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Abstract. — In this note we present the new KAM result in [3] which proves the existence of

Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations,
with zero Lyapunov exponents and whose linearized equation is reducible to constant coe‰cients. In

turn, this result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical
systems*.
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1. Introduction

In the last years many progresses have been obtained concerning KAM theory
for nonlinear PDEs, since the pioneering works of Kuksin [17] and Wayne
[26] for 1-d semilinear wave (NLW) and Schrödinger (NLS) equations under
Dirichlet boundary conditions, see [19] and [21] for further developments. The
approach of these papers consists in generating iteratively a sequence of symplec-
tic changes of variables which bring the Hamiltonian into a constant coe‰cients
(¼ reducible) normal form with an elliptic (¼ linearly stable) invariant torus at
the origin. Such a torus is filled by quasi-periodic solutions with zero Lyapunov
exponents. This procedure requires to solve, at each step, constant-coe‰cients
linear ‘‘homological equations’’ by imposing the ‘‘second order Melnikov’’ non-
resonance conditions. Unfortunately these (infinitely many) conditions are vio-
lated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and
NLS equations, was first proved by Bourgain [6] by extending the Lyapunov-
Schmidt decomposition and the Newton approach introduced by Craig-Wayne
[11] for periodic solutions. Its main advantage is to require only the ‘‘first order
Melnikov’’ non-resonance conditions (the minimal assumptions) for solving the
homological equations. It has allowed Bourgain to prove [7], [9] also the existence
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of quasi-periodic solutions for NLW and NLS (with Fourier multipliers) in any
space dimension, see also the recent extensions in Berti-Bolle [4], [5]. The main
drawback of this approach is that the homological equations are linear PDEs
with non-constant coe‰cients. Translated in the KAM language this implies a
non-reducible normal form around the torus and then a lack of information
about the stability of the quasi-periodic solutions. Later on, existence of reducible
elliptic tori was proved by Eliasson-Kuksin [13] for NLS (with Fourier multi-
pliers) in any space dimension, see also Procesi-Xu [22].

A challenging frontier concerns PDEs with unbounded nonlinearities, i.e. con-
taining derivatives. In this direction KAM theory has been extended for per-
turbed KdV equations by Kuksin [18], Kappeler-Pöschel [15], and, for the 1d-
derivative NLS (DNLS) and Benjiamin-Ono equations, by Liu-Yuan [14]. We
remark that the KAM proof is more delicate for DNLS and Benjiamin-Ono,
because these equations are less ‘‘dispersive’’ than KdV, i.e. the eigenvalues of
the principal part of the di¤erential operator grow only quadratically at infinity,
and not cubically as for KdV. This di‰culty is reflected in the fact that the
quasi-periodic solutions in [18], [15] are analytic, while those of [14] are only
Cl. Actually, for the applicability of these KAM schemes, the more dispersive
the equation is, the more derivatives in the nonlinearity can be supported. The
limit case of the derivative nonlinear wave equation (DNLW)—which is not dis-
persive at all—is excluded by these approaches.

In this note we present the KAM theory developed in [3] which proves exis-
tence and stability of small amplitude analytic quasi-periodic solutions of the
derivative wave equations. Such PDEs are not Hamiltonian, but may have a
reversible structure, that we shall exploit.

All the previous results concern Hamiltonian PDEs. It was however remarked
by Bourgain that the construction of periodic and quasi-periodic solutions, using
the Newton iteration method of Craig-Wayne [11], is a-priori not restricted to
Hamiltonian systems. This approach appears as a general implicit function type
result, in large part independent of the Hamiltonian character of the equations.
For example in [8] Bourgain proved the existence of periodic solutions for the
non-Hamiltonian derivative wave equation

ytt � yxx þmyþ y2t ¼ 0; mA0; x a T :¼ R=ð2pZÞ:ð1:1Þ

Actually also KAM theory is not only Hamiltonian in nature, but may be formu-
lated for general vector fields, as realized in the seminal work of Moser [20]. This
paper, in particular, started the analysis of reversible KAM theory for finite
dimensional systems, later extended by Arnold [1] and Servyuk [24]. The revers-
ibility property implies that the averages over the fast angles of some components
of the vector field are zero, thus removing the ‘‘secular drifts’’ of the actions
which are incompatible with a quasi-periodic behavior of the solutions.

