the root at one end the other end vertex is �2ei for some i. We
deduce

Corollary 6.8. The case of all indices of type I does not occur or it produces a
not-allowable graph 3.13.

6.8.1. Indices of type II. If there is at least one index of type II the case
analysis that we have performed shows that between two edges in A there
are only edges in A and the edges in A form a segment, the same happens for
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B, C. Denoting SA, SB, SC these segments their union is a tree, the internal ver-
tices of SB have valency 2, so their relative position a priori can be only one of the
following.

aÞ bÞ

cÞ dÞ

where if only one of SA, SC contains a critical vertex we have the special cases

b 0Þ c 0Þ

In all these cases it is possible that the two critical vertices coincide as in

b 00Þ

In all these cases we may also have that B is empty so SB does not appear.
2) If A contains no index of type II) we apply to it Lemma 6.7 and deduce that

the segment equals d
P

i AA dili ¼ �2de1. Since the mass of a segment can only be
0, �2 we deduce that if one extreme is set to be 0 the other is �2e1.

3) is similar to 2).
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Notice that at this point we have proved for the doubly odd loop Theorem 4
in all cases except b), c), d), b 0). Of course b) and c) are equivalent and in fact b 0)
is a special case of b).

4) Let us treat the case in which u a A gives a contribution to L equale2eu�1
(the other is similar), from our analysis in our setting all edges lj, ja u� 2 must
be comparable with lu.

In all cases we have that SA and SC have a unique critical vertex which divides
the segment.

So SA is divided into two segments, one X ending with a red vertex x the other
Y with a black vertex y since in SA there is an odd number of red edges which are
distributed into the two segments.

We choose as root the critical vertex. With this choice we denote by s, l the
corresponding values on the edges (in order to distinguish from the ones s, l we
have used where the root is at the beginning of Su).

Lemma 6.9. i) The edges in Y, X have the property that, djsjlj ¼ d is constant.
ii)

y ¼
X
j AY

sjljlj ¼ d
X
j AY

djlj; x ¼ �
X
j AX

sjljlj ¼ �d
X
j AX

djlj

d ¼ �1; x� y ¼ �2e1

Proof. i) We want to prove that on X and Y the value djsjlj is constant. For
this by induction it is enough to see that the value does not change for lu, lu�1.
When they are not separated we can use Lemma 6.7. When separated we first
compare the values that we call sj when we place the root at the critical vertex
with the values sj when we place the root at the beginning of lu and we easily
see that susu�1 ¼ su�1. In order to prove that djsjlj is constant we need to show
that when lu, lu�1 are separated

1 ¼ du�1su�1lu�1dusulu ¼ du�1su�1lu�1dulu:

We have lu�1 ¼ lu�1 while lu ¼ �Qulu. In other words we need

�du�1Qusu�1lu�1dulu ¼ 1:

Since by definition du�1Qu ¼ du we have to verify that

�du�1Qusu�1lu�1dulu ¼ �su�1lu�1lu ¼ 1:

This is in our case the content of the second part of Corollary 6.3.
ii) By definition

y ¼
X
j AY

sjljlj ¼ d
X
j AY

djlj; x ¼ �
X
j AX

sjljlj ¼ �d
X
j AX

djlj

hence x� y ¼ �d
P

j AA djlj ¼ d2e1. But hðxÞ ¼ �2, hðyÞ ¼ 0 implies d ¼ �1. r
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If we take as root the vertex x the other vertex of SA is xþ y.

Proposition 6.10. If the graph is resonant xþ y ¼ �2ej for some j.

Proof. We choose as root the critical vertex of SA. We have x� y ¼ �2e1 ¼P
j BA djlj . This is a linear combination of the edges outside the segment SA there-

fore the resonance relation has the form:

CðxÞ � CðyÞ ¼
X

aiCðviÞ

where the vertices vi are linear combination of the edges not in A. Therefore these
vertices have support which intersects the support of the vertices in SA only in e1,
hence we must have CðxÞ � CðyÞ ¼ ae21 for some a. Applying the mass h we see
that hðCðyÞÞ ¼ 0, hðCðxÞÞ ¼ �1 hence a ¼ �1:

We now apply the rules of the operator C to x red, y black

�e21 ¼ Cð�2e1Þ ¼ �Cð�yÞ þ CðxÞ þ xy ¼ �CðyÞ þ yð2Þ þ CðxÞ þ xy

and get that CðxÞ � CðyÞ ¼ �e21 � yð2Þ � xy. Thus if the graph is resonant
we must have yð2Þ þ xy ¼ 0: One easily verifies that yð2Þ is an irreducible poly-
nomial unless y is of the form y ¼ bðei � ejÞ. In this case from the factorization
yð2Þ ¼ �xy and the fact that hðxÞ ¼ �2 we deduce that x ¼ �ei � ej. Since
x� y ¼ �2e1 we must have that b ¼e1 and if b ¼ 1 we have ei ¼ e1, xþ y ¼
�2ej. If b ¼ �1 we have ej ¼ e1, xþ y ¼ �2e1. r

We have thus verified that the graph is not-allowable by Definition 3.13
for the two extremes of the segment SA, a similar analysis would apply to
SC .

6.11. The extra edge. We treat now case 1) with an extra edge E ¼ Qe1 � eh,
Q ¼e1. We have the function z such that zðe1Þ ¼ 1, zðliÞ ¼ 0, Ei and zðEÞ ¼ 2Q.
In this case the even loop is divided into two odd paths. We divide the indices
di¤erent from the two critical indices 1, h in two blocks A ¼ ð2; . . . ; h� 1Þ, B ¼
ðhþ 1; . . . ; k � 1Þ and argue as in the previous section.

From Corollary 6.5 it follows that, either the extra edge is outside the segment
spanned by the li, this may happen if we are in a situation as (up to symmetry
between A, B)

aÞ bÞ

In these cases the edge E can be removed and the graph is not minimal. Other-
wise it could separate the two segments spanned by the two blocks A, B or
it could appear in one or both of these segments according to the following
pictures:
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cÞ

dÞ eÞ

Cases d), e) are special cases of c), and in fact follow from previous results, so
we treat case c).

6.11.1. E ¼ e1 � eh is black. We look at the picture c).

cÞ

We can fix the signs di so that

Xh�1
i¼1

dili ¼ �e1 � eh;
Xk
i¼h

dili ¼ e1 þ eh:

Of the two vertices y, x one is black the other is red. The same for a, b.
Case 1: a, y black b, x red gives for the various paths:

S1
B ¼ zþ x; S0

B ¼ y; S0
A ¼ a; S1

A ¼ zþ b

y ¼
X
j AS 0

B

sjljlj ¼ d
X
j AS0

B

djlj ; x ¼ �E �
X
j AS1

B

sjljlj ¼ �E � d
X
j AS1

B

djlj
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a ¼
X
j AS 0

A

sjljlj ¼ d 0
X
j AS 0

A

djlj; b ¼ �E �
X
j AS 1

A

sjljlj ¼ �E � d 0
X
j AS 1

A

djlj

x� y ¼ �d
X
i AB

dili � E ¼ �dðe1 þ ehÞ � e1 þ eh;

b� a ¼ �d 0
X
i AB

dili � E ¼ d 0ðe1 þ ehÞ � e1 þ eh

for two signs d, d 0. Applying the mass h we see that d ¼ 1, d 0 ¼ �1 hence x� y ¼
b� a ¼ �2e1 is the relation among the vertices of the graph. By resonance

x� y ¼ b� a; ) CðxÞ � CðyÞ ¼ CðbÞ � CðaÞ:

We now apply the rules of the operator C to x red, y black

�e21 ¼ Cð�2e1Þ ¼ �Cð�yÞ þ CðxÞ þ xy ¼ �CðyÞ þ yð2Þ þ CðxÞ þ xy

and get that CðxÞ � CðyÞ ¼ �e21 þ yð2Þ þ xy ¼ �e21 þ yð2Þ þ ðy� 2e1Þy. On the
other hand this element is a quadratic polynomial in the elements ei appearing
in the edges of B which must be equal by the resonance relation to a quadratic
polynomial in the elements ei appearing in the edges of A. Now the edges of A
have in common with the edges of B only the elements e1, eh, so �e21 þ yð2Þ þ
ðy� 2e1Þy must contain only these indices, it easily follows that if an element ei,
iA 1; h appears in y with coe‰cient a we must have a ¼ �1, moreover if ei
appears in y no ej, jA 1 can appear in y otherwise we have a mixed term in y2

of type 2eiej which does not cancel. Next we can only have y ¼ e1 � ei in order to
cancel the mixed term from �2e1y.

In this case the segment from y to x has value x� ð�yÞ ¼ x� yþ 2y ¼
�2e1 þ 2ðe1 � eiÞ ¼ �2ei and the result is proved.

