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Abstract. We survey some results concerning Severi varieties and variation in moduli of curves
lying on K3 surfaces or on abelian surfaces. A number of open problems is listed and some work in
progress is mentioned.

1. Introduction

Curves on K3 surfaces became a hot topic in the eighties, where their relevance concerning both
Brill-Noether theory and syzygies was understood. Green [G] noticed that his conjecture concerning
syzygies of canonical curves would imply constancy of the Clifford index for algebraically equivalent
K3-sections. This constancy was proved by Green and Lazarsfeld [GL], thus providing evidence for
Green’s Conjecture, whose validity for a general curve of any given genus was obtained only twenty
years later by Voisin [V1, V2] precisely by specialization to curves on K3 surfaces. Coming back to
the eighties, Lazarsfeld [L] used specialization to curves on K3 surfaces in order to exhibit the first
proof of the Gieseker-Petri Theorem that avoided any type of degeneration to singular curves. In
the same period, Mori and Mukai [MM] proved that a general curve of genus p ≤ 11 and p 6= 10
lies on a K3 surface and used this in order to supply explicit parametrizations in low genus of the
moduli space Mp classifying smooth irreducible curves of genus p [M1]. In genus 10, the locus of
curves lying on K3 surfaces defines a divisor inM10 that was used by Farkas and Popa in order to
disprove Slope’s Conjecture [FP]. The investigation of Severi varieties of nodal curves on K3 surfaces
was started by Mumford [MM, Appendix] and proves extremely useful for enumerative and modular
problems. More recent applications of the study of K3-sections concern higher rank Brill-Noether
theory [FO, LC] and rational curves on hyperkähler manifolds [CK, KLM2].

Quite surprisingly, a systematic study of curves on abelian surfaces was initiated not long ago
in [KLM1], where the authors investigated their Brill-Noether theory, their variation in moduli and
nonemptiness of Severi varieties. A first application towards existence of components of some Brill-
Noether loci having the expected codimension inMp was also provided.

This paper is aimed to survey some of the above results, without any claim of being exhaustive.
The focus will be on open problems, and we will skip most of the proofs.

The first section deals with the study of Severi varieties: first the results of Mumford and Chen
concerning the case of K3 surfaces will be recalled, and then the recent proof of nonemptiness in
the abelian case will be sketched. In the K3 case the main proof techniques are degeneration to the
union of two rational normal scrolls meeting transversally along a smooth anticanonical elliptic curve
and specialization to specific elliptic K3 surfaces. On the other hand, in the case of abelian surfaces
one may either degenerate the surface to a semiabelian surface (whose construction is reviewed in
the proof of Theorem 2.5) or use isogenies from surfaces with a principal polarization. We will pose
some questions and mention some work in progress.

The second section concerns variation in moduli of curves lying on K3 or abelian surfaces. The
problem of determining the dimension of the family of K3 surfaces containing the same curve as
(canonical) hyperplane section is strictly connected with the Gaussian map of the curve itself. This
was studied by Ciliberto, Lopez and Miranda [CLM1], who proved that a general K3-section of
any given genus p ≥ 13 or p = 11 lies on a unique K3 surface by exploiting degeneration to cones
over canonical curves. The topic is very current because of the recent characterization by Arbarello,
Bruno and Sernesi [ABS2] of Brill-Noether-Petri general curves lying on K3 surfaces in terms of
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nonsurjectivity of their Gaussian map. This characterization had been conjectured by Wahl [W3]
in the nineties. Another new relevant result is the accomplishment by Arbarello, Bruno and Sernesi
[ABS2] of Mukai’s program for reconstructing a general K3 surface starting from a curve lying on
it. As regards curves on abelian surfaces, it was proved in [KLM1] that a general curve of genus
p ≥ 2 lying on some abelian surfaces as hyperplane section only lies on finitely many of them. The
proof makes use of isogenies from principally polarized abelian surfaces along with a degeneration
argument similar to the one used in [CFGK] in order to study variation in moduli of curves admitting
a nodal model on a K3 surface. A number of open problems will be collected at the end of this
section, as well.

The choice of omitting Brill-Noether theory from this survey is motivated from the abundance of
literature concerning this theme. We mention Aprodu’s survey [A] for the case of K3-sections, while
we refer to [KLM1] for the Brill-Noether theory of curves on abelian surfaces.