Recently, Zhang-Gao-Yuan [25] have proved the existence of Cl-quasi peri-
odic solutions for the derivative NLS equation

iut þ uxx þ juxj2u ¼ 0
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with Dirichlet boundary conditions. Such equation is reversible, but not Hamilto-
nian. The result [25] is proved adapting the KAM scheme developed for the
Hamiltonian DNLS in Liu-Yuan [14]. The derivative nonlinear wave equation
(DNLW), which is not dispersive, is excluded.

In the recent paper [2] we have extended KAM theory to deal with Hamilto-
nian derivative wave equations like

ytt � yxx þmyþ f ðDyÞ ¼ 0; m > 0; D :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qxx þm

p
; x a T:

This kind of Hamiltonian pseudo-di¤erential equations has been introduced by
Bourgain [6] and Craig [10] as models to study the e¤ect of derivatives versus
dispersive phenomena. The key of [2] is the proof of the first order asymptotic
expansion of the perturbed normal frequencies, obtained using the notion of
quasi-Töplitz function. This concept was introduced by Procesi-Xu [22] and is
connected to the Töplitz-Lipschitz property in Eliasson-Kuksin [13]. Of course
we could not deal in [2] with the derivative wave equation, which is not
Hamiltonian.

In [3] we develop KAM theory for a class of reversible derivative wave
equations

ytt � yxx þmy ¼ gðx; y; yx; ytÞ; x a T;ð1:2Þ

implying the existence and the stability of analytic quasi-periodic solutions, see
Theorem 1.1. Note that the nonlinearity in (1.2) has an explicit x-dependence
(unlike [2]). The search for periodic/quasi–periodic solutions for derivative wave
equations is a natural question, which was pointed out, for instance, by Craig [10]
as an important open problem (see section 7.3 of [10]).

Clearly we can not expect an existence result for any nonlinearity. For
example, (1.2) with the nonlinear friction term g ¼ y3t has no smooth periodic/
quasi-periodic solutions except the constants, see Proposition 1.2. This case is
ruled out by assuming the condition

gðx; y; yx;�vÞ ¼ gðx; y; yx; vÞ;ð1:3Þ

satisfied, for example, by (1.1). Under condition (1.3) the equation (1.2) is revers-
ible, namely the associated first order system

yt ¼ v; vt ¼ yxx �myþ gðx; y; yx; vÞ;ð1:4Þ

is reversible with respect to the involution

Sðy; vÞ :¼ ðy;�vÞ; S2 ¼ I :ð1:5Þ

Reversibility is an important property in order to allow the existence of periodic/
quasi-periodic solutions, albeit not su‰cient. For example, the reversible equa-
tion

ytt � yxx ¼ y3x ; x a T;
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(proposed in [10], page 89) has no smooth periodic/quasi-periodic solutions ex-
cept the constants, see Proposition 1.1. In order to find quasi-periodic solutions
we also require the parity assumption

gð�x; y;�yx; vÞ ¼ gðx; y; yx; vÞ;ð1:6Þ

which rules out nonlinearities like y3x. Actually, for the wave equation (1.2) the
role of the time and space variables ðt; xÞ is highly symmetric. Then, considering
x ‘‘as time’’ (spatial dynamics idea) the term y3x is a friction and condition (1.6) is
the corresponding reversibility condition.

After Theorem 1.1 we shall further comment on the assumptions.
Before stating our main results, we mention the classical bifurcation theorems

of Rabinowitz [23] about periodic solutions (with rational periods) of dissipative
forced derivative wave equations

ytt � yxx þ ayt þ eFðx; t; yx; ytÞ ¼ 0; x a ½0; p�

with Dirichlet boundary conditions, and for fully-non-linear forced wave equa-
tions

ytt � yxx þ ayt þ eF ðx; t; yx; yt; ytt; ytx; yxxÞ ¼ 0; x a ½0; p�:

This latter result is quite subtle because, from the point of view of the initial value
problem, it is uncertain whether a solution can exist for more than a finite time
due to the formation of shocks. Here the presence of the dissipation aA 0 allows
the existence of a periodic solution.

Finally, concerning quasi-linear wave equations we mention the Birkho¤ nor-
mal form results of Delort [12] (and references therein), which imply long time
existence for solutions with small initial data. To our knowledge, these are the
only results of this type on compact manifolds. For quasi-linear wave equations
in Rd there is a huge literature, since the nonlinear e¤ects of derivatives may be
controlled by dispersion.

