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ABSTRACT. Green’s conjecture is proved for smooth curves C lying on a rational surface S with
an anticanonical pencil, under some mild hypotheses on the line bundle L = OS(C). Constancy of
Clifford dimension, Clifford index and gonality of curves in the linear system |L| is also obtained.

1. INTRODUCTION

Green’s Conjecture concerning syzygies of canonical curves was first stated in [G] and pro-
poses a generalization of Noether’s Theorem and the Enriques-Babbage Theorem in terms of
Koszul cohomology, predicting that for a curve C

(1) Kp,2(C,ωC) = 0 if and only if p < Cliff(C).

Quite remarkably, this would imply that the Clifford index of C can be read off the syzygies
of its canonical embedding. The implication Kp,2(C,ωC) 6= 0 for p ≥ Cliff(C) was immedi-
ately achieved by Green and Lazarsfeld ([G, Appendix]) and the conjectural part reduces to the
vanishing Kc−1,2(C,ωC) = 0 for c = Cliff(C), or equivalently, Kg−c−1,1(C,ωC) = 0.

One naturally expects the gonality k of C to be also encoded in the vanishing of some Koszul
cohomology groups. In fact, Green-Lazarsfeld’s Gonality Conjecture predicts that any line bun-
dle A on C of sufficiently high degree satisfies

(2) Kp,1(C,A) = 0 if and only if p ≥ h0(C,A)− k.

Green ([G]) and Ehbauer ([E]) have shown that the statement holds true for any curve of gonality
k ≤ 3. As in the case of Green’s Conjecture, one implication is well-known (cf. [G, Appendix]);
it was proved by Aprodu (cf. [A1]) that the conjecture is thus equivalent to the existence of a
non-special globally generated line bundle A such that Kh0(C,A)−k,1(C,A) = 0.

Both Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture are in their full gener-
ality still open. However, by specialization to curves on K3 surfaces, they were proved for a
general curve in each gonality stratum of Mg by Voisin and Aprodu (cf. [V1, V2, A2]). Com-
bining this with an earlier result of Hirschowitz and Ramanan (cf. [HR]), the two conjectures
follow for any curve of odd genus g = 2k − 3 and maximal gonality k.

In [A2], Aprodu provided a sufficient condition for a genus g curveC of gonality k ≤ (g+2)/2
to satisfy both conjectures; this is known as the linear growth condition and is expressed in terms
of the Brill-Noether theory of C only:

(3) dimW 1
d (C) ≤ d− k for k ≤ d ≤ g − k + 2.

Aprodu and Farkas ([AF]) used the above characterization in order to establish Green’s Con-
jecture for smooth curves lying on arbitrary K3 surfaces. It is natural to ask whether a similar
strategy can solve Green’s Conjecture for curves lying on anticanonical rational surfaces, since
these share some common behaviour with K3 surfaces. The situation gets more complicated
because such a surface S is in general non-minimal and its canonical bundle is non-trivial; in
particular, given a line bundle L ∈ Pic(S), smooth curves in the linear system |L| do not form
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a family of curves with constant syzygies, as it happens instead in the case of K3 surfaces. Our
main result is the following:

Theorem 1.1. Let S be a smooth, projective, rational surface with an anticanonical pencil and let L be a
line bundle on S such that L ⊗ ωS is nef and big. In the special case where h0(S, ω∨S ) = χ(S, ω∨S ) = 2,
also assume that the Clifford index of a general curve in |L| is not computed by the restriction of the
anticanonical bundle ω∨S .

Then, any smooth, irreducible curve C ∈ |L| satisfies Green’s Conjecture.

With no hypotheses on the line bundleL, we obtain Green’s Conjecture and Green-Lazarsfeld’s
Gonality Conjecture for a general curve in |L|s, where |L|s denotes the locus of smooth and
irreducible curves in the linear system |L| (cf. Proposition 5.2). For later use, we denote by
g(L) := 1 + (c1(L)2 + c1(L) ·KS)/2 the genus of any curve in |L|s.

Examples of surfaces as in Theorem 1.1 are given by all rational surfaces S whose canonical
divisor satisfies K2

S > 0, or equivalently, having Picard number ρ(S) ≤ 9, such as Del Pezzo
surfaces (−KS is ample), generalized Del Pezzo surfaces (−KS is nef and big), some blow-ups
of Hirzebruch surfaces. However, the class of surfaces that we are considering also includes
surfaces S withK2

S ≤ 0, such as rational elliptic surfaces (i.e., smooth complete complex surfaces
that can be obtained by blowing up P2 at 9 points, which are the base locus of a pencil of cubic
curves with at least one smooth member).

We also obtain the following:

Theorem 1.2. Assume the same hypotheses as in Theorem 1.1 and let g(L) ≥ 4. Then, all curves in
|L|s have the same Clifford dimension r, the same Clifford index and the same gonality. Moreover, if the
curves in |L|s are exceptional, then one of the following occurs:

(i) r = 2 and any curve in |L|s is the strict transform of a smooth, plane curve under a morphism
φ : S → P2 which is the composition of finitely many blow-ups.