2. Existence of nodal curves

Let S be a smooth irreducible projective surface and let L ∈ Pic(S) be a polarization on it. We
consider curves in the linear system |L| and define, for any fixed integer δ ∈ Z≥0, the Severi variety
of δ-nodal curves in |L| as the locally closed subscheme:

|L|δ := {C ∈ |L| |C is integral and has δ nodes as its only singularities}.
Since having a node at a prescribed point imposes three conditions on curves in |L|, by moving the
point on the surface one shows that

expdim|L|δ = dim |L| − δ;
one says that |L|δ is regular if it is smooth of the expected dimension. If ωS ' OS , then the following
holds:

Proposition 2.1 (proof of Prop. 1.1 and 1.2 in [LS]). If ωs ' OS, then |L|δ is regular as soon as it
is nonempty.

The above result applies to both K3 surfaces and abelian surfaces.

2.1. Nodal curves on K3 surfaces. Nonemptiness of Severi varieties on a general primitively
polarized K3 surface was first proved by Mumford [MM, Appendix]; the result was then generalized
by Chen to nonprimitive linear systems:

Theorem 2.2 (Chen [Ch1]). Let (S,L) be a general polarized K3 surface and denote by p the
arithmetic genus of all curves in |L| (i.e., c1(L)2 = 2p− 2). Then, for every 0 ≤ δ ≤ dim |L| = p the
Severi variety |L|δ is nonempty and regular.

By standard deformation theory, every node of a curve in |L| can be smoothed independently,
and hence Theorem 2.2 amounts to proving the existence in |L| of a nodal rational curve. In [Ch1]
this was done by exploiting the degeneration (first introduced by Ciliberto, Lopez and Miranda
in [CLM1]) of S to the union of two rational normal scrolls meeting transversally along a smooth
anticanonical elliptic curve. By the same method, Chen also obtained the following stronger result
in the primitive case:

Theorem 2.3 (Chen [Ch1, Ch2]). Let (S,L) be a general primitively polarized K3 surface. Then,
all rational curves in the linear system |L| are nodal.

The proof of the above theorem was simplified in [Ch2] by specialization to a K3 surface S′ with
an elliptic fibration π : S′ → P1 having a unique section σ and 24 rational nodal fibers. All curves
C in the linear system |σ+ pF | (where F is the class of a fiber) have arithmetic genus p and consist
of the union of σ with p fibers; if C is rational then its p fibers run among the 24 rational fibers
of π, possibly counted with multiplicity. The problem then translates into showing that, even when
nonreduced, such a rational C deforms to a rational nodal curve on a general genus p polarized K3
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surface. We recall that the special K3 surface S′ had been earlier used by Bryan and Leung [BL] for
enumerative problems of curves on K3 surfaces.

Theorem 2.3 has been very recently applied in order to show that every singular curve in |L|
deforms to a nodal curve with the same geometric genus [Ch3]. The same is expected to hold for
nonprimitive linear systems as well:

Conjecture 2.4 (Dedieu-Sernesi [DS]). Let (S,L) be a (very) general polarized K3 surface of genus
p and let 0 ≤ g ≤ p. Then every singular curve in |L| of geometric genus g lies in the closure of the
Severi variety |L|p−g.

The above conjecture was proved in [DS, Thm. (B.4)] for g > 0 under the assumption that the
normalization of a general curve of fixed geometric genus in |L| is non-trigonal; however, in the
nonprimitive case we are not able to verify this condition even for a general K3 surface.

2.2. State of the art on abelian surfaces. It is natural to investigate the same questions for
curves on abelian surfaces.

Theorem 2.5 ([KLM1], Thms. 1.1 and 1.3). Let (S,L) be a general polarized abelian surface of type
(1, n) and denote by p := n+ 1 the arithmetic genus of all curves in |L|. Then:

(i) for any integer δ such that 0 ≤ δ ≤ dim |L| = p− 2, the Severi variety |L|δ is nonempty and
regular;

(ii) for any 5 ≤ g ≤ p, a genus g curve in |L| can be deformed to a nodal curve in |L|p−g.

The inequality g ≥ 5 in (ii) is only due to proof technique, that relies on Brill-Noether theory for
singular curves in |L|. Indeed, by [DS, Thm. (B.6)] in order to prove point (ii) it is enough to show
that the normalization of a general curve of fixed geometric genus g in |L| is non-trigonal; this is
done for g ≥ 5 by bounding the dimension of families of rational curves in the generalized Kummer
varieties K [k](S). We spend some more words on the proof of point (i).

