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Abstract

We prove the existence of Cantor families of small amplitude, analytic, linearly
stable quasi-periodic solutions of reversible derivative wave equations.

1. Introduction

An important question in KAM theory for PDEs concerns equations with deriv-
atives in the nonlinearity. Only few results are known, mainly restricted to disper-
sive equations. For Hamiltonian perturbations of KdV, the existence and stability
of quasi-periodic solutions was first proved by Kuksin [18,19] in the late 1990s,
see also Kappeler–Pöschel [16]. This approach has been recently extended by Liu–
Yuan [15] for Hamiltonian DNLS and by Zhang et al. [28] for the reversible DNLS
equation iut + uxx + |ux|2u = 0.

The derivative nonlinear wave equation (DNLW), which is not dispersive, is
excluded by these approaches (for semilinear wave equations see [5,7,9,19,21,27]).
The existence of periodic solutions (without stability) for the derivative Klein–
Gordon equation

yt t − yxx + my+ y2
t = 0, m > 0, x ∈ T := R/2πZ, (1.1)

was first proved by Bourgain in [8], extending the approach of Craig–Wayne in
[11]. Then Craig [10] focused on the natural question of establishing similar results
for more general derivative wave equations

yt t − yxx + my = g(x,y,yx,yt ), x ∈ T, (1.2)
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asking, for example, ifyt t −yxx = y3
x possesses periodic solutions, see [10, section

7.3].
In [3] we recently extended KAM theory for the Hamiltonian model

yt t − yxx + my+ f (Dy) = 0, m > 0, D := √−∂xx + m, x ∈ T.

These kinds of pseudo-differential equations were introduced by Bourgain [7] and
Craig [10] as models to study the effect of derivatives versus dispersive phenomena.
Clearly [3] does not apply to the derivative wave equations (1.2), which are not
Hamiltonian.

In order to prove the existence of periodic/quasi-periodic solutions for (1.2),
conditions on the nonlinearity g have to be necessarily imposed. For example, (1.2)
with the nonlinear friction term g = y3

t has no nontrivial smooth periodic/quasi-
periodic solutions, see Proposition 1.1. This case may be ruled out by assuming the
reversibility condition

g(x,y,yx,−v) = g(x,y,yx,v) (1.3)

satisfied, for example, by (1.1). Under condition (1.3) Equation (1.2) is time-
reversible, namely the associated first order system

yt = v, vt = yxx − my+ g(x,y,yx,v) (1.4)

is reversible with respect to the involution

S(y,v) := (y,−v), S2 = I. (1.5)

For finite-dimensional systems it is known (since Moser [20]) that reversibility
may replace the Hamiltonian structure in order to allow the existence of quasi-
periodic solutions, see also Arnold [1] and Sevryuk [26]. However, for (1.2) it
is not sufficient. For example yt t − yxx = y3

x is time reversible but it has no
smooth periodic/quasi-periodic solutions except the constants (in Proposition 1.1
we exhibit more general time-reversible nonlinearities for which DNLW has only
trivial quasi-periodic solutions). In order to find quasi-periodic solutions we also
require the “space-reversibility” assumption

g(−x,y,−yx,v) = g(x,y,yx,v) (1.6)

which rules out nonlinearities like y3
x,y

5
x, . . .. Actually, condition (1.6) is as nat-

ural as (1.3). Indeed, for the wave equation (1.2), the role of time and space vari-
ables (t,x) is highly symmetric, and, considering x “as time” (spatial dynamics
idea) (1.6) is nothing but the corresponding reversibility condition and terms like
y3
x,y

5
x, . . . are frictions.

In this paper we prove the existence and stability of analytic quasi-periodic
solutions for derivative wave equations (1.2) satisfying (1.3), (1.6), see Theorem 1.1.
By the above considerations, this is a very natural class of DNLW equations which
may admit quasi-periodic solutions. After Theorem 1.1 we shall further comment
on the assumptions. These results were presented in the note [4].
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Before describing our main results, we mention the classical bifurcation theo-
rems of Rabinowitz [24] about periodic solutions (with period T ∈ πQ) of dissi-
pative forced derivative wave equations

yt t − yxx + αyt + εF(x, t,y,yx,yt ) = 0, x ∈ [0, π ]
with Dirichlet boundary conditions, and in [25] with a fully-non-linear forcing term
F = F(x, t,y,yx,yt ,yt t ,ytx,yxx). Note that for forced PDEs the nonlinearity
does not need to be reversible or Hamiltonian.

1.1. Main Results

We consider derivative wave equations (1.2) where m > 0, the nonlinearity
g : T × U → R, U ⊂ R

3 open neighborhood of 0, is real analytic and satisfies the
assumptions (1.3), (1.6). We require g to vanish at least quadratically at (y,yx,v) =
(0, 0, 0), namely

g(x, 0, 0, 0) = (∂yg)(x, 0, 0, 0) = (∂yxg)(x, 0, 0, 0) = (∂vg)(x, 0, 0, 0) = 0.

Because of (1.3), it is natural to look for “reversible” solutions, namely those such
that y(t,x) is even and v(t,x) is odd in time, and, because of (1.6), it is natural
to restrict things to solutions for which x is even (standing waves). Hence we look
for quasi-periodic solutions of (1.2) satisfying

y(t,x) = y(t,−x), ∀t, y(−t,x) = y(t,x), ∀x ∈ T. (1.7)

For every finite choice of the tangential sites I+ ⊂ N\{0}, the linear Klein–Gordon
equation

yt t − yxx + my = 0, x ∈ T, (1.8)

possesses the family of quasi-periodic standing wave solutions

y =
∑

j∈I+
√

8ξ j λ−1
j cos(λ j t) cos( jx), λ j :=

√
j2 + m, (1.9)

parametrized by the “actions” ξ j ∈ R+ and with linear frequencies of oscillations
ω̄ := (λ j ) j∈I+ .

In order to continue such solutions for the nonlinear equation (1.2)—as it is
well known in KAM theory—the leading term of the nonlinearity g has to satisfy
some non-degeneracy condition so that the “action-to-frequency” map “twists”.
For definiteness, we have focused on nonlinearities

g = g(=3)(y,yx,yt ) + g(�5)(x,y,yx,yt ) (1.10)

with the cubic leading term

g(=3) = κ1y
3 + κ2yy

2
x + κ3yy

2
t, κ1, κ2, κ3 ∈ R, (1.11)

and g(�5) collects terms of order at least five in (y,yx,yt ). We assume the non-
degeneracy condition

κ1 + (κ2 + κ3)i
2 + κ3m �= 0, ∀i ∈ I+. (1.12)
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Note that, for each m > 0, condition (1.12) is verified for all the (κ1, κ2, κ3) ∈ R
3

outside finitely many hyperplanes, for example for each (κ1, κ2, κ3) �= 0 with non
negative components κ j � 0, j = 1, 2, 3.

Fix a compact interval [m1, m2] ⊂ (0,∞) and assume that the mass m ∈
[m1, m2] satisfies the finitely many non-resonance conditions

(λ−1
i ±λ−1

j )4ω̄, λ−1
j 4ω̄ /∈ (2n − 1)Zn/2 \ {0}, ∀i, j ∈ N \I+, i, j � C0, (1.13)

where ω̄ := (λh)h∈I+ , λh = √
h2 + m, n is twice the cardinality of I+, and C0

is a suitably large constant depending on m1, m2, I+. Note that, for a given set
I+ of tangential sites, condition (1.13) is verified, by analiticity, for all the masses
m ∈ [m1, m2] except finitely many (and independently of κ1, κ2, κ3).

Theorem 1.1. Assume that the tangential sites I+ ⊂ N \ {0}, the mass m ∈
[m1, m2] and κ1, κ2, κ3 ∈ R satisfy (1.12), (1.13). Then the DNLW equation (1.2)
with a real analytic nonlinearity satisfying (1.3), (1.6), (1.10)–(1.11) admits small-
amplitude, analytic (both in t and x), quasi-periodic solutions

y =
∑

j∈I+
√

8ξ j λ−1
j cos(ω∞

j (ξ) t) cos( jx) + o(
√

ξ), ω∞
j (ξ)

ξ→0−→
√

j2 + m

(1.14)
satisfying (1.7), for a Cantor-like set of parameters with density 1 at ξ = 0. The
quasi-periodic solutions have zero Lyapunov exponents and the linearized equa-
tions can be reduced to constant coefficients (in a phase space of functions even in
x). The term o(

√
ξ) in (1.14) is small in some analytic norm.

Let us comment on the hypothesis of Theorem 1.1.

1. Reversibility in time and space. The assumptions (1.3), (1.6), are natural
conditions for the existence of quasi-periodic solutions of (1.2), because they
imply the reversibility assumption of Moser [20] on the subspace of functions
even in x (which does not follow by requiring only one of them), and so they
allow solution of the homological equations along the KAM proof. Terms like
yp
x,yp

t with p odd, destroy the oscillations of the Birkhoff normal form and
produce drifts of the actions incompatible with the existence of quasi-periodic
solutions. Proposition 1.1 proves rigorously these non existence results using
suitable Lyapunov functions, for which terms like yp

x and yp
t act as friction

terms. This shows the role of condition (1.6). As an example, the nonlinearity
g = y3 + y5

x satisfies all the conditions (1.3), (1.10), (1.11) (and (1.12) holds
for each I+), but not (1.6), and non trivial quasi periodic solutions of (1.2) do
not exist.
Thanks to (1.6) we can restrict things to solutions which are even in x and this
simplifies the KAM proof because the normal form (4.1) is diagonal. How-
ever, as said above, the main reason to assume (1.3) + (1.6) is that they im-
ply the reversibility with respect to the involution used in Moser [20] (see
(1.32), (1.33)). This does not follow, for example, by (1.3) and the condi-
tion g(−x,−y,yx,v) = −g(x,y,yx,v) for which the subspace of functions
(y,v)(x) odd in x is invariant (Dirichlet boundary conditions). One could pos-
sibly also deal with other nonlinearities using the involution (y(x),v(x)) 	→
(y(−x),−v(−x)), which implies the Moser reversibility as well.



KAM for Reversible Derivative Wave Equations 909

2. Mass m > 0. Also the assumption on the mass m �= 0 is natural. When m = 0,
Proposition 1.2 proves that (1.1) has no smooth solutions for all times except
the constants. In Proposition 1.3 we prove other non-existence results of quasi-
periodic solutions for DNLW equations satisfying both (1.3), (1.6), but with
mass m = 0.

3. Twist. The term g(=3)(y,yx,v) in (1.11) is the most general cubic nonlinearity
which satisfies (1.3), (1.6) and which is x-independent. Proposition 1.1 proves
that fory3

x,y
2yx,v3, there exist no non-trivial quasi-periodic solutions of (1.2).

In (1.10) the leading term g(=3) could also depend explicitly onx and the higher
order nonlinearities have order four, see Remark 7.1.

4. x-dependence. The nonlinearity g in (1.2) may explicitly depend on the space
variable x. This is a novelty with respect to [3] which used the conservation of
momentum, see comments below.

5. Derivative vs quasi-linear NLW. Klainermann–Majda [17] exhibited a class of
quasi-linear wave equations which do not have smooth periodic (a fortiori quasi-
periodic) solutions except for the constants. In this respect [17] may suggest
that Theorem 1.1 is optimal regarding the order of (integer) derivatives in the
nonlinearity.

The proof of Theorem 1.1 is based on a KAM theorem (see Theorem 4.1)
whose key step is, like in [3], to prove the first order asymptotic expansion of the
perturbed normal frequencies of the linearized equations along the iteration, see
(4.10). This enables us to verify the well known second order Melnikov conditions
which allow us to reduce the KAM normal form to constant coefficients. Unlike
the case where g does not depend on the derivatives yt ,yx, this expansion requires
hard work. This is achieved by the notion of a quasi-Töplitz vector field introduced
in Section 3. This class is closed with respect to Lie brackets and Lie transform
(Propositions 3.1–3.2). This concept is clearly modelled on the Hamiltonian case
in [3,23], and it is related to the Töplitz–Lipschitz functions in Eliasson–Kuksin
[12,13] (see also [14]), but there are differences. Actually this notion appears natural
for vector fields. We underline two main novelties:

1. As already said, here we consider the general case ofx-dependent nonlinearities
which break the translation invariance. In [3], and [22,23], the theory of quasi-
Töplitz functions was developed for x-independent nonlinearities; namely it
relied on the conservation of momentum. This property was used in essential
ways, for example in order to prove that the class of quasi-Töplitz functions is
closed under a Poisson-bracket. A point of conceptual interest in this paper is
that we also show how to use efficiently the notion of momentum when this
is not a conserved quantity. Monomial vector fields with a large momentum
should be less and less relevant for dynamics. This is efficiently implemented
by the introduction of the a-momentum norm (Definition 2.3) which penalizes
the high momentum monomials, see (2.24). This allows us to neglect in Propo-
sition 3.1 the high momentum monomial vector fields, by slightly decreasing
the parameter a. With this new idea the theory of quasi-Töplitz vector fields is
obtained similarly to [3].
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2. Another point of conceptual interest is to use the notion of momentum working
in a subspace (here of even functions). Until now it was not clear how to proceed,
see the end of Section 1.2. In this paper this is achieved by the symmetrization
procedure described in Section 5.1. The key observation is that the quasi-Toplitz
norm does not increase under symmetrization, Proposition 5.2.

We will add some more technical comments about the proof in Section 1.2.
Now we complement Theorem 1.1 with some non-existence results.

Proposition 1.1. Let p ∈ N be odd. The DNLW equations (1.2) with

(i) g = yp
x + f (y), (ii) g = ∂x(y

p) + f (y), (iii) g = yp
t + f (y) (1.15)

have no smooth quasi-periodic solutions except trivial periodic solutions y(t,x) =
c(t) for (i), (ii) andy(t,x) = c(x) for (iii), respectively. If f ≡ 0 then c(·) ≡ const.

Proof. The function M := ∫
T
yx yt dx is a Lyapunov function of (1.15)-(i) since

d

dt
M =

∫

T

yp+1
x dx � 0.

Hence M strictly increases along the solutions unless yx(t,x) = 0,∀t , namely
y(t,x) = c(t). Case (ii) is similar. A Lyapunov function of (1.15)-(iii) is H :=
∫
T

v2

2 + y2
x

2 − F(y) dx where F ′ = f. �

The mass term my could be necessary to have the existence of quasi-periodic

solutions.

Proposition 1.2. The DNLW equation

yt t − yxx = y2
t , x ∈ T, (1.16)

has no smooth solutions defined for all times except the constants.

Proof. We decompose the solution y(t,x) = y0(t) + ỹ(t,x) where y0 := ∫
T

y(t,x) dx and ỹ := y − y0 has zero average in x. Then, projecting (1.16) on the
constants, we get

ÿ0 =
∫

T

y2
t dx =

∫

T

(ẏ0 + ỹt )
2 dx = ẏ2

0 + 2ẏ0

∫

T

ỹt dx+
∫

T

ỹ2
t dx = ẏ2

0

+
∫

T

ỹ2
t dx � ẏ2

0. (1.17)

Hence v0 := ẏ0 satisfies v̇0 � v2
0, which blows up unless v0 ≡ 0. But, in this

case, (1.17) implies that yt (t,x) ≡ 0,∀x. Hence y(t,x) = y(x) and (1.16) (and
x ∈ T) imply that y(t,x) = const. �


The above non-existence result may be generalized as follows:
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Proposition 1.3. Let p, q ∈ N be even. Then the derivative NLW equations

yt t − yxx = yp
x, yt t − yxx = yp

t , yt t − yxx = yp
x + yq

t , x ∈ T, (1.18)

have no smooth periodic/quasi-periodic solutions except the constants.

Proof. If there exists a periodic solution (y(t,x),v(t,x)) of the first equation,
with period T , then

∫ T

0

∫

T

(yt t − yxx) dt dx = 0 =
∫ T

0

∫

T

yp
x(t,x) dx dt.

Hence, ∀t ∈ [0, T ],yx(t,x) = 0,∀x ∈ T, that is y(t,x) = c(t). Inserting in
(1.18) we get ctt (t) = 0 and its only periodic solutions are c(t) = const . For
quasi-periodic solutions the argument is the same. The other equations can be
treated analogously. �


1.2. About the Proof of Theorem 1.1

Complex formulation. In the unknowns

u+ := 1√
2
(Dy− iv), u− := 1√

2
(Dy+ iv), D := √−∂xx + m, i := √−1,

systems (1.4) becomes the first order system

u+
t = iDu+ + ig(u+, u−), u−

t = −iDu− − ig(u+, u−) (1.19)

where

g(u+, u−) = − 1√
2

g

(
x, D−1

(
u+ + u−

√
2

)
, D−1

(
u+
x + u−

x√
2

)
,

u− − u+

i
√

2

)
.

(1.20)
Since g is real on real, the subspace R := {u+ = u−} is invariant under the flow
evolution of (1.19). Clearly, this corresponds to real valued solutions (y,v) of (1.4).
By (1.6) the subspace of even functions

E := {
u+(x) = u+(−x), u−(x) = u−(−x)

}
(1.21)

is invariant. Moreover (1.19) is reversible with respect to the involution

S(u+, u−) = (u−, u+) (1.22)

which is nothing but (1.5) in the variables (u+, u−).
Dynamical systems formulation. We introduce coordinates by Fourier transform

u+ =
∑

j∈Z
u+

j ei jx, u− =
∑

j∈Z
u−

j e−i jx. (1.23)

Then (1.19) becomes the infinite dimensional dynamical system

u̇+
j = iλ j u

+
j + ig+

j (. . . , u+
h , u−

h , . . .), u̇−
j = −iλ j u

−
j − ig−

j (. . . , u+
h , u−

h , . . .),

(1.24)
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∀ j ∈ Z, where λ j := √
j2 + m are the eigenvalues of D and

g+
j = 1

2π

∫

T

g
(∑

h∈Z
u+

h eihx,
∑

h∈Z
u−

h e−ihx
)

e−i jx dx, g−
j := g+

− j .