The other possibility is that y ¼ aðe1 � ehÞ for some a, since y is in any case a
sum of edges in B this is actually not possible by computing the value of z.

a, y red b, x black is symmetric to the previous case.
Case 2: a, x black b, y red gives, as in the previous case, the value b� a ¼

�2e1. Then:

S1
B þ z ¼ x; S0

B ¼ y; S0
A ¼ a; S1

A � z ¼ b

y ¼ �
X
j AS 0

B

sjljlj ¼ �d
X

j a S0
Bdjlj;

x ¼ E þ
X
j AS 1

B

sjljlj ¼ E þ d
X

j a S1
Bdjlj

x� y ¼ d
X
i AB

dili þ E ¼ dðe1 þ ehÞ þ e1 � eh;

by mass d ¼ 1 and y� x ¼ �2e1, we argue as before.
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6.11.2. E ¼ �e1 � eh is red. In this case the even loop is divided into two even
paths. We can fix the signs di so that

Xh�1
i¼1

dili ¼ e1 � eh;
Xk

i¼h
dili ¼ �e1 þ eh:

We still have a situation as in the previous analysis with some changes.
Case 1: a, y black b, x red gives for the various paths:

y ¼
X
j AS 0

B

sjljlj ¼ d
X
j AS0

B

djlj; x ¼ E �
X
j AS1

B

sjljlj ¼ E � d
X
j AS1

B

djlj

a ¼
X
j AS 0

A

sjljlj ¼ d 0
X
j AS 0

A

djlj; b ¼ E �
X
j AS 1

A

sjljlj ¼ E � d 0
X
j AS1

A

djlj

x� y ¼ �d
X
i AB

dili þ E ¼ �dð�e1 þ ehÞ � e1 � eh;

b� a ¼ �d 0
X
i AB

dili þ E ¼ d 0ðe1 � ehÞ � e1 � eh

for two signs d, d 0. Thus x� y, b� a can take the values �2e1, �2eh. If they take
the same value we have x� y ¼ b� a and we argue as in the previous section.
Otherwise up to symmetry we may assume that x� y ¼ �2e1, b� a ¼ �2eh
and x� y ¼ b� aþ 2z is the relation among the vertices of the graph. By reso-
nance

x� y ¼ b� aþ 2z; ) CðxÞ � CðyÞ ¼ CðbÞ � CðaÞ þ 2CðEÞ
¼ CðbÞ � CðaÞ � 2e1eh:

We now apply the rules of the operator C to x red, y black

�e21 ¼ Cð�2e1Þ ¼ �Cð�yÞ þ CðxÞ þ xy ¼ �CðyÞ þ yð2Þ þ CðxÞ þ xy

and get that CðxÞ � CðyÞ ¼ �e21 þ yð2Þ þ xy ¼ �e21 þ yð2Þ þ ðy� 2e1Þy. On the
other hand this element is a quadratic polynomial in the elements ei appearing
in the edges of B which must be equal by the resonance relation to a quadratic
polynomial in the elements ei appearing in the edges of A. Now the edges of A
have in common with the edges of B only the elements e1, eh, so �e21 þ yð2Þ þ
ðy� 2e1Þy must contain only these indices, it easily follows that if an element ei,
iA 1; h appears in y with coe‰cient a we must have a ¼ �1, moreover two dis-
tinct elements of this type cannot appear otherwise we have a mixed term in y2 of
type 2eiej which does not cancel. Next we can only have y ¼ e1 � ei in order to
cancel the mixed term from �2e1y.

In this case the segment from y to x has value x� ð�yÞ ¼ x� yþ 2y ¼
�2e1 þ 2ðe1 � eiÞ ¼ �2ei and the result is proved.
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The other possibility is that y ¼ aðe1 � ehÞ for some a, this is possible only if
a ¼e1 and y ¼

P
j ASB

sjljlj all edges are involved, and x ¼ z. Then the segment
from y to x ¼ z ¼ E has values E � y ¼ �e1 � eh e ðe1 � ehÞ ¼ �2e1, �2eh.

a, y red b, x black is symmetric to the previous case.
Case 2: a, x black b, y red gives as in the previous case the value b� a ¼

�2e1;�2eh. Then:

y ¼ �
X
j AS 0

B

sjljlj ¼ �d
X

j a S0
Bdjlj;

x ¼ �E þ
X
j AS 1

B

sjljlj ¼ �E þ d
X

j a S1
Bdjlj

y� x ¼ �d
X
i AB

dili þ E ¼ �dð�e1 þ ehÞ � e1 � eh a f�2e1;�2ehg:

We argue again as before.

Part 2. The irreducibility theorem

7. The matrices

The operator adðNÞ ¼ 2iQ under study acts on the space spanned by the fre-
quency basis and here it decomposes into blocks corresponding to the connected
components of the Cayley graph GX restricted by Defnition 2.12 (Theorem 2).

For each such component A we have seen that Q acts as a scalar KðaÞ plus a
matrix CA homogeneous of degree 1 in the variables xi. According to Formulas
(12), (13), (14) the entries of CA ¼ ðca;bÞ are the following. If a a A, a ¼

P
i aiei a

Zm the diagonal entry ca;a ¼ �aðxÞ ¼ �
P

i aixi. If a a A, a ¼
�P

i aiei
�
t a Zmt

the diagonal entry ca;a ¼ aðxÞ ¼
P

i aixi.
If a; b a A are not connected by an edge ca;b ¼ 0. If a; b a Zm are connected

by a black edge ei � ej then ca;b ¼ 2
ffiffiffiffiffiffiffiffi
xixj

p
, if a; b a Zmt are connected by a black

edge ei � ej then ca;b ¼ �2
ffiffiffiffiffiffiffiffi
xixj

p
, finally if a, b are connected by a red edge

�ei � ej then one of them is in Zm the other in Zmt and we have ca;b ¼ �2
ffiffiffiffiffiffiffiffi
xixj

p
if a a Zm, b a Zmt and ca;b ¼ 2

ffiffiffiffiffiffiffiffi
xixj

p
in the other case. If red edges are not pres-

ent the matrix is symmetric.
Notice then some rules, if b a Zm we have CAb ¼ CA � bðxÞId, finally

CAt ¼ �CA.
By Lemma 2.14, when we expand the characteristic polynomial of such a

matrix the square roots disappear and we get a polynomial, denoted wAðtÞ (or
sometimes just wA) monic in t and with coe‰cients polynomials in the variables
xi with integer coe‰cients. Our goal is to prove that

Theorem 5 (irreducibility theorem). If A is a non-degenerate allowable graph in
GX the polynomial wAðtÞ is irreducible as polynomial in Z½t; x�.
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We prove furthermore that the graph A is determined by wAðtÞ, this we call the
separation Lemma 9.2.

In fact in this form the statement is not true, we need to use the fact that
mass is conserved. This is enough for the dynamical consequences. In algebraic
terms the conservation of mass consists in restricting to the coset of G2 (one
of the connected components of the Cayley graph) of elements a, at a G,
a a Zm, hðaÞ ¼ �1. We also need to use systematically Theorem 4 which tells
us that we can restrict to those graphs in which the vertices are a‰nely inde-
pendent.

Remark 7.1. The hypothesis that the graph is non-degenerate is necessary. In
the simple example of

0 �!1;2 e2 � e1 �!
1;2

2e2 � 2e1

one easily verifies that the characteristic polynomial is not irreducible.

On the other hand it is likely that the condition to be allowable is not neces-
sary in order to prove irreducibility and separation. To avoid it complicates the
proofs and, since we do not need the stronger result, we have not tried to discuss
it.

8. Irreducibility and separation

8.1. Preliminaries. Observe first that, given g a G, AHG we have that wAðtÞ is
irreducible if and only if wAgðtÞ is irreducible.

Consider a projection pi : Z
m zZ=ð2Þ ! Zm�1 zZ=ð2Þ where we remove

the i th coordinate pi½ða1; . . . ; amÞ; d� 7! ½ða1; . . . ; �aai; . . . amÞ; d�. Take now a set
AHZm zZ=ð2Þ of vertices and consider the graph obtained from GA by re-
moving all the edges which contain i in its marking, call this new graph G i

A.
Even if A is connected this new graph G i

A may well not be connected. We now
claim

Proposition 8.2. If A is connected the map pi , restricted to G i
A, is injective and a

graph isomorphism with GpiðAÞ, a graph in Zm�1 zZ=ð2Þ.
If A is non degenerate each connected component of GpiðAÞ is non degenerate.