1.1. Main results

We consider derivative wave equations (1.2) where m > 0, the nonlinearity

g : T�U ! R; UHR3 open neighborhood of 0;

is real analytic and satisfies the ‘‘reversibility’’ and ‘‘parity’’ assumptions (1.3),
(1.6). Moreover g vanishes at least quadratically at ðy; yx; vÞ ¼ ð0; 0; 0Þ, namely

gðx; 0; 0; 0Þ ¼ ðqygÞðx; 0; 0; 0Þ ¼ ðqyxgÞðx; 0; 0; 0Þ ¼ ðqvgÞðx; 0; 0; 0Þ ¼ 0:ð1:7Þ

In addition we assume a ‘‘non-degeneracy’’ condition on the leading order term
of the nonlinearity (in order to verify the usual ‘‘twist’’ hypotheses required in
KAM theory). For definiteness, we have developed all the calculations for

g ¼ yy2x þ h:o:t:ð1:8Þ
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Because of (1.3), it is natural to look for ‘‘reversible’’ quasi-periodic solutions
such that

Sðy; vÞðtÞ ¼ ðy; vÞð�tÞ;

namely such that yðt; xÞ is even and vðt; xÞ is odd in time. Moreover, because of
(1.6) the phase space of functions even in x,

ðy; vÞð�xÞ ¼ ðy; vÞðxÞ; Ex a T;ð1:9Þ

is invariant under the flow evolution of (1.4) and it is natural to study the
dynamics on this subspace (standing waves). Note, in particular, that y satisfies
the Neumann boundary conditions yxðt; 0Þ ¼ yxðt; pÞ ¼ 0.

Summarizing we look for reversible quasi-periodic standing wave solutions of
(1.2), namely satisfying

yðt; xÞ ¼ yðt;�xÞ; Et; yð�t; xÞ ¼ yðt; xÞ; Ex a T:ð1:10Þ

For every choice of the tangential sites Iþ HNnf0g, the linear Klein-Gordon
equation

ytt � yxx þmy ¼ 0; x a T;

possesses the family of quasi-periodic standing wave solutions

y ¼
X
j AIþ

ffiffiffiffiffiffiffi
8xj

p
lj

cosðljtÞ cosð jxÞ; lj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þm

p
;ð1:11Þ

parametrized by the amplitudes xj a Rþ.

Theorem 1.1 [3]. For every choice of finitely many tangential sites Iþ HNnf0g,
for all m > 0 except finitely many (depending on Iþ), the DNLW equation (1.2)
with a real analytic nonlinearity satisfying (1.3), (1.6), (1.7), (1.8) admits small-
amplitude, analytic (both in t and x), quasi-periodic solutions

y ¼
X
j AIþ

ffiffiffiffiffiffiffi
8xj

p
lj

cosðol
j ðxÞtÞ cosð jxÞ þ oð

ffiffiffi
x

p
Þ; ol

j ðxÞ Q
x!0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 þm
p

ð1:12Þ

satisfying (1.10), for all values of the parameters x in a Cantor-like set with asymp-
totic density 1 at x ¼ 0. Moreover the solutions have zero Lyapunov exponents and
the linearized equations can be reduced to constant coe‰cients. The term oð

ffiffiffi
x

p
Þ in

(1.12) is small in some analytic norm.

This theorem completely answers the question posed by Craig in [10] of devel-
oping a general theory for quasi-periodic solutions for reversible derivative wave
equations. With respect to Bourgain [8], we prove the existence of quasi-periodic
solutions (not only periodic) as well as a stable KAM normal form nearby.
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Let us comment on the hypothesis of Theorem 1.1.

1. Reversibility and Parity. As already said, the ‘‘reversibility’’ and ‘‘parity’’
assumptions (1.3), (1.6), rule out nonlinearities like y3t and y3x for which
periodic/quasi-periodic solutions of (1.2) do not exist. We generalize these
non-existence results in Propositions 1.1, 1.2.

2. Mass mI 0. The assumption on the mass mA 0 is, in general, necessary.
When m ¼ 0, a well known example of Fritz John (see (1.16)) shows that
(1.1) has no smooth solutions for all times except the constants. In Proposition
1.3 we give other non-existence results of periodic/quasi-periodic solutions for
DNLW equations satisfying both (1.3), (1.6), but with mass m ¼ 0. For the
KAM construction, the mass m > 0 is used in the Birkho¤ normal form step.
If the mass m < 0 then the Sturm-Liouville operator �qxx þm may possess
finitely many negative eigenvalues and one should expect the existence of
partially hyperbolic tori.

3. x-dependence. The nonlinearity g in (1.2) may explicitly depend on the space
variable x, i.e. this equations are not invariant under x translations. This
is an important novelty with respect to the KAM theorem in [2] which used
the conservation of momentum. The key idea is the introduction of the a-
weighted majorant norm for vector fields (see (2.37)) which penalizes the
‘‘high-momentum monomials’’, see (2.38).

4. Twist. We have developed all the calculations for the cubic leading term
g ¼ yy2x þ h:o:t:. In this case the third order Birkho¤ normal form of the
PDE (1.2) turns out to be (partially) integrable and the frequency-to-action
map is invertible. This is the so called ‘‘twist-condition’’ in KAM theory. It
could be interesting to classify the allowed nonlinearities. For example, among
the cubic nonlinearities, we already know that for y3x, y

2yx (and v3) there
are no non-trivial periodic/quasi-periodic solutions, see Propositions 1.1–1.2.
On the other hand, for y3 the Birkho¤ normal form is (partially) integrable
by [21] (for Dirichlet boundary conditions).

5. Boundary conditions. The solutions of Theorem 1.1 satisfy the Neumann
boundary conditions yxðt; 0Þ ¼ yxðt; pÞ ¼ 0. For proving the existence of solu-
tions under Dirichlet boundary conditions it would seem natural to substitute
(1.6) with the oddness assumption

gð�x;�y; yx; vÞ ¼ �gðx; y; yx; vÞ;ð1:13Þ

so that the subspace of functions ðy; vÞðxÞ odd in x is invariant under the flow
evolution of (1.4). However, in order to find quasi-periodic solutions of (1.2),
we need the real-coe‰cients property (2.28) which follows from (1.3) and (1.6),
but not from (1.3) and (1.13). It is easy to check that (1.3), (1.13) and (2.28)
imply the parity assumption (1.6). We decided to state the existence theorem
in a form which requires the minimal assumptions. Of course, if a nonlinearity
satisfies (1.3), (1.6) and also (1.13) we could look for quasi-periodic solutions
satisfying Dirichlet boundary conditions.
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6. Derivative vs quasi-linear NLW. It has been proved by Klainermann-Majda
[16] that all classical solutions of Hamiltonian quasi-linear wave equations like

ytt ¼ ð1þ sðyxÞÞyxxð1:14Þ

with sð jÞð0Þ ¼ 0, j ¼ 1; . . . ; p� 1, sðpÞð0ÞA 0, do not admit smooth, small
amplitude, periodic (a fortiori quasi-periodic) solutions except the constants.
Actually, any non constant solution of (1.14), with su‰ciently small initial
data, develops a singularity in finite time in the second derivative yxx. In this
respect [16] may suggest that Theorem 1.1 is optimal regarding the order of
(integer) derivatives in the nonlinearity. Interestingly, the solutions of the de-
rivative wave equation (which is a semilinear PDE) found in Theorem 1.1 are
analytic in both time t and space x. Clearly the KAM approach developed in
[3] fails for quasi-linear equations like (1.14) because the auxiliary vector field
(whose flow defines the KAM transformations) is unbounded (of order 1). One
could still ask for a KAM result for quasi-linear Klein Gordon equations
(for which Delort [12] proved some steps of Birkho¤ normal form). Note
that adding a mass term my in the left hand side of (1.14), non constant peri-
odic solutions of the form yðt; xÞ ¼ cðtÞ or yðt; xÞ ¼ cðxÞ may occur.

We finally complement the previous existence results with some negative
results.

Proposition 1.1 [3]. Let p a N be odd. The DNLW equations

ytt � yxx ¼ y p
x þ f ðyÞ; ytt � yxx ¼ qxðy pÞ þ f ðyÞ; x a T;ð1:15Þ

have no smooth quasi-periodic solutions except for trivial periodic solutions of the
form yðt; xÞ ¼ cðtÞ. In particular f C 0 implies cðtÞC const.

This result is proved in [3] showing that

Mðy; vÞ :¼
Z
T

yxv dx

is a Lyapunov function for (1.15). For wave equations, the role of the space vari-
able x and time variable t is symmetric. A term like y p

t for an odd p is a friction
term which destroys the existence of quasi-periodic solutions. Using

Hðy; vÞ :¼
Z
T

v2

2
þ y2x

2
� FðyÞ dx

as a Lyapunov function we prove that:

Proposition 1.2 [3]. Let p a N be odd. The DNLW equation

ytt � yxx ¼ y p
t þ f ðyÞ; x a T;
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has no smooth quasi-periodic solutions except for trivial periodic solutions of the
form yðt; xÞ ¼ cðxÞ. In particular f C 0 implies cðxÞC const.