(1.25)
By (1.23), the “real” subset R reads u+

j = u−
j (this is the motivation for the choice

of the signs in (1.23)). The invariant subspace E of even functions in (1.21) reads,
under Fourier transform,

E :=
{

u+
j = u+

− j , u−
j = u−

− j , ∀ j ∈ Z

}
. (1.26)

By (1.23) the involution (1.22) reads

S : (u+
j , u−

j ) → (u−
− j , u+

− j ), ∀ j ∈ Z. (1.27)

Finally, since g is real analytic, the assumptions (1.3) and (1.6) imply the important
property

g±
j (. . . , u+

i , u−
i , . . .) has real Taylor coefficients in (u+

i , u−
i ). (1.28)

This property is compatible with an oscillatory behavior for (1.24), excluding fric-
tion phenomena.

Abstract KAM theorem. For every choice of the symmetric tangential sites

I = I+ ∪ (−I+) with I+ ⊂ N \ {0}, 
I = n, (1.29)

we introduce (after the Birkhoff normal form of Section 7), action-angle variables

u+
j = √

ξ| j | + y j e
ix j , u−

j = √
ξ| j | + y j e

−ix j , j ∈ I,

(u+
j , u−

j ) = (z+
j , z−

j ) ≡ (z j , z̄ j ), j /∈ I, (1.30)

where |y j | < ξ| j |. Then (1.24) is conjugated to a parameter dependent family of
vector fields (as in Section 4)

X := N + P (1.31)

with a normal form N as in (4.1), (4.2), and a perturbation P as in (4.3) which
satisfies (A1)–(A4). In particular the vector field (1.31) is

1. reversible (Definition 2.5) with respect to the involution

S : (x j , y j , z j , z̄ j ) 	→ (−x− j , y− j , z̄− j , z− j ), ∀ j ∈ Z, S2 = I, (1.32)

which is nothing but (1.27) in the variables (1.30).
2. real-coefficients (Definition 2.6), by (1.28).
3. even. The vector field P : E → E and so the subspace

E := {
x j = x− j , y j = y− j , j ∈ I, z j = z− j , z̄ j = z̄− j , j ∈ Z \ I

}

(1.33)
is invariant under the flow evolution of (1.31).
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4. quasi-Töplitz. The perturbation P is a quasi-Töplitz vector field, Defini-
tion 3.4.

The reversibility property (1.32) on the subspace E in (1.33) implies that the average
of the term P(y)(x, 0, 0, 0) is zero (because P(y)(x, 0, 0, 0) is an odd function in x)
along the whole iteration, otherwise quasi-periodic solutions would not exist. Note
that we use both (1.3) and (1.6) for the solvability of the homological equations
in Lemma 5.1. Then the “real-coefficients” property implies that the corrections to
the normal form are purely imaginary (elliptic).

Quasi-Töplitz property. The second order Melnikov non resonance conditions are
verified proving that the elliptic frequencies (after the application of the KAM The-
orem 4.1) satisfy an asymptotic expansion like �∞

j (ξ) = | j |+c(ξ)+O(1/| j |), see
(4.10) and (4.4). Indeed, since c(ξ) is independent of j , it cancels in the difference
�∞

j (ξ) − �∞
i (ξ) and the measure estimates follow as in the semilinear case (see

[21]), where c(ξ) ≡ 0. We only state them in Theorem 4.2, whose proof is like that
in [3].

The KAM corrections to the frequencies are the coefficients of the linear mono-
mial vector fields z j∂z j , z̄ j∂z̄ j of the perturbation P , and we want to show that, for
| j | > N , they assume a constant value up to an error of O(N−1). Since we need
to work with a class of vector fields fulfilling the Lie algebra property, we cannot
clearly impose conditions only on these diagonal terms, but we have to consider
a larger set of vector fields which are only approximately x-independent, linear
and diagonal (and y-independent). The quasi-Töplitz vector fields introduced in
Section 3 fulfill quantitatively these requirements, see the comments above Defin-
ition 3.2.

The symmetrization procedure. In the subspace of functions even in x the notion
of momentum of a monomial is not well defined. For example the vector fields
z− j∂zi and z j∂zi , that have different momentum, are identified. In other words we
can not work directly in the cosine basis {cos( jx)} j�0, which would be natural,
looking for solutions even in x (avoiding the double eigenvalues).

Then we proceed as follows. In system (1.31) we think of x j , y j , z±
j , as indepen-

dent variables. In this case, since the linear frequencies ω− j = ω j , �− j = � j are
resonant, along the KAM iteration, the monomial vector fields of the perturbation

eik·x∂x j , eik·x yi∂y j , k ∈ Z
n
odd, |i | = 0, 1, j ∈ I, eik·x z± j∂z j , eik·x z̄± j∂z̄ j ,

∀k ∈ Z
n
odd, j ∈ Z \ I,

where
k ∈ Z

n
odd := {

k ∈ Z
n : k− j = −k j , ∀ j ∈ I

}
(1.34)

cannot be averaged out. On the other hand, on the invariant subspace E , where we
look for the quasi-periodic solutions, the above terms can be replaced by the constant
coefficients monomial vector fields, obtained by setting x− j = x j , z±

− j = z±
j .

Replacing the vector field P with its symmetrized SP (Definition 5.2) the a-
momentum and quasi-Töplitz norms do not increase (Proposition 5.2). Both P and
SP determine the same dynamics on the subspace E (Proposition 5.1). The vector
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field SP is symmetric and reversible as well (see (5.22)), and the homological
equations (5.21) can be solved, see Lemma 5.1. This procedure allows the KAM
iteration to be carried out. Remark 5.1 shows that the symmetrization procedure is
required at each KAM step.

In Section 7 we finally apply the abstract KAM Theorem 4.1 to prove Theo-
rem 1.1. The main steps are the proof that the vector field of g is quasi-Töplitz
(Lemma 7.1), that the Birkhoff normal form transformation preserves the quasi-
Töplitz property (Proposition 7.1) and that the frequency-to-action map is twist,
see (7.32), (7.34).

2. Vector Fields Formalism

We introduce the main properties of the vector fields used throughout the paper
(commutators, momentum, norms, reversibility, degree,…). We shall refer often to
section 2 of [3]. The first difference with respect to [3] is that we have to work at
the level of vector fields and not of functions (Hamiltonians).

For a finite set I ⊂ Z (possibly empty) and a � 0, p > 1/2, we define the
Hilbert space

�
a,p
I :=

{
z = {z j } j∈Z\I , z j ∈ C : ‖z‖2

a,p :=
∑

j∈Z\I |z j |2e2a| j |〈 j〉2p < ∞
}

(2.1)
that, when I = ∅, we denote more simply by �a,p. Let n be the cardinality of I. We
consider V := C

n × C
n × �

a,p
I × �

a,p
I (denoted by E in [3]) with (s, r)-weighted

norm

v = (x, y, z, z̄) ∈ V, ‖v‖s,r = |x |∞
s

+ |y|1
r2 + ‖z‖a,p

r
+ ‖z̄‖a,p

r
(2.2)

where 0 < s, r < 1, and |x |∞ := maxh=1,...,n |xh |, |y|1 := ∑n
h=1|yh |.

Note that z and z̄ are independent variables. We shall also use the notation
z+

j = z j , z−
j = z̄ j , and

V := {
x1, . . . , xn, y1, . . . , yn, . . . , z j , . . . , z̄ j , . . .

}
, j ∈ Z \ I. (2.3)

As phase space, we consider the toroidal domain

D(s, r) := T
n
s × D(r) := T

n
s × Br2 × Br × Br ⊂ V (2.4)

where T
n
s := {x ∈ C

n : Re(x) ∈ T
n := 2πR

n/Z
n, maxh=1,...,n |Im xh | <

s}, Br2 := {y ∈ C
n : |y|1 < r2} and Br ⊂ �

a,p
I is the open ball of radius r

centered at zero. If n = 0 then D(s, r) ≡ Br × Br ⊂ �a,p × �a,p.
We also introduce the “real” phase space

R(s, r) :=
{
v = (x, y, z+, z−) ∈ D(s, r) : x ∈ T

n, y ∈ R
n, z+ = z−} (2.5)

where z+ is the complex conjugate of z+.
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We consider vector fields of the form

X (v) = (X (x)(v), X (y)(v), X (z)(v), X (z̄)(v)) ∈ V (2.6)

where v ∈ D(s, r) and X (x)(v), X (y)(v) ∈ C
n, X (z)(v), X (z̄)(v) ∈ �

a,p
I . We also

use the differential geometry notation

X (v) = X (x)∂x + X (y)∂y + X (z)∂z + X (z̄)∂z̄ =
∑

v∈VX (v)∂v, (2.7)

recall (2.3). Equivalently we write X (v) = (X (v)(v))v∈V where each component is
a formal scalar power series

X (v)(v) =
∑

(k,i,α,β)∈I

X (v)
k,i,α,β eik·x yi zα z̄β (2.8)

with coefficients X (v)
k,i,α,β ∈ C and multi-indices in

I := Z
n × N

n × N
(Z\I) × N

(Z\I) (2.9)

where N
(Z\I) := {α := (α j ) j∈Z\I ∈ N

Z with |α| := ∑
j∈Z\Iα j < +∞}. In (2.8)

we use the standard multi-indices notation zα z̄β := � j∈Z\I z
α j
j z̄

β j
j .

The formal vector field X is absolutely convergent in V (with norm (2.2)) at
v ∈ D(s, r) if every component X (v)(v), v ∈ V, is absolutely convergent and
‖(X (v)(v))v∈V‖s,r < +∞.

Definition 2.1. (Monomial vector field) A monomial vector field is

mk,i,α,β;v′(v) = mk,i,α,β(v)∂v′ where mk,i,α,β(v) := eik·x yi zα z̄β (2.10)

is a scalar monomial.

A vector field X may be decomposed as a formal series of vector field monomials

X (v) =
∑

v∈V

∑

(k,i,α,β)∈I

X (v)
k,i,α,βeik·x yi zα z̄β∂v. (2.11)

For a subset of indices I ⊂ I × V we define the projection

(�I X)(v) :=
∑

(k,i,α,β,v)∈I

X (v)
k,i,α,β eik·x yi zα z̄β∂v. (2.12)

The commutator (or Lie bracket) of two vector fields is [X, Y ](v) := dX (v)[Y (v)]−
dY (v)[X (v)], namely, its v-component is

[X, Y ](v) =
∑

v′∈V∂v′ X (v)Y (v′) − ∂v′Y (v) X (v′). (2.13)

Given a vector field X , its transformed field under the time 1 flow generated by Y
is

eadY X =
∑

k�0

1

k!adk
Y X, adY X := [X, Y ], (2.14)

where adk
Y := adk−1

Y adY and ad0
Y := Id.



916 Massimiliano Berti, Luca Biasco & Michela Procesi

2.1. Momentum Majorant Norm

Fix a set of indices

I := {j1, . . . ,jn} ⊂ Z. (2.15)

Definition 2.2. The momentum of the vector field monomial mk,i,α,β;v is

π(k, α, β; v) :=
{

π(k, α, β) if v ∈ {x1, . . . , xn, y1, . . . , yn}
π(k, α, β) − σ j if v = zσ

j , σ = ±,
(2.16)

where

π(k, α, β) :=
∑n

i=1
ji ki +

∑

j∈Z\I(α j − β j ) j (2.17)

is the momentum of the scalar monomial mk,i,α,β(v).

We say that a vector field X satisfies momentum conservation if and only if it
is a linear combination of monomial vector fields with zero momentum.

Let a � 0. Given a vector field X as in (2.11) we define its “a-momentum
majorant” vector field

(MaX)(v) :=
∑

v∈V

∑

(k,i,α,β)∈I

ea|π(k,α,β;v)||X (v)
k,i,α,β |eik·x yi zα z̄β∂v (2.18)

where π(k, α, β; v) is the momentum of the monomial mk,i,α,β;v defined in (2.16).
When a = 0 we simply write M X instead of M0 X , which coincides with the
majorant vector field in [3, section 2.1.2].

Definition 2.3. (a-momentum majorant-norm) The a-momentum majorant norm
of a formal vector field X as in (2.11) is

‖X‖s,r,a := sup
(y,z,z̄)∈D(r)

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k,i,α,β

ea|π(k,α,β;v)||X (v)
k,i,α,β |e|k|s |yi ||zα||z̄β |

⎞

⎠

v∈V

∥
∥
∥
∥
∥
∥

s,r

(2.19)

where |k| := |k|1 = |k1| + · · · + |kn|. For a function f : D(s, r) → C it reduces
to ‖ f ‖s,r,a := supD(r)

∑
k,i,α,β ea|π(α,β,k)|| fk,i,α,β |es|k||yi ||zα||z̄β |.

When a = 0 the norm ‖ · ‖s,r,0 coincides with the “majorant norm” introduced
in [3]-Definition 2.6 (where it was simply denoted by ‖ · ‖s,r ). By (2.19) and (2.18)
we get ‖X‖s,r,a = ‖MaX‖s,r,0.

Remark 2.1. By the above relation, the norm ‖ · ‖s,r,a satisfies the same properties
of the majorant norm ‖ · ‖s,r,0 and the next lemmas for the norm ‖ · ‖s,r,a follow
by the analogous lemmas in [3] for ‖ · ‖s,r,0.

Let |X |s,r := supv∈D(s,r) ‖X (v)‖s,r . Arguing as for Lemma 2.11 in [3] we get
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Lemma 2.1. Assume that for some s, r > 0,a � 0, the a-momentum majorant-
norm ‖X‖s,r,a < +∞. Then the series in (2.11), resp. (2.18), absolutely converge
to the analytic vector field X (v), resp. MaX (v), for every v ∈ D(s, r). Moreover
|X |s,r , |MaX |s,r � ‖X‖s,r,a.

For a vector field X : D(s, r)×O → V depending on parameters ξ ∈ O ⊂ R
n ,

we define the λ-Lipschitz (momentum majorant) norm (λ � 0)

‖X‖λ
s,r,a,O := ‖X‖λ

s,r,a := ‖X‖s,r,a,O + λ‖X‖lip
s,r,a,O

:= sup
ξ∈O

‖X (ξ)‖s,r,a + λ sup
ξ,η∈O, ξ �=η

‖X (ξ) − X (η)‖s,r,a

|ξ − η|
(2.20)

and we set

Vλ
s,r,a := Vλ

s,r,a,O := {
X : D(s, r) × O → V : ‖X‖λ

s,r,a < ∞ }
.

Similarly, we denote by Vs,r,a the linear space of vector fields with ‖X‖s,r,a < ∞.
Note that, if X is independent of ξ , then ‖X‖λ

s,r,a = ‖X‖s,r,a,∀λ.
It is easy to check that the ‖ · ‖λ

s,r,a norm behaves well under projections (2.12):

Lemma 2.2. (Projection) ∀I ⊂ I × V we have ‖�I X‖s,r,a � ‖X‖s,r,a and

‖�I X‖lip
s,r,a � ‖X‖lip

s,r,a.

Important particular cases are the “ultraviolet” projection

(�|k|�K X)(v) :=
∑

|k|�K ,i,α,β

X (v)
k,i,α,β eik·x yi zα z̄β∂v, �|k|<K := Id − �|k|�K

(2.21)
and the “high momentum” projection

(�|π |�K X)(v) :=
∑

|π(k,α,β;v)|�K

X (v)
k,i,α,β eik·x yi zα z̄β∂v, �|π |<K := Id−�|π |�K .

(2.22)
By (2.19) the following smoothing estimates follow:

Lemma 2.3. (Smoothing) ∀K � 1 and λ � 0

‖�|k|�K X‖λ
s′,r,a � s

s′ e−K (s−s′)‖X‖λ
s,r,a, ∀ 0 < s′ < s (2.23)

‖�|π |�K X‖λ
s,r,a′ � e−K (a−a′)‖X‖λ

s,r,a, ∀ 0 � a′ � a. (2.24)

The space of analytic vector fields with finitea-momentum majorant norm form
a Lie algebra.

Proposition 2.1. (Commutator) Let X, Y ∈ Vλ
s,r,a. Then, for λ � 0, r/2 � r ′ <

r, s/2 � s′ < s,

‖[X, Y ]‖λ
s′,r ′,a � 22n+3δ−1‖X‖λ

s,r,a‖Y‖λ
s,r,a where δ := min

{
1 − s′

s
, 1 − r ′

r

}
.

(2.25)
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Proof. We say that a vector field X has momentum π(X) = h if it is an absolutely
convergent series of monomial vector fields of momentum h. It results that, if X, Y
have momentum π(X), π(Y ), respectively, then π([X, Y ]) = π(X) + π(Y ). Then
the proof of ‖[X, Y ]‖s′,r ′,a � 22n+3δ−1‖X‖s,r,a‖Y‖s,r,a follows as in [3, Lemma
2.15]. The Lipschitz estimate follows as usual. �


2.2. Degree Decomposition

The degree of the monomial vector field mk,i,α,β;v is defined as

d(mk,i,α,β;v) := |i | + |α| + |β| − d(v) where d(v) :=
{

0 if v ∈ {x1, . . . , xn}
1 otherwise,

in particular d(∂x ) = 0, d(∂y) = d(∂z j ) = d(∂z̄ j ) = −1. This notion naturally
extends to any vector field by monomial decomposition: we say that a vector field
has degree h if it is an absolutely convergent series of monomial vector fields of
degree h.