(ii) r = 3 and S can be realized as the blow-up of a normal cubic surface S′ ⊂ P3 at a finite number
of points (possibly infinitely near); any curve in |L|s is the strict transform under the blow-up
map of a smooth curve in | − 3KS′ |.

This generalizes results of Pareschi (cf. [P1]) and Knutsen (cf. [K]) concerning the Brill-
Noether theory of curves lying on a Del Pezzo surface S. In [K], the author proved that line
bundles violating the constancy of the Clifford index only exist when K2

S = 1; they are de-
scribed in terms of the coefficients of the generators of Pic(S) in their presentation. In fact, one
can show that such line bundles are exactly those satisfying: L ⊗ ωS is nef and big and the re-
striction of the anticanonical bundle ω∨S to a general curve in |L|s computes its Clifford index (cf.
Remark 2).

The proofs of Theorem 1.1 and Theorem 1.2 rely on vector bundle techniques à la Lazars-
feld (cf. [La1]); in particular, we consider rank-2 bundles EC,A, which are the analogue of the
Lazarsfeld-Mukai bundles forK3 surfaces. The key fact proved in Section 3 is that, ifA is a com-
plete, base point free pencil on a general curve C ∈ |L|s, the dimension of kerµ0,A is controlled
by H2(S,EC,A⊗E∨C,A); if this is nonzero, the bundle EC,A cannot be slope-stable with respect to
any polarization H on S.

By considering Harder-Narasimhan and Jordan-Hölder filtrations, in Section 4 we perform
a parameter count for pairs (C,A) such that EC,A is not µH -stable; this gives an upper bound
for the dimension of any irreducible component W of W1

d(|L|) which dominates |L| under the
natural projection π : W1

d(|L|) → |L|s. It turns out (cf. Proposition 5.1) that, if a general curve
C ∈ |L|s is exceptional, the same holds true for all curves in |L|s and one is either in case (i)
or (ii) of Theorem 1.2; in this context we recall that Green’s Conjecture for curves of Clifford
dimension 2 and 3 was verified by Loose in [Lo]. If instead C has Clifford dimension 1, our pa-
rameter count ensures that it satisfies the linear growth condition (3). In order to deduce Green’s
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Conjecture for every curve in |L|s, we make use of the hypotheses made on L and show that the
Koszul group Kg−c−1,1(C,ωC) does not depend (up to isomorphism) on the choice of C ∈ |L|s,
as soon as c equals the Clifford index of a general curve in |L|s. Semicontinuity will imply the
constancy of the Clifford index and the gonality.
Acknowledgements: I am grateful to my advisor Gavril Farkas, who suggested me to investi-
gate the topic.

2. SYZYGIES AND KOSZUL COHOMOLOGY

If L is an ample line bundle on a complex projective variety X , let S := Sym∗H0(X,L)
be the homogeneous coordinate ring of the projective space P(H0(X,L)∨) and set R(X) :=⊕

mH
0(X,Lm). Being a finitely generated S-module, R(X) admits a minimal graded free reso-

lution

0→ Es → . . .→ E1 → E0 → R(X)→ 0,

where for k ≥ 1 one can write Ek =
∑

i≥k S(−i − 1)βk,i . The syzygies of X of order k are by
definition the graded components of the S-module Ek. We say that the pair (X,L) satisfies
property (Np) if E0 = S and Ek = S(−k− 1)βk,k for all 1 ≤ k ≤ p. In other words, property (N0)
is satisfied whenever φL embeds X as a projectively normal variety, while property (N1) also
requires that that the ideal of X in P(H0(X,L)∨) is generated by quadrics; for p > 1, property
(Np) means that the syzygies of X up to order p are linear.

The most effective tool in order to compute syzygies is Koszul cohomology, whose definition
is the following. Let L ∈ Pic(X) and F be a coherent sheaf onX . The Koszul cohomology group
Kp,q(X,F,L) is defined as the cohomology at the middle-term of the complex

p+1∧
H0(L)⊗H0(F ⊗ Lq−1)→

p∧
H0(L)⊗H0(F ⊗ Lq)→

p−1∧
H0(L)⊗H0(F ⊗ Lq+1).

When F ' OX , the Koszul cohomology group is conventionally denoted by Kp,q(X,L). It turns
out (cf. [G]) that property (Np) for the pair (X,L) is equivalent to the vanishing

Ki,q(X,L) = 0 for all i ≤ p and q ≥ 2.

In particular, Green’s Conjecture can be rephrased by asserting that (C,ωC) satisfies property
(Np) whenever p < Cliff(C).

In the sequel we will make use of the following results, which are due to Green. The first one
is the Vanishing Theorem (cf. [G, Theorem (3.a.1)]), stating that

(4) Kp,q(X,E,L) = 0 if p ≥ h0(X,E ⊗ Lq).

The second one (cf. [G, Theorem (3.b.1)]) relates the Koszