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PENCILS ON GENERAL COVERS OF AN ELLIPTIC CURVE

ANDREAS LEOPOLD KNUTSEN AND MARGHERITA LELLI-CHIESA

ABSTRACT. We completely describe the Brill-Noether theory of pencils on general
primitive covers of elliptic curves of any degree.

1. INTRODUCTION

In recent years much focus has been directed toward the Brill-Noether theory of
covers of P!, see, e.g., [I} 13, 8, [IT],5]. Little is however known for covers of higher genus
curves, even elliptic curves. In this paper we settle the Brill-Noether theory of pencils
of a general primitive cover of any fixed elliptic curve.

Fix any smooth irreducible elliptic curve E over C. A finite cover ¢ : C — FE is
called primitive if it does not factor through another finite cover ¢' : C' = E’ of smaller
degree to an elliptic curve E’. The Hurwitz scheme ng,;m(E) parametrizes primitive
simply branched covers ¢ : C' — E of degree k from some smooth irreducible curve C
of genus g > 2. We recall that Hgf,igm(E) is smooth and irreducible of dimension 2g — 2

[7,3]. We denote by M, ,(F) the image under the natural forgetful map of Hgf,igm(E)
in the moduli space M, of genus g curves. Since any cover can be composed with an
automorphism of F, the locus M, j(F) is irreducible of dimension 2g — 3.1t turns out
(cf. Proposition H)) that a general member of M, 1(F) admits only one k : 1 cover to E
up to the automorphisms of £ and, if ¢ > 2, no finite primitive maps to other elliptic
curves.

As the pullback of any g4 on E under a degree k cover of it defines a g%k on the covering

curve, any curve in M, ;(FE) has gonality at most min {21@, {%?’J} by standard Brill-

Noether theory. We will prove the following fundamental result, which answers a natural
question, yet hitherto unanswered:

Theorem 1. Let ¢ : C — E define a general point in the Hurwitz scheme ’H;’r,im(E) for
g>2andk > 2. Let GL(C)" denote the closure of the locus of linear series in G(C)
that are base point free and not composed with ¢. Then the following hold:
(i) GL(C)" is nonempty if and only if either k > 3 and p(g,1,d) >0, or k =2 and
(ii) if nonempty, GL(C)"® has pure dimension p(g,1,d) :== —g + 2d — 2.

Part (ii), and thus the consequence that C' has gonality min {2/<;, L%?’J }, was recently

proved in [I0, Cor. 5.3]. Up to our knowledge, the only known part of (i) was the

existence of a base point free g;_l in the case k = 2 (cf. [12] and references therein,

where the result is obtained for any bielliptic curve and not only for a general one).
The above theorem enables us to fully describe the Brill-Noether theory of pencils

on a general curve C' in M ;(E), whose k : 1 map onto E we denote by ¢. For every
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2 < n < d/k, we denote by G}i’n(C’) the closure in G%(C) of the locus of linear series g
with s := d — nk base points p1, ..., ps such that g(—p; —- - - — ps) is the pullback under
¢ of a gl on E. It is straightforward that G}M(C) is irreducible of dimension

(1) dim G}, (C) = dim G}, (E) + d — nk = d — (k — 2)n — 3;

in particular, this does not depend on n in the case k¥ = 2 . When dim G}M(C) >
p(g,1,d), that is, in the range 2 < n < gk12d, Theorem [ implies that Gd (C) is an
irreducible component of G}i(C’). More precisely, we obtain the following results:

Corollary 2. Fiz k > 3,9 > 2 and let [C] € My ,(E) be general. Then C has gonality
3
gonC’:min{Qk Lg; J},
and for every d = gon C one has
(2) dim GY(C) = max{p(g,1,d),d — 2k + 1}.
More precisely, the following hold:
(i) if p(g,1,d) = 0, the irreducible components of G4(C) are the components of
GL(C)™ and the loci G ,(C) for 2 < n < L2534,
(ii) if p(g,1,d) < 0, the irreducible components of GL(C) are the loci Gcllm(C) for

2<n<é

In particular, when k£ > 3 the Brill-Noether varieties G}l(C ) are not necessarily equidi-
mensional. This fact highlights a big difference with the £k = 2 case, that we therefore
state separately:

Corollary 3. Let [C] € Myo(E) be general with g > 2. Then C has gonality

gon C = min {4, {%J } ,

and for every d > gon C' the Brill-Noether variety G 2(C) is equidimensional of dimension
(3) dim Gd(c) = maX{ﬂ(Q) 17 d)7 d— 3}
More precisely, the following hold:
(i) if d > g — 1, then G5(C) coincides with G5(C)"¢;
(ii) if d = g—1, the irreducible components of G5(C) are the components of G5(C)
and the loci Gclm(C’) for2 < n< %l;
(iii) if d < g — 1, the irreducible components of G5(C) are the loci G}M(C) for every
2<n< g

nc

When 2k < VHJ Corollaries 2] and [ (or [10, Cor. 5.3]) imply that a general curve

[C] € My ,(E) does not satisfy Aprodu’s linear growth condition [I]. Green’s Conjecture
for these curves is nevertheless satisfied by the recent result [10, Thm. 5.4] (the case
k = 3 had been done in in [2] the case k = 2 is trivial, as the curve C' is 4-gonal and thus
Green’s conjecture reads like the ideal of the canonical curve C' C P9~! being generated
by quadrics).
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2. PROOFS OF THE RESULTS
First of all, we prove what anticipated at the beginning of the introduction:

Proposition 4. Fiz g > 2,k > 2 and any elliptic curve E. Then the following hold:
(i) a general fiber of the forgetful map ng,zm(E) — Mg i (E) has dimension 1 (cor-
responding to the automorphisms of E);
(ii) if g > 3, then a general [C] € My i(E) does not lie in any other Mg (E')
(where k' > 2 and E' is an elliptic curve possibly conciding with E if k # k).
Proof. Let [¢ : C — E] € gf;m(E) be general and, by contradiction, assume the
existence of another primitive simply branched map ¢’ : C — E’ of degree k' > 2 to an
elliptic curve E’ (where ¢ and ¢ are required to be distinct up to the automorphisms
of F in the case F' = E and k' = k). We stress that both ¢ and ¢’ are primitive
and so they are not composed one with the other. The pair (¢, ¢’) then defines a map

from C to the abelian surface E x E’, that can be factored as C — D Yy Ex E,
where D is a curve of genus h < g (with D = C when h = g), « is a finite map of
degree 1 < n < min{k, %'} dividing both k£ and k', and the map ¢ is birational. In
particular, the image (D) is a curve of numerical class [E + I'E’ with [ = k/n > 2 and
I"=FK/n > 2. By [0, Prop. 4.16], integral genus h curves in E x E’ of this numerical
class move in dimension h. Modding out by the automorphisms of F x E’, we obtain
a family of dimension < h — 2 of curves D of genus h > 2 admitting a birational map
to a curve of class [E + I'E' in E x E’. Letting E’ vary in moduli and denoting by
Hgn(D) the Hurwitz scheme of genus g and degree n simply branched covers of a curve
D as above, one computes that curves C' admitting a pair (¢, ¢’) as described move in
dimension at most

1+h—2+dimH"(D) =h—1429—2—n(2h —2),
which is < 29 — 3 = dim M ;(F) unlessn =1 and h = g = 2. O

To prove our main results, we now consider the surface

T := E x P! and let R and E denote the classes of the obvious sections of T, so that
KT = —2E,

Let Vy(k,d) denote the Severi variety of irreducible nodal curves of genus g on T of
class kE+dR. Similarly, we denote by V9(k, d) the equigeneric locus of integral curves of
genus g on 7' of class kE + dR, so that one has an obvious inclusion Vy(k,d) C V9(k,d).
Let Mg(k,d) be the coarse moduli space of genus g stable maps with image of class
kE + dR, and denote by Mg(k,d)™™ the closure of the locus of maps in Mg (k,d) that
are smoothable, that is, can be deformed to a map from a nonsingular curve, birational
onto its image (cf. [14]). By sending a stable map f : C — T to its image f(C) = C, one
obtains a dominant morphism from the semi-normalization of Mg(k,d)*™ to V9(k,d)
[9, 1.6]. The following result is of independent interest (part (ii) was aready proved in
[10, Prop. 5.2]):