The degree d gives to the vector fields the structure of a graded Lie algebra:
given two vector fields X, Y of degree respectively d(X) and d(Y ), then

d([X, Y ]) = d(X) + d(Y ). (2.26)

For a vector field X as in (2.11) we define the homogeneous component of degree
l ∈ N,

X (l) := �(l) X :=
∑

|i |+|α|+|β|−d(v)=l

X (v)
k,i,α,β eik·x yi zα z̄β∂v (2.27)

and we set
X�0 := X (−1) + X (0). (2.28)

Definition 2.4. We denote by R�0 the vector fields with degree � 0. Using the
compact notation u := (y, z, z̄) = (y, z+, z−), a vector field in R�0 writes

R = R�0 = R(−1) + R(0), R(−1) = Ru(x)∂u, R(0) = Rx (x)∂x + Ru,u(x)u ∂u,

(2.29)
where Rx (x) ∈ C

n, Ru ∈ C
n × �

a,p
I × �

a,p
I , Ru,u(x) ∈ L(Cn × �

a,p
I × �

a,p
I ).

In more extended notation

Ru(x)∂u = Ry(x)∂y + Rz(x)∂z + Rz̄(x)∂z̄

Ru,u(x)u∂u =
(

Ry,y(x)y + Ry,z(x)z + Ry,z̄(x)z̄
)

∂y

+
(

Rz,y(x)y + Rz,z(x)z + Rz,z̄(x)z̄
)

∂z

+
(

Rz̄,y(x)y + Rz̄,z(x)z + Rz̄,z̄(x)z̄
)

∂z̄ . (2.30)

The terms of the vector field that we want to eliminate (or normalize) along the
KAM iteration are those in R�0. The graded Lie algebra property (2.26) implies
that R�0 is closed by Lie bracket:

Lemma 2.4. If X, Y ∈ R�0 then [X, Y ] ∈ R�0.
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2.3. Reversible, Real-Coefficients, Real-on-real, Even, Vector Fields

We first define the class of reversible/anti-reversible vector fields (this concept
was efficiently used in [6] for finding Birkhoff–Lewis periodic solutions of NLW).

Definition 2.5. (Reversibility) A vector field X as in (2.6) is reversible with re-
spect to an involution S (namely S2 = I ) if X ◦ S = −S ◦ X . A vector field Y is
anti-reversible if Y ◦ S = S ◦ Y .

When the set I is symmetric as in (1.29) and S is the involution in (1.32), a
vector field X is reversible if its coefficients (see (2.8)) satisfy

X (v)
k,i,α,β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X (v̂)

−k̂,ı̂,β̂,α̂
if v = x j , j ∈ I,

−X (v̂)

−k̂,ı̂,β̂,α̂
if v = y j , j ∈ I,

−X
(z−σ

− j )

−k̂,ı̂,β̂,α̂
if v = zσ

j , j ∈ Z \ I

(2.31)

where

k̂ := (k− j ) j∈I , ı̂ := (i− j ) j∈I , β̂ := (β− j ) j∈Z\I , α̂ := (α− j ) j∈Z\I ,

v̂ := (v− j ) j∈Z. (2.32)

Definition 2.6. A vector field X = X (x)∂x + X (y)∂y + X (z+)∂z+ + X (z−)∂z− is

• “real-coefficients” if the Taylor–Fourier coefficients of X (x), iX (y), iX (z+),

iX (z−) are real,
• “anti-real-coefficients” if iX is real-coefficients,
• “real-on-real” if

X (x)(v) = X (x)(v), X (y)(v) = X (y)(v), X (z−)(v) = X (z+)(v), ∀v∈R(s, r),

where R(s, r) is defined in (2.5),
• “even” if X : E → E (see (1.33)).

On the coefficients in (2.8) the real-on-real condition amounts to

X (v)
k,i,α,β =

⎧
⎨

⎩

X (v)
−k,i,β,α if v ∈ {x1, . . . , xn, y1, . . . , yn}

X
(z−σ

j )

−k,i,β,α if v = zσ
j ,

(2.33)

and the reversibility in space condition to

X (v)
k,i,α,β = X (v̂)

k̂,ı̂,α̂,β̂
(see (2.32)). (2.34)

Definition 2.7. We denote by

• Rrev the vector fields which are reversible, real-coefficients, real-on-real and
even.

• Ra−rev the vector fields which are anti-reversible, anti-real-coefficients, real-
on-real and even.
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• R�0
rev := Rrev ∩ R�0 and R�0

a−rev := Ra−rev ∩ R�0.

If the vector field X is reversible and Y is anti-reversible then [X, Y ] and
eadY X (recall (2.14)) are reversible. If X , resp. Y , is real-coefficients, resp. anti-
real-coefficients, then [X, Y ], eadY X are real-coefficients. If X, Y are real-on-real,
then [X, Y ], eadY X are real-on-real. If X, Y are even then [X, Y ], eadY X are even.
Therefore we get

Lemma 2.5. If X ∈ Rrev and Y ∈ Ra−rev then [X, Y ], eadY X ∈ Rrev.

By (2.27), (2.28) and (2.34) we immediately get (the space E was defined in
(1.33))

X |E ≡ 0 �⇒ (X�0)|E ≡ 0. (2.35)

Lemma 2.6. If X |E ≡ 0 and Y is even then ([X, Y ])|E ≡ 0, (eadY X)|E ≡ 0.

3. Quasi-Töplitz Vector Fields

Let N0 ∈ N, θ, μ ∈ R be parameters such that

1 < θ,μ < 6, 12N L−1
0 + 2κ N b−1

0 < 1, κ := max
1�l�n

|jl | (κ := 0 if I := ∅),

(3.1)
where I := {j1, . . . ,jn}, see (2.15), and with the three scales

0 < b < L < 1, (3.2)

see comments before Definition 3.2. In the following we will always take N � N0.

Definition 3.1. A scalar monomial m(k, i, α, β) = eik·x yi zα z̄β is (N , μ)-low
momentum if

|k| < N b, α + β = γ with
∑

l∈Z\I |l|γl < μN L . (3.3)

An (N , μ)-low momentum scalar monomial is (N , μ, h)-low if

|π(k, α, β) − h| < N b. (3.4)

We denote by AL
s,r,a(N , μ), respectively AL

s,r,a(N , μ, h), the closure of the vector
space generated by (N , μ)-low, resp. (N , μ, h)-low, scalar monomials in the norm
‖ ‖s,r,a in Definition 2.3.
The projection on AL

s,r,a(N , μ, h) will be denoted by �
L ,h
N ,μ. Note that it is a pro-

jection (see (2.12)) on the subset of indexes I ⊂ I satisfying (3.3) and (3.4).
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Clearly, the momentum (2.17) of a scalar monomial m(k, i, α, β), which is
(N , μ)-low momentum, satisfies |π(k, α, β)| � κ N b+μN L , by (3.1), (3.3). Hence
a scalar monomial m(k, i, α, β) may be (N , μ, h)-low only if

|h| < |π(k, α, β)| + N b < μN L + (κ + 1)N b (3.1)
< N . (3.5)

In particular
AL

s,r,a(N , μ, h) = ∅, ∀ |h| � N . (3.6)

We now define the class of (N , θ, μ)-linear vector fields. They are linear
combinations of monomial vector fields supported only on the high components
∂z±

m
, |m| > θ N , which are linear in the high variables zn, |n| > θ N , and with

polynomial coefficients in the low variables of degree bounded by μN L , L < 1.
We allow a mild dependence of the coefficients on the low variables because it is
naturally generated by commutators. Finally the momentum and the frequency of
each (N , θ, μ)-linear monomial vector field is bounded by N b with b < L . Since
b < 1 these vector fields are approximately x-independent (|k| < N b) and diagonal
(|π | < N b). The three scales 0 < b < L < 1 are “low-high” frequency decom-
position which almost decouples the interaction between the low variables and the
high modes, and it is used in an essential way in the commutator Proposition 3.1.
We denote by en the multi-index with the n-th component equal to 1 and with all
the others equal to zero.

Definition 3.2. A vector field monomial m(k, i, α, β; v) is

• (N , μ)-low if

|π(k, α, β; v)|, |k| < N b, α + β = γ with
∑

l∈Z\I |l|γl < μN L . (3.7)

• (N , θ, μ)-linear if

v = zσ
m, |π(k, α, β; v)|, |k| < N b, α + β = en + γ with |m|, |n| > θ N ,

∑

l∈Z\I
|l|γl < μN L . (3.8)

We denote by VL
s,r,a(N , μ), respectively Ls,r,a(N , θ, μ), the closure in the norm

‖ ‖s,r,a of the vector space generated by the (N , μ)-low, respectively (N , θ, μ)-
linear, monomial vector fields. The elements of VL

s,r,a(N , μ), resp. Ls,r,a(N , θ, μ),
are called (N , μ)-low, resp. (N , θ, μ)-linear, vector fields.

The projections on VL
s,r,a(N , μ), resp. Ls,r,a(N , θ, μ), are denoted by �L

N ,μ,

resp. �N ,θ,μ. Explicitly �L
N ,μ and �N ,θ,μ are the projections (see (2.12)) on the

subsets of indexes I ⊂ I × V satisfying (3.7) and (3.8) respectively.

By (3.8) and (3.3), a (N , θ, μ)-linear vector field X has the form

X (v) =
∑

|m|,|n|>θ N ,σ,σ ′=±
Xσ,m

σ ′,n(v)zσ ′
n ∂zσ

m
where Xσ,m

σ ′,n ∈ AL
s,r,a(N , μ, σm−σ ′n).

(3.9)
By Definition 3.1 and (3.1), the coefficients Xσ,m

σ ′,n(v) in (3.9) do not depend on

z j , z̄ j with | j | � 6N L .
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Lemma 3.1. Let X ∈ Ls,r,a(N , θ, μ). Then the coefficients in (3.9) satisfy

Xσ,m
σ ′,n = 0 if σs(m) = −σ ′s(n) (3.10)

where s(m) := sign(m).

Proof. By (3.6) and |σm − σ ′n| (3.10)= |m| + |n|
(3.8)
� 2θ N

(3.1)
> N we get AL

s,r,a
(N , μ, σm − σ ′n) = ∅. �


Lemma 3.2. Let mk,i,α,β be a scalar monomial (see (2.10)) such that

α + β =: γ with
∑

l∈Z\I |l|γl < 12N L . (3.11)

Then

�N ,θ,μ

(
mk,i,α,β zσ ′

n ∂zσ
m

)
=
{(

�
L ,σm−σ ′n
N ,μ (mk,i,α,β)

)
zσ ′

n ∂zσ
m

if |m|, |n|>θ N

0 otherwise.

Proof. It directly follows by (3.1), (3.4) and (3.8). �


3.1. Töplitz Vector Fields

We define the subclass of (N , θ, μ)-linear vector fields which are Töplitz.

Definition 3.3. (Töplitz vector field) A (N , θ, μ)-linear vector field X ∈ Ls,r,a

(N , θ, μ) is (N , θ, μ)-Töplitz if the coefficients in (3.9) have the form

Xσ,m
σ ′,n = Xσ

σ ′
(
s(m), σm − σ ′n

)
for some Xσ

σ ′(ς, h) ∈ AL
s,r,a(N , μ, h) (3.12)

and ς ∈ {+,−}, h ∈ Z. We denote by Ts,r,a(N , θ, μ) the space of the (N , θ, μ)-
Töplitz vector fields.

The next lemma is used in the proof of Proposition 3.1.

Lemma 3.3. Let X, Y ∈ Ts,r,a(N , θ, μ) and W ∈ VL
s,r,a(N , μ1) with 1 < μ,μ1 <

6. For all 0 < s′ < s, 0 < r ′ < r and θ ′ � θ, μ′ � μ one has

�N ,θ ′,μ′ [X, W ] ∈ Ts′,r ′,a(N , θ ′, μ′). (3.13)

If moreover

μN L + (κ + 1)N b < (θ ′ − θ)N (3.14)

then

�N ,θ ′,μ′ [X, Y ] ∈ Ts′,r ′,a(N , θ ′, μ′). (3.15)
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Proof of (3.13). By definition (recall (3.8)) we have that X (x), X (y) and X (zσ
m )

vanish if |m| � θ N . Arguing as in (3.5) we have that W zσ
j = 0 if | j | � μ1 N L +

(κ + 1)N b. Note that only the components [X, W ](v) with v = zσ
m and |m| > θ N

contribute to �N ,θ ′,μ′ [X, W ]. Noting that θ N > μ1 N L + (κ + 1)N b (by (3.1) and
N � N0) we have

[X, W ](zσ
m ) = ∂x X (zσ

m )W (x) + ∂y X (zσ
m )W (y) +

∑

σ1,| j |<μ1 N L+κ N b

∂z
σ1
j

X (zσ
m )W (z

σ1
j )

.

(3.16)
By (3.9) and (3.12) we get X (zσ

m ) = ∑
σ ′,|n|>θ N Xσ

σ ′(s(m), σm − σ ′n)zσ ′
n . Let

us consider the first term of the right hand side of (3.16). Since Xσ
σ ′(s(m), σm −

σ ′n), W (xl ) ∈ AL
s,r,a(N , μ) (recall (3.12)), all the monomials in ∂x Xσ

σ ′(s(m), σm−
σ ′n)W (x) satisfy (3.11). By Lemma 3.2 we have

�N ,θ ′,μ′
(
∂x X (zσ

m )W (x)∂zσ
m

)
=
{∑

σ ′,|n|>θ ′ N Uσ,m
σ ′,n zσ ′

n ∂zσ
m
, if |m| > θ ′N

0 otherwise,

where Uσ,m
σ ′,n := �

L ,σm−σ ′n
N ,μ′

(
∂x Xσ

σ ′(s(m), σm − σ ′n)W (x)
)

.

It is immediate to see that Uσ,m
σ ′,n satisfy (3.12). The other terms in (3.16) are anal-

ogous. (3.13) follows.

Proof of (3.15). We have by (2.13)

[X, Y ] =: Z − Z ′, where Z :=
∑

σ,|m|>θ N

⎛

⎝
∑

σ1,| j |>θ N

∂z
σ1
j

X (zσ
m )Y (z

σ1
j )

⎞

⎠ ∂zσ
m

(3.17)
and Z ′ is analogous exchanging the role of X and Y . We have to prove that
�N ,θ ′,μ′ Z ∈ Ts′,r ′,a(N , θ ′, μ′). By (3.9) and (3.12) we get

Z (zσ
m ) =

∑

σ1,| j |>θ N

∑

σ ′,|n|>θ N

Xσ
σ1

(s(m), σm − σ1 j)Y σ1
σ ′ (s( j), σ1 j − σ ′n)zσ ′

n .

Since both Xσ
σ1

(s(m), σm−σ1 j) and Y σ1
σ ′ (s( j), σ1 j −σ ′n) belong to AL

s,r,a(N , μ)

(recall (3.12)), all the monomials in their product satisfy (3.11). By Lemma 3.2 we
get

�N ,θ ′,μ′ Z =
∑

σ,σ ′,|m|,|n|>θ ′ N
Zσ,m

σ ′,n zσ ′
n ∂zσ

m

where

Zσ,m
σ ′,n := �

L ,σm−σ ′n
N ,μ′

⎛

⎝
∑

σ1,| j |>θ N

Xσ
σ1

(s(m), σm − σ1 j)Y σ1
σ ′ (s( j), σ1 j − σ ′n)

⎞

⎠ .

(3.18)
Note that Xσ,σ1(s(m), σm − σ1 j) ∈ AL(N , μ, σm − σ1 j), formula (3.5) and
condition (3.14) imply that if |m| > θ ′N then automatically | j | > |m| − |σm −
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σ1 j | > θ ′N − μN L − (κ + 1)N b > θ N or Xσ,σ1(s(m), σm − σ1 j) = 0. Then
the summation in (3.18) runs over j ∈ Z. By (3.10) we have s( j) = σσ1s(m).
Therefore

Zσ,m
σ ′,n := �

L ,σm−σ ′n
N ,μ′

(∑

σ1,h
Xσ

σ1
(s(m), h)Y σ1

σ ′ (σσ1s(m), σm − σ ′n − h)
)

satisfying (3.12). �


3.2. Quasi-Töplitz Vector Fields

Given a vector field X and a Töplitz vector X̃ ∈ Ts,r,a(N , θ, μ) we define

X̂ := N (�N ,θ,μ X − X̃). (3.19)

Definition 3.4. (Quasi-Töplitz) A vector field X ∈ Vs,r,a is called (N0, θ, μ)-quasi-
Töplitz if the quasi-Töplitz norm

‖X‖T
s,r,a := ‖X‖T

s,r,a,N0,θ,μ

:= sup
N�N0

[

inf
X̃∈Ts,r,a(N ,θ,μ)

(
max{‖X‖s,r,a, ‖X̃‖s,r,a, ‖X̂‖s,r,a}

)
]

(3.20)

is finite. We define

QT
s,r,a(N0, θ, μ) :=

{
X : D(s, r) → V : ‖X‖T

s,r,a,N0,θ,μ < ∞
}

.

In other words, a vector field X is (N0, θ, μ)-quasi-Töplitz with norm ‖X‖T
s,r,a

if, for all N � N0,∀ε > 0, there is X̃ ∈ Ts,r,a(N , θ, μ) such that

�N ,θ,μ X = X̃ + N−1 X̂ and ‖X‖s,r,a, ‖X̃‖s,r,a, ‖X̂‖s,r,a � ‖X‖T
s,r,a + ε.

(3.21)
We call X̃ ∈ Ts,r,a(N , θ, μ) a “Töplitz approximation” of X and X̂ the “Töplitz-
defect”.