Sketch of proof of Theorem 2.5(i). The proof proceeds by degeneration to a (1, n)-polarized semia-
belian surface (S0, L0) constructed in the following way. We start with an elliptic curve E and denote
by ⊕ the group operation on it and by P0 the identity element. We fix a non-torsion point e ∈ E
and define the line bundle L := OE(ne− nP0). The P1-bundle

R := P(OE ⊕ L)
π−→ E

is a ruled surface having two sections σ0 and σ∞ of self-intersection 0 that are both identifiable with
E. We glue the sections σ0 and σ∞ by means of a translation by the fixed point e; in other words
we glue any point P ∈ σ∞ ' E to the point P ⊕ e ∈ σ0 ' E. The resulting surface S0 is singular
along σ0 ≡ σ∞. As proved by Hulek and Weintraub in [HW], S0 is limit of abelian surfaces and
there is a line bundle L0 on S0 that is limit of polarizations of type (1, n); if ν : R→ S0 denotes the
normalization map, then ν∗L0 ≡ σ + nF , where F is the numerical equivalence class of a fiber of π
and σ is the class of the section σ0 (or σ∞). The linear subsystem |W | := ν∗|L0| then parametrizes
curves X ∈ |ν∗L0| such that

(1) P ∈ X ∩ σ∞ ⇐⇒ P ⊕ e ∈ X ∩ σ0.

For a fixed 0 ≤ δ ≤ n− 1, we consider the Severi variety |L0|δ parametrizing curves with only nodes
as singularities, exactly δ of which lie off the singular locus of S0 and are non-disconnecting; we call
such nodes the δ marked nodes. It is not difficult to show that a curve X ∈ |W |δ := ν∗|L0|δ is the
union of δ fibers F1, . . . , Fδ and a unique component Γ that is not a fiber. The curve Γ is a section
of π and the intersection points Γ ∩ Fi for 1 ≤ i ≤ δ are mapped to the δ marked nodes of ν(X).
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A set of fibers {f, f ⊕ e, . . . , f ⊕ e⊕(h−1)} ⊂ R is called an h-sequence of fibers. We associate to a
curve X = Γ ∪ F1 ∪ . . . ∪ Fδ ∈ |W |δ a sequence of n integers (α0(X), . . . , αn−1(X)) by setting

αh(X) := # {h-sequences of fibers in {F1, . . . , Fδ} not contained in any (h+ 1)-sequence} , for h ≥ 1,

α0(X) := n−
n−1∑
i=1

(i+ 1)αi.

The definition of α0 is motivated by the fact that n = #{X ∩ σ0} and a h-sequence of fibers
{f, f ⊕ e, . . . , f ⊕ e⊕(h−1)} contained in X determines h + 1 intersection points of X ∩ σ0, namely,
P := f ∩ σ0, . . . , P ⊕ e⊕(h−1) = (f ⊕ e⊕(h−1)) ∩ σ0 and the point P ⊕ e⊕h, that is forced to lie in
Γ⊕ σ0 by (1); the integer α0 thus coincides with the number of intersection points Q ∈ Γ⊕ σ0 such
that Q	 e ∈ Γ⊕ σ∞, where 	 denotes the inverse operation of ⊕.

For any 0 ≤ δ ≤ n− 1 there exist n-uples of nonnegative integers (α0, . . . , αn−1) satisfying

n−1∑
i=0

(i+ 1)αi = n, and
n−1∑
i=1

iαi = δ,

(e.g., set α0 := n− δ − 1, αδ := 1 and αi = 0 for i 6= 0, δ.). One proves (cf. [KLM1, Lem. 3.6]) that
for any such n-uple the variety

V (α0, . . . , αn−1) = {ν(X) ∈ |L0|δ with (α0(X), . . . , αn−1(X)) = (α0, . . . , αn−1)}

in nonempty and fills up one or more regular components of |L0|δ. In order to conclude it is then
enough to show that curves in V (α0, . . . , αn−1) deform with their δ marked nodes while smoothing
the surface S0. �

2.3. Work in progress and open problems. Theorem 2.5(i) solves the nonemptiness problem of
Severi varieties on Abelian surfaces only for primitive polarizations.

Problem 2.6. Given a general abelian surface S with polarization Lof type (n1, n2) with n1 > 1,
when is the Severi variety |L|δ nonempty?

Analogously, Theorem 2.5(ii) leaves the following questions open.

Problem 2.7. Does Theorem 2.5(ii) hold for any genus g ≥ 2? In particular, is any genus 2 curve
in the primitive linear system |L| nodal?