Proposition 5. For every 1 < g < d(k — 1) 4+ 1 the following hold:

(i) the variety Vy(k,d) is nonempty, smooth of dimension 2d + g — 1 and dense in
the equigeneric locus VI (k,d);
(i) My(k,d)*™ is generically reduced of dimension 2d + g — 1.
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Proof. Since —Kr - (kE + dR) = 2d > 4, it is well-known that Mg(k,d)*™ and V9(k, d)
are generically reduced (as a general stable map in any irreducible component is unram-
ified) and equidimensional of dimension 2d + g — 1 as soon as they are nonempty, and
that V;(k, d) is dense in VI(k, d), cf., e.g., [4, proof of Prop. 2.2]. For [C] € V,(k,d), we
denote by N the scheme of nodes of C' and by v : C — C C T the composition of the
normalization map with the inclusion of C in T'. Since the tangent space of Vy(k, d) at
the point [C] can be identified with H(T,Or(C) ® Jyn) and this is isomorphic to the
2d + g — 1-dimensional space H°(C,N,) = H(C,wc ®@ v*(—K7)) 6], §3.1], we conclude
that Vj(k,d) is smooth. As a consequence, to prove nonemptiness we first note that
M (k,d)*™ is nonempty (just pick any smooth elliptic curve admitting a degree k map
onto F, together with a general gcll on it). It follows that also Vi (k,d) is nonempty and
its smoothness implies that the nodes of the curves can be smoothed independently; as
a consequence, Vy(k,d) is nonempty for all 1 < g < po(kE 4+ dR) =d(k —1) + 1. O

In the sequel we will make use of the following vanishing:

Lemma 6. Let N be the scheme of the § := d(k — 1) + 1 — g nodes of a curve C in
Vy(k,d). Then
hW(T,07(C+ Kr)® JIn) =g — 1.

Proof. Let up : TN — T be the blow up at N, with total exceptional divisor ¢, and let
C' be the normalization of C, also coinciding with the strict transform of C under uy.

Since C2=0C" — 6 =2kd — (d(k — 1) +1—g) = kd +d+ g — 1 > 0, we have that C is
big and nef, so that

1
0 == pr— J—
W(Og, (C+ Kz,)) = x(Og,, (C + Kg,)) = 5C- (0 I KTN) "
But €'+ K7, ~ wiC — 2¢ + pKr + ¢ = p(C + K1) — ¢, and the result follows. [

The following result is used to specialize the nodes of curves in V,(k,d) to the nodes
of some reducible curves.

Lemma 7. Fir g > 5, k> 3, d > (9 — 1)/2 and two integers ly,ly such that Iy + la =
2d4+1—gand 0<l; <d—2 fori=1,2. Let

f:X:lsUZlElUZZEQ—)X:DUElLJEQCT

be a genus g stable map such that D is a smooth elliptic curve of genus 1 with image
D = (k — 2)E + dR, the curves Ey, Ey are mapped isomorphically to elements of |E|,
and D and FE; intersect transversally at d — I; points denoted by Z; for i = 1,2. Then
[f] € My(k,d)*™ and D + Ei + Es lies in the closure of Vy(k,d).

Proof. By Proposition [ it is enough to show that f is smoothable. We denote by
fo=flg:D—=DCT, fg:E — E CTfori=12and f ::f|l~)UZE1:
1

DUy, E; — DUE) C T the restrictions of f. It is enough to prove that [f] € Mg(k, d)*"
when [fp] is general in any irreducible component of M;(k — 2,d)*™. The map fi
defines a point of Mj4_;, (k — 1,d), whose expected dimension is 3d — I;. As soon as
l1 < d—2, one has 3d — I > dim (M;(k —2,d)*™ x M;(1,0)) = 2d + 1, where the
equality follows from Propggition Bl as a consequence, the map f1 is smoothable, that
is, it lies in a component M of My4-, (k — 1,d)*™. Take now a genus g-stable map
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h:YUzE — YUE C T such that hy := h|g corresponds to a general point of M\, the
restriction hg := h|g defines a point of M;(1,0) and Z := Y NE consists of d— [ nodes.
Then h defines a point of M (k,d), which has expected dimension equal to 2d + g — 1.