Proof. We know that the mass l ¼ hðaÞ depends only on the color of a so that
we have ai ¼ hðaÞ � hðpiðaÞÞ and thus if a, b are black vertices (or red vertices),
piðaÞ ¼ piðbÞ : hðaÞ ¼ hðbÞ hence ai ¼ bi ) a ¼ b. Otherwise, if a is black, b is
red then it is clearly piðaÞApiðbÞ because piðaÞ is black, piðbÞ is red. If we decom-
pose X ¼ Xm into the elements containing the index i and the complement X i

m we
see that pi establishes a 1–1 correspondence between X i

m and Xm�1 from which
the second claim since pi is a group homomorphism. The third claim follows
easily from the definitions. r
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A simple corollary of this proposition is that.

Corollary 8.3. If we set xi ¼ 0 in the matrix CA we have the matrix CpiðAÞ,
hence

wAðtÞjxi¼0 ¼ wpiðAÞðtÞ

Let B1; . . . ;Bk be the connected components of piðAÞ. We have

Yk
j¼1

wBj
ðtÞ ¼ wpiðAÞðtÞ ¼ wAðtÞjxi¼0:

As a consequence, we have the following inductive step.

Corollary 8.4. Assume that A is non degenerate and that we have already
proved the irreducibility theorem for m� 1 or for n < jAj. We deduce that the fac-
tors wBj

ðtÞ of wpiðAÞðtÞ are the irreducible monic factors of wAðtÞjxi¼0.

We want to prove Theorem 1 by induction as follows. We assume irreducibil-
ity and separation in dimension n� 1 and prove first the separation in dimension
n and finally irreducibility in dimension n:

Take a connected A and let l be the mass of a black vertex of A, then the mass
of a red vertex is �2� l.

Lemma 8.5 (Parity test). i) If we compute t at a number gZ l mod ð2Þ, we have
wAðgÞA 0:

ii) If a linear form tþ
P

i aixi , ai a Z divides wAðtÞ we must haveP
i ai G l mod ð2Þ.

Proof. i) The matrix CA modulo 2 is diagonal and wAðtÞGQ
iðtþ aiðxÞÞ mod ð2Þ. If we compute modulo 2 and set all xi ¼ 1, we get

wAðtÞG ðtþ lÞm mod ð2Þ, hence wAðgÞG ðgþ lÞm G gþ l mod ð2Þ.
ii) A linear form tþ

P
i aixi, ai a Z divides wAðtÞ if and only if we have

wA
�
�
P

i aixi
�
¼ 0, then set xi ¼ 1 and use the first part. r

We shall use the parity test as follows.

Lemma 8.6. Suppose we have a connected set A in Zm, in which we find a vertex a
and an index, say 1, so that the graph GA has the following properties:
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we have:

• 1 appears in all and only the edges having a as vertex.

• When we remove a (and the edges meeting a) we have a connected graph A with
at least 2 vertices.

• When we remove the edges associated to any index, the factors described in
Corollary 8.3 are irreducible.

Then the polynomial wAðtÞ is irreducible.

Proof. We take a as root, and translate the set A so that a ¼ 0. Setting x1 ¼ 0
we have by Corollary 8.3 and the hypotheses, that wAðtÞ ¼ tPðtÞ with P ¼ wAðtÞ
irreducible of degree > 1. Thus, if the polynomial wAðtÞ factors, then it must
factor into a linear t� LðxÞ times an irreducible polynomial of degree > 1.

Moreover modulo x1 ¼ 0 we have that 0 and l coincide, thus LðxÞ is a mul-
tiple of x1.

Take another index iA 1; h if a is an end and the only edge from a is marked
ð1; hÞ otherwise just di¤erent from 1 and set xi ¼ 0. Now the polynomial wAðtÞ
specializes to the product

Q
j wAj
ðtÞ where the Aj are the connected components

of the graph obtained from A by removing all edges in which i appears as mark-
ing. By hypothesis fag is not one of the Aj .

If no factor is linear we are done. Otherwise there is an isolated vertex dA a
so that fdg is one of the connected components Aj. The linear factor associated
is tþ dðxÞjxi¼0. Clearly we have that the coe‰cient of x1 in dðxÞ ise1 (since the
marking 1 appears only once). This implies that LðxÞ ¼ex1 and this is not possi-
ble by the parity test. r

9. The separation lemma

Given a connected graph GHGX consider tG ¼ fð�a;�dÞ j ða; dÞ a Gg.

Remark 9.1. tG is a connected graph, if and only if G contains only black
edges.

Proof. The connected components of the Cayley graph are the cosets G2u,
u a G. If there exists a red edge ð�ei � ej; tÞ connecting two elements a, b a G
then ba�1 ¼ ð�ei � ej; tÞ ) tbðtaÞ�1 ¼ ðei þ ej; tÞ B G2. tb, ta are not in the
same connected component of the Cayley graph. Instead ba�1 ¼ ei � ej )
tbðtaÞ�1 ¼ ej � ei, ta, tb are connected by a black edge marked j, i in tG. r

Lemma 9.2 (Separation lemma). Given two connected non-degenerate allowable
graphs G1;G2 HGX if wG1

¼ wG2
, then G1 ¼ G2 or G1 ¼ tG2.

If we take GHG1, then G is of mass �1 we have that tG is of mass 1, we de-
duce that a connected color marked graph G of mass �1 can be recovered from
its characteristic polynomial.
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Proof. We will prove this lemma by induction. When n ¼ 0 : wGðtÞ ¼ tþ a, it is
easy to see that G ¼ fða;þÞg or G ¼ fð�a;�Þg.

Induction process: n > 1. Suppose that we have the separation and the irredu-
cibility for graphs of dimensions ka n� 1. Take a connected colored marked
graph G ¼ fðv1; d1Þ; . . . ; ðvnþ1; dmÞg, ðvi; diÞ a Zm zZ=ð2Þ, the associated matrix
CG and its characteristic polynomial wG.

Associate to G the list L of vectors wi :¼ divi, we see that these vectors are
a‰nely independent. If the wi have all the same mass then the graph G has
only black edges and then it is either the graph with vertices wi or with vertices
twi as seen before, if they have di¤erent masses then the masses are of type k
for black vertices and k þ 2 for red and the graph G is thus reconstructed
from L.

Therefore we need to show that, from the characteristic polynomial, we can
recover the list L :¼ fw1; . . . ;wng. Before starting the proof let us make a useful
remark, the characteristic polynomial gives as information the trace of the matrix
CG and thus in particular the sum

Pn
i¼1 wiðxÞ and the mass s :¼

Pn
i¼1 hðwiÞ: If

we have a elements in the list of mass k and ðn� aÞ of mass k þ 2 we have that
s ¼ nk þ 2b ¼ nðk þ 2Þ � 2ðn� bÞ. Thus if we know that a certain number h is
the mass of a vertex we can deduce

Lemma 9.3. If s ¼ nh then all vertices in G have the same color. If nh < s then h
is the mass of the black vertices and there are b red vertices where s ¼ nhþ 2b.
Similarly if nh > s then h is the mass of the red vertices and there are b red vertices
where s ¼ nh� 2ðn� bÞ.

We set one of the variables xi ¼ 0 for instance x1 ¼ 0. We know that the ma-
trix CG specializes to the direct sum of the matrices CGi

where the Gi correspond
to the various connected components of the graph G which are obtained by re-
moving all edges in which 1 appears as marking and dropping in each component
the first coordinate of the various vertices. We have that specializing x1 ¼ 0 we
specialize the polynomial wG to

Q
i wGi

. Since we are assuming irreducibility in
dimensions less than n� 1 the factors wGi

are all irreducible and thus can be de-
termined by the unique factorization of polynomials. Therefore all the vectors of
p1ðLÞ, that is the wi with the first coordinate removed can be recovered uniquely
(up to the sign) by induction and we obtain a list of n vectors L1 : fð�; bi; c3; i; . . . ;
cm; iÞg.

Now we set another variable, say x2 ¼ 0. By similar arguments as above all
the wi with the second coordinate removed can be recovered by induction giving
a list L2 : fðai; �; c3; i; . . . ; cm; iÞg.

Now our problem is this: if we know the vectors obtained from L after remov-
ing the first or the second coordinate can we recover the given vectors? We shall
need to perform a case analysis.

1) Recovering the list L:

We thus consider the vectors L1;2 obtained from L by dropping the first two
coordinates ð�; �; c3; . . . ; cmÞ and collect the ones where c3; . . . ; cm are fixed. The
first remark is that, if in this list a given vector ð�; �; c3; . . . ; cmÞ appears only once
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then we know exactly from which vector it comes from the two lists L1, L2 and so
we can reconstruct the vector v in L from which it arises. Then by Lemma 9.3 we
can determine if in the graph all vertices have the same color or, if this is not the
case, which is the mass of the black end red vertices and how many there are.