Problem 2.8. Can one generalize Theorem 2.5(ii) and answer the same questions as in Problem
2.7 for nonprimitive polarizations L of type (n1, n2) with n1 > 1?

Concerning Problem 2.8 there is no hope to prove that for all types of polarizations all genus 2
curves on a general abelian surface are nodal, as the following example shows:

Example 2.9 ([DS], Ex. 4.17). Let (A,M) be a principally polarized abelian surface, that is,
A ' J(C) for some genus 2 curve C and the unique divisor Θ ∈ |M | can be identified with C. Under
this identification, the six Weierstrass points of C lie in the subgroup A[2] of 2-torsion points of A.
The kernel of the multiplication by two

(2) m2 : A −→ A

coincides with A[2] and m∗2(M) ' M⊗4. The curve m−12 (m2(Θ)) is the union of all translates of Θ
by points in A[2] and thus lies in a translate of |M⊗16|. Since the pullback m∗2 : NS(A) → NS(A)
is injective and both M⊗4 and OA(m2(Θ)) are symmetric, we conclude that up to translation by a
2-torsion point the curve m2(Θ) lies in the linear system |M⊗4|; furthermore, it has geometric genus
2 and has a 6-fold point at the image of the six Weierstrass points of Θ ' C.
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The above questions are being stressed in a work in progress with Nicolò Sibilla. The strategy is
to consider isogenies from principally polarized abelian surfaces. Indeed, given any polarized abelian
surface (S,L) of type (n1, n2), there exists a principally polarized abelian surface (A,M) along with
an isogeny:

(3) 0 −→ Z/n1 ⊕ Z/n2 −→ A
α−→ S −→ 0,

such that α∗L 'M⊗n1n2 . Hence, up to translation by a 2-torsion point, the image α(Θ) of the theta
divisor Θ ∈ |M | is a genus 2 curve lying in the linear system |L|. Problems 2.6 and 2.7 can then be
addressed by analyzing whether, under suitable assumption on the generality of (S,L) and on the
integers n1 and n2, all singularities of α(Θ) are nodes. Note that, if S itself is principally polarized
and L is four times a principal polarization, the isogeny α in (3) is different from (2) and it is still
plausible that α(Θ) is nodal.

In this context, we recall that any polarization L of type (n1, n2) on an abelian surface S induces
an isogeny

φL : S −→ Ŝ := Pic0(S)

assigning to a point x ∈ S the line bundle L⊗t∗x(L), where tx denotes the translation by x on S. The
map φL has kernel K(L) ' Z⊕2n1

⊕ Z⊕2n2
. Furthermore, given any curve C ∈ |L| of geometric genus 2,

the universal property of the Jacobian J(C̃) of the normalization C̃ of C provides an isogeny

(4) λ : J(C̃) −→ S.

The kernel of the dual isogeny λ̂ : Ŝ −→ J(C̃) is a maximal totally isotropic subgroup of the kernel
K(L̂) of the isogeny φ

L̂
induced by the dual polarization L̂ on Ŝ. Concerning Problems 2.7 and 2.8,

we expect that the following holds:

Conjecture 2.10. Let (S,L) be a general polarized abelian surface of type (n1, n2) and assume in
the linear system |L| there is a genus 2 curve C that is not nodal. Then, the isogeny λ in (4) factors
through the multiplication by 2 on J(C̃). In particular, as soon as 4 does not divide n1, all genus
two curves in |L| are nodal.

3. Moduli maps

The moduli space Fp of polarized K3 surfaces of genus p is irreducible of dimension 19. We
denote by Pp the parameter space for pairs ((S,L), C) where (S,L) ∈ Fp and C ∈ |L| is smooth and
irreducible, along with the natural forgetful morphisms:

(5) Pp
qp

~~

fp

""
Fp Mp .

The map qp realizes Pp as an open subset of a Pp-bundle over Fp, while fp sends ((S,L), C) to the
class of C in the moduli spaceMp of genus p curves.

Analogously, let A(1, n) be the moduli space of (1, n)-polarized abelian surfaces with a suitable
level structure that makes it a fine moduli space, and let P(1, n) be the open subset of a tautological
Pn−1-bundle over A(1, n) parametrizing pairs ((S,L), C) where (S,L) lies in A(1, n) and C ∈ |L| is
a smooth and irreducible curve of genus p := n+ 1. As above, we consider the natural morphisms:

(6) P(1, n)
qn

yy

an

$$
A(1, n) Mp .
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3.1. The K3 case and the Gaussian map. First of all, we recall that dim Pp = 19 + p ≥
dimMp = 3p− 3 if and only if p ≤ 11; thus, the last inequality is a necessary condition for a general
curve of genus p to lie on a K3 surface. In fact, Mori and Mukai proved that for p 6= 10 this condition
is also sufficient:

Theorem 3.1 (Mori-Mukai [MM]). The map fp is dominant for p ≤ 11 and p 6= 10.