The mass term my is, in general, necessary to have existence of quasi-periodic
solutions. The following non-existence results hold:

Proposition 1.3 [3]. The derivative NLW equation

ytt � yxx ¼ y2t ; x a T;ð1:16Þ

has no smooth solutions defined for all times except the constants. Moreover, for
p; q a N even,

ytt � yxx ¼ y p
x ; ytt � yxx ¼ y p

t ; ytt � yxx ¼ y p
x þ yq

t ; x a T;ð1:17Þ

have no smooth periodic/quasi-periodic solutions except the constants.

The blow-up result for (1.16) is proved by projecting the equation on the con-
stants. The non-existence results for (1.17) may be obtained simply by integrating
the equations in ðt; xÞ.

2. Ideas of proof: the abstract KAM theorem

The proof of Theorem 1.1 is based on an abstract KAM Theorem for reversible
infinite dimensional systems (Theorem 4.1 in [3]) which proves the existence of
elliptic invariant tori and provides a reducible normal form around them. We
now explain the main ideas and techniques of proof.

Complex formulation. We extend (1.4) as a first order system with complex valued
variables ðy; vÞ a Cn � Cn. In the unknowns

uþ :¼ 1ffiffiffi
2

p ðDyþ ivÞ; u� :¼ 1ffiffiffi
2

p ðDy� ivÞ; D :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qxx þm

p
; i :¼

ffiffiffiffiffiffiffi
�1

p
;

system (1.4) becomes the first order system

uþt ¼ �iDuþ þ igðuþ; u�Þ
u�t ¼ iDu� � igðuþ; u�Þ

�
ð2:18Þ

where

gðuþ; u�Þ ¼ 1ffiffiffi
2

p g
�
x;D�1

� uþ þ u�ffiffiffi
2

p
�
;D�1

� uþx þ u�xffiffiffi
2

p
�
;
uþ � u�

i
ffiffiffi
2

p
�
:

In (2.18), the dynamical variables ðuþ; u�Þ are independent. However, since g is
real analytic (real on real), the real subspace

R :¼ fuþ ¼ u�gð2:19Þ
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is invariant under the flow evolution of (2.18), since

gðuþ; u�Þ ¼ gðuþ; u�Þ; Eðuþ; u�Þ a R;ð2:20Þ

and the second equation in (2.18) reduces to the complex conjugated of the first
one. Clearly, this corresponds to real valued solutions ðy; vÞ of the real system
(1.4). We say that system (2.18) is ‘‘real-on-real’’. For systems satisfying this
property it is customary to use also the shorter notation

ðuþ; u�Þ ¼ ðu; uÞ:

Moreover the subspace of even functions

E :¼ fuþðxÞ ¼ uþð�xÞ; u�ðxÞ ¼ u�ð�xÞgð2:21Þ

(see (1.9)) is invariant under the flow evolution of (2.18), by (1.6). System (2.18) is
reversible with respect to the involution

Sðuþ; u�Þ :¼ ðu�; uþÞ;ð2:22Þ

(which is nothing but (1.5) in the variables ðuþ; u�Þ).

Dynamical systems formulation. We introduce infinitely many coordinates by
Fourier transform

uþ ¼
X
j AZ

uþj e
ijx; u� ¼

X
j AZ

u�j e
�ijx:ð2:23Þ

Then (2.18) becomes the infinite dimensional dynamical system

_uuþj ¼ �ilju
þ
j þ igþj ð. . . ; uþh ; u�h ; . . .Þ

_uu�j ¼ ilju
�
j � ig�j ð. . . ; uþh ; u�h ; . . .Þ

(
Ej a Z;ð2:24Þ

where

lj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þm

p
ð2:25Þ

are the eigenvalues of D and

gþj ¼ 1

2p

Z
T

g
�X

h AZ

uþh e
ihx;

X
h AZ

u�h e
�ihx

�
e�ijx dx; g�j :¼ gþ�j:

By (2.23), the ‘‘real’’ subset R in (2.19) reads uþj ¼ u�j (this is the motivation for
the choice of the signs in (2.23)) and, by (2.20), the second equation in (2.24) is the
complex conjugated of the first one, namely

gþj ¼ g�j when uþj ¼ u�j ; Ej:
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Moreover, the invariant subspace E of even functions in (2.21) reads, under
Fourier transform,

E :¼ fuþj ¼ uþ�j; u
�
j ¼ u��j; Ej a Zg:ð2:26Þ

By (2.23) the involution (2.22) reads

S : ðuþj ; u�j Þ ! ðu��j; u
þ
�jÞ; Ej a Z:ð2:27Þ

Finally, since g is real analytic, the assumptions (1.3) and (1.6) imply the key
property

gej ð. . . ; uþj ; u�j ; . . .Þ has real Taylor coe‰cientsð2:28Þ

in the variables ðuþj ; u�j Þ.

Remark 2.1. The previous property is compatible with oscillatory phenomena
for (2.24), excluding friction phenomena. This is another strong motivation for
assuming (1.3) and (1.6).

Abstract KAM theorem. For every choice of symmetric tangential sites

I ¼ Iþ A ð�IþÞ with Iþ HNnf0g; aI ¼ n;

the linearized system (2.24) where gej ¼ 0 has the invariant tori

fujuj ¼ xj jj > 0; for j a I; uj ¼ uj ¼ 0 for j B Ig

parametrized by the actions x ¼ ðxjÞj AIþ . They correspond to the quasi-periodic
solutions in (1.11).

We first analyze the nonlinear dynamics of (2.24) close to the origin, via a
Birkho¤ normal form reduction (see section 7 of [3]). This step depends on the
nonlinearity g and on the fact that the mass m > 0. Here we use (1.8) to ensure
that the third order Birkho¤ normalized system is (partially) integrable and that
the ‘‘twist condition’’ holds (the frequency-to-action map is a di¤eomorphism).

Then we introduce action-angle coordinates on the tangential variables:

uþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj jj þ yj

q
e ixj ; u�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj jj þ yj

q
e�ixj ; j a I;ð2:29Þ

ðuþj ; u�j Þ ¼ ðzþj ; z�j ÞC ðzj ; zjÞ; j B I;

where jyjj < xj jj. Then, system (2.24) transforms into a parameter dependent
family of analytic systems of the form

_xx ¼ oðxÞ þ PðxÞðx; y; z; z; xÞ
_yy ¼ PðyÞðx; y; z; z; xÞ
_zzj ¼ �iWjðxÞzj þ PðzjÞðx; y; z; z; xÞ
_zzj ¼ iWjðxÞzj þ PðzjÞðx; y; z; z; xÞ; j a ZnI;

8>>><
>>>:

ð2:30Þ
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where ðx; yÞ a Tn
s � Cn, z, z are infinitely many variables, oðxÞ a Rn, WðxÞ a Rl.

The frequencies ojðxÞ, WjðxÞ are close to the unperturbed frequencies lj in (2.25)
and satisfy o�j ¼ oj, W�j ¼ Wj. The vector field X in system (2.30) has the form

X ¼ Nþ P;

where the normal form is

N :¼ oðxÞqx � iWjðxÞzjqzj þ iWjðxÞzjqzjð2:31Þ

(we use the di¤erential geometry notation for vector fields). The following prop-
erties hold:

1. reversible. The vector field X ¼ ðX ðxÞ;X ðyÞ;X ðzÞ;X ðzÞÞ is reversible,
namely

X � S ¼ �S � X ;

with respect to the involution

S : ðxj; yj; zj; zjÞ 7! ð�x�j ; y�j ; z�j; z�jÞ; Ej a Z; S2 ¼ I ;

which is nothing but (2.27) in the variables (2.29).
2. real-coefficients. The components of the vector field

X ðxÞ; iX ðyÞ; iX ðzjÞ; iX ðzjÞ

have real Taylor-Fourier coe‰cients in the variables ðx; y; z; zÞ, see (2.28).
3. real-on-real.

X ðxÞðvÞ ¼ X ðxÞðvÞ; X ðyÞðvÞ ¼ X ðyÞðvÞ; X ðz�ÞðvÞ ¼ X ðzþÞðvÞ;

for all v ¼ ðx; y; zþ; z�Þ such that x a Tn, y a Rn, zþ ¼ z�.
4. even. The vector field X : E ! E where

E :¼ fxj ¼ x�j; yj ¼ y�j; j a I; zj ¼ z�j; zj ¼ z�j; j a ZnIg

is nothing but (2.26) in the variables (2.29). Hence the subspace E is invariant
under the flow evolution of (2.30).