Next since the vectors in the graph, by assumption, are a‰nely independent,
we have at most 3 vectors in L, giving the same vector ð�; �; c3; . . . ; cmÞ in L1;2

since 4 of such vectors lie in a 2-dimensional plane so they are not a‰nely inde-
pendent.

a) Assume we have 3 vectors v1; v2; v3 a L giving the same vector c ¼ ð�; �;
c3; . . . ; cmÞ in L1;2 and let c ¼ hðcÞ. We claim that v1, v2, v3 cannot have the
same color, in fact this would imply that they have the same mass and then they
lie in a line and cannot be a‰nely independent. Let then a1, a2, a3 resp. b1, b2, b3
be the first, resp. second coordinates of these vectors (deduced from the two lists
L1, L2) we need to be able to reconstruct the 3 vectors v1; v2; v3 a L by matching
the ai with the bj. First observe that we know the total mass m of v1, v2, v3. This is
m ¼ 3k þ 2 or m ¼ 3k þ 4 depending if we have two or 1 black vertices among
v1, v2, v3. Since 3k þ 2 is congruent to 2 modulo 3 while 3k þ 4 is congruent to
1 modulo 3, we can deduce both k and the number of black vertices from m.

Call l :¼ k � c, now consider one of the vectors in L1, start from ða1; �; cÞ,
if there is no bi with a1 þ bi ¼ l then there must necessarily be one, say b1 with
a1 þ b1 ¼ l þ 2 and then ða1; �; cÞ comes from the red vector ða1; b1; cÞ. Similarly
if there is no bi with a1 þ bi ¼ l þ 2 then there must necessarily be one, say b1
with a1 þ b1 ¼ l and then ða1; �; cÞ comes from the black vector ða1; b1; cÞ. In
this case we can easily see how to match the other two vectors, in case the other
two vectors have the same color we must match them so that a2 þ bi ¼ l 0,
a3 þ bj ¼ l 0 where l 0 ¼ l if the color is black and l þ 2 if red. We claim that only
one match is possible, in fact if we had a2 þ b3 ¼ a3 þ b2 ¼ a2 þ b2 ¼ a3 þ b3 we
would have that the two vectors v2, v3 coincide.

Suppose now we know that the two colors are distinct, then as before, if there
is no bj, j ¼ 2; 3 such that a2 þ bj ¼ l we know that there is one, say b2 for which
a2 þ b2 ¼ l þ 2 and we have reconstructed the two vectors ða2; b2; cÞ, ða3; b3; cÞ.
Finally it is possible that b3 ¼ b2 þ 2 and a2 þ b2 ¼ l then we have a3 þ b3 ¼
l þ 2 which implies a3 ¼ a2 ¼ a and again we reconstruct the two vectors (actu-
ally by Definition 3.13 this is not allowed).

It remains to analyze the case in which none of the ai satisfies the condition
that it cannot be paired uniquely.

So let us assume that, up to reordering b1 is maximum. There is one ai which
must be paired with b1 and we are assuming that it can also be paired with
another bi giving a di¤erent color. We must necessarily have that the value of
this ai, which we may assume reordering to be a1 is a1 ¼ l þ 2� b1, we have re-
covered a red vector ða1; b1; cÞ. The rest of the analysis follows as before.

b) There are in L1;2 only 2 vectors of the form ð�; �; c3; . . . ; cmÞ with c3; . . . ; cm
fixed. For simplicity we denote c :¼ ðc3; . . . ; cmÞ and their sum by c. We know
then two vectors in L1;2 of the form ða1; �; cÞ, ða2; �; cÞ and two vectors in L2 of
the form ð�; b1; cÞ, ð�; b2; cÞ which specialize in L1;2 to the given vectors.
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A priori in L we can either have ða1; b1; cÞ, ða2; b2; cÞ or ða1; b2; cÞ, ða2; b1; cÞ.
The first pair gives two vertices of the same color if and only if a1 þ b1 ¼ a2 þ b2,
similarly for the second. If we have a1 þ b1 ¼ a2 þ b2, a1 þ b2 ¼ a2 þ b1 we de-
duce that a1 ¼ a2, b1 ¼ b2 and this is impossible since it implies that in L we
have two equal vectors, therefore in at least one of the two pairs we have di¤erent
colors. We may thus assume (changing the indices if necessary) that a1 þ b2 ¼
a2 þ b1 þ 2, this implies a1 � a2 ¼ b1 � b2 þ 2. Write a1 þ b1 ¼ a2 þ b2 þ x, x a
ð�2; 0; 2Þ and thus 2ðb1 � b2Þ ¼ x� 2. If x ¼ �2 we have b1 � b2 ¼ �2, a1 ¼ a2
and we argue as before, this case is impossible.

If x ¼ 2 we have b1 ¼ b2 ¼ b, a1 ¼ a2 þ 2 ¼ aþ 2 we have in the possible list
of vectors ðaþ 2; b; cÞ, ða; b; cÞ. We know that this list is not allowed by Defini-
tion 3.13. Assume that x ¼ 0 thus b ¼ b1, b2 ¼ bþ 1, a ¼ a2, a1 ¼ aþ 1 we have
the two possibilities 1) ðaþ 1; b; cÞ, ða; bþ 1; cÞ or 2) ðaþ 1; bþ 1; cÞ, ða; b; cÞ. In
this case both cases are a priori possible, in fact if the graph were just a single
edge marked e1 � e2 or �e1 � e2 the two cases cannot be recovered by the two
specializations but only from the full characteristic polynomial.

G1 ¼ ðe1;þÞ ���!e2�e1 ðe2;þÞ G2 ¼ ð0;þÞ
�e2�e1 ð�e1 � e2;�Þ;

CG1
¼ �x1 2

ffiffiffiffiffiffiffiffiffi
x1x2
p

2
ffiffiffiffiffiffiffiffiffi
x1x2
p

�x2

����
����; CG2

¼ 0 �2
ffiffiffiffiffiffiffiffiffi
x1x2
p

2
ffiffiffiffiffiffiffiffiffi
x1x2
p

�x1 � x2

����
����ð39Þ

The characteristic polynomials are distinct:

t2 þ ðx1 þ x2Þt� 3x1x2; t2 þ ðx1 þ x2Þtþ 4x1x2

but the two specializations coincide.
So we need a deeper analysis. First let us assume that we know if all the

vectors have the same mass or we know the mass of black and red vertices.
If we know that all vertices have the same mass then case 2) is excluded. Sup-

pose then that we know the mass k of a black vertex.
If case 1) holds we must have that aþ bþ c is either k � 1 or k þ 1, if case 2)

holds we must have that aþ bþ c ¼ k. Thus we can determine in which case we
are.

The other possibility is that we do not have the previous information but by
the previous analysis this means that in the list L1;2 each vector appears twice. If
the list consists of just two vectors we can conclude by the explicit formulas of the
characteristic polynomial.

Assume we have at least two pairs one u1, u2 giving ð�; �; cÞ the other v1, v2
giving ð�; �; dÞ. In each case we know that the two vertices are connected either
by the edge e1 � e2 or by �e1 � e2. We deduce that the only possibility at this
point is that there are only two such lists so L has 4 elements and we must have
both edges e1 � e2 and �e1 � e2.

The two edges involve two disjoint pairs of vertices so that the graph must be
of the form

a ����!eðe1�e2Þ
b

l
c
�e1�e2

d
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if l does not contain any of the indices 1, 2 or possibly of the form

if l contains one of the indices 1, 2. The edge l can have either color (which deter-
mines the color of the further edge).

In particular the graph has either 3 black and one red vertex or 3 red and one
black vertex so either s ¼ 4k þ 6 ¼ 4ðk þ 1Þ þ 2 or s ¼ 4k þ 2.

This gives two possible values for the mass of black vertices, k or k þ 1. Fi-
nally specializing to xi ¼ 0 where iA 1; 2 appears in l and to x1 ¼ 0 (or x2 ¼ 0)
if 1 resp. 2 does not appear in l we see that of the 4 vectors in L1;2 at least one
appears only once and we are back in the previous case which we have treated.

r

10. Irreducibility theorem

We prove Theorem 5 by induction. Assume the separation and irreducibility in
all dimensions less than n, we will prove the irreducibility in dimension n. Since
this property is invariant under translation we often choose a vertex as the root
and assume that it corresponds to 0. We thus always deal with combinatorial
graphs and we may identify the black vertices as elements a in Zm with hðaÞ ¼ 0
and the red vertices as elements a in Zm with hðaÞ ¼ �2 (Remark 2.10).

Therefore from now on we assume that G is a combinatorial graph with nþ 1
vertices and T a maximal tree in G with n linearly independent edges.

