Stable cohomology of the moduli space of trigonal curves

Angelina Zheng

University of Pavia, Department of Mathematics "Felice Casorati" angelina.zheng@unipv.it

Abstract

We prove that the rational cohomology $H^i(\mathcal{T}_g; \mathbf{Q})$ of the moduli space of trigonal curves of genus g is independent of g in degree $i < \lfloor g/4 \rfloor$. This makes possible to define the stable cohomology ring as $H^{\bullet}(\mathcal{T}_q; \mathbf{Q})$ for a sufficiently large g, which turns out to be isomorphic to the tautological ring.

Introduction

We work over the field of complex numbers C. Let C be a smooth algebraic curve. We will say that C is *trigonal* if it has *gonality* 3, i.e. it is a smooth non-hyperelliptic curve which is a (ramified) triple cover of \mathbf{P}^1 .

Motivation and previous works

Let \mathcal{T}_g be the moduli space of trigonal curves of genus g. There is a natural inclusion

$$\mathcal{T}_g\subseteq\mathcal{M}_g$$

into the moduli space of smooth curves of genus g. Thus \mathcal{T}_g is a stratum of the stratification of \mathcal{M}_g by gonality.

The rational cohomology ring of \mathcal{T}_g is completely known for low genera. It has been computed for g=2,3,4 by Mumford [4], Looijenga [3] and Tommasi [7], resp. and for g=5, [8].

Main results

Theorem. For $i < \lfloor g/4 \rfloor$, the rational cohomology of \mathcal{T}_q is

$$H^i(\mathcal{T}_g; \mathbf{Q}) = egin{cases} \mathbf{Q}, & i = 0, \ \mathbf{Q}(-1), & i = 2, \ \mathbf{Q}(-2), & i = 4, \ 0, & otherwise. \end{cases}$$
 (1)

The above result, together with a description of the rational Chow ring of \mathcal{T}_g by Patel and Vakil [5] and by Canning and Larson [1], also yield the following

Corollary. For
$$i,g$$
 as above,
$$H^i(\mathcal{T}_g;\mathbf{Q})=\begin{cases} R^{i/2}(\mathcal{T}_g), & i \text{ even},\\ 0, & i \text{ odd.} \end{cases}$$
 (2

Setting

We consider the natural embedding of trigonal curves in Hirzebruch surfaces: a trigonal curve of genus g can be embedded in $\mathbb{F}_n:=\mathbf{P}(\mathcal{O}_{\mathbf{P}^1}\oplus\mathcal{O}^1_{\mathbf{P}}(n))$ as a divisor of class

$$C \sim 3E_n + dF_n,$$
 where $d = \frac{g+3n+2}{2}, \, n \equiv g \, \mathrm{mod} \, 2$ and $0 \leq n \leq \frac{g+2}{3}.$

Figure 1: The curve C in $\mathbb{F}_0\cong \mathbf{P}^1 imes \mathbf{P}^1$.

Figure 2: The curve C in \mathbb{F}_n , for any $n \geq 1$.

The integer n is called the *Maroni invariant* of the curve C and it defines a stratification of \mathcal{T}_q .

Maroni stratification

$$egin{cases} \mathcal{N}_s \subset \cdots \subset \mathcal{N}_0 = \mathcal{T}_g & g ext{ even,} \ \mathcal{N}_s \subset \cdots \subset \mathcal{N}_1 = \mathcal{T}_g & g ext{ odd;} \end{cases}$$

where s is the largest integer s.t. $s \equiv g \mod 2$ and $s \leq \frac{g+2}{3}$. For any n; $0 \leq n \leq s$, $\mathcal{N}_n := \{ [C] \in \mathcal{T}_q | C \text{ has Maroni invariant } \geq n \}$.

Proof

We compute first the stable cohomology of the Maroni strata $N_n := \mathcal{N}_n \setminus \mathcal{N}_{n+2}$.

Maroni strata as quotients of complements of discriminants

Let $V_{d,n} := H^0(\mathbb{F}_n; \mathcal{O}_{\mathbb{F}_n}(3E_n + dF_n)), X_{d,n} \subset V_{d,n}$ the locus of smooth sections and $\Sigma_{d,n} := V_{d,n} \backslash X_{d,n}$ the discriminant. Let $G_n := Aut(\mathbb{F}_n)$.

• For $n=0, G_0$ is reductive and isogenous to $\mathbb{C}^* \times SL_2 \times SL_2$,

$$H^{\bullet}([X_{d,0}/(\mathbf{C}^* \times SL_2 \times SL_2)]; \mathbf{Q}) \cong H^{\bullet}(N_0; \mathbf{Q}).$$

• For $n>0,\,G_n$ is not reductive, but it is homotopy equivalent to its reductive part ${\bf C}^*\times GL_2,$

$$H^{\bullet}([X_{d,n}/(\mathbf{C}^* \times GL_2)]; \mathbf{Q}) \cong H^{\bullet}(N_n; \mathbf{Q}).$$

Gorinov-Vassiliev's method

The method computes the Borel-Moore homology of the discriminant, which is equivalent to the cohomology of its complement due to *Alexander duality*. It is based on a classification of the *singular configurations* of the elements of $\Sigma_{d,n}$,

$$X_1,\ldots,X_M\subset\mathbb{F}_n.$$

From [2], there exists a spectral sequence $E_{p,q}^{\bullet} \Rightarrow \bar{H}_{p+q}(\Sigma_{d,n})$ whose p-th column in the first page is given by the Borel-Moore homology of X_p .

Fix N>1 and set $X_p:=B(\mathbb{F}_n,p)$ the space of unordered configurations of p points on \mathbb{F}_n . Then

$$E_{p,q}^1 = \bar{H}_{q-2(\dim V_{d,n}-3p)-p+1}(B(\mathbb{F}_n,p);\pm \mathbf{Q}) \otimes \mathbf{Q}(v_{d,n}-3p),$$

provided that $d \geq 2N + 3n - 1$.

Under this assumption, we can also bound the dimension of the stratum corresponding to the remaining configurations X_1, \ldots, X_M .

Precisely, we find that the Borel-Moore homology of $\bar{H}_i(\Sigma_{d,n})$ is defined only by X_1,\ldots,X_4 in degree $i>2\dim V_{d,n}-N-1,$ and by Alexander duality, $H^i(X_{d,n})$ is defined only by the first four columns in degree $i< N \Leftrightarrow i \leq \frac{d-3n+1}{2}$.

Generalized Leray-Hirsch theorem

It is a criterion to determine if

$$H^{\bullet}(X_{d,n}) \cong H^{\bullet}(X_{d,n}/G) \otimes H^{\bullet}(G),$$
 (3)

for some reductive group G acting on $X_{d,n}$ with finite stabilizers.

From a theorem of Peters and Steenbrink [6], a sufficient condition for (3) to hold is given by the surjectivity of the orbit map in cohomology $\rho^*: H^{\bullet}(X_{d,n}) \to H^{\bullet}(G)$. This map is surjective for both $\mathbf{C}^* \times SL_2 \times SL_2$ and GL_2 . From this we deduce the stable cohomology of N_0 and of $X_{d,n}/GL_2$. By studying the Leray spectral sequence associated to the fibration

$$X_{d,n}/GL_2 \xrightarrow{\mathbf{C}^*} X_{d,n}/(\mathbf{C}^* \times GL_2)$$

we also deduce the stable cohomology of N_n , for n > 0.

Gysin spectral sequence

Table 1: Spectral sequence converging to $\bar{H}_{\bullet}(\mathcal{T}_g; \mathbf{Q}) \otimes \mathbf{Q}(-\dim \mathcal{T}_g)$ with g even.

References

[1] S. Canning and H. Larson. Chow rings of low-degree Hurwitz spaces. preprint arXiv:2110.01059, 2021.

[2] A. G. Gorinov. Real cohomology groups of the space of nonsingular curves of degree 5 in \mathbb{CP}^2 . Ann. Fac. Sci. Toulouse Math., 14(3):395–434, 2005.

[3] E. Looijenga. Cohomology of \mathcal{M}_3 and \mathcal{M}_3^1 . Mapping class groups and moduli spaces of Riemann surfaces, 150:205–228, 1993.

[4] D. Mumford. Towards an enumerative geometry of the moduli space of curves. In Arithmetic and geometry, volume II, pages 271–328. Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983.

[5] A. Patel and R. Vakil. On the Chow ring of the Hurwitz space of degree three covers of ${f P}^1$. preprint arXiv:1505.04323, 2015.

[6] C. A. Peters and J. H. Steenbrink. Degeneration of the Leray spectral sequence for certain geometric quotients. Mosc. Math. J., 3(3):1085–1095, 2003.

[7] O. Tommasi. Rational cohomology of the moduli space of genus 4 curves. Compositio Mathematica, 141(2):359–384, 2005.

[8] A. Zheng. Rational cohomology of the moduli space of trigonal curves of genus 5. manuscripta math., https://doi.org/10.1007/s00229-021-01347-x, 2021.

[9] A. Zheng. Stable cohomology of the moduli space of trigonal curves. preprint arXiv:2106.07245v3, 2022.