In system (2.30) we think xj, yj, j a I, zej , j a ZnI, as independent variables
and then we look for solutions in the invariant subspace E, which means solu-
tions of (2.18) even in x. We proceed in this way because, in a phase space of
functions even in x, the notion of momentum (see (2.36)) is not well defined, as
the Neumann boundary conditions break the translation invariance*. On the

*In a more technical language we may see the above di‰culty by noting that, if ze�j 1 zej , the

vector fields z�jqzi and zjqzi , that have different momentum, would be identified.
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other hand, the concept of momentum is essential in order to verify the properties
of quasi-Töplitz vector fields, as explained after (2.37)–(2.38). That is why in [3]
we actually work in a phase space of 2p-periodic functions, where the notion
(2.36) of momentum is well defined, and then we look for solutions in the invari-
ant subspace (2.21) of even functions.

A di‰culty that arises working in the whole phase space of periodic functions
is that the linear frequencies o�j ¼ oj, j a I, W�j ¼ Wj, j a ZnI, are resonant.
Therefore, along the KAM iteration, the monomial vector fields of the perturba-
tion

e ik�xqxj ; e ik�xyiqyj ; k a Zn
odd; jij ¼ 0; 1; j a I;

e ik�xze jqzj ; e ik�xze jqzj ; Ek a Zn
odd; j a ZnI;

where Zn
odd :¼ fk a Zn : k�j ¼ �kj; Ej a Ig, can not be averaged out. On the

other hand, on the invariant subspace E, where we look for the quasi-periodic
solutions, the above terms can be replaced by the constant coe‰cients monomial
vector fields, obtained setting x�j ¼ xj, ze�j ¼ zej . More precisely, we proceed
as follows (section 5 of [3]): we replace the nonlinear vector field perturbation P
with its symmetrized SP defined, by linearity, as

Sðe ik�xqxj Þ :¼ qxj ; Sðe ik�xyiqyjÞ :¼ yiqyj ; Ek a Zn
odd; jij ¼ 0; 1; j a I;ð2:32Þ

Sðe ik�xze jqzjÞ :¼ zjqzj ; Sðe ik�xze jqzjÞ :¼ zjqzj ; Ek a Zn
odd; j a ZnI;

and S is the identity on the other monomial vector fields. Since

PjE ¼ ðSPÞjE

the two vector fields determine the same dynamics on the invariant subspace E
(Corollary 5.1 of [3]). Moreover SP is reversible as well, and its weighted (see
(2.37)) and quasi-Töplitz norms are (essentially) the same† as those of P (Propo-
sition 5.2 of [3]).

The homological equations for a symmetric and reversible vector field pertur-
bation can now be solved (Lemma 5.1 of [3]) and the remaining resonant term is
a diagonal, constant coe‰cients correction of the normal form (2.31) (also using
the real coe‰cients property). This procedure allows the KAM iteration to be
carried out. Note that, after this composite KAM step, the correction to the nor-
mal frequencies described in (2.35) comes out from the symmetrized vector field
SP and not P itself.

As in the Hamiltonian case [2], a major di‰culty of the KAM iteration is to
fulfill, at each iterative step, the second order Melnikov non-resonance condi-

†This is due to the fact that the symmetrization procedure in (2.32) does not increase the momen-

tum, see (2.36).
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tions. Actually, following the formulation of the KAM theorem given in [2] it is
su‰cient to verify

jolðxÞ � k þWl
i ðxÞ �Wl

j ðxÞjb g

1þ jkjt ; g > 0;ð2:33Þ

only for the ‘‘final’’ frequencies olðxÞ and WlðxÞ and not along the inductive
iteration.

As in [2] the key idea for verifying the second order Melnikov non-resonance
conditions (2.33) for DNLW is to prove the higher order asymptotic decay
estimate

Wl
j ðxÞ ¼ j þ aðxÞ þm

2j
þO

� g2=3

j

�
for jbOðg�1=3Þð2:34Þ

where aðxÞ is a constant independent of j.
This property follows by introducing the notion of quasi-Töplitz vector field,

see Definition 3.4 in [3]. The new normal frequencies for a symmetric perturba-
tion P ¼ SP are Wþ

j ¼ Wj þ iPzj ; zj where the corrections Pzj ; zj are the diagonal
entries of the matrix defined by

Pz; zzqz :¼
X
i; j

Pzi ; zj zjqzi ; Pzi; zj :¼
Z
Tn

ðqzjPðziÞÞðx; 0; 0; 0; xÞ dx:ð2:35Þ

Note that thanks to the real-coe‰cients property the corrections iPzj ; zj are real.
We say that a matrix P ¼ Pz; z is quasi-Töplitz if it has the form

P ¼ T þ R

where T is a Töplitz matrix (i.e. constant on the diagonals) and R is a ‘‘small’’
remainder, satisfying in particular Rjj ¼ Oð1= jÞ. Then (2.34) follows with the
constant a :¼ Tjj which is independent of j.