In the case p = 11, even more is true: f11 is birational and, if C is a general curve of genus
11, the unique K3 surface on which it lies can be recovered as a Brill-Noether locus in the moduli
space of rank-two vector bundles on C with canonical determinant [M2]. We will come back to this
construction in the next subsection.

Inspired by the genus 11 case, it makes sense to investigate whether for p > 11 the map fp is
birational onto its image. For p ≥ 13 the answer is affirmative:

Theorem 3.2 (Ciliberto-Lopez-Miranda [CLM1]). The map fp is birational onto its image for p ≥ 13
and p = 11.

The above result relies on properties of the Gaussian map

(7) νC :
∧2H0(C,ωC) // H0(C,ω⊗3C )

f ∧ g // f · dg − g · df .

The name Gaussian map comes from the relation between νC and the Gauss map

ϕ : C → G(1, p− 1),

where G(1, p− 1) denotes the Grassmannian of lines in Pp−1, mapping each point P to the tangent
line at P to C ⊂ Pp−1. Let φ : C → PN denote the composition of ϕ with the Plücker embedding of
the Grassmannian G(1, p− 1) into PN . Then, after applying the isomorphisms

H0(PN ,OPN (1)) '
2∧
H0(Pp−1,OPp−1(1)) '

2∧
H0(C,ωC),

the morphism νC coincides with the restriction H0(PN ,OPN (1))→ H0(C,OC(1)) induced by φ.
The morphism νC is also named after Wahl, who first realized its relevance in the study of curves

on K3 surfaces by noticing that νC cannot be surjective if C lies in the image of fp [W1]. On the
other hand, a general curve of genus p has a surjective Gaussian map if p = 10 or p ≥ 12 [CHM].
Generic injectivity of fp is translated in terms of Gaussian maps thanks to the following:

Proposition 3.3 (Ciliberto-Lopez-Miranda [CLM1], §5.3). If a general curve in the image of fp has
a corank one Gaussian map, then fp is birational onto its image.

Sketch of proof. The forgetful maps in (5) lift to morphisms at the Hilbert scheme level:

Pp

qp

~~

fp

!!
Hp Cp .

where Hp is the Hilbert scheme of K3 surfaces of genus p in Pp, the space Pp denotes the flag Hilbert
scheme of pairs C ⊂ S ⊂ Pp with [S ⊂ Pp] ∈ Hp and C a smooth hyperplane section of it, while Cp
is the Hilbert scheme of canonical curves of genus p in Pp (all living in some hyperplane). The fibers
of fp have dimension at least p + 1, which is the dimension of the space of projectivities fixing an
hyperplane. Since a fiber of fp is the quotient of a fiber of fp by the projective group, it is enough
to show that a general fiber of fp is irreducible of dimension p+ 1.
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We recall that for a general [C ⊂ S ⊂ Pp] ∈ Pp, any cone XC over C defines a point of Hp (cf.
[P]). More precisely, there exists a flat family ψ : χ→ P1 such that a general fiber of ψ is isomorphic
to an embedding of S in Pp and a special fiber of ψ is isomorphic to XC ⊂ Pp. In particular, the
point x := [C ⊂ XC ⊂ Pp] lies in any component of the fiber of fp over c := [C ⊂ Pp]. The tangent
space of the fiber of fp at x is isomorphic to the space of global sections

H0(XC , NXC/Pp(−C)) ' ⊕k≥1H0(C,NC/Pp−1(−k)),

where the last isomorphism follows by restricting to the cone minus its vertex and then projecting
to C. If the ideal of C is generated by quadrics then H0(C,NC/Pp−1(−k)) = 0 for k ≥ 3 and, if C
is a general curve in the image of fp, the vanishing H0(C,NC/Pp−1(−2)) = 0 holds as well [CLM1,
Lem. 4]. On the other hand, one has

(8) H0(C,NC/Pp−1(−1)) = p+ cork νC .

In conclusion, if corkνC = 1, then

p+ 1 = dim Txf
−1
p (c) ≥ dim f−1p (c) ≥ p+ 1,

and hence equalities hold. Furthermore, the fiber f−1p (c) is irreducible because otherwise it would be
singular at x (which lies in the intersection of all its components). . �

In order to provide curves on K3 surfaces as in Proposition 3.3, Ciliberto, Lopez and Miranda
[CLM1] performed a double degeneration, first to the union of two rational normal scrolls meeting
along an elliptic normal curve and then to a suitable union of planes whose general hyperplane
section is a union of lines with corank one Gaussian map.

It is worth spending a few words concerning the exceptional case of genus p = 10, where the map
fp has three-dimensional fibers and thus fails to be surjective. It was proved by Cukierman and
Ulmer [CU] that the closure of the image of f10 coincides with the closure of the divisor of curves in
M10 having a nonsurjective Gaussian map. It is natural to investigate whether the nonsurjectivity
of the Gaussian map also characterizes curves on K3 surfaces in any genus p ≥ 12. This question
was raised in [W3] by Wahl, who related the cokernel of νC to deformations of the affine cone over
C. A canonical curve C ⊂ Pp−1 is called extendable if it is a hyperplane section of a surface S ⊂ Pp
that is not a cone. Wahl [W3] conjectured that the extendability of a canonical curve of Clifford
index at least 3 is equivalent to the nonsurjectivity of the Gaussian map. This conjecture has been
proved only very recently by Arbarello, Bruno and Sernesi:

Theorem 3.4 (Arbarello-Bruno-Sernesi [ABS2]). Let C ⊂ Pp−1 be a canonical curve of genus p ≥ 11
and Cliff(C) ≥ 3. Then C is extendable if and only if νC is not surjective.

Note that the extendability of a curve C ⊂ Pp−1 does not ensure that [C] lies in the closure of the
image of fp, as it might be a hyperplane section of a surface S that has some isolated singularities
and is not the limit of smooth K3 surfaces.

Example 3.5 (Wahl [W3]). Let C ⊂ P2 be a smooth plane curve of degree d ≥ 7. It is not difficult
to show that νC has corank 10 = dim H0(P2, ωP2) ([W2, Rmk. 4.9]) and hence C is extendable by
Theorem 3.4. However, curves of Clifford dimension two cannot lie on any K3 surface [CP, Kn]. In
this particular case, the surface S ⊂ Pp on which C lies can be explicitly constructed as follows. Let
ξ denote the set of 3d intersection points of C with a general smooth cubic curve Γ ⊂ P2. The linear
system |Iξ(d)| contains both the smooth curve C and all reducible curves of the form Γ ∪D where
D is a plane curve of degree d− 3. In fact, one has:

dim |Iξ(d)| = dim |OP2(d− 3)|+ 1 =
(d− 1)(d− 2)

2
= g(C) =: p,

and |Iξ(d)| defines a morphism ϕ : BlξP2 → S ⊂ Pp, whose image S is a surface having C as
(canonically embedded) hyperplane section. It turns out that S has a unique (nonsmoothable)
elliptic singularity at the point that is the image under ϕ of the proper transform Γ̃ of Γ in BlξP2.
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Smooth plane curves are very special from a Brill-Noether viewpoint. This led Wahl to conjecture
that an extendable genus p curve C satisfying the Gieseker-Petri Theorem (i.e., such that for all
integers r, d ≥ 1 the Brill-Noether variety

W r
d (C) := {A ∈ Picd(C) | dim H0(C,A) ≥ r + 1}

is smooth of dimension equal to the Brill-Noether number ρ(p, r, d) := p− (r+ 1)(p− d+ r)) always
lies in the image of fp. Very recently, Arbarello, Bruno and Sernesi [ABS2] proved a slightly weaker
statement: under Wahl’s assumption,[C] lies in the closure of the image of fp. Along with Theorem
3.4, this yields:

Theorem 3.6 (Arbarello-Bruno-Sernesi [ABS2]). Let C ⊂ Pp−1 be a canonical curve of genus p ≥ 12
satisfying the Gieseker-Petri Theorem. Then C lies on a polarized K3 surface of genus p, or on a
limit thereof, if and only if νC is not surjective.

The above statement is optimal; indeed, there exist some plane curves (the Du Val curves) that
are extendable ([ABS2]), satisfy the Gieseker-Petri Theorem ([ABFS]) but do not lie on any smooth
K3 surface ([AB]).