Lemma 10.1. We have one of the following possibilities:

i) We have n indices all with multiplicity 2.
ii) We have at least two indices with multiplicity 1 in distinct edges.
iii) We have two indices with multiplicity 1 in the same edge the remaining with

multiplicity 2.
iv) We have one index with multiplicity 1 one with multiplicity 3 and the remaining

with multiplicity 2.

Proof. We must have at least n distinct indices appearing in the edges, other-
wise these edges span a subspace of dimension less than n. In total on the n edges
of T appear 2n indices counted with multiplicity. If every index appears with mul-
tiplicityb 2 we must have n indices all with multiplicity 2.

If we have at least 3 indices of multiplicity 1 we are in case ii), if we have only
two indices of multiplicity 1 in the same edge, the remaining indices satisfy prop-
erty i) for the remaining n� 1 edges. Assume finally that only one index appears
with multiplicity 1. Of the remaining kb n� 1 indices appearing assume a have
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multiplicityb 3 and b multiplicity 2 hence

aþ bb n� 1; 3aþ 2ba 2n� 1 ) bb n� 2

we deduce that a ¼ 1 and the multiplicity is 3, we are in the last case. r

We thus have to treat 4 cases.

Remark 10.2.

• Dash lines mean that they may be black or red.

• Black edges are denoted by single lines, red edges-by double lines.

• A denotes the completed graph obtained from the graph A.

Sometimes given a combinatorial graph G by a block A of G we mean a con-
nected complete subgraph A of G. If A is a block in a maximal tree T of G the
completion A is a block in G. By abuse of notation we denote by wAðtÞ :¼ w

A
ðtÞ to

be the characteristic polynomial of the matrix associated to A. We now fix a max-
imal tree in G.

Lemma 10.3. If in T there are two blocks A, B and two indices i, j such that:
i) i, j do not appear in the edges of the blocks A, B.
ii)

w
A
G wB modulo xi ¼ xj ¼ 0;ð40Þ

then jBj ¼ jAj ¼ 1, A ¼ fða; s1Þg, B ¼ fðb; s2Þg, a; b a Zm and b ¼ lþ s2s1a.
Where l ¼ niei þ njej, ni þ nj ¼ �1þ s2s1.

Assume that i, j appear at most twice in the tree then if s2s1 ¼ 1 we may have
l ¼eðei � ejÞ,e2ðei � ejÞ. If s2s1 ¼ �1 we may have l ¼ �ei � ej;�2ei;�2ej.

Proof. Since the degree of the characteristic polynomial is the number of ver-
tices by assumption jBj ¼ jAj. Choose the root in A. This gives to each vertex v
a sign sv. Let A ¼ fða1; s1Þ; . . . ; ðar; srÞg; B ¼ fðb1; d1Þ; . . . ; ðbr; drÞg, then to these
graphs we associate as in §9 the list L of vectors vh ¼ shah and wh ¼ dhbh. Since i,
j do not appear in A (resp. B), the vectors vh have the same i-th and j-th coordi-
nates and we can write vh ¼ vh þ a, similarly for B the vectors wh ¼ wh þ b where
a, b are linear combinations of ei, ej and vh, wh are linear combinations of the es,
sA i; j.

The list of vectors vh is the one associated to the graph A once we set equal
to 0 the elements ei, ej hence it is the list of vectors associated to the polynomial
w
A
jxi¼xj¼0 similarly wh is the one associated to wBjxi¼xj¼0. Hence by the separation

lemma up to reordering we may assume that vh ¼ wh hence vh ¼ wh þ c, c ¼
a� b ¼ niei þ njej.

Clearly if r > 1 we have that wr ¼ w1 � v1 þ vr so that the vectors ðvh;wkÞ are
not a‰nely independent contrary to the hypotheses.

We have thus proved that jBj ¼ jAj ¼ 1 hence A ¼ fða; s1Þg, B ¼ fðb; s2Þg
and finally b ¼ niei þ njej þ s2s1a. Of course niei þ njej is the value up to sign
of the path joining a, b. If s2s1 ¼ 1 we have hðaÞ ¼ hðbÞ hence l ¼ nðei � ejÞ
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if both indices i, j cannot appear more than twice in the path we have jnja 2.
If s2s1 ¼ �1 we have hðaþ bÞ ¼ �2 hence l ¼ nei � ðnþ 2Þej. A similar case
analysis gives the possibilities l ¼ �ei � ej;�2ei;�2ej if both indices i, j cannot
appear more than twice in the path. r

Corollary 10.4. Under the assumptions of Lemma 10.3 the number of edges in
the path from a to b in which appears any marking hA i; j must be even. The parity
of the number of edges in which appears i equals the parity of the number of edges
in which appears j.

In a maximal tree T in a graph G consider an edge l containing the indices
i, j. Denote by A, B the two connected components obtained by removing l
from T .

Lemma 10.5. Assume that the two connected components A, B do not have the
index i in any edge. Then any other edge in G connecting A, B must contain the
index i.

Proof. In a path which is a circuit you cannot have that an index appears only
once (or even an odd number of times). r

We now consider two edges l1, l2 containing the indices i, h and i, k respec-
tively. When we remove these edges in T we have 3 connected components in T

A . . .i;h B . . .i;k C

in the complete graph T once we remove all the edges containing i the graph B is
a connected component. Then we may either have other 2 components A, C or a
connected component AAC. We shall use this fact systematically as follows. By
induction in the first case we have wGðtÞjxi¼0 ¼ w

A
ðtÞwBðtÞwCðtÞ modulo xi ¼ 0 is a

factorization into irreducible factors, in the second case a factorization into irre-
ducible factors is wGðtÞG w

AAC
ðtÞwBðtÞ modulo xi ¼ 0.

Hence if G is not irreducible in the second case it can only factor into two
irreducible factors wGðtÞ ¼ UV with U G wBðtÞ, V G w

AAC
ðtÞ modulo xi ¼ 0,

in the first case we may have either a factorization into 3 irreducible factors
wGðtÞ ¼ UVW with U G w

A
ðtÞ, V G wBðtÞ, W G w

C
ðtÞ modulo xi ¼ 0 or 3 possi-

ble factorizations into 2 irreducible factors.

10.6. Indices appearing once.

Lemma 10.7. If there exists a pair of indices, say ð1; iÞ, such that 1 appears only
once in the maximal tree T and T has the form:

where iA h, and i appears only in the block B. Then wG is irreducible.

Figure 1
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Proof. Let the root be in A. Since 1 appears only once in T , every edge in G
that connects A and B must have 1 in the indexing. We have:

wG G w
A
wB modulo x1 ¼ 0:ð41Þ

By the previous discussion if wG is not irreducible, it must factor into two irreduc-
ible polynomials: wG ¼ UV such that U G w

A
modulo x1 ¼ 0:

Let B1; . . . ;Bs be the connected components obtained from B by deleting all
the edges which have i in the indexing, B1 be the component that is connected
with A. We have:

wG G w
AAB1

wB2
. . . wBs

modulo xi ¼ 0:ð42Þ

Remark that degðUÞ ¼ jAj < degðw
AAB1
Þ ¼ jAj þ jB1j. U G w

A
is irreducible

modulo x1 ¼ xi ¼ 0, then U must be irreducible modulo xi ¼ 0. Hence

U G wBj
modulo xi ¼ 0 for some j a f2; . . . ; sgð43Þ

From U G w
A
modulo x1 ¼ 0 and (43) we deduce w

A
G wBj

modulo x1 ¼ xi ¼ 0.
So, by Lemma 10.3, jAj ¼ jBjj ¼ 1. Let A ¼ fag. Then by Lemma 8.6, for the
vertex a and the index 1, wG is irreducible. r

Corollary 10.8. If there are two indices which appear only once and not in the
same edge in the maximal tree then wG is irreducible.

We have thus treated one of the 4 cases of Lemma 10.1.

Lemma 10.9. If there exists a pair of indices, say ð1; iÞ, such that 1 appears only
once in the maximal tree T while i appears twice and T has the form:

then either wG is irreducible or jAj ¼ jCj ¼ 1 or jBj ¼ jDj ¼ 1.

Proof. We have wG G w
AAB

w
CAD

modulo x1 ¼ 0 so if wG is not irreducible it has
a factor U G w

AAB
modulo x1 ¼ 0. This implies U G w

A
wB modulo x1 ¼ xi ¼ 0.

Now wG G w
AAD

w
BAC

or wG G w
A
wDwBAC

modulo x3 ¼ 0 and inspecting the two
factorizations the claim follows from Lemma 10.3. r

10.10. Two indices appear only once and in the same edge. Let these two indices
be 1, 2. If there exists another index, say 3, which appears only once, then we
can replace 2 by 3 and we are back in the case of Corollary 10.8. Otherwise by
Lemma 10.1 we have exactly n� 1 distinct indices di¤erent from 1, 2 and they
appear twice. Take one of these indices, say 3. If we cannot apply Lemma 10.7
we must be in the case, in which the maximal tree T has the form

Figure 2
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where the indices 1 and 3 do not appear elsewhere in the tree. By inspection
of figure (3) all edges in G which connect A and C contain 1, 3 in the indexing,
all edges in G which connect B and D contain 1, 3 in the indexing. Then we
have:

wG G w
AAB

w
CAD

modulo x1 ¼ 0:ð44Þ
wG G w

A
w
BAC

wD or wG G w
AAD

w
BAC

modulo x3 ¼ 0:ð45Þ

The second case holds when A, D are joined by some edge which does not contain
3. From (44) we see that if wG is not irreducible, then it has an irreducible factor
U G w

AAB
mod: x1 ¼ 0 which implies U G w

A
wB modulo x1 ¼ x3 ¼ 0. Compar-

ing (44) and (45) taking into account the degree and using the irreducibility of
w
A
, wB, wD modulo x1 ¼ x3 ¼ 0 we get the following possibilities

U G w
A
wD; wAAD

; w
BAC

modulo x3 ¼ 0:ð46Þ

In the first two cases of (46) we have

U G w
A
wBG w

A
wD modulo x1 ¼ x3 ¼ 0

which implies

wB G wD modulo x1 ¼ x3 ¼ 0ð47Þ

Hence by Lemma 10.3 we must have: B ¼ fbg, D ¼ fdg. But the index 2 appears
only once in the path from b to d contradicting Corollary 10.4.

In the last case of (46) we have

U G w
A
wB G wBwC modulo x1 ¼ x3 ¼ 0

which implies

w
A
G w

C
modulo x1 ¼ x3 ¼ 0ð48Þ

We arrive at the same conclusions.

10.11. Only the index 1 appears once in the tree. From Lemma 10.1 there is only
one index, say 3, which appears three times. All other indices, di¤erent from 1, 3,
appear twice. We need to distinguish two subcases:

10.11.1. When 1, 3 appear together in one edge. If T has the form as in figure (4)
then, by Lemma 10.7, wG is irreducible.

Figure 3
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Therefore, assume that T has the form as in figure (5)

We start the discussion as in the previous paragraph

wG G w
AAB

w
CAD

modulo x1 ¼ 0:ð49Þ
wG G w

A
w
BAC

wD or wG G w
AAD

w
BAC

modulo x2 ¼ 0:ð50Þ

The second case holds when A, D are joined by some edge which does not con-
tain 2. From (49) we see that if wG is not irreducible, then it must factor into two
irreducible polynomials: wG ¼ UV , U G wAAB modulo x1 ¼ 0 implies U G wAwB
modulo x1 ¼ x2 ¼ 0. Comparing (49) and (50) taking into account the degree
and using the irreducibility of w

A
, wB, wD modulo x1 ¼ x2 ¼ 0 we get the following

possibilities

U G w
A
wD; wAAD

; w
BAC

modulo x2 ¼ 0:ð51Þ

In the first two cases of (51) we have

U G w
A
wB G w

A
wD modulo x1 ¼ x2 ¼ 0

which implies

wBG wD modulo x1 ¼ x2 ¼ 0ð52Þ

In the last case of (51) we have

U G w
A
wB G wBwC modulo x1 ¼ x2 ¼ 0

which implies

w
A
G w

C
modulo x1 ¼ x2 ¼ 0ð53Þ

By symmetry we need to consider only case (53). By Lemma 10.3 we get
jAj ¼ jCj ¼ 1, A ¼ f0g, C ¼ fcg, c ¼ tn1e1þn2e2ð0Þ. By inspection of Figure (5)
n1; n2 a fe1g.

hðcÞ a f0;�2g ) c ¼eðe1 � e2Þ;�e1 � e2ð54Þ

Figure 4

Figure 5
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We have thus proved:

Lemma 10.12. Either jAj ¼ jCj ¼ 1 and there is an edge marked ð1; 2Þ that con-
nects A ¼ 0 and c ¼ C. Or the same statement for B, D. Moreover, all indices, dif-
ferent from 1, 2 must appear an even number of times in every path from 0 to c
(resp. b, d).

Assume A ¼ 0, C ¼ c, consider the index k1.
i) If k1A 3, then k1 must appear once more in the block B like:

Now we can apply 10.7 to the pair ð1; k1Þ and get the irreducibility of wG.
ii) So we can assume that k1 ¼ 3, consider the index k2.

A) If k2A 3, then either k2 appears in the block D as in figure (7), and then by
Lemma 10.7 for the pair ð1; k2Þ, wG is irreducible; or it appears in the block B as
in figure (6).

Figure 6

Figure 7
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In the case of figure (6) we can apply Lemma 10.12 for 1, k2. Since
j0AB1j > 1 the only possibility is that B2 ¼ b2 and there exists an edge with the
marking ð1; k2Þ that connects c and b2.

Now we claim that we must have s ¼ 3 in fact s must appear an even num-
ber of times in both paths from 0, c and from b2, c, this is possible only for
s ¼ 3.

We now remove the two edges marked 1, 3 and k2, 3. In the resulting maximal
tree 3 appears once and we can apply Lemma 10.7 to the pair ð3; k2Þ, wG is irre-
ducible.

B) If k2 ¼ 3 and jBj > 1. Let i be an index that appears in B. If i appears twice
in B, then, by Lemma 10.7 we get the irreducibility of wG. Otherwise, i appears in
this form:

This case is excluded by Lemma 10.12 for the pair 1, i. The case jDj > 1
is treated similarly. So now we have to consider only the case, when jBj ¼
jDj ¼ 1.

C) k2 ¼ 3, jBj ¼ jDj ¼ 1. Up to symmetry, we have 4 subcases, displayed in
figures (9)–(12).

Figure 8

Figure 9
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By using the program Mathematica we have verified that the characteristic
polynomials of these graphs are irreducible.

10.12.1. When 1, 3 do not appear together in any edge. We have three possible
cases (given in figures (13), (14), (15)).

1) When T up to symmetry has the form as in figure (13):

where 3 appears only in the block B then, by Lemma 10.7, for the pair ð1; 3Þ, wG
is irreducible.

2) When T up to symmetry has the form as in figure (14):

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14
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We have

modulo x1 ¼ 0; wG G w
AAB

w
CADAE

ð55Þ

modulo x3 ¼ 0; wG ¼

w
A
w
BAC

wDwE
w
AAD

w
BAC

wE
w
AAD

w
BACAE

w
A
wDwBACAE

8>>><
>>>:

ð56Þ

Arguing as in previous cases, if wG factors then we can factor it as UV with
Ux1¼0 ¼ w

AAB
. Analyzing the possible values of Ux3¼0 we have, comparing (55)

and (56) and setting x1 ¼ x3 ¼ 0, the following possibilities:

U

mod x3 ¼ 0
G

w
BAC

) w
A
G w

C
mod: x1 ¼ x3 ¼ 0

w
AAD

or w
A
wD ) wBG wD mod: x1 ¼ x3 ¼ 0

w
A
wE ) wB G wE mod: x1 ¼ x3 ¼ 0

wDwE )
w
A
G wD; wB G wE mod: x1 ¼ x3 ¼ 0

w
A
G wE ; wB G wD mod: x1 ¼ x3 ¼ 0

�

8>>>>><
>>>>>:

ð57Þ

It is enough to exclude the first 3 cases of (57).
Case 1. If w

A
¼ w

C
modulo x1 ¼ x3 ¼ 0, by Lemma 10.3 and by inspection

we deduce that A ¼ f0g, C ¼ fcg and c ¼eðe1 � e3Þ, �e1 � e3. Hence there is
an edge marked 1, 3 that connects 0 and c. We can then replace the maximal
tree T with the one in which we keep this edge and remove the one marked 1, 2
and we find ourselves in the case treated in the previous paragraph.

Case 2. If wB G wD modulo x1 ¼ x3 ¼ 0, then, by Lemma 10.3 B ¼ fbg,
D ¼ fdg and 2 should appear an even number of times between them, again a
contradiction (we are in the case k2 ¼ 2).

Case 3. If wBG wE modulo x1 ¼ x3 ¼ 0, then, by Lemma 10.3 and choosing
the root at B we have B ¼ f0g, E ¼ feg we have the same contradiction as in the
previous case.

3) When T has the form:

wG G w
AAB

w
CADAE

modulo x1 ¼ 0ð58Þ

From (58) we see that if wG is not irreducible, then wG ¼ UV , where U , V are ir-
reducible, U G w

AAB
modulo x1 ¼ 0;) U G w

A
wB modulo x1 ¼ x3 ¼ 0.

Figure 15
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modulo x3 ¼ 0; wG G

w
A
w
BAC

wDwE
w
AAD

w
BAC

wE
w
AAE

w
BAC

wD
w
A
w
BAC

wDAE

w
AADAE

w
BAC

8>>>>><
>>>>>:

ð59Þ

As for U it may be congruent modulo x3 ¼ 0 to

w
BAC

; w
AAD

; w
AAE

;

w
A
wD; w

A
wE ; wDwE ; w

AADAE

giving the following subcases: 1) w
C
G w

A
, 2) wBG wD, 3) wBG wE , 4) wB G wDAE

modulo x1 ¼ x3 ¼ 0: The fourth case can be excluded by cardinality. We treat the
other 3 cases.

1) w
C
jx1¼x3¼0 ¼ w

A
, by Lemma 10.3, A ¼ f0g, C ¼ fcg; and c ¼eðe1 � e3Þ;

�e1 � e3. Hence there is an edge marked 1, 3 that connects 0 and c. We can then
replace the maximal tree T with the one in which we keep this edge and re-
move the one marked 1, 2 and we find ourselves in the case treated in the previ-
ous paragraph.

2) wBG wD modulo x1 ¼ x3 ¼ 0 by Lemma 10.3) jBj ¼ jDj ¼ 1, B ¼ fbg,
D ¼ fdg and sdd þ sbb ¼eðe1 � e3Þ, �e1 � e3. Hence there is an edge marked
1, 3 that connects b and d. We can then replace the maximal tree T with the
one in which we keep this edge and remove the one marked 1, 2 and we find our-
selves in the case treated in the previous paragraph.

3) wB G wE modulo x1 ¼ x3 ¼ 0 is similar to case 2), changing the role of k2
and k3.

10.13. Every index appears twice in the tree.

Lemma 10.14. If wG is not irreducible the graph is a tree.

Proof. Assume there is a an edge marked i, j in the graph and not in the tree,
then a segment in the tree together with this edge form a dependent circuit, thus
we can remove an edge marked a, b in this segment and add the edge i, j in order
to obtain another maximal tree. Clearly in a circuit there is at least an edge such
that the indices i, j are distinct fro the indices a, b. This means that in the new
maximal tree one of the indices i, j appears with multiplicity 1 and we are back
to a previous case. r

From now on we thus assume that the graph is a tree T . We start with some
special cases:

10.14.1. n ¼ 2.

T : �e1 � e2 0! e1 � e2

is not allowable (but its characteristic polynomial is irreducible).
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10.14.2. n ¼ 3. Up to symmetry of the indices T has the form as in figure (16) or
as in figure (17):

Remark 10.15. If all edges in T are black, or there are exactly two red edges
then the edges are linearly dependent.

1) When the graph T has the form as in figure (16) a) If all edges are red, then
G ¼ T is not a tree:

We need to consider the cases, when in T there is one red and two black edges.
Up to symmetry we may assume the red edge is the first or the second.

b) When the red edge connects 0 and b:
b1) When T has the form:

0
1;2

b �!2;3 c
1;3

d

We have

b ¼ �e1 � e2; c� b ¼ e2 � e3 ) c ¼ �e1 � e2:

Hence G ¼ T is not a tree.
b2) If T has the form:

0
1;2

b �2;3 c �!1;3 d

We have b� c ¼ e1 � e3, d � c ¼ e1 � e3 ) d � b ¼ e1 � e2, i.e. in G there is a
black edge marked ð1; 2Þ that connects b and d. Hence G ¼ T is not a tree.

Figure 16

Figure 17

Figure 18
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b3) If T has the form:

0
1;2

b �2;3 c �1;3 d

wT ¼ det

t 2
ffiffiffiffiffiffiffiffiffi
x1x2
p

0 0

�2
ffiffiffiffiffiffiffiffiffi
x1x2
p

tþ x1 þ x2 2
ffiffiffiffiffiffiffiffiffi
x2x3
p

0

0 2
ffiffiffiffiffiffiffiffiffi
x2x3
p

tþ x1 þ 2x2 � x3 2
ffiffiffiffiffiffiffiffiffi
x1x3
p

0 0 2
ffiffiffiffiffiffiffiffiffi
x1x3
p

tþ 2x1 þ 2x2 � 2x3

0
BBB@

1
CCCA

By using the program Mathematica we computed wT and verified that it is irre-
ducible.

c) When the red edge connects b and c:
c1) If T has the form:

0
1;2

b
2;3

c �1;3 d

we have bþ c ¼ �e2 � e3, c� d ¼ e1 � e3 ) bþ d ¼ �e1 � e2, i.e. there is a red
edge marked ð1; 2Þ that connects b and d. Hence G ¼ T is not a tree.

c2) If T has the form

0 �!1;2 b
2;3

c
1;3

d

we have b ¼ e1 � e2, bþ c ¼ �e2 � e3 ) c ¼ e1 � e3, i.e. there is a black edge
marked ð1; 3Þ that connects 0 and c. Hence G ¼ T is not a tree.

c3) If T has the form:

0 �1;2 b
2;3

c �!1;3 d

we have

wT ¼ det

t �2
ffiffiffiffiffiffiffiffiffi
x1x2
p

0 0

�2
ffiffiffiffiffiffiffiffiffi
x1x2
p

t� x1 þ x2 2
ffiffiffiffiffiffiffiffiffi
x2x3
p

0

0 �2
ffiffiffiffiffiffiffiffiffi
x2x3
p

t� x1 þ 2x2 þ x3 2
ffiffiffiffiffiffiffiffiffi
x1x3
p

0 0 2
ffiffiffiffiffiffiffiffiffi
x1x3
p

t� 2x1 þ 2x2 þ 2x3

0
BBB@

1
CCCA

We used the program Mathematica to compute wT and to verify that it is irre-
ducible.

2) When T has the form as in figure (17):
a) When in T there are 3 red edges, then G ¼ T has the form:

Figure 19
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This figure can be obtained from figure (11) by exchanging the role of indices
(i.e. the role of variables x1, x2, x3). Hence wT is irreducible.

b) When in T there is only one red edge, by the symmetry property of T we
may suppose that this red edge connects 0 and b.

b1) If T has the form:

0
1;2

b ���!2;3 c����1;3
d

in G there is a red edge marked ð1; 3Þ that connects 0 and c. Hence G ¼ T is not a
tree.

b2) If T has the form:

0
1;2

b
2;3

c???y1;3

d

we have b ¼ �e1 � e2, d � b ¼ e1 � e3 ) d ¼ �e2 � e3, hence in G there is a red
edge marked ð2; 3Þ that connects 0 and d. Hence G ¼ T is not a tree.

b3) If T has the form:

0
1;2

b ���2;3
cx???1;3

d

we have b� c ¼ e2 � e3, b� d ¼ e1 � e3 ) d � c ¼ e2 � e1, hence there is a
black edge marked ð2; 1Þ that connects c and d. Hence G ¼ T is not a tree.

10.16. nb 4. At this point we are assuming that we have nb 4 edges in a max-
imal tree T and n indices, each appearing twice. Thus given an index, say 1, it
appears in two edges paired with at most two other indices, thus we can find an-
other index, say 2 which is not in these two edges. Up to symmetry we may have
six cases displayed in figures (20)–(25):

Figure 20

Figure 21
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When we put x1 ¼ 0 or x2 ¼ 0 we have 3 connected components in the graph,
so by induction we deduce that, if the characteristic polynomial is not irreducible
it can factor in at most 3 factors. We will perform a case analysis in order to pro-
duce two pairs of disjoint blocks which give under specialization x1 ¼ x2 ¼ 0 the
same characteristic polynomials and we apply Lemma 10.3. In this way we will
prove the irreducibility of wT in each case, displayed in figures (20)–(25).

10.16.1. Figure (20).

We have

wT G wAwBACAEwD mod: x1 ¼ 0; wT G wAABwCADwE mod: x2 ¼ 0;ð60Þ

Suppose that wT is not irreducible, then there is an irreducible factor U congruent
to either wA or wD or finally wAwD modulo x1 ¼ 0.

Figure 22

Figure 23

Figure 24

Figure 25
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Then U is congruent to wE or wAAB or wCAD modulo x2 ¼ 0.
We now specialize x1 ¼ x2 ¼ 0 and apply Lemma 10.3 and we have several

possibilities of two blocks giving the same characteristic polynomial. Of these
possibilities some are excluded by the parity condition of the indices 1, 2 in the
path joining them.