Since 2d + g — 1 > dim (./\//\( X M1(1,0)> =3d — 11 + 1 for Iy < d — 2, we conclude that
the map A is smoothable and thus the same holds for f. O

Proposition 8. For every 2 < g < d(k — 1) + 1 and d > 2k, the forgetful map 1y q :
Mg (k,d)*™ --» Mg dominates Mg ,(E) when p(g,1,d) > 0.

Proof. Let f: C — T define a general point in some component of Mg(k,d)*™ so that
the image C := f(C) is a curve with § ::~d(k‘ — 1) + 1 — g nodes, that we denote by
N. As in the proof of Lemma 6l let uy : Ty — T denote the blow up at N and by e
its exceptional divisor. Since A := f*(Or(E)) € G4(C) moves in dimension > p(g, 1, d),
the fiber 1/1;; 4([C]) has dimension
> p(g,1,d) +dim Aut(T) = p(g,1,d) +4 = dim My(k,d)*"™ — dim M ,(E).
We want to show that equality holds.
Let Ny denote the normal sheaf of f, fitting into
0—— To — f*Tr — Ny —— 0.
The coboundary map
H°(Ny) — H'(Tc)
is the differential
dwg,k,d : T[f]./\/lg(k, d)sm — T[C]Mg
of the forgetful map 1,1 4 at [f]. Its kernel is isomorphic to
H°(f*Tr) ~ H°(f*(Or © Or(2E))) ~ H*(Oc) & H’(Oc(24)),
which has dimension
1+ 1%(0c(24)) = 14 (2d+1— g+ h(we —24)) = plg,1,d) + 4+ h°(we — 24).
To finish the proof of the proposition, it will therefore be enough to prove that when
p(g,1,d) > 0 the vanishing
(4) ho(we —24) =0

holds for a general (C, A) where C is the domain of a general [f] in some component of

My (k,d)*™ and A = f*(Or(F)). The vanishing holds for degree reasons if d > g, so

we may assume that 4 < 2k < d < g. The case k = 2 thus yields § =d+1—g =0,

d=g¢g—1and p(g,1,d) =g—4=d—3>1. The vanishing () thus holds as soon as A

is not a theta characteristic on C' and we may assume this is not the case as A moves in

a positive dimensional family. From now on we will therefore assume 6 < 2k < d < g.
From the short exact sequence

0 ? OTN(KTN —2uyE) N OTN (KfN +C -2uyFE) —wec —2A——0

and the facts that KTN ~ K7 + ¢ and C ~ piC — 2¢, we see that (@) is equivalent
to the two conditions

(5) W(T,07(C —2E+ Kp)® Jn) =0
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and
(6)  H'(sy): H(T,Op(—4E)) — HYT,07(C — 2E + K1) ® Jy) is injective

Let V’ be a component of V@(k,d) containing a reducible curve D + E; + Es as in
Lemma [7] and let V be a component of V9(k,d) containing V'. We will prove the
vanishings (5) and (B) for the scheme of nodes N of a general curve [C] € V.

To prove ({l), we may specialize N to a scheme of nodes of a reducible curve D+ FE1+ FE»
(as in Lemma [7]) containing all the nodes Np of D plus l; < d — 2 nodes of D N E;
and Iy < d — 2 nodes of DN Ey with I1 +1; = 2d + 1 — g. By Lemma [@ applied to
the curve [D] € Vi(k — 2,d), we obtain the vanishing h®(O7(C — 2E + K1) ® Jn,,) =
ho(Or(D + K1) ® Jn,,) = 0, so that the vanishing (B]) also holds .

We next specialize N to a length-§ subscheme N’ of the scheme of nodes Nt of a
general curve [UJF] € V', whose normalization is denoted by CT. Since the genus of cr
is d, the vanishing h°(we+ — 2A) = 0 holds for degree reasons, whence also

(7) BT, O (C —2E 4+ K1) @ Jy+) =0
and
(8) H'(sy+): HY(T,Op(—4E)) — HYT,07(C — 2E + K7) ® Jn+) is injective.

Let W C N be any subset of g —d points and set N’ := N\ W. From the short exact
sequence

0 J N+ J N’ OW 0
we obtain the commutative diagram with exact rows:
HY(Or(-4E)) H'(Or(—4E))

lHl(ijL) lHl(sN/)

H(Ow) 2% HYO7(C - 2E + K1) @ Jy+) —— HY(Or(C = 2E + K1) © Jn1) — 0.

We will show that one may choose W C N = {nq,... ,nd(k_2)+1} appropriately so that

(9) Imay NIm H (sy+) = {0}.
By (), this will imply the injectivity of H'(sys) and thus condition (@) for the nodes

N of a general curve [C] € V D V.
We note that h'(Op(—4E)) = 3, so that Im H'(sy+) ~ C3. By () we have the exact
sequence

0 —— HY(Op(C — 2E + Kr)) —— HY(On+) —55 HY(Op(C — 2B + K7) ® Jy+);
since C — 2FE + K7 = (k — 2)E + dR + Kr has no higher cohomology for k > 3, the

image of o+ has dimension
degNT —x(Or(C—2E+ Kr)) = dk—2)+1—d(k—-3)=d+1
= plg,1,d)+g—d+3>g—d+3.

Since HY(Op+) =~ @?ikl_mHHo(Om), we may choose a subscheme W C N* of degree

g — d so that (@) is satisfied. O

We can now prove the main theorem and its corollaries.
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Proof of Theorem[dl. Let [p: C — E] € H;’r,igm(E) be general. First of all, we note that ¢

does not factor as the composition C' % €’ % E of a cover a of degree n > 2 dividing k
onto a curve C’ of genus h > 2. This follows because, denoting by H,,(C’) the Hurwitz
scheme of genus g and degree n simply branched covers of a curve C’ as above, one
computes that

dim Hp' (E) +dimHyn(C') = 2h — 2+ 29 — 2 = n(2h — 2) < 2g — 2 = dim H}}" (E).

We now assume that G}(C)"¢ is nonempty. Then we have a morphism C — T,
birational onto its image [C] € V9(k, d). Let G} denote the family of pairs {¢ : C — E, g}
(up to isomorphism) such that [¢] € H " (E) and g € GL(C)me. Proposition B then
yields

dimG}) < dimV9(k,d) — dimAutP' = (2d+g—1) — 3
= 2d+g—4=p(g,1,d) +2g —2.

The forgetful map é; — Hgf,im(E ) is dominant by assumption, and thus its fiber G} (C)"™
over a general [p] has dimension < p(g,1,d) and equality follows from Brill-Noether
theory.

It remains to show that G%(C)™¢ is nonempty whenever p(g,1,d) > 0. This is clearly
true if d < 2k and follows from Proposition [8 when d > 2k. O

Proof of Corollaries [2 and[3. Take a general [C] € Mg ;(E) so that there exists a pri-
mitive degree k cover ¢ : C — E. Let g be a g,ll on C computing the gonality and
assume h < #. By Theorem [ g should be composed with ¢ and thus h = 2k. Let us
now fix d > gon C and take a component G of G%(C), which by standard Brill-Noether
theory has dimension > p(g,1,d). If G is contained in the closure of G}(C)", then
Theorem [I] yields dimG = p(g,1,d) and, if k = 2, then d > g — 1. Again Theorem
[ excludes the possibility that a general g € G has some base points pq,...,ps and
g(—p1 — -+ —ps) € G__(C)". Tt remains to treat the case where G coincides with
Gclm(C’). When k£ = 2 the dimension of Gclm(C’) is independent on n, cf. (), thus
implying (B]). For k& > 2, the maximal dimension is instead obtained for n = 2, cf. again
(), and this yields (2.

As concerns points (i),(ii) in Corollary 2 and (i),(ii),(iii) in Corollary Bl we stress
that G}(C)"¢ is union of irreducible components of G4(C) as soon as it is nonempty.
Furthermore, since G4(C)™ has pure dimension p(g, 1, d), the locus G}M(C) is not con-
tained in GL(C) as soon as its dimension computed in (@) is > p(g, 1,d). If G}M(C') were
contained in some other G}i’m(C’) with n # m, by dimensional reasons one should have
n > m; but then a general linear series in Gclam(c) would have more base points than
a general element of Gcllm(C’), thus contradicting the containment. As a consequence,
the locus G}LH(C’) is an irreducible component of G}(C) as soon as its dimension is
> p(g,1,d). O
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