3.2. Mukai’s program for curves on K3 surfaces. As already mentioned, in the case of genus
11, Mukai [M2] proved birationality of the map f11 by exhibiting a rational inverse of it. Let C
be a general curve of genus 11 and consider the moduli space MC(2,KC) of semistable rank-two
vector bundles on C with canonical determinant. The Brill-Noether locus MC(2,KC , 5) of vector
bundles in MC(2,KC) with a space of global sections of dimension at least 5 turns out to be a
Fourier-Mukai transform of the unique K3 surface on which C lies. In [M3] Mukai also suggested
that a similar procedure should make it possible to reconstruct a general polarized K3 surfaces of
any genus p ≡ 3 mod 4 starting from a general hyperplane section of it. This program was recently
carried out by Arbarello, Bruno and Sernesi [ABS1].

Let C be a general curve in the image of fp for p = 2s+ 1 with s ≥ 6. The first key observation is
that the Brill-Noether locus MC(2,KC , s) of rank-two vector bundles having canonical determinant
and a space of global sections of dimension at least s is always nonempty and of positive dimension.
This fact was first realised by Voisin and is unforeseen for p > 11, since the expected dimension of
MC(2,KC , s) is ≤ 0 as soon as p ≥ 13. The curve C has a one-dimensional family of line bundles A
of degree s + 2 such that dimH0(C,A) = s + 2. A general such A is base point free and thus the
evaluation map

evS,A : H0(C,A)⊗OS −→ A

is surjective. One defines the Lazarsfeld-Mukai bundle ES,A to be the rank-two vector bundle on S
dual to the kernel of evS,A, and the Voisin bundle EA as the restriction of ES,A to C. If S and C
are general, then both ES,A and EA are stable ([ABS1, Lem. 2.5, Prop. 3.1]). More precisely, ES,A
defines a point in the moduli space Mv(S) of [C]-stable vector bundles E on S with Mukai vector
v = (2, [C], s) (i.e., rkE = 2, c1(E) = [C], χ(E) = s + 2), while [EA] ∈ MC(2,KC , s). All Voisin’s
bundles EA lie in the same irreducible component of MC(2,KC , s), that is denoted by VC(2,KC , s)
and has dimension ≥ 1. We recall that dimMv(S) = 2 and Mv(S) is a smooth K3 surface.

Theorem 3.7 (Arbarello-Bruno-Sernesi [ABS1]). Let p = 2s+ 1 with s an odd integer ≥ 5, and let
(S,C) ∈ Pp be general. Then the following hold:

(a) restriction to C defines an isomorphism

(9) σ : Mv(S) −→ V := VC(2,KC , s)red ⊆MC(2,KC , s)

and hence V is a smooth K3 surface;
(b) there is a polarization h on V such that any polarized abelian surface on which C lies is

isomorphic to the Fourier-Mukai transform Mv̂(V ) of V where v̂ = (2, h, s).
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The proof strategy is specialization to a K3 surface S with Picard number two for which S '
Mv(S) (i.e., S is Fourier-Mukai self-dual) by an explicit isomorphism, that clarifies both the isomor-
phism (9) and the embedding C ↪→ Mv(S). The statement is then proved for a general polarized
K3 surface by a deformation theoretical argument.

3.3. Generic finiteness in the abelian case. Quite surprisingly, the moduli maps in the abelian
case (that is, the maps appearing in the diagram (6)) have been studied only a short while ago in
[KLM1]. The main result is the following:

Theorem 3.8 ([KLM1]). For every n ≥ 1, the moduli map an in (6) is generically finite. In other
words, a general curve of genus p := n + 1 ≥ 2 lying on some (1, n)-polarized abelian surfaces only
lies on finitely many of them.

Proof. Let P(1, n) be the partial compactification of P(1, n) parametrizing pairs ((S,L), C) where
(S,L) ∈ A(1, n) and C is a nodal curve in the linear system |L|. The map an in (6) extends to a
morphism

an : P(1, n)→Mp,

that applies ((S,L), C) to the class of the stable curve [C] ∈ Mp. By Theorem 2.5 there are points
((S,L), C) ∈ P(1, n) with C of geometric genus 2. We recall (4) and the discussion after that. If C̃
is the normalization of C, we obtain an isogeny λ : J(C̃) −→ S. The kernel of the dual isogeny λ̂ is
a maximal totally isotropic subgroup of the kernel K(L̂) ' Zn ⊕ Zn of the morphism φ

L̂
: Ŝ −→ S

induced by L̂. Finiteness (of the number of subgroups) of K(L̂) then yields finiteness of the fiber
an
−1([C]) and the statement follows by upper semicontinuity. �

Remark 3.9. In [KLM1, Thm. 1.2] a stronger version of Theorem 3.8 is actually achieved. For
2 ≤ g ≤ p = n + 1, denote by Ug,n ⊂ Mg the locus of curves admitting a (p − g)-nodal model as
hyperplane section of some (1, n)-polarized abelian surface. There exists an irreducible component
U of U(g, n) such that, if [C̃] ∈ U is general, then both the number of (p − g)-nodal models of C̃
occuring as hyperplane section of some (1, n)-polarized abelian surfaces and the number of abelian
surfaces on which any such model lies are finite. An earlier, but still quite recent, analogous result
for curves on K3 surfaces is due to Kemeny [Ke] and, independently, Ciliberto, Flamini, Galati,
Knutsen [CFGK].