We then see that we are left with the ones listed which all produce an extra
edge contradicting the assumption that G ¼ T is a tree.

r

10.16.2. Figure (21).

A ���1;h
B ���2;k

C ���2; i
D ���1; j

E

wT G wAwBACADwE mod: x1 ¼ 0; wT G wAABwCwDAE mod: x2 ¼ 0ð61Þ

Suppose that wT is not irreducible, then there is an irreducible factor U such that
U is congruent, modulo x1 ¼ 0 to wA or wE or finally wAwE :

Then U is congruent, modulo x2 ¼ 0 to either wC or wAAB or wDAE . We reason
as in previous cases, specializing x1 ¼ x2 ¼ 0 we deduce that there are four pos-
sible applications of Lemma 10.3 for the blocks A, E and the blocks C, B, D. We
exclude those for which an index 1, 2 in the path connecting them occurs only
once and the other 0 or 2. We then are left with the cases:

wA G wC ; wC G wE ; mod x1 ¼ x2 ¼ 0ð62Þ

By symmetry we need to consider only the first.
Assume thus that wA G wC modulo x1 ¼ x2 ¼ 0, by Lemma 10.3 we have

jCj ¼ jAj ¼ 1, C ¼ fcg, A ¼ f0g, c ¼ tee1ee2ð0Þ, c ¼eðe1 � e2Þ, �e1 � e2.
Hence there is an edge marked ð1; 2Þ connecting 0 and c.

and G ¼ T is not a tree. r
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10.16.3. Figure (23).

We have:

wT G wAwCABADwE mod: x1 ¼ 0; wT G wAABAEwCwD mod: x2 ¼ 0:ð63Þ

If wT is not irreducible by considering a suitable irreducible factor U and by a
simple analysis we get the following subcases:

wA G wC ; wA G wD; wE G wD; wE G wC mod: x1 ¼ x2 ¼ 0:

By the symmetry of the tree in figure (23), we need consider only the first case.
We get easily by Lemma 10.3 jAj ¼ jCj ¼ 1, A ¼ f0g, C ¼ fcg, c ¼eðe1 � e2Þ;
�e1 � e2. So 0, c are connected by an edge and G ¼ T is not a tree.

r

10.16.4. Figure (22).

We have:

wT jx1¼0 G wAwBwCADAE mod: x1 ¼ 0; wT G wAABACwDwE mod: x2 ¼ 0;ð64Þ

Suppose that wT is not irreducible. The usual reasoning gives an irreducible factor
U so that U G wA; wB; wAwB modulo x1 ¼ 0.

We may have U G wD; wE ; wDwE ; wDAE modulo x2 ¼ 0.
Arguing as in the previous case we only have the possibility

wB G wD; wBG wE modulo x1 ¼ x2 ¼ 0:
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By symmetry we need to consider only the first case. We get by Lemma 10.3
B ¼ fbg, D ¼ fdg; and d, b are joined by an edgeeðe1 � e2Þ, �e1 � e2.

and G ¼ T is not a tree. r

10.16.5. Figure (24), (25). We treat these two cases together.

IÞ A ���1;h
B ���2;k

C ���1; i
D ���2; j

E

IIÞ A ���1;h
B ���1;k

C ���2; i
D ���2; j

E

Proof. I) We have:

wT G wAwBACwDAE mod: x1 ¼ 0; wT G wAABwCADwE mod: x2 ¼ 0:ð65Þ

Inspecting (65), by a simple analysis we get the following possibilities:
If wT is not irreducible it has a factor U congruent, modulo x1 ¼ 0 to i) wA or

ii) wBAC or wDAE . If U G wA modulo x1 ¼ 0 we must have U G wE modulo x2 ¼ 0
and

wA G wE mod: x1 ¼ x2 ¼ 0:ð66Þ

Otherwise we have that U is congruent to wAAB or wCAD modulo x2 ¼ 0.

wA G wC ; wC G wE ; wBG wD; wD G wA; wE G wB mod: x1 ¼ x2 ¼ 0:ð67Þ

The last two can be excluded by parity of occurrences of 1, 2 in their path. The
first two are symmetric. Therefore we are left to consider three cases wA G wE ,
wA G wC , wB G wD.

If we are in case wA G wC , wB G wD by Lemma 10.3 we get jAj ¼ jCj ¼ 1,
A ¼ f0g, C ¼ fcg (resp. jBj ¼ jCj ¼ 1, A ¼ fbg, C ¼ fcg) are joined by an edge
eðe1 � e2Þ, �e1 � e2 and G ¼ T is not a tree.

If we have wA G wE always by Lemma 10.3 we get jAj ¼ jEj ¼ 1, A ¼ f0g,
E ¼ feg, e a fe2ðe1 � e2Þ;�2e1;�2e2g:

IÞ 0 ���1;h
B ���2;k

C ���1; i
D ���2; j

eð68Þ

II)

wT G wAwBwCADAE mod: x1 ¼ 0; wT G wAABACwDwE mod: x2 ¼ 0;ð69Þ

If wT is not irreducible, one easily sees that there is a factor U congruent modulo
x1 ¼ 0 to wA or wB or finally wAwB. Then U modulo x2 ¼ 0 is congruent either to
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wD or wE or wDwE . Applying Lemma 10.3 a priori there are 4 possibilities that a
block A, B specializes to a block D, E, but in that Lemma we also have the parity
of 1, 2 in a path joining the two blocks must be the same hence we only have two
cases.

i) wB G wD modulo x1 ¼ x2 ¼ 0; and jBj ¼ jDj ¼ 1, B ¼ fbg, D ¼ fdg; and d,
b are joined by an edgeeðe1 � e2Þ, �e1 � e2. In this case we contradict the fact
that G ¼ T is a tree.

ii) wA ¼ wE modulo x1 ¼ x2 ¼ 0 and jAj ¼ jEj ¼ 1, A ¼ f0g, E ¼ feg. By in-
spection since eA0 we must have e ¼eð2e1 � 2e2Þ;�2e1;�2e2. All indices in the
path from 0 to e appear twice.

IIÞ 0 ���1;h
B ���1;k

C ���2; i
D ���2; j

eð70Þ

We now have to exclude in both cases the second possibility (68), (70).
I) Start from the first case. If k ¼ h we have

0 ���1;h
B ���2;h

C ���1; i
D ���2; j

e

If iA j we must have that i appears in one of the blocks B, C, D. For instance if i
is in D we have

0 ���1;h
B ���2;h

C ���1; i
D1 ���s; i

D2 ���2; j
e

we apply the previous analysis to the pair h, i and deduce that jD2 A ej ¼ 1 a con-
tradiction.

is like Picture (20) for indices 2, i.
The other cases are similar to this or to the previous case of (24). If i ¼ j we

have

0 ���1;h
B ���2;h

C ���1; i
D ���2; i

e:

We apply the previous analysis to the pair h, i deducing e ¼e2ðei � ehÞ;�2ei;
�2eh clearly a contradiction since we already have e ¼eð2e1 � 2e2Þ;�2e1;�2e2.

If kA h consider the positions of k. If k a BAC

0 ���1;h
B1 ���s;k

B2 ���1;k
C ���2; i

D ���2; j
e

0 ���1;h
B ���1;k

C1 ���s;k
C2 ���2; i

D ���2; j
e

by the previous discussion applied to k, 2 we have that j0AB1j ¼ 1 or j0ABj ¼ 1
a contradiction. If k a D

0 ���1;h
B ���1;k

C ���2; i
D1 ���s;k

D2 ���2; j
e
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we are in the previous case of (24) for the indices k, 2 deducing j0ABj ¼ 1 again
a contradiction.

II). We now finish the second case. If k ¼ h we have

0 ���1;h
B ���1;h

C ���2; i
D ���2; j

e

we are in the same situation but for the pair h, 2. We deduce that e ¼ �2e2. Now
if i ¼ j we are in the same situation for the pair h, j (or 1, j) and deduce that
e ¼e2ðe1 � ejÞ;�2e1;�2ej a contradiction. If iA j we must have that i appears
in one of the blocks B, C, D. For instance if i is in D we have

0 ���1;h
B ���1;h

C ���2; i
D1 ���s; i

D2 ���2; j
e

we apply the previous analysis to the pair 1, i and deduce that jD2 A ej ¼ 1 a con-
tradiction. The other cases are similar to this or to the previous case of (24).

If kA h consider the positions of k. If k a BAC

0 ���1;h
B1 ���s;k

B2 ���1;k
C ���2; i

D ���2; j
e

0 ���1;h
B ���1;k

C1 ���s;k
C2 ���2; i

D ���2; j
e

we apply the previous discussion to k, 2 and have that j0AB1j ¼ 1 or j0ABj ¼ 1
a contradiction. If k a D

0 ���1;h
B ���1;k

C ���2; i
D1 ���s;k

D2 ���2; j
e

we are in the previous case of (24) for the indices k, 2 and again have j0ABj ¼ 1
a contradiction. r
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