The definition of quasi-Töplitz vector field is actually simpler than that of
quasi-Töplitz function, used in the Hamiltonian context [2], [22]. In turn, the
notion of quasi-Töplitz function is weaker than the Töplitz-Lipschitz property,
introduced by Eliasson-Kuksin in [13].

The quasi-Töplitz nature of the perturbation is preserved along the KAM
iteration (with slightly modified parameters) because the class of quasi-Töplitz
vector fields is closed with respect to

1. Lie bracket ½ ; � (Proposition 3.1 of [3]),
2. Lie series (Proposition 3.2 of [3]),
3. Solution of the homological equation (Proposition 5.3 of [3]),

namely the operations which are used along the KAM iterative scheme.
An important di¤erence with respect to [2] is that we do not require the

conservation of momentum, and so our KAM theorem applies to the DNLW

211existence and stability of quasi-periodic solutions



equation (1.2) where the nonlinearity g may depend on the space variable x. At a
first insight this is a serious problem because the properties of quasi-Töplitz func-
tions as introduced in [22] and [2], strongly rely on the conservation of momentum.

We remark that, anyway, the concept of momentum of a vector field is well
defined (and useful) also if it is not conserved (prime integral), and so for PDEs
which are not-invariant under x-translations (but with x a T). The momentum of
a monomial vector field

mk; i;a;b;v :¼ e ik�xyizazbqv; v a fx; y; zj; zjg;

(with multi-indices notation zazb :¼ Pj AZnIz
aj
j z

bj
j , aj; bj a N) is defined by

pðk; a; b; vÞ :¼
pðk; a; bÞ if v a fx1; . . . ; xn; y1; . . . ; yng
pðk; a; bÞ � sj if v ¼ zsj ; s ¼e;

�
ð2:36Þ

where

pðk; a; bÞ :¼
Xn

i¼1

jiki þ
X

j AZnI
ðaj � bjÞ j;

andI :¼ f j1; . . . ; jng are the tangential sites. The monomial vector fieldsmk; i;a;b;v

are nothing but the eigenvectors, with eigenvalues ipðk; a; b; vÞ, of the adjoint
action of the momentum vector field XM :¼ ð j; 0; . . . ; ijzj; . . . ;�ijzj ; . . .Þ, namely

½mk; i;a;b;v;XM � ¼ ipðk; a; b; vÞmk; i;a;b;v;

see Lemma 2.1 of [3]. This is why it is convenient to use the exponential basis in
the Fourier decomposition (2.23) instead of the cosine basis fcosð jxÞgjb0.

Remark 2.2. For a PDE which is translation invariant (namely the nonlinearity
g is x-independent), all the monomials of the corresponding vector field X have
momentum equal to zero.

Then we overcome the impasse of the non-conservation of the momentum
introducing the a-weighted majorant norm for vector fields

kXks; r;að2:37Þ

:¼ sup
jyj1<r2;kzka; p;kzka; p<r

� X
k; i;a;b

eajpðk;a;b;vÞjjX ðvÞ
k; i;a;bje

jkjsjyij jzaj jzbj
�
v AV

�����
�����
s; r

where r; s; a > 0, V :¼ fx; y; zj; zjg, j a ZnI, and

kðx; y; z; zÞks; r :¼
jxjl
s

þ jyj1
r2

þ
kzka;p

r
þ
kzka;p

r
; kzk2a;p :¼

X
j AZnI

jzjj2e2aj jj3 j42p;
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ab 0, p > 1=2 fixed (analytic spaces). The k ks; r;a-norm penalizes the high-
momentum monomials

kPjpjbKXks; r;a 0 a e�Kða�a 0ÞkXks; r;a; E0a a 0
a a;ð2:38Þ

so that only the low-momentum monomials vector fields with jpjaK are relevant
(slightly decreasing a 0 < a). This fact is crucial, in particular, in order to prove
that the class of quasi-Töplitz vector fields is closed with respect to Lie brackets
(Proposition 3.1 of [3]).
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Università degli Studi di Napoli Federico II

Via Cintia, Monte S. Angelo

I-80126, Napoli, Italy

m.berti@unina.it

Luca Biasco

Dipartimento di Matematica

Università di Roma 3
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