3.4. Open problems and work in progress. Even though Theorem 3.2 establishes generic injec-
tivity of fp for any genus p ≥ 13 and p = 11, a rational inverse of it has been constructed only for
p ≡ 3 mod 4.

Problem 3.10. Find a generalization of Mukai’s program to all genera p ≥ 13 and p = 11.

The first step in Mukai’s program (i.e., Theorem 3.7(a)) actually works for any odd genus p =
2s + 1, and the requirement concerning the parity of s is only used in the construction of the
polarization h on the surface V 'Mv(S). Hence, a solution to Problem 3.10 in odd genus should be
attainable and is essentially a technical matter. On the other hand, in order to approach the same
problem for even genus, one needs some new ideas since in this case there is no natural candidate
for a rational inverse of fp, at least up to the author’s knowledge.

It is sometimes interesting to study the restriction of fp to the preimage under qp of a proper closed
subset of Fp. For instance, in [FV] the 11-dimensional moduli space FNp of genus p Nikulin surfaces
(that is, K3 surfaces endowed with a non-trivial double cover branched along eight disjoint rational
curves) is considered, along with the restriction fNp : PNp −→Mp of fp to PNp := q−1p (FNp ). This map
factorizes through a morphism np : PNp −→ Rp to the Prym moduli space Rp parametrizing étale
double covers of smooth genus p curves; in [FV], the authors showed that the map np is dominant
for p ≤ 7 and p 6= 6. In a joint work in progress with Knutsen and Verra [KLV], we prove finiteness
of np in the remaining cases.
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Similarly, one may restrict the map fp to the preimage under qp of the locus FKp of Kummer
surfaces (that is, K3 surfaces that arise as desingularization of the quotient of an abelian surface by
the involution −1) and ask the following question:

Problem 3.11. When is the restriction fKp : PKp −→ Mp of fp to PKp := q−1p (FKp ) generically
finite/generically injective?

The interest in the above question comes from its likely connection to the problem of generic
injectivity of the map an in the abelian case, which is still open:

Problem 3.12. Let n ≥ 2 and let an be the moduli map appearing in (6). Is an birational onto its
image? If yes, can one explicitily construct a rational inverse of it?

Let (S,L) be a (1, n)-polarized abelian surface and let K(S) be its Kummer surface, that is, the
blow up of S/〈−1〉 at its 16 singular points. A general curve C ∈ |L| is neither invariant nor anti-
invariant under the involution −1 and hence the restriction of the quotient map π : S 99K K(S)
to C is birational; the image C := π(C) has C2 = 2n (ordinary) double points. Assume one may
prove that K(S) is the only Kummer surface containing C and that there are no other (2n)-nodal
models of C lying on some Kummer surfaces; then the first part of Problem 2.8 would reduce to
investigating whether C may lie on some Fourier-Mukai partner of S non-isomorphic to S, that is,
another abelian surface with the same Kummer surface as S. Concerning the second part of Problem
2.8, we expects a construction similar to Mukai’s program to work for some genera in the abelian
case, as well.

Theorems 3.1 and 3.2 have been generalized to nonprimitive linear systems on K3 surfaces in
[CLM2] again by exploiting the Wahl map and deformation to cones. The careful reader will have
noticed that in the abelian case the requirement for the polarization to be primitive is used in the
proof of Theorem 3.8 only when applying the non-emptiness result for Severi varieties of genus 2
curves. Therefore, a generalization of Theorem 2.5(i) would solve not only Problem 2.6 but also the
following:

Problem 3.13. Let

(10) P(n1, n2)
q(n1,n2)

xx

a(n1,n2)

$$
A(n1, n2) Mp, p = n1n2 + 1,

generalize diagram (6) for nonprimitive linear system of type (n1, n2) with n1 > 1. When is the
moduli map a(n1,n2) dominant/generically finite?
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