If s′ � s, r ′ � r,a′ � a, N ′
0 � N0, θ

′ � θ, μ′ � μ then

‖ · ‖T
s′,r ′,a′,N ′

0,θ
′,μ′ � max{s/s′, (r/r ′)2}‖ · ‖T

s,r,a,N0,θ,μ. (3.22)

Lemma 3.4. (Projections 1) Consider a subset of indices I ⊂ I × V (see (2.9),
(2.3)) such that the projection (see (2.12))

�I : Ts,r,a(N , θ, μ) → Ts,r,a(N , θ, μ), ∀N � N0. (3.23)

Then �I : QT
s,r,a(N0, θ, μ) → QT

s,r,a(N0, θ, μ) and

‖�I X‖T
s,r,a � ‖X‖T

s,r,a. (3.24)

Moreover, if X ∈ QT
s,r,a(N0, θ, μ) satisfies �I X = X, then, ∀N � N0,∀ε > 0,

there exists a decomposition �N ,θ,μ X = X̃ + N−1 X̂ with a Töplitz approximation
X̃ ∈ Ts,r,a(N , θ, μ) satisfying �I X̃ = X̃ ,�I X̂ = X̂ and ‖X̃‖s,r,a, ‖X̂‖s,r,a <

‖X‖T
s,r,a + ε.
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Proof. By (3.21) (recall that �N ,θ,μ is a projection on an index subset, see Defin-
ition 3.2)

�N ,θ,μ�I X = �I �N ,θ,μ X = �I X̃ + N−1�I X̂ . (3.25)

Assumption (3.23) implies that �I X̃ ∈ Ts,r,a(N , θ, μ) and so �I X̃ is a Tö-
plitz approximation for �I X . Hence (3.24) follows by ‖�I X‖s,r,a, ‖�I X̃‖s,r,a,

‖�I X̂‖s,r,a < ‖X‖T
s,r,a + ε using Lemma 2.2 and (3.21). Now, if �I X = X , then

(3.25) shows that �I X̃ (which satisfies �I (�I X̃) = �I X̃ ), is a Töplitz approxi-
mation for X . �


For a vector field X : D(s, r) → V depending on parameters ξ ∈ O, we define
the norm

‖X‖T
�p := max

{

sup
ξ∈O

‖X (·; ξ)‖T
s,r,a,N0,θ,μ, ‖X‖λ

s,r,a,O

}

(3.26)

where, for brevity,
�p := (s, r,a, N0, θ, μ, λ,O). (3.27)

We denote

QT
�p :=

{
X ∈ Vλ

s,r,a,O : X (·; ξ) ∈ QT
s,r,a(N0, θ, μ), ∀ξ ∈ O and ‖X‖T

�p < ∞
}

.

(3.28)
In view of the KAM step we prove that the quasi-Töplitz norm does not in-

crease under suitable projections and that it satisfies smoothing estimates. We de-
note by �diag the projection on the space generated by the monomial vector fields
z j∂z j , z̄ j∂z̄ j .

Lemma 3.5. (Projections 2) For all l ∈ N, K ∈ N, N � N0, the projections (see
(2.27), (2.21), (2.22)) map

�(l),�|k|<K ,�|π |<K ,�diag : Ts,r,a(N , θ, μ) → Ts,r,a(N , θ, μ). (3.29)

If X ∈ QT
�p then

‖�(l) X‖T
�p , ‖�|π |<K X‖T

�p , ‖�diag X‖T
�p , ‖X�0‖T

�p , ‖X − X
�0
|k|<K ‖T

�p � ‖X‖T
�p .

(3.30)
Moreover, ∀ 0 < s′ < s and ∀0 < a′ < a, setting �p′ = (s′, r,a′, N0, θ, μ, λ,O) :

‖�|k|�K X‖T
�p′ �e−K (s−s′)(s/s′)‖X‖T

�p , ‖�|π |�K X‖T
�p′ �e−K (a−a′)‖X‖T

�p . (3.31)

Proof. We prove (3.29) for �|π |<K ; the others are analogous. Since X̃ ∈ Ts,r,a

(N , θ, μ) then X̃(v) = ∑
σ,σ ′,|m|,|n|>θ N X̃σ,m

σ ′,n(v)zσ ′
n ∂zσ

m
for some X̃σ,m

σ ′,n satisfying
(3.12). Then

(
�|π |<K X̃

)
(v) =

∑

σ,σ ′,|m|,|n|>θ N

Y σ,m
σ ′,n(v)zσ ′

n ∂zσ
m

where Y σ,m
σ ′,n

:= �|π+σ ′n−σm|<K X̃σ,m
σ ′,n

(recall Definition 3.1). Therefore Y σ,m
σ ′,n satisfy (3.12) and�|π |<K X̃∈Ts,r,a(N , θ, μ).

The estimates (3.30) follow from (3.29) and Lemma 3.4 (in particular (3.24)). The
bounds (3.31) follow by (2.23), (2.24) and similar arguments. �
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The following proposition shows that the quasi-Töplitz vector fields satisfy
modulating the parameters slightly the Lie algebra property.

Proposition 3.1. (Lie bracket) Assume that X (1), X (2) ∈ QT
�p (see (3.28)) and as-

sume that �p1 := (s1, r1,a1, N1, θ1, μ1, λ,O) with N1 � N0, μ1 � μ, θ1 �
θ, s/2 � s1 < s, r/2 � r1 < r,a1 < a, satisfy

(κ + 1)N b−L
1 < μ − μ1, μ1 N L−1

1 + (κ + 1)N b−1
1 < θ1 − θ, (3.32)

2N1e−N b
1 min{a−a1,s−s1}/2 < 1, b min{a− a1, s − s1}N b

1 > 2. (3.33)

Then [X (1), X (2)] ∈ QT
�p1

and, for some C(n) � 1,

‖[X (1), X (2)]‖T
�p1

� C(n)δ−1‖X (1)‖T
�p ‖X (2)‖T

�p , δ := min
{

1 − s1

s
, 1 − r1

r

}
.

(3.34)

The main point in the proof of the above proposition is the following purely algebraic
result.

Lemma 3.6. (Splitting lemma) Let X (1), X (2) ∈ Vs,r,a and (3.32) hold. Then, for
all N � N1,

�N ,θ1,μ1 [X (1), X (2)] =
�N ,θ1,μ1

([
�N ,θ,μ X (1),�N ,θ,μ X (2)

]
+
[
�N ,θ,μ X (1),�L

N ,μ X (2)
]

+
[
�L

N ,μ X (1),�N ,θ,μ X (2)
]

+
[
�|k|�N bor|π |�N b X (1), X (2)

]
(3.35)

+
[
�|k|,|π |<N b X (1),�|k|�N bor|π |�N b X (2)

])
. (3.36)

Then the proof of Proposition 3.1 follows as in [3] (see Proposition 3.1). The
point is to find a Töplitz approximation and a Töplitz defect of �N ,θ1,μ1 [X (1), X (2)],
recall (3.21). A Töplitz approximation is obtained by (3.35) substituting�N ,θ,μ X (i),

i = 1, 2, with their Töplitz approximations, thus yielding a vector field which is
Töplitz by Lemma 3.3. The remaining terms in (3.35) are Töplitz defects. They are
small because they contain commutators with the Töplitz defects of �N ,θ,μ X (i).
The last terms (3.36) are exponentially small by (3.33) and (3.31). The momentum-
norms of the commutators are estimated by Proposition 2.1.

Proof of Lemma 3.6. We have

[X (1), X (2)] = [�|k|,|π |<N b X (1),�|k|,|π |<N b X (2)] + [�|k|�N bor|π |�N b X (1), X (2)]
+[�|k|,|π |<N b X (1),�|k|�N bor|π |�N b X (2)]. (3.37)

The last two terms are (3.36). We now prove that the right hand side of (3.37) gives
the three terms in (3.35). It is sufficient to study the case where X (h), h = 1, 2, are
monomial vector fields

mh = mk(h),i (h),α(h),β(h);v(h) (see (2.10)) with |k(h)|, |π(mh)| < N b, h = 1, 2,

(3.38)
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and analyze the conditions under which the projection �N ,θ1,μ1 [m1,m2] is not
zero.

By the formula of the commutator (2.13) and the definition of the projection
�N ,θ1,μ1 (see Definition 3.2, in particular (3.8)) we have to compute (Dvm

v′
1 )[mv

2]
only for v′ = zσ

m with |m| > θ1 N and v ∈ V, see (2.3).

• case 1: v = xi or v = yi . By (3.8), in order to have a non trivial projection

�N ,θ1,μ1(Dvm
zσ

m
1 )[mv

2] it must be

α(1) +β(1) +α(2) +β(2) = en +γ, |n| > θ1 N ,
∑

l∈Z\I |l|γl < μ1 N L . (3.39)

We claim that

α(1)+β(1) = en+γ (1), α(2)+β(2) = γ (2),
∑

l∈Z\I |l|γ (h)
l < μ1 N L , h = 1, 2,

(3.40)
which implies that m1 is (N , θ1, μ1)-linear (see (3.8)), hence (N , θ, μ)-linear,
and m2 is (N , μ1)-low (see (3.7)), hence (N , μ)-low. Thus �N ,θ,μm1 = m1 and
�L

N ,μm2 = m2 and we obtain the second (and third by commuting indices) term
in the right hand side of (3.35). By (3.39), the other possibility instead of (3.40) is

α(1)+β(1) = γ̃ (1), α(2)+β(2) = en+γ̃ (2),
∑

l∈Z\I |l|γ̃ (h)
l < μ1 N L , h = 1, 2.

(3.41)
In such a case, since |π(m2)| < N b we get (recall m2 = mv

2 with v = x, y)

N b > |π(k(2), α(2), β(2))|
(2.16),(3.41)

� |n| −
∑

l∈Z\I
|l|γ̃ (2)

l

−κ|k(2)|
(3.39),(3.41),(3.38)

� θ1 N − μ1 N L − κ N b

which contradicts (3.1).

• case 2: v = zσ1
j , j ∈ Z \ I, only for this case we use (3.32). In order to have a

non trivial projection �N ,θ1,μ1(Dvm
zσ

m
1 )[mv

2], it must be

α(1) + β(1) + α(2) + β(2) − e j = en + γ, |n| > θ1 N ,
∑

l∈Z\I |l|γl < μ1 N L .

(3.42)
We have the two following possible cases:

α(1) + β(1) = e j + en + γ (1), α(2) + β(2) = γ (2),
∑

l∈Z\I |l|γ (h)
l < μ1 N L , h = 1, 2 (3.43)

α(1) + β(1) = e j + γ̃ (1), α(2) + β(2) = en + γ̃ (2),
∑

l∈Z\I |l|γ̃ (h)
l < μ1 N L , h = 1, 2 (3.44)
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where γ (1) + γ (2) = γ̃ (1) + γ̃ (2) = γ . Note that, since we differentiate m1 with
respect to v = zσ1

j , the monomial m1 must depend on zσ1
j and so the following case

does not arise:

α(1) + β(1) = γ̃ (1), α(2) + β(2) = e j + en + γ̃ (2),
∑

l∈Z\I |l|γ̃ (h)
l < μ1 N L , h = 1, 2.

In the case (3.43), the monomialm2 is (N , μ)-low and we claim that m1 is (N , θ, μ)-
linear. Indeed, since

|π(m2)| (2.16)= |π(k(2), α(2), β(2)) − σ1 j | < N b (3.45)

we get | j | � |π(k(2), α(2), β(2))| + N b. Hence

| j | +
∑

l
γ

(1)
l |l| � |π(k(2), α(2), β(2))| + N b +

∑

l
γ

(1)
l |l| � κ|k(2)|

+
∑

l
γl |l| + N b

(3.38),(3.42)
� (κ + 1)N b + μ1 N L

(3.32)
� μN L ,

namely m1 is (N , θ, μ)-linear (see (3.8) with γ = e j + γ (1)). Hence �N ,θ,μm1 =
m1 and �L

N ,μm2 = m2 and we obtain the second term (and third by commuting
indices) on the right hand side of (3.35).

In the case (3.44) we claim that both m1,m2 are (N , θ, μ)-linear so we obtain
the first term on the right hand side of (3.35). Since, by (3.42), |n| > θ1 N > θ N we
already know that m2 is (N , θ, μ)-linear. Finally, m1 is (N , θ, μ)-linear because

| j | (3.45)
> |π(k(2), α(2), β(2))|−N b

(2.16),(3.44)
� |n|−

∑

l∈Z\I |l|γ̃ (2)
l −κ|k(2)|−N b

(3.42),(3.44),(3.38)
> θ1 N−μ1 N L−(κ+1)N b (3.32)

> θ N

concluding the proof. �

The quasi-Töplitz character of a vector field is preserved under the flow of a

quasi-Töplitz vector field. As the corresponding Proposition 3.2 of [3], the proof is
an iteration of Proposition 3.1.

Proposition 3.2. (Lie series) Let X, Y ∈ QT
�p (see (3.28)). Assume �p′ := (s′, r ′,a′,

N ′
0, θ

′, μ′, λ,O) satisfies s/2 � s′ < s, r/2 � r ′ < r,a′ < a , μ′ < μ, θ ′ > θ ,
and

N ′
0 � max{N0, N̄ }, N̄ := exp

(
max

{
2/b, (L − b)−1, (1 − L)−1, 8

})
, (3.46)

(κ + 1)(N ′
0)

b−L ln N ′
0 � μ − μ′, (7 + κ)(N ′

0)
L−1 ln N ′

0 � θ ′ − θ, (3.47)

2(N ′
0)

−b ln2 N ′
0 � b min{s − s′,a− a′}. (3.48)
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There is c(n) > 0 such that, if the smallness condition

‖X‖T
�p � c(n) δ (3.49)

holds (with δ defined in (2.25)), then eadX Y ∈ QT
�p′ and

‖eadX Y‖T
�p′ � 2‖Y‖T

�p . (3.50)

Moreover, for h = 0, 1, 2, and coefficients 0 � b j � 1/j !, j ∈ N,

∥
∥
∥
∥
∑

j�h
b j ad j

X (Y )

∥
∥
∥
∥

T

�p′
� 2(Cδ−1‖X‖T

�p )h‖Y‖T
�p . (3.51)

4. An Abstract KAM Theorem

We consider a family of linear integrable vector fields with constant coefficients

N (ξ) := ω(ξ)∂x + i�(ξ)z∂z − i�(ξ)z̄∂z̄ (4.1)

defined on the phase space T
n
s ×C

n ×�
a,p
I ×�

a,p
I , where the tangential sites I ⊂ Z

are symmetric as in (1.29), the space �
a,p
I is defined in (2.1), the tangential fre-

quencies ω ∈ R
n and the normal frequencies � ∈ R

Z\I depend on real parameters
ξ ∈ O ⊂ R

n/2 (where n/2 = cardinality of I+, see (1.29)), and satisfy

ω j (ξ) = ω− j (ξ), ∀ j ∈ I , � j (ξ) = �− j (ξ), ∀ j ∈ Z \ I. (4.2)

For each ξ there is an invariant n-torus T0 = T
n × {0} × {0} × {0} with frequency

ω(ξ). In its normal space, the origin (z, z̄) = 0 is an elliptic fixed point with proper
frequencies �(ξ). The aim is to prove the persistence of a large portion of this
family of linearly stable tori under small perturbations

P(x, y, z, z̄; ξ) = P(x)∂x + P(y)∂y + P(z)∂z + P(z̄)∂z̄ . (4.3)

(A1) Parameter dependence. The map ω : O → R
n, ξ 	→ ω(ξ), is Lipschitz

continuous.

With the application to DNLW in mind we assume

(A2) Frequency asymptotics.

� j (ξ) = | j | + a(ξ) + b(ξ)| j |−1 + O( j−2) as | j | → +∞. (4.4)

Moreover the map (� j − | j |) j∈Z\I : O → �∞ is Lipschitz continuous.
By (A1) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for
some 1 � M0 < ∞,

|ω|lip + |�|lip∞ � M0 where |�|lip∞ := sup
ξ �=η∈O

|�(ξ) − �(η)|∞
|η − ξ | (4.5)

and |z|∞ := sup j∈Z\I |z j | < +∞.
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(A3) Regularity. The vector field P in (4.3) maps P : D(s, r) × O → C
n ×

C
n ×�

a,p
I ×�

a,p
I for some s, r > 0. Moreover P is reversible (Definition 2.5),

real-coefficients, real-on-real Even (Definition 2.6).

Finally, in order to obtain the asymptotic expansion for the perturbed frequen-
cies we also assume

(A4) Quasi-Töplitz. The perturbation vector field P is quasi-Töplitz, see Defini-
tion 3.4.
Recalling (4.3) and the notations in (2.30), (2.27), we define

P y(x)∂y := �(−1)P(y)∂y, P∗ := P − P y(x)∂y (4.6)

and we denote by P(−1)∗ ,P(0)∗ the terms of degree −1 and 0 respectively of P∗,
see (2.27). Let

�ω(ξ) := (ω j (ξ)) j∈I+ ∈ R
n/2, then ω = ( �ω, �ω) by (4.2). (4.7)

Theorem 4.1. (KAM theorem) Fix s, r,a > 0, 1 < θ,μ < 6, N0 � N̄ (defined
in (3.46)). Let γ ∈ (0, γ∗), where γ∗ = γ∗(n, s,a) < 1 is a (small) constant. Let
λ := γ /M0 (see (4.5)) and �p := (s, r,a, N0, θ, μ, λ,O). Suppose that the vector
field X = N + P satisfies (A1)-(A4). If

γ −1‖P∗‖T
�p � 1 and ε

:= max
{
γ −2/3‖P y(x)∂y‖λ

s,r,a,O, γ −1‖P(−1)∗ ‖T
�p , γ −1‖P(0)∗ ‖T

�p
}

(4.8)

is small enough, then

• (Frequencies) There exist Lipschitz functions ω∞ : R
n/2 → R

n,�∞ : R
n/2 →

�∞, a∞ : R
n/2 → R (recall thatO ⊂ R

n/2) such thatω∞ = ( �ω∞, �ω∞), �ω∞ :=
(ω∞

j ) j∈I+ ∈ R
n/2, and

|ω∞−ω|+λ|ω∞−ω|lip, |�∞−�|∞+λ|�∞−�|lip∞ � Cγ ε, |a∞| � Cγ ε,

(4.9)

ω∞
j (ξ) = ω∞− j (ξ), ∀ j ∈ I, �∞

j (ξ) = �∞− j (ξ), ∀ j ∈ Z \ I,

sup
ξ∈Rn/2

|�∞
j (ξ) − � j (ξ) − a∞(ξ)| � γ 2/3ε

C

| j | , ∀| j | � C�γ
−1/3. (4.10)

• (KAM normal form) for every ξ belonging to

O∞ :=
{
ξ ∈ O : ∀h ∈ Z

n/2, i, j ∈ Z \ I, p ∈ Z ,

| �ω∞(ξ) · h+�∞
j |�2γ 〈h〉−τ , | �ω∞(ξ) · h+�∞

i (ξ)+�∞
j (ξ)| � 2γ 〈h〉−τ ,

| �ω∞(ξ) · h − �∞
i (ξ) + �∞

j (ξ)| � 2γ 〈h〉−τ if h �= 0 or i �= ± j ,

| �ω∞(ξ) · h + p| � 2γ 2/3〈h〉−τ , if (h, p) �= (0, 0)

| �ω(ξ) · h| � 2γ 2/3〈h〉−n/2 , ∀ 0 < |h| < γ −1/(7n)
}

(4.11)
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there exists an even, analytic, close to the identity diffeomorphism

�(·; ξ) : D(s/4, r/4) � (x∞, y∞, z∞, z̄∞) 	→ (x, y, z, z̄) ∈ D(s, r) , (4.12)

(Lipschitz in ξ ) such that the transformed vector field

X∞ = N∞+P∞ := ��(·; ξ)X = (D�( ; ξ))−1X◦�( ; ξ) has

(
P�0

∞
)

|E
= 0 ,

(4.13)
see (2.28), (1.33). Moreover N∞ is a constant coefficients linear normal form
vector field as (4.1) with frequencies ω∞(ξ),�∞(ξ), and P∞ is reversible, real-
coefficients, real-on-real, even. Finally (X∞)|E = (SX∞)|E .

As a consequence we derive

Corollary 4.1. For all ξ ∈ O∞, the map T
n/2 � �x∞ 	→ �((�x∞, �x∞), 0, 0, 0; ξ) ∈

E is an n/2-dimensional analytic invariant torus of the vector field X = N +
P . Such a torus is linearly stable on E and, in particular, it has zero Lyapunov
exponents on E.

The set O∞ in (4.11) could be empty. In the next theorem we bound its measure.

Theorem 4.2. (Measure estimate) Let O := Oρ := {ξ := (ξ j ) j∈I+ ∈ R
n/2 : 0 <

ρ/2 � |ξ j | � ρ}. Assume that the frequencies are affine functions of ξ

�ω(ξ) = ω̄ + Aξ , ω̄ = (λ j ) j∈I+ ∈ R
n/2 , � j (ξ) = λ j + λ−1

j �a · ξ , ∀ j /∈ I ,

(4.14)
where A ∈ Mat(n/2 × n/2), det A �= 0, and �a ∈ R

n/2 are continuous functions in
m. Fix a compact interval of masses [m1, m2] ⊂ (0,∞) and take m ∈ [m1, m2]
such that

(λ−1
i ±λ−1

j )(AT )−1�a , λ−1
j (AT )−1�a /∈ Z

n/2 \ {0} , ∀i, j ∈ Z\I , |i |, | j | � C0 ,

(4.15)
for a suitably large constant C0 := C0(m1, m2, A, �a, ω̄). Then the Cantor - like
set O∞ defined in (4.11), with exponent τ > max{n + 3, 1/b} (b is fixed in (3.2)),
satisfies, for ρ ∈ (0, ρ0(m)) small,

|O \ O∞| � C(τ )ρ
n
2 −1γ 2/3 . (4.16)

The proof of Theorem 4.2 is similar to that of the analogous Theorem 4.2 of [3].
The specific form � j (ξ) in (4.14) is motivated by application to the DNLW, see
(7.21). Clearly (4.14) implies (4.4). The asymptotic estimate (4.10) is the key point
in order to prove (4.16) (in particular for the second order Melnikov conditions at
the third line of (4.11)). At the end of Section 6 we explain how the finitely many
conditions in (4.15) are used to estimate the measure

|{ξ ∈ O : | �ω∞(ξ) · h + �∞
i (ξ) − �∞

j (ξ)| < γ 〈h〉−τ }| � γρ
n
2 −1〈h〉−τ ,

h �= 0 , i, j ∈ Z \ I. (4.17)

This is the main difference with respect to [3, Lemma 6.1].
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5. Homological Equations

The integers k ∈ Z
n have indexes in I (see (1.29)), namely k = (kh)h∈I .

In the sequel by a � b we mean that there exists c > 0 depending only on
n, m, κ such that a � cb.

Definition 5.1. (Normal form vector fields) The normal form vector fields are

N := ∂ω + Nu∂u = ∂ω + i�z∂z − i�z̄∂z̄ = ω(ξ) · ∂x

+i
∑

j∈Z\I
� j (ξ)z j∂z j − i

∑

j∈Z\I
� j (ξ)z̄ j∂z̄ j (5.1)

where the frequencies ω j (ξ),� j (ξ) ∈ R,∀ ξ ∈ O ⊆ R
n/2, are real and symmetric

Lipschitz functions

ω− j = ω j , ∀ j ∈ I , �− j = � j , ∀ j ∈ Z \ I , (5.2)

the matrix N is diagonal

N =
⎛

⎝
0n 0 0
0 i� 0
0 0 −i�

⎞

⎠ , � := diag j∈Z\I(� j ) , (5.3)

and there exists j∗ > 0 such that (recall (4.4))

sup
ξ∈O

∣
∣� j (ξ) − � j (ξ) − a(ξ)

∣
∣�

γ

| j | , ∀ | j | � j∗ , (5.4)

(see (4.4)) for some Lipschitz function a : O → R, independent of j .

Note that N ∈ R�0
rev , see Definition 2.7. The symmetry condition (5.2) implies

the resonance relations �− j − � j = 0 and ω · k = 0 for all k ∈ Z
n
odd defined in

(1.34).

5.1. Symmetrization

For a vector field X , we define its “symmetrized” S(X) by linearity on the
monomial vector fields:

Definition 5.2. The symmetrized monomial vector fields are defined by

S(eik·x∂x j ) := ∂x j , S(eik·x yi∂y j ) := yi∂y j , ∀k ∈ Z
n
odd , |i | = 0, 1, j ∈ I,

(5.5)

S(eik·x z± j∂z j ) := z j∂z j , S(eik·x z̄± j∂z̄ j ) := z̄ j∂z̄ j , ∀k ∈ Z
n
odd , j ∈ Z \ I,

(5.6)

and S is the identity on the other monomial vector fields.
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By (5.5)–(5.6) we write S X = X + X ′ + X ′′ where

X ′ :=
∑

k∈Z
n
odd, j∈Z\I X

(z j )

k,0,e j ,0
(1 − eik·x )z j∂z j + X

(z̄ j )

k,0,0,e j
(1 − eik·x )z̄ j∂z̄ j

(5.7)

and

X ′′ :=
∑

k∈Z
n
odd,k �=0, j∈I

X
(x j )

k,0,0,0(1 − eik·x )∂x j

+
∑

k∈Z
n
odd,k �=0, j∈I,|i |=0,1

X
(y j )

k,i,0,0(1 − eik·x )yi∂y j

+
∑

k∈Z
n
odd, j∈Z\I

X
(z j )

k,0,e− j ,0
(z j − eik·x z− j )∂z j + X

(z̄ j )

k,0,0,e− j
(z̄ j−eik·x z̄− j )∂z̄ j .

(5.8)

The “symmetric” subspace E defined in (1.33) is invariant under the flow evolution
generated by the vector field X , because X : E → E . Moreover the vector fields
X and S(X) coincide on E :

Proposition 5.1. X |E = (S X)|E .

As a consequence v(t) ∈ E is a solution of v̇ = X (v) if and only if it is a solution
of v̇ = (S X)(v), and we may replace the vector field X with its symmetrized S(X)

without changing the dynamics on the invariant subspace E . The following lemma
shows that both the a-momentum and Töplitz norms of the symmetrized vector
field S(X) are controlled by those of X .

Proposition 5.2. For N1 � N0 (defined in (3.1)) which satisfy

N1e−N b
1 min{s,a} � 1 , bN b

1 min{s,a} � 1 , (5.9)

the norms of the symmetrized vector field satisfy

(i) ‖S X‖s,r,a � ‖X‖s,r,a , (ii) ‖S X‖lip
s,r,a � ‖X‖lip

s,r,a,

(iii) ‖S X‖T
s,r,a,N1,θ,μ � 9‖X‖T

s,r,a,N1,θ,μ. (5.10)

Moreover, if X is reversible, or real-coefficients, or real-on-real, or even, the same
holds for S X.

Proof. In order to prove (5.10)-(i) we first note that the symmetrized monomial
vector fields ∂xh , yi∂xh , z j∂z j , z̄ j∂z̄ j in (5.5)–(5.6) have zero momentum and are
independent of x . Hence their contribution to the a-momentum norm (2.19) is
smaller or equal than the contribution of the (not yet symmetrized) monomials
eik·x∂x j , eik·x yi∂x j , eik·x z± j∂z j , eik·x z̄± j∂z̄ j of X . This proves (5.10)-(i).
Proof of the (5.10)-(ii). The estimate (5.10) follows by

(i) ‖X ′‖T
s,r,a � 6‖X‖T

s,r,a , (ii) ‖X ′′‖T
s,r,a � 2‖X‖T

s,r,a. (5.11)
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Proof of (5.11)-(i). We claim that, for N � N1, the projection �N ,θ,μ X ′ =
X̃ ′ + N−1 X̂ ′ with

X̃ ′ ∈ Ts,r,a , ‖X̃ ′‖s,r,a � 6‖X‖T
s,r,a , ‖X̂ ′‖s,r,a � 5‖X‖T

s,r,a , (5.12)

implying (5.11) (also because ‖X ′‖s,r,a � 2‖X‖s,r,a). In order to prove (5.12) we
write the (N , θ, μ)-projection as

�N ,θ,μ X ′ = U + U− + U⊥ + U−
⊥ (5.13)

where

U :=
∑

k∈KN ,| j |>θ N

X
(z j )

k,0,e j ,0
(1 − eik·x )z j∂z j ,

U− :=
∑

k∈KN ,| j |>θ N

X
(z̄ j )

k,0,0,e j
(1 − eik·x )z̄ j∂z̄ j ,

U⊥ :=
∑

| j |>θ N

⎛

⎝
∑

k∈Z
n
odd\KN

X
(z j )

k,0,e j ,0

⎞

⎠ z j∂z j ,

U−
⊥ :=

∑

| j |>θ N

⎛

⎝
∑

k∈Z
n
odd\KN

X
(z̄ j )

k,0,0,e j

⎞

⎠ z̄ j∂z̄ j ,

and KN := {k ∈ Z
n
odd , |π(k)|, |k| < N b}, π(k) := ∑

j∈I jk j . Then (5.11)
follows by Steps (1)–(2) below.

Step (1) The projection �N ,θ,μ(U +U−) = (Ũ + Ũ−)+ N−1(Û + Û−) with

Ũ , Ũ− ∈ Ts,r,a , ‖Ũ‖s,r,a, ‖Ũ−‖s,r,a � 6‖X‖T
s,r,a , ‖Û‖s,r,a,

‖Û−‖s,r,a � 6‖X‖T
s,r,a . (5.14)

Since X is quasi-Töplitz, Lemma 3.5 implies that the projection

�diag�
(0)X =

∑

k∈Zn , j∈Z\I
X

(z j )

k,0,e j ,0
eik·x z j∂z j +

∑

k∈Zn , j∈Z\I
X

(z̄ j )

k,0,0,e j
eik·x z̄ j∂z̄ j

=: W + W ′ (5.15)

is quasi-Töplitz as well and (‖ · ‖T
s,r,a is short for ‖ · ‖T

s,r,a,N1,θ,μ)

‖W‖T
s,r,a, ‖W ′‖T

s,r,a � ‖�diag�
(0) X‖T

s,r,a

(3.30)
� ‖X‖T

s,r,a .

By (3.29) we have �diag�
(0)Ts,r,a ⊂ Ts,r,a, hence Lemma 3.4 applied to W implies

that for every N � N1 there exist (N -dependent)

W̃ =
∑

|π(k)|,|k|<N b,| j |>θ N

W̃keik·x z j∂z j , Ŵ =
∑

|π(k)|,|k|<N b,| j |>θ N

Ŵk, j e
ik·x z j∂z j

(5.16)
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(note that W̃ is (N , θ, μ)-linear and Töplitz) with

�N ,θ,μW =
∑

|π(k)|,|k|<N b,| j |>θ N

X
(z j )

k,0,e j ,0
eik·x z j∂z j = W̃ + N−1Ŵ (5.17)

and ‖W̃‖s,r,a , ‖Ŵ‖s,r,a � 3
2‖W‖T

s,r,a � 3
2‖X‖T

s,r,a. By (5.13), (5.15), (5.16) and
(5.17) we have

U =
∑

k∈KN ,| j |>θ N

W̃k(1 − eik·x )z j∂z j + N−1
∑

k∈KN ,| j |>θ N

Ŵk, j (1 − eik·x )z j∂z j

=: Ũ + N−1Û .

Note that Ũ is Töplitz. Moreover

‖Û‖s,r,a

(2.19)
� sup

‖z‖a,p<r

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k∈KN

2ea|π(k)|es|k||Ŵk, j ||z j |
⎞

⎠

| j |>θ N

∥
∥
∥
∥
∥
∥

s,r

(5.16)
� 2‖Ŵ‖s,r,a � 3‖X‖T

s,r,a .

An analogous estimate holds true for Ũ . A similar decomposition holds for U− in
(5.13).

Step (2) N‖U⊥‖s,r,a , N‖U−
⊥ ‖s,r,a � ‖X‖s,r,a .

We have

‖U⊥‖s,r,a
(2.19)= sup

‖z‖a,p<r

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

k∈Z
n
odd\KN

X
(z j )

k,0,e j ,0

∣
∣
∣
∣
∣
∣
|z j |

⎞

⎠

| j |>θ N

∥
∥
∥
∥
∥
∥
∥

s,r

� sup
‖z‖a,p<r

∥
∥
∥
∥
∥
∥
∥

⎛

⎝e−N b min{s,a} ∑

|π(k)| or |k|�N b

ea|π(k)|+s|k||X (z j )

k,0,e j ,0
||z j |

⎞

⎠

| j |>θ N

∥
∥
∥
∥
∥
∥
∥

s,r

� e−N b min{s,a}‖X‖s,r,a

(5.9)
� N−1‖X‖s,r,a

and similarly for U⊥.
Proof of (5.11)-(ii). The estimate (5.11)-(ii) follows by

‖�N ,θ,μ X ′′‖s,r,a � 2N−1‖X‖s,r,a , ∀ N � N0 . (5.18)

In order to prove (5.18) we note that the momentum of eik·x z− j∂z j with |k| <

N b, | j | > θ N , N � N1 � N0, satisfies

|π(k, e− j , 0; z j )| =
∣
∣
∣
∑

h∈I
hkh − 2 j

∣
∣
∣ � 2| j |−κ|k| � 2θ N −κ N b (3.1)

> N > N b

(5.19)
(where κ := maxh∈I |h|, recall (3.1)). Then by (5.8) and (3.8) the projection
�N ,θ,μ X ′′ = V + V ′ with

V :=
∑

| j |>θ N

⎛

⎝
∑

k∈KN

X
(z j )

k,0,e− j ,0

⎞

⎠ z j∂z j , V ′ :=
∑

| j |>θ N

⎛

⎝
∑

k∈KN

X
(z̄ j )

k,0,0,e− j

⎞

⎠ z̄ j∂z̄ j .
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We have

‖V ‖s,r,a
(2.19)= sup

‖z‖a,p<r

∥
∥
∥
∥
∥
∥

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

k∈KN

X
(z j )

k,0,e− j ,0

∣
∣
∣
∣
∣
∣
|z j |

⎞

⎠

| j |>θ N

∥
∥
∥
∥
∥
∥

s,r

(5.19)
� sup

‖z‖a,p<r

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k∈KN

e−aN ea|π(k,e− j ,0;z j )||X (z j )

k,0,e− j ,0
||z− j |

⎞

⎠

| j |>θ N

∥
∥
∥
∥
∥
∥

s,r

� e−aN ‖X‖s,r,a

(5.9)
� N−1‖X‖s,r,a (5.20)

where in (5.20) we have used that the domain {‖z‖a,p < r} is invariant under the
map z j 	→ z− j . Since a similar estimate holds for V ′, (5.18) follows.

Finally, the vector field S X is even because S X |E = X |E (Proposition 5.1) and
X is even. Since X is real-coefficients, Definition 5.2 immediately implies that S X
is real-coefficients. Since X is reversible and real-on-real, (2.31) and (2.33) enable
to check that X ′, X ′′ in (5.7)–(5.8) are reversible and real-on-real, and so S X . �

Remark 5.1. The assumptions X ∈ Rrev, Y ∈ Ra−rev, X = S X, Y = SY are not
sufficient to imply [X, Y ] = S[X, Y ], as the example X = i(z−1∂z2 + z1∂z−2 −
z̄1∂z̄−2 − z̄−1∂z̄2), Y = z2∂z1 + z−2∂z−1 + z̄−2∂z̄−1 + z̄2∂z̄1 shows.

5.2. Homological Equations and Quasi-Töplitz Property

We consider the homological equation

adN F = R − [R] (5.21)

where

R ∈ R�0
rev (see Definition 2.7), R = S R (see Definition 5.2) (5.22)

and
[R] := 〈Rx 〉∂x +

∑

j∈Z\I〈Rz j z j 〉z j∂z j + 〈Rz̄ j z̄ j 〉z̄ j∂z̄ j , (5.23)

where 〈·〉 denotes the average with respect to the angles x . By Lemmata 2.4 and

2.5 and since N ∈ R�0
rev (see Definition 5.1), the action adN : R�0

a−rev → R�0
rev .

The commutator

adN F = [F,N ] =
{

(∂ω Fu − NFu) ∂u if F = F (−1)

∂ω F x∂x + (∂ω Fu,u + [Fu,u, N]) u∂u if F = F (0)

(5.24)
(recall the notations in (2.29)–(2.30)) where [Fu,u, N] = Fu,uN − NFu,u is the
usual commutator between matrices (and N is defined in (5.3)). We solve (5.21)
when

R = R(h)
K := �|k|<K �|π |<K R(h) , h = 0,−1 , K ∈ N (5.25)

(recall the projections (2.21), (2.22) and (2.27)).
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Definition 5.3. (Melnikov conditions) Let γ > 0. The frequencies ω(ξ) = ( �ω(ξ),

�ω(ξ)), �ω ∈ R
n/2,�(ξ) satisfy the Melnikov conditions (up to K > 0) at ξ ∈ R

n/2,

if: ∀ h ∈ Z
n/2, |h| < K , i, j ∈ Z \ I,

| �ω(ξ) · h| � γ 〈h〉−τ if h �= 0 , (5.26)

| �ω(ξ) · h + � j | � γ 〈h〉−τ , (5.27)

| �ω(ξ) · h + �i (ξ) + � j (ξ)| � γ 〈h〉−τ , (5.28)

| �ω(ξ) · h − �i (ξ) + � j (ξ)| � γ 〈h〉−τ if h �= 0 or i �= ± j , (5.29)

where 〈h〉 := max{|h|, 1} and τ > 1/b.

For k ∈ Z
n we set k± := (k j ) j∈I± ∈ Z

n/2, namely k = (k+, k−). Then

ω · k = �ω · h , with h := k+ + k− ∈ Z
n/2 and k /∈ Z

n
odd

(1.34)�⇒ h �= 0 . (5.30)

Note that |h| � |k+| + |k−| = |k|.
Lemma 5.1. (Solution of homological equations) Let s, r,a > 0, K > 0. Let
O ⊂ R

n/2 and assume that the Melnikov conditions (5.26)–(5.29) are satisfied
∀ ξ ∈ O. Then, ∀ ξ ∈ O, the homological equation (5.21) with R = R(·; ξ) as in
(5.22),(5.25) has a unique solution F = F(·; ξ)

F ∈ R�0
a−rev , F = SF , F = �|k|<K �|π |<K F

with 〈F y〉 = 0, 〈F y,y〉 = 0, 〈Fz±
i ,z±

i 〉 = 0. It satisfies

‖F‖s,r,a,O � γ −1 K τ‖R‖s,r,a,O (5.31)

‖F‖lip
s,r,a,O�γ −1 K τ‖R‖lip

s,r,a,O+γ −2 K 2τ+1
(
|ω|lipO + |�|lipO

)
‖R‖s,r,a,O . (5.32)

Proof. By (5.24) the homological equation (5.21) splits into

∂ω Fu−NFu = Ru , ∂ω F x = Rx −〈Rx 〉 , ∂ω Fu,u+[Fu,u, N] = Ru,u−[R]u,u .

(5.33)
Since R = S R (recall (5.22)), by (5.5) we get

Rx (x) = 〈Rx 〉 +
∑

k /∈Z
n
odd

Rx
k eik·x , similarly for Ry(x) , Ry,y(x) . (5.34)

Since R is reversible and even the average

〈Ry〉 = 0 , 〈Ry,y〉 = 0 (5.35)

By (5.3), the first equation in (5.33) amounts to ∂ω F y = Ry, ∂ω Fz − i�Fz =
Rz, ∂ω Fz̄ + i�Fz̄ = Rz̄ . By (5.3), the third equation in (5.33) splits into ∂ω F y,y =
Ry,y, ∂ω F y,z + iF y,z� = Ry,z (and the analogous equations for F y,z̄, Fz,y, Fz̄,y),
∂ω Fz,z̄ − iFz,z̄� − i�Fz,z̄ = Rz,z̄ (analoguosly for Fz̄,z),

∂ω Fz,z + iFz,z� − i�Fz,z = Rz,z − [R]z,z (5.36)
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(analogously for Fz̄,z̄). By (5.26), (5.34), (5.35) and (5.30) the equations for F x ,

F y, F yy are uniquely (having zero average) solved, that is, F x (x) = ∑
k /∈Z

n
odd

F x
k eik·x

with F x
k := −iRx

k /ω · k. Similarly the equations for Fzσ
, F y,zσ

, Fzσ ,y, σ = ± and
Fz,z̄, Fz̄,z are solved by (5.27) and (5.28) respectively.

For i, j ∈ Z \ I, developing in Fourier series Fzi z j (x) = ∑
k∈Zn F

zi z j
k eik·x ,

Equation (5.36) becomes

i(ω · k + � j − �i )F
zi z j
k = R

zi z j
k − [R]zi z j

k . (5.37)

If i �= ± j then (5.37) is easily solved by (5.29). Otherwise, since R = S R and by
(5.6),

if i = j �⇒ Rzi zi
k = 0 , ∀ k ∈ Z

n
odd \ {0};

if i = − j , (i �= 0) �⇒ Rzi z−i
k = 0 , ∀ k ∈ Z

n
odd . (5.38)

Then (5.37) is solved by (5.29) and (5.30).
The properties of anti-reversibility, anti-real-coefficients, real-on-real, and par-

ity for the vector field solution F are easily verified. The estimates (5.31)–(5.32)
directly follow by bounds on the small divisors in the Melnikov conditions (5.26)–
(5.29) (and (5.30)) and the expression of F . �


The solution of the homological equation is quasi-Töplitz.

Proposition 5.3. (Quasi-Töplitz) Let the normal form N be as in Definition 5.1
and assume that R ∈ QT

s,r,a(N0, θ, μ). Let F be the (unique) solution of the homo-
logical equation (5.21) found in Lemma 5.1, for all ξ ∈ O satisfying the Melnikov
conditions (5.26)–(5.29). If, in addition,

| �ω(ξ) · h + p| � γ 2/3〈h〉−τ , ∀|h| � K , p ∈ Z , (h, p) �= (0, 0) , (5.39)

then F = F(·; ξ) ∈ QT
s,r,a(N∗

0 , θ, μ) with

N∗
0 := max

{
N0 , j∗, ĉγ −1/3 K τ+1

}
(5.40)

for a (suitably large) constant ĉ := ĉ(m, κ) � 1. Moreover

‖F(·; ξ)‖T
s,r,a,N∗

0 ,θ,μ � 4ĉγ −1 K 2τ‖R(·; ξ)‖T
s,r,a,N0,θ,μ . (5.41)

Proof. The proof follows step by step the one of the analogous Proposition 5.1 of
[3]. �
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6. Proof of Theorem 4.1

6.1. First Step

We perform a preliminary change of variables in order to improve the smallness
conditions of the perturbation. In particular we want to average out the term P y(x)∂y

defined in (4.6). We introduce the symmetrized vector fields (see Definition 5.2)

Ry(x)∂y := SP y(x)∂y , R := SP , X := SX = N + R (6.1)

(since SN = N ). By assumption (A3) and the last statement of Proposition 5.2,
R ∈ Rrev (see Definition 2.7). Moreover Proposition 5.1 implies that X |E = X|E .

Next we study the homological equation

−adN F + �|k|<γ −1/(7n) Ry∂y = 〈Ry〉∂y
(5.35)= 0 (6.2)

because R is reversible and even.

Lemma 6.1. For all ξ in O∗ := {
ξ ∈ O : | �ω(ξ) · h| � γ 2/3〈h〉−n/2,

∀0 < |h| < γ −1/(7n)
}

the homological equation (6.2) admits a unique solution
with 〈F〉 = 0 which satisfies

‖F‖T
3s/4,r,a,N0,θ,μ,λ,O∗ = ‖F‖λ

3s/4,r,a,O∗ � C(s)ε . (6.3)

Moreover F ∈ R�0
a−rev and SF = F.

We now apply Proposition 3.2 with �p � (3s/4, r,a, N0, θ, μ, λ,O∗) and
�p ′ � �p0 with �p0 := (s/2, r/2,a/2, N (0)

0 , 4θ/3, 3μ/4, λ,O∗) where N (0)
0 �

max{N0, N̄ } (recall (3.46)) is chosen large enough so that (3.46), (3.47), (3.48) are
satisfied and (6.3) imply condition (3.49) for ε sufficiently small. Let �̄ be the time
1-flow of F (so that eadF = �̄�). Since the quasi-Töplitz norm is non-increasing
with N0 (see (3.22)) we may also take N0 � N̄ large enough so that (5.9) (with
N0 � N1) holds. Hence

‖eadF (R − Ry∂y)‖T
�p0

(3.50)
� 2‖R − Ry∂y‖T

s,r,a,N0,θ,μ,λ,O∗
(6.1),(5.10)

� 18‖P − P y(x)∂y‖T
s,r,a,N0,θ,μ,λ,O∗

(4.6),(4.8)
< 18γ .

(6.4)

Similarly (3.51) (with h � 1, b j � 1/j !) implies, for h = −1, 0,

∥
∥
∥
∥
(

eadF (R − Ry∂y) − (R − Ry∂y)
)(h)

∥
∥
∥
∥

T

�p0

�‖P∗‖T
s,r,a,N0,θ,μ,λ,O∗‖F‖T

3s/4,r,a,N0,θ,μ,λ,O∗
(6.3),(4.8)

� C(s)γ ε . (6.5)
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Since the commutator [F, Ry(x)∂y] = [F y(x)∂y, Ry(x)∂y] = 0 we deduce eadF

(Ry∂y) = Ry∂y , and, using also (6.2), we get eadF N = N + adFN . Hence,
using (6.2),

eadF X = N + �|k|�γ −1/(7n) Ry∂y + eadF (R − Ry∂y) =: N0 + P0 (6.6)

where N0 := N . Then we consider the symmetrized vector field

X0 := S(eadF X) = N0 + R0 , R0 := S P0 . (6.7)

Since Ry(x)∂y depends on the variable x only we have

‖S�|k|�γ −1/(7n) Ry(x)∂y‖T
�p0

= ‖S�|k|�γ −1/(7n) Ry(x)∂y‖λ
s/2,r,a,O � γ ε , (6.8)

arguing as for (6.3), using (5.10), (2.23), and for γ < γ∗ small (depending on s
and n). Recollecting (6.7), (6.6), (6.4), (6.8) and (6.5) we get

Lemma 6.2. The constants ε̄0 := ε
(−1)
0 + ε

(0)
0 , ε

(h)
0 := γ −1‖R(h)

0 ‖T
�p0

, h = −1, 0,

�0 := γ −1‖R0‖T
�p0

satisfy ε
(h)
0 � C(s, n)ε, h = −1, 0,�0 � 28, where ε is defined

in (4.8).

The vector fields P0, R0 ∈ Rrev because F ∈ Ra−rev (Lemma 6.1), R ∈
Rrev, and using Proposition 5.2. Similarly, since X ∈ Rrev (by the hypothesis of
Theorem 4.1) the vector field

X0 := eadF X = �̄�X ∈ Rrev . (6.9)

Proposition 5.1 implies that X |E = (SX )|E = X|E (see (6.1)) and X0|E =
(eadF X)|E (see (6.7)). Moreover, since F is even, Lemma 2.6 (applied with Y � F)
and (6.9) imply

X0|E = X0|E . (6.10)

6.2. The KAM Step

We now describe the iterative scheme which produces a sequence of quasi-
Töplitz vector fields Xν with parameters �pν = (sν, rν,aν, N (ν)

0 , θν, μν, λ,Oν), λ =
γ /M0, and such that X

�0
ν |E tends to zero as ν → +∞. For compactness of notation

we drop the index ν and write ”+” for ν + 1.

Iterative hypotheses. Suppose 1 < θ,μ < 6, N0 � N̄ (defined in (3.46)),
O ⊆ R

n/2. Let X = N + R, where N is a normal form vector field (see Def-
inition 5.1) with Lipschitz frequencies ω(ξ),�(ξ), ξ ∈ R

n/2 and (5.4) holds with
some a(ξ),∀ | j | � 6N0 (namely j∗ = 6N0). Moreover |ω|lip

Rn/2 , |�|lip
Rn/2 � M �

2M0. The perturbation R satisfies ‖R‖T
�p < ∞, R ∈ Rrev,S R = R. We finally

fix some K and we assume that 6N0 � ĉγ −1/3 K τ+1 (where ĉ is the constant
introduced in (5.40)).
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We now describe a KAM step, namely a change of variables generated by the
time-1 flow of a vector field F and such that

X+ := SeadF X =: S�� X = N+ + R+ (6.11)

still satisfies the iterative hypotheses, with slightly different parameters, and a much
smaller new perturbation R+, see (6.27).

The new normal form N+. Set (recall (2.29))

R
�0
K := �|k|<K �|π |<K R�0 = �|k|<K �|π |<K R(−1) + �|k|<K �|π |<K R(0)

=: R(−1)
K + R(0)

K . (6.12)

Since R ∈ Rrev then R
�0
K ∈ R�0

rev and S R
�0
K = R

�0
K . The new normal form is

defined for ξ ∈ O as

N + := N + N̂ , (6.13)

N̂ (5.23):= [R
�0
K ] = 〈Rx 〉∂x +

∑

j∈Z\I
〈Rz j z j 〉z j∂z j + 〈Rz̄ j z̄ j 〉z̄ j∂z̄ j = ω̂ · ∂x

+ i
∑

j∈Z\I
�̂ j z j (∂z j − z̄ j∂z̄ j ) (6.14)

because, since R
�0
K is real-coefficients and real-on-real (Definition 2.6)

〈Rz j z j 〉 = i�̂ j , �̂ j ∈ R , 〈Rz̄ j z̄ j 〉 (2.33)= −i�̂ j , ∀ j ∈ Z \ I ,

ω̂ j := 〈Rx j 〉 ∈ R ,∀ j ∈ I . (6.15)

Moreover, since R is even, ω̂ , �̂ satisfy (5.2), namely ω̂ j
(2.34)= ω̂− j , �̂ j

(2.34)= �̂− j .
Note that N̂ only depends on R(0) and that N̂ − 〈Rx 〉∂x = �diag R.

The following lemma on the asymptotic of the frequencies is based on the
projection Lemma 3.5 for �diag similarly to Lemma 5.2 of [3].

Lemma 6.3. It results that supξ∈O |ω̂|, |�̂|∞ � 2‖R(0)‖s,r,a, |ω̂|lipO , |�̂|lip∞,O �
2‖R(0)‖lip

s,r,a and there exist â:O→R satisfying supξ∈O |â(ξ)| � 2‖R(0)‖T
s,r,a,N0,θ,μ

such that

sup
ξ∈O

|�̂ j (ξ) − â(ξ)| � 40

| j | ‖R(0)‖T
s,r,a,N0,θ,μ , ∀ | j | � 6(N0 + 1) .

The new vector field X+. We decompose

X = N + R = N + R
�0
K + (R − R

�0
K )
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where R
�0
K is defined in (6.12). We apply Lemma 5.1 and Proposition 5.3 with

O � O+ := {ξ ∈ O | (5.26) − (5.29) and (5.39) hold}. Let F = F
�0
K = F (−1)

K +
F (0)

K ∈ R�0
a−rev be the unique solution of the homological equation

adN F = R
�0
K − [R

�0
K ] . (6.16)

The bounds (5.32), |ω|lip, |�|lip � M � 2M0, and (5.41) (with R � R(h)
K , h =

−1, 0) imply

‖F(h)‖T
�p�

�γ −1 K 2τ+1‖R(h)‖T
�p , h=−1, 0, where �p� := (s, r,a, 6N0, θ, μ, λ,O+) .

(6.17)

Note that in (5.40)–(5.41) N∗
0 = 6N0 because, by the iterative hypothesis,

j∗ = 6N0 � ĉγ −1/3 K τ+1.
We introduce the new parameters

�p+ := (s+, r+,a+, N+
0 , θ+, μ+, λ,O+) , (6.18)

where s/2 � s+ < s, r/2 � r+ < r, 0 < a+ < a, N+
0 � 7N0, θ+ > θ,μ+ < μ,

such that

(κ + 1)(N+
0 )b−L ln N+

0 � μ − μ+, (7 + κ)(N+
0 )L−1 ln N+

0 � θ+ − θ , (6.19)

2(N+
0 )−b ln2 N+

0 � b min{s − s+,a− a+} , (6.20)

and note that N+
0 � N̄ defined in (3.46) (by the iterative hypothesis N0 � N̄ ). If,

moreover, the smallness condition

‖F‖T
�p�

� c(n) δ+ , δ+ := min
{

1 − s+
s

, 1 − r+
r

}
(6.21)

holds (see (3.49)), then Proposition 3.2 (with �p � �p�, �p ′ � �p+, δ � δ+) implies
that the time 1-flow generated by F maps D(s+, r+) into D(s, r). The transformed
and symmetrized vector field is

X+ := SeadF X
(2.14)= S

(
X + adF (X) +

∑

j�2

1

j !ad j
F (X)

)
= N+ + R+

(6.22)
with the new normal form N+ defined in (6.14) and, by (6.16), the new perturbation

R+ := S
(

R − R
�0
K + adF (R�0) + adF (R�1) +

∑

j�2

1

j !ad j
F (X)

)
(6.23)

where R�1 := ∑
j�1 R( j), see (2.27), so that R = R�0 + R�1.

We set

ε(h) := γ −1‖R(h)‖T
�p , h = −1, 0 , ε̄ := ε(−1) + ε(0) , � := γ −1‖R‖T

�p
(6.24)

and the corresponding quantities ε
(h)
+ , ε̄+,�+ for R+ with parameters �p+ defined

in (6.18).



KAM for Reversible Derivative Wave Equations 943

Proposition 6.1. (KAM step) Assume that the parameters �p, �p+ (see (6.18)) satisfy
(6.19), (6.20), and that

δ−1+ K 2τ+1ε̄ is small enough , � � 29 , (6.25)

where δ+ is defined in (6.21). Then, by (6.17), the solution F ∈ R�0
rev of the ho-

mological equation (6.16) satisfies (6.21) and the transformed vector field X+ in
(6.22) is well defined. The new normal form is (6.13)-(6.14) with frequencies satis-
fying Lemma 6.3. The new perturbation R+ ∈ Rrev in (6.23) satisfies R+ = S R+
and (see (6.24))

ε
(−1)
+ � δ−2+ K 4τ+2ε̄2 + ε(−1) e−K min{s−s+,a−a+}

ε
(0)
+ � δ−2+ K 4τ+2

(
ε(−1) + ε̄2

)
+ ε(0) e−K min{s−s+,a−a+} (6.26)

�+ � �(1 + Cδ−2+ K 4τ+2ε̄) . (6.27)

Proof. We analyze each term of R+ in (6.23). We first claim that

∥
∥
∥adF (R�0)

∥
∥
∥

T

�p+
+
∥
∥
∥
∥
∑

j�2

1

j !ad j
F (X)

∥
∥
∥
∥

T

�p+
� δ−2+ γ K 2(2τ+1)ε̄2 . (6.28)

We have
∑

j�2

1

j !ad j
F (X) =

∑

j�2

1

j !ad j
F (N + R) =

∑

j�2

1

j !ad j−1
F (adFN )

+
∑

j�2

1

j !ad j
F (R)

(6.16)=
∑

j�2

1

j !ad j−1
F ([R

�0
K ] − R

�0
K ) +

∑

j�2

1

j !ad j
F (R) .

As we have already noticed, by (6.19), (6.20), (6.21) we can apply Proposition 3.2
(with �p � �p�, �p ′ � �p+, δ � δ+, h � 2) obtaining
∥
∥
∥
∥
∑

j�2

1

j !ad j
F (R)

∥
∥
∥
∥

T

�p+

(3.51)
�

(
δ−1+ ‖F‖T

�p�

)2 ‖R‖T
�p�

(6.17),(6.24)
� δ−2+ K 2(2τ+1)ε̄2γ � .

(6.29)
In the same way we get (with h � 1)
∥
∥
∥
∥
∑

j�2

1

j !ad j−1
F

(
[R

�0
K ]−R

�0
K

)∥∥
∥
∥

T

�p+
=
∥
∥
∥
∥
∑

j�1

1

( j+1)!ad j
F

(
[R

�0
K ]−R

�0
K

)∥∥
∥
∥

T

�p+
(3.51)
� δ−1+ ‖F‖T

�p�
‖[R

�0
K ]−R

�0
K ‖T

�p�
� δ−1+ ‖F‖T

�p�
‖R

�0
K ‖T

�p�

(6.17),(6.24)
� δ−1+ K 2τ+1γ ε̄2.

(6.30)

Finally, by Proposition 3.1, applied with �p � �p�, �p1 � �p+, δ � δ+ (note that
conditions (3.32)–(3.33) follow by (6.19)–(6.20)), we get

∥
∥
∥adF (R�0)

∥
∥
∥

T

�p+

(3.34)
� δ−1+ ‖F‖T

�p�
‖R�0‖T

�p�

(6.17),(6.24)
� δ−1+ K 2τ+1γ ε̄2 . (6.31)
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The bounds (6.29), (6.30), (6.31), and � � 29 (see (6.25)), prove (6.28).
We now prove (6.27). Again by Proposition 3.1 we get

∥
∥
∥adF (R�1)

∥
∥
∥

T

�p+
� δ−1+ ‖F‖T

�p�
‖R�1‖T

�p
(6.17),(6.24)

� δ−1+ K 2τ+1γ ε̄ � (6.32)

and (6.27) follows by (6.23), (5.10), (3.30), (6.24) (6.32), (6.28) and ε̄ � 3� (which
follows by (6.24) and (3.30)).

We now consider R(h)
+ , h = 0,−1. Recalling the degree decomposition F =

F (−1) + F (0), formula (2.26) implies that the term adF R�1 in (6.23) does not
contribute to R(−1)

+ . On the other hand, its contribution to R(0)
+ is [R(1), F (−1)].

Again by (3.34), (6.17), (6.24) and (3.30), we get

‖[R(1), F (−1)]‖T
�p+ � δ−1+ γ K 2τ+1ε(−1)� . (6.33)

The contribution of R − R
�0
K in (6.23) to R(h)

+ , h = 0,−1, is �|k|<K �|π |�K R(h) +
�|k|�K R(h). By (3.31) (recall ss−1+ < 2), (3.30), and (6.24), we get

∥
∥
∥�|k|<K �|π |�K R(h) + �|k|�K R(h)

∥
∥
∥

T

�p+
� 3e−K min{s−s+,a−a+}γ ε(h) . (6.34)

In conclusion, (6.26) follows by (6.23), (5.10), (6.28), (6.33), (6.34) and � � 29.
�

KAM iteration. Once the KAM step has been proved, the proof of Theorem 4.1
is concluded by an usual KAM iteration. The scheme is very similar to that in
[3] (and [2]) and we skip it. We only focus on the main difference, which is the
symmetrization procedure.

For every i ∈ N we construct a close-to-the-identity, analytic, even (Defini-
tion 2.6) change of variables �i (obtained as the time-1 flow of the solution Fi of
the homological equation (6.16) at the i th step) such that (recall (6.11) and (6.22))

Xi := S�i
� Xi−1 =: Ni + Ri , Ri ∈ Rrev , Ri = S Ri (6.35)

(�i
� is the lift to the tangent space (recall (4.13)). Since the algorithm is “quadratic”

(recall (6.26)), the quasi-Töplitz (with suitable i-dependent parameters) norm of
the −1 and 0 degree terms of Ri converges super-exponentially to zero. Let

X∞ := lim
i→∞ Xi = lim

i→∞ S�i
� Xi−1 = N∞ + R∞ where

N∞ := lim
i→∞ Ni , R∞ := lim

i→∞ Ri . (6.36)

By (6.35) and the convergence of the −1 and 0 degree terms of Ri we get

R∞ = S R∞ , R
�0
∞ = 0 . (6.37)

The transformation � in (4.12) is defined by � := limν→∞ �̄ ◦�0 ◦�1 ◦ · · · ◦�ν

where �̄ is defined in Section 6.1 as the time 1-flow of F defined in Lemma 6.1.
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The map � is even because �i , i � 0, and �̄ are even. Let us show the proof of
(4.13). We have that

X∞ = ��X = lim
i→∞ Xi where Xi := �i

�Xi−1 , i � 1 , X0 defined in (6.9) .

(6.38)
The vector field X∞ ∈ Rrev because X0 ∈ Rrev (see (6.9)) and each Xi ∈ Rrev
because �i

� = eadFi with Fi ∈ Ra−rev (then use Lemma 2.5). The relation between
the “auxiliary” vector field X∞ and the “true” vector field X∞ is given by the
following

Lemma 6.4. (X∞)|E = (X∞)|E .

Proof. The lemma follows by proving (Xi )|E = (Xi )|E ,∀ i � 0. The inductive
basis for i = 0 is (6.10). Let us assume that (Xi−1)|E = (Xi−1)|E . Then

(Xi )|E − (Xi )|E
(6.35),(6.38)= (�i

�Xi−1)|E − (S�i
� Xi−1)|E

=
(
�i

�(Xi−1 − Xi−1)
)

|E ≡ 0

by Proposition 5.1 and Lemma 2.6 (used with X � Xi−1 − Xi−1, Y � Fi with
eadFi = �i

�). �

We have already chosen N∞ in (6.36), then P∞ in (4.13) is P∞ = X∞ −N∞.

It is now simple to show that (P�0
∞ )|E = 0. Indeed

(
P�0

∞
)

|E
=
(
(X∞ − N∞)�0

)

|E
(6.36)=

(
(X∞ − X∞ + R∞)�0

)

|E
(6.37)=

(
(X∞ − X∞)�0

)

|E
(2.35)≡ 0 .

by Lemma 6.4. Finally P∞ ∈ Rrev because N∞ and X∞ ∈ Rrev. This concludes
the proof of (4.13).

Proof of (4.17). By det A �= 0 and (4.9) the action-to-frequency map �ω∞ is
invertible. Introducing ζ = �ω∞(ξ) as parameters, we obtain ξ = ( �ω∞)−1(ζ ) =
A−1(ζ − ω̄) + O(εγ ) and, using also (4.14),

�ω∞(ξ) · h + �∞
i (ξ) − �∞

j (ξ) = fh,i, j (ζ ) + ri, j (ζ ),

|ri, j | = O(γ ε), |ri, j |lip = O(ε) ,

fh,i, j (ζ ) := ch,i, j · ζ + di, j , ch,i, j := h + (λ−1
i − λ−1

j )A−T �a,

di, j := λi − λ j − (λ−1
i − λ−1

j )ω̄ · A−T �a.

Then (4.17) follows immediately if |ch,i, j | > c̄ > 0 because |ch,i, j · ∂ζ fh,i, j | �
c̄2 > 0 and |ri, j |lip = O(ε). Now, since h ∈ Z

n/2 \ {0} and |(λ−1
i − λ−1

j )A−T �a| =
O(λ−1

i + λ−1
j ), the coefficient |ch,i, j | > 1/2, for min{|i |, | j |} � C large. On the

other hand, if |i | � C and | j | � C0 with C0 large enough (or permuting the role of i
and j) the coefficient |di, j | � 1. In this case | fh,i, j +ri, j | > 1/8 for all ζ ∈ �ω∞(O)

unless |ch,i, j · ω̄| � 1/4 (for ε, ρ small). Hence |ω̄ · ∂ζ fh,i, j | = |ω̄ · ch,i, j | > 1/4
and, again, (4.17) follows. Finally, the first condition in (4.15) and h �= 0 imply
min{|ch,i, j | for |i |, | j | � C0} > 0 and so (4.17).
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7. Proof of Theorem 1.1

By hypothesis, the analytic nonlinearity g has the convergent Taylor expansion

g(x,y,yx,v) = κ1y
3 + κ2yy

2
x + κ3yy

2
t +

∑

k+h+l�5
g(k,h,l)(x)ykyh

xv
l

where k, h, l ∈ N and

‖g(k,h,l)‖a0,p < Ck+h+l for some a0 > 0 , p > 1/2 , C > 0 , (7.1)

having identified each function g(k,h,l)(x) with the Fourier series {g(k,h,l)
j0

} j0∈Z ∈
�a0,p, recall (2.1). As phase space we consider u, ū ∈ �a,p with a := a0/2. The
coefficients g+

j in (1.25) are

g+
j := g j = −

∑

d=3,d�5

∑

j0+∑d
i=1 σi ji = j

(
√

2)−d−1g�σ , �j, j0 u �σ
�j =: g(=3)

j + g
(�5)

j

(7.2)

where �j = ( j1, . . . , jd) ∈ Z
d , �σ = (σ1, . . . , σd) ∈ {±}d and u �σ

�j = ∏d
i=1uσi

ji
. The

coefficients g�σ, �j, j0 are

g�σ, �j, j0 =
∑

h+k+l=d

(−1)l ih+lσk+1 · · · σk+h+l
jk+1 · · · jk+h

λ j1 · · · λ jk+h

g(k,h,l)
j0

.

We consider (1.24) as the equations of motion of the vector field N0 + G where
(recall (1.25))

N0 :=
∑

σ=±, j∈Z

σ iλ j u
σ
j ∂uσ

j
, G =

∑

σ=±, j∈Z

G(uσ
j )∂uσ

j
,

G(uσ
j ) := iσgσ j , G = G(=3) + G(�5).

(7.3)

Note that G(u+
− j ) = −G(u−

j ) and that G(=3) has zero momentum by (7.2), (7.3).
Moreover G is reversible (with respect to the involution S in (1.27)), real-coefficients,
real-on-real, even, namely G ∈ Rrev (Definition 2.7 in absence of x, y-variables).

Lemma 7.1. Seta := a0/2 (where a0 is defined in (7.1)). Then, for R := R(C) > 0
small enough (where C is defined in (7.1)), it results

‖G‖R,a , ‖G(=3)‖R,a � R2 , ‖G(�5)‖R,a � R4 . (7.4)

Moreover G, G(=3), G(�5) ∈ QT
R,a(N0, 3/2, 4), for N0 satisfying (3.1), and

‖G‖T
R,a,N0,3/2,4 , ‖G(=3)‖T

R,a,N0,3/2,4 � R2 , ‖G(�5)‖T
R,a,N0,3/2,4 � R4 . (7.5)
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Proof. We first note that (recall also that a := a0/2)
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

j0+∑d
i=1 σi ji = j

ea| j0||g(k,h,l)
j0

||u �σ
�j |
⎞

⎟
⎠

j∈Z

∥
∥
∥
∥
∥
∥
∥

a,p

� ‖g(k,h,l)‖a0,p(‖u‖a,p +‖ū‖a,p)
d .

(7.6)
Indeed

∑

j0+∑d
i=1 σi ji = j

ea| j0||g(k,h,l)
j0

||u �σ
�j | �

(
f (k,h,l) ∗ ũ ∗ ũ ∗ · · · ∗ ũ

)

j
, ∀ j ∈ Z ,

where f (k,h,l) := (ea| j0|g(k,h,l)
j0

) j0∈Z, ũ := (ũn)n∈Z, ũn := |un| + |ūn|, ∗ denotes
the convolution of sequences and

‖ f (k,h,l) ∗ ũ ∗ ũ ∗ · · · ∗ ũ‖a,p � ‖ f (k,h,l)‖a,p‖ũ‖d
a,p

�‖g(k,h,l)‖a0,p(‖u‖a,p + ‖ū‖a,p)
d

by the Hilbert algebra property of �a,p and since a = a0 − a.
Now we rewrite the sum in (7.2) as g j = ∑

|α|+|β|�3(g j )α,βuα ūβ where
(g j )α,β can be explicitly computed from (7.2) but has a complicated combina-
torics. In order to compute the norm ‖G‖R,a we note that 1/|λl | � 1, |l|/|λl | � 1
and

u �σ
�j = uα ūβ �⇒ π(α, β; uσ

j ) =
∑

1�i�d
σi ji − σ j . (7.7)

We have (recall (7.3))

‖G‖R,a
(2.2)= sup

‖u‖a,p ,‖ū‖a,p<R
R−1

∑

σ=±

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

|α|+|β|�3

ea|π(α,β;uσ
j )||(gσ j )α,β ||uα ||ūβ |

⎞

⎠

j∈Z

∥
∥
∥
∥
∥
∥
∥

a,p

(7.7)
� R−1 sup

‖u‖a,p ,‖ū‖a,p<R

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝
∑

d�3

(
√

2)−d−1
∑

j0+∑d
i=1 σi ji = j

∑

h+k+l=d

ea| j0||g(k,h,l)
j0

||u �σ
�j |
⎞

⎟
⎠

j∈Z

∥
∥
∥
∥
∥
∥
∥

a,p

(7.6)
� R−1 sup

‖u‖a,p ,‖ū‖a,p<R

∑

d�3

∑

h+k+l=d

(
√

2)−d−1‖g(k,h,l)‖a0,p(‖u‖a,p + ‖ū‖a,p)d (7.1)
� R2

proving (7.4) for R small enough with respect to the constant C in (7.1).
Let us now prove the estimate (7.5) for the quasi-Töplitz norm of G (the es-

timates for G(=3) and G(�5) are analogous). For N � N0, by (7.2) and (7.3) we
deduce that

�N ,3/2,4G =
∑

|m|,|n|>(3/2)N

Gσ,m
σ ′,n uσ ′

n ∂uσ
m

= G̃ + N−1Ĝ

where (recall (3.8), (3.9), (3.10))

Gσ,m
σ ′,n := −iσ

∑

d�2

∑

∑d
i=1 | ji |<4N L ,| j0 |<Nb

j0+∑d
i=1 σi ji =σm−σ ′n

(
√

2)−d−2
∑

h+k+l=d+1

(i)h+l(−1)l g(k,h,l)
j0

c(k,h,l)
�σ , �j,σ ′,nu �σ

�j

c(k,h,l)
�σ , �j,σ ′,n := jk+1 . . . jk+h−1σk+1 . . . σk+h+l−1

λ j1 . . . λ jk+h−1

(
k
σk jk
λn

+ h
σ ′n
λn

+ l
σ ′

λ jk+h

)
.
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The Töplitz approximation G̃ is obtained by substituting the coefficients c(k,h,l)
�σ , �j,σ ′,n

with their Töplitz approximation c̃(k,h,l)
�σ , �j,σ ′,n defined by replacing 1/λn by 0 and n/λn

by the sign s(n).
Since 0 � λn − |n| � √

m,∀n ∈ Z, and λn � |n| > (3/2)N , the Taylor
coefficients of G̃ and of the corresponding defect Ĝ are uniformly bounded. Then,
arguing as in the proof of (7.4), we deduce that ‖G̃‖R,a, ‖Ĝ‖R,a � R2. Note that
c̃(k,h,l)

�σ , �j,σ ′,n depends on n only through s(n). Since by (3.10) s(n) = σσ ′s(m) we

have that G̃ ∈ TR,a(N , 3/2, 4) (Definition 3.3). By Definition 3.4 we get (7.5). �

For the Birkhoff normal form step we need the following lemma proved in [3]

(Lemma 7.2 and formula (7.21), see also [21]).

Lemma 7.2. There exists an absolute constant c∗ > 0, such that, for every m ∈
(0,∞) and ji ∈ Z, σi = ±, i = 1, 2, 3, 4 satisfying σ1 j1 +σ2 j2 +σ3 j3 +σ4 j4 = 0
but not satisfying

j1 = j2 , j3 = j4 , σ1 = −σ2 , σ3 = −σ4 (or permutations of the indexes) ,

(7.8)
we have

|σ1λ j1 + σ2λ j2 + σ3λ j3 + σ4λ j4 | � c∗m

(n2
0 + m)3/2

> 0 where

n0 := min{〈 j1〉, 〈 j2〉, 〈 j3〉, 〈 j4〉} . (7.9)

Then we define the projections G1 and G2 of G(=3) as follows: the vector field

−iG
(u+

j )

1 is the projection of g(=3)
j (recall (7.2)) onto the indexes (σ1, σ2, σ3,+),

( j1, j2, j3, j) which satisfy (7.8) with j1 ∈ I. Let −iG
(u+

j )

2 be the projection of

g(=3)
j onto the indexes j1, j2, j3 �∈ I if j �∈ I and zero otherwise. We have that

‖G1‖R,a = ‖G1‖R,0 , ‖G2‖R,a = ‖G2‖R,0 � R2 , (7.10)

and, for N ′
0 large enough,

‖G1‖T
R,a,N0,3/2,4 � R2 , ‖G2‖T

R,a,N0,3/2,4 � R2 . (7.11)

The estimates (7.10) and (7.11) follows by (3.24) and the analogous estimates (7.4)
and (7.5) for G, since G1, G2 are projections (recall (2.12)) of G, satisfying (3.23).

Proposition 7.1. (Birkhoff normal form) For any I as in (1.29), and m > 0, there
exists R0 > 0 and a real analytic change of variables � : BR/2 × BR/2 ⊂ �a,p ×
�a,p → BR × BR ⊂ �a,p × �a,p, 0 < R < R0, that takes the vector field N0 + G
into (

D�−1[N0 + G]
)

◦ � = N0 + G1 + G2 + G3 (7.12)

where G1, G2 satisfy (7.11), G3 satisfy G
(u+

− j )

3 = −G
(u−

j )

3 and for N ′
0 large enough

‖G3‖T
R/2,a/2,N ′

0,7/4,3 � R4 . (7.13)

Finally N0 + G1 + G2 + G3 ∈ Rrev (recall Definition 2.7 in absence of x, y-
variables).
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Proof. Let us define the generating function F := ∑
j∈Z,σ=±F (uσ

j )∂uσ
j

with

F (uσ
j ) :=

∑

σ1λ j1
+σ2λ j2

+σ3λ j3
−σλ j �=0

( j1, j2, j3, j)/∈(Ic)4,�σ · �j=σ j
,

−1

4

σ

σ1λ j1 + σ2λ j2 + σ3λ j3 − σλ j
g�σ , �j,0 u �σ

�j .

(7.14)
By Lemma 7.2 and arguing as in Lemma 7.1 we get ‖F‖R,a = ‖F‖R,0 � R2.
Moreover we claim that

‖F‖T
R,a,N0,3/2,4 � R2 . (7.15)

For N � N0, by (7.14) we wish to write �N ,3/2,4 F = F̃ + N−1 F̂ , where (recall
(3.8), (3.9) and (3.10))

F̃ =
∑

|m|,|n|>(3/2)N
F̃σ,m

σ ′,n zσ ′
n ∂zσ

m

is Töplitz. We define F̃ by using (7.14) with j, j3, σ3 � m, n, σ ′ and substituting
as follows: g�σ , �j,0 by its Töplitz approximation (given in Lemma 7.1) and d :=
σ1λ j1 + σ2λ j2 + σ ′λn − σλm by d̃ := σ1λ j1 + σ2λ j2 + σ ′|n| − σ |m|. To estimate
the Töplitz defect F̂ we consider first the case σ = σ ′. We have

|d − d̃| = |λn − λm − |n| + |m|| � (|n|−1 + |m|−1) � |n|−1 ,

noting that 1/2 � |n|/|m| � 2 by σ1 j1 +σ2 j2 = σm −σ ′n and | j1|+ | j2| < 4N L ,
for N � N0 large enough. Then, since by (7.9), 1 � |d|, for |n| � (3/2)N and N0
large enough, 1 � |d| − |d̃ − d| � |d̃|. In particular |d̃| � const. > 0 > 0 and
F̃, F̂ are well defined. Moreover

∣
∣
∣
∣
d

d̃
− 1

∣
∣
∣
∣ =

∣
∣
∣
∣
1

d̃
(d − d̃)

∣
∣
∣
∣�

1

|n| and |λn − |n|| �
1

|n|
and, therefore, ||n| − dd̃−1λn| � 1. In the case σ = −σ ′, since | j1| + | j2| < 4N L

and λm � |m| � N , we get |d| � |n|. Recalling that we have, both in the case
σ = σ ′ and σ = −σ ′, that the Taylor coefficients of F̃, F̂ are uniformly bounded,
arguing as in the proof of Lemma 7.1, we get ‖F̃‖R,a , ‖F̂‖R,a � R2. We note
that F̃ ∈ TR,a(N , 3/2, 4); indeed σ = σ ′ and by (3.10) s(m) = s(n), so that
d̃ := σ1λ j1 + σ2λ j2 +s(m)(σ ′n − σm). Then by Definition 3.4 we deduce (7.15).

With N0 defined in (7.3) we have
[
N0, uσ1

j1
uσ2

j2
uσ3

j3
∂uσ

j

]
= i(σ1λ j1 + σ2λ j2 + σ3λ j3 − σλ j )u

σ1
j1

uσ2
j2

uσ3
j3

∂uσ
j
.

Then F in (7.14) solves the homological equation [N0, F] + G(=3) + G(=3) =
G1 + G2. Then we define � as the time-1 flow generated by the vector field F
and (7.13) follows by Proposition 3.2 taking R < R0 small enough and N ′

0 large
enough.

We claim that F ∈ Ra−rev. Indeed F is real-on-real (recall Definition 2.6) by
(7.14). F is anti-real-coefficients since the Taylor coefficients in (7.14) are real. F
is anti-reversible (recall Definition 2.5) with respect to the involution S in (1.27)
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since by (7.14) we have F (uσ
j )◦S = F (u−σ

− j ). Finally F is even (recall Definition 2.6)

since, again by (7.14) F
(uσ

j )

|E = F
(uσ− j )

|E (with E defined in (1.26)).

Then N0 + G1 + G2 + G3 = eadF (N0 + G) ∈ Rrev by Lemma 2.5. �


7.1. Action-Angle Variables and Conclusion of Proof of Theorem 1.1

Let us denote by (u+, u−) = �(x, y, z+, z−; ξ) the change of variable intro-
duced in (1.30). For ρ > 0, let (recall (1.29))

Oρ :=
{
ξ ∈ R

n/2 : ρ/2 � ξ j � ρ , j ∈ I+} . (7.16)

A vector field X = (X (u+), X (u−)) is transformed by the change of variable � in

Y :=�� X =(D�−1[X ]) ◦ �, with Y (zσ
j ) = X (uσ

j ) ◦ �, σ = ±, j ∈ Z\I,

Y (x j ) =− i

2

(
1

u+
j

X (u+
j )− 1

u−
j

X (u−
j )

)

◦ �, Y (y j ) =
(

u−
j X (u+

j )+u+
j X (u−

j )
)
◦ �, j ∈I.

Lemma 7.3. (Lemma 7.6 of [3]) Let us take

0 < 16r2 < ρ , ρ = C∗ R2 with C−1∗ := 48nκ2pe2(s+aκ) . (7.17)

where a = a0/2, p > 1/2 and κ is defined in (3.1). Then, for all ξ ∈ Oρ ∪ O2ρ ,
the map �( · ; ξ) : D(s, 2r) → BR/2 × BR/2 ⊂ �a,p × �a,p is well defined and
analytic (D(s, 2r) is defined in (2.4)).

Given a vector field X : BR/2 × BR/2 → �a,p × �a,p, the previous Lemma and
(7.17) show that the transformed vector field Y := �� X : D(s, 2r) → �a,p ×�a,p.
It results that, if X is quasi-Töplitz in the variables (u, ū) then Y is quasi-Töplitz in
the variables (x, y, z, z̄) (see Definition 3.4). We define the space of vector fields

Vd
R,a :=

⎧
⎨

⎩
X := X (u, ū) : ‖X‖R,a < ∞ and X (uσ

j )=
∑

|α(2)+β(2)|�d

X
(uσ

j )

α,β uα ūβ

⎫
⎬

⎭
.

Proposition 7.2. (Quasi–Töplitz) Let N0, θ, μ,μ′ satisfy (3.1) and

(μ′ − μ)N L
0 > N b

0 , N02− Nb
0

2κ
+1 < 1 . (7.18)

If X ∈QT
R/2,a(N0, θ, μ′) ∩ Vd

R/2,a with d =0, 1, then Y :=�� X ∈QT
s,r,a(N0, θ, μ)

and
‖Y‖T

s,r,a,N0,θ,μ,Oρ
�(8r/R)d−2‖X‖T

R/2,a,N0,θ,μ′ . (7.19)

The proof of Proposition 7.2 follows closely the analogous Proposition 7.2 in
[3] (replacing the Hamiltonians with the vector fields). The following lemma holds
(see Lemma 7.11 in [3]):
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Lemma 7.4. Let X ∈ VR/2,a, Y := �� X and Y0(x, y) := Y (x, y, 0, 0) − Y (y)

(x, 0, 0, 0)∂y . Then, assuming (7.17), ‖Y0‖s,2r,a,Oρ∪O2ρ
� (R/r)‖X‖R/2,a.

Recalling (7.17), the vector field N0 + G1 + G2 + G3 in (7.12) is transformed
by the change of variable (1.30) into

��(N0 + G1 + G2 + G3) = N + P = N + P1 + P2 + P3 (7.20)

where the normal form N is as in (4.1) with frequencies (satisfying (4.2)) as in
(4.14)

ω j (ξ) = λ j + λ−1
j

(
−1

4
�a| j |ξ| j | + �a · ξ

)
,∀ j ∈ I,

(7.21)
� j (ξ) = λ j + λ−1

j �a · ξ ,∀ j /∈ I ,

�a :=
∑

1�l�3
κl �a(l) ∈ R

n/2 , �a(1)
i := −λ−2

i ,

�a(2)
i := −i2λ−2

i , �a(3)
i := −1 , ∀ i ∈ I+. (7.22)

Moreover the three terms of the perturbation are

P(x j )

1 := 1

λ j

(
−1

4
�a| j | · y j + 1

2
(�a, �a)y

)
, P(y j )

1 = 0, j ∈ I,

P
(zσ

j )

1 := − σ i

2λ j
(�a, �a) · y zσ

j , σ = ± , j �∈ I,

P2 := ��G2 (note that P(x)
2 = P(y)

2 = 0 , P
(z±

j )

2 = G
(u±

j )

2 , j /∈ I),

P3 := ��G3 . (7.23)

As in (4.6) we decompose the perturbation

P = P y(x; ξ)∂y + P∗ , P y(x; ξ)∂y := �(−1)P(y)∂y = �(−1)P(y)
3 ∂y

= P(y)
3 (x, 0, 0, 0; ξ)∂y . (7.24)

Lemma 7.5. Let s, r > 0 as in (7.17) and N large enough (with respect to
m, I, L , b). Then

‖P y∂y‖λ
s,r,a/2,O �(1+λ/ρ)R6r−2 , ‖P∗‖T

�p �(1+λ/ρ)(r2 + R5r−1) , (7.25)

where

O = O(ρ) := {
ξ ∈ R

n : 2ρ/3 � ξl � 3ρ/4 , l = 1, . . . , n
} ⊂ Oρ (7.26)

(the set Oρ was defined in (7.16)) and �p := (s, r,a/2, N , 2, 2, λ,O).
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Proof. By the definition (7.24) we have

‖P y∂y‖s,r,a/2,Oρ
= ‖�(−1)P(y)

3 ∂y‖s,r,a/2,Oρ

Lemma 2.2
� ‖P(y)

3 ∂y‖s,r,a/2,Oρ

(7.19),(7.23)
�

( r

R

)−2 ‖G3‖T
R/2,a/2,N ,7/4,3

(7.13)
�

R6

r2 (7.27)

(applying (7.19) with d � 0, N0 � N , θ � 7/4, μ � 2, μ′ � 3) and taking
N large enough so that (7.18) holds and N � N ′

0 defined in Proposition 7.1. By
(7.20), (7.23) and (7.24) we write

P∗ = P1 + P2 + P4 + P5 where (7.28)

P4 := P3(x, y, z, z̄; ξ) − P3(x, y, 0, 0; ξ),

P5 := P3(x, y, 0, 0; ξ) − P(y)
3 (x, 0, 0, 0; ξ)∂y .

We claim that

‖P1‖T
s,r,a/2,N ,2,2,Oρ

, ‖P2‖T
s,r,a/2,N ,2,2,Oρ

� r2 . (7.29)

Indeed the estimate on P1 follows since P1 is Töplitz and ‖P1‖s,r,a/2,Oρ
� r2 by

(7.23). On the other hand the estimate on P2 follows by (7.23) and (7.11) with
N � N0 large enough to fulfill (3.1).

By (7.23) and (7.19) (with d � 1, N0 � N , μ � 2, μ′ � 3), for N large
enough, we get

‖P4‖T
s,r,a/2,N ,2,2,Oρ

�

( r

R

)−1 ‖G3‖T
R/2,a/2,N ′

0,7/4,3

(7.13)
�

( r

R

)−1
R4 = R5

r
.

(7.30)
Since P5 does not depend on the variables z± we get

‖P5‖T
s,r,a/2,N ,2,2,Oρ

= ‖P5‖s,r,a/2,Oρ

Lemma7.4
�

( r

R

)−1 ‖G3‖R/2,a/2

(7.13)
�

( r

R

)−1
R4 = R5

r
. (7.31)

In conclusion, by (7.28), (7.29), (7.30), (7.31) we get ‖P∗‖T
s,r,a/2,N ,2,2,Oρ

� r2 +
R5r−1. In order to prove the estimates (7.25) we have to prove Lipschitz estimates
(see (2.20), (3.26)). We first note that the vector fields P y∂y and P∗ are analytic
in the parameters ξ ∈ Oρ . Then we apply Cauchy estimates in the subdomain
O = O(ρ) ⊂ Oρ (see (7.26)), noting that ρ � dist(O, ∂Oρ). Then

‖P∗‖lip
s,r,a/2,O�ρ−1‖P∗‖s,r,a/2,Oρ

and ‖P y∂y‖lip
s,r,a/2,O�ρ−1‖P y∂y‖s,r,a/2,Oρ

and (7.25) is proved. �
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We now verify that the assumptions of Theorems 4.1–4.2 are fulfilled by N +P
in (7.20) with parameters ξ ∈ O(ρ) defined in (7.26). Note that the sets O =
[ρ/2, ρ]n defined in Theorem 4.2 and O(ρ) defined in (7.26) are diffeomorphic
through ξi 	→ (7ρ + 2ξi )/12. The frequency �ω (recall (4.7)) defined in (7.21) has
the form �ω = ω̄ + Aξ in (4.14) with

A :=
∑

1�l�3
κl A(l), A(l) :=

(
diagi∈I+λ−1

i

)(
−1

4
Idn/2 + 1n/2

)(
diagi∈I+ �a(l)

i

)
,

(7.32)
denoting by 1n/2 the (n/2) × (n/2) matrix with all entries equal to 1. Then �ω and
� j , defined in (7.21) satisfy (4.14) and hypotheses (A1)–(A2) follow. Moreover
(A3)-(A4) and the quantitative bound (4.8) follow by (7.25), choosing

s = 1, r = R1+ 3
4 , ρ = C∗ R2 as in (7.17), N as in Lemma 7.5, θ = 2,

μ = 2, γ = R3+ 1
5 (7.33)

and taking R small enough. Hence Theorem 4.1 applies.
Let us verify that also the assumptions of Theorem 4.2 are fulfilled. Since

12
n/2 = (n/2)1n/2 by (7.32) we get that the matrix A is invertible with

A−1 := (
diagi∈I+1/�ai

)
(

−4Idn/2 + 16

2n − 1
1n/2

)
(
diagi∈I+λi

)
, (7.34)

for all κ1, κ2, κ3 such that �ai
(7.22):= ∑

1�l�3κl �a(l)
i = −(κ1 + κ2i2 + κ3λ

2
i )λ

−2
i �=

0,∀i ∈ I+, see (1.12). Moreover, by (7.22) and (7.34) we have (AT )−1�a = 4ω̄/

(2n − 1) and then condition (4.15) is equivalent to (1.13) (note that (AT )−1�a does
not depend on κ1, κ2, κ3).

Finally we deduce that the Cantor set of parameters O∞ ⊂ O in (4.11) has
asymptotically full density because

|O \ O∞|
|O|

(4.16)
� ρ−1γ 2/3 (7.33)

� R−2 R
2
3 (3+ 1

5 ) = R
2
15 → 0 .

The proof of Theorem 1.1 is now completed.

Remark 7.1. If g = g(=3) + g(�4) (unlike (1.10)) then ‖G3‖T
R/2,a/2,N ′

0,7/4,3 � R3

which does not fit the smallness condition of Theorem 4.1. The term of order
four should be removed by a further step of Birkhoff normal form. If the term
g(=3) depends on the space variable x nothing changes except to check the twist
condition, see (7.21), (7.34). For simplicity, we did not pursue these points.

Acknowledgements. We thank L. Corsi and an anonymous referee for many useful sugges-
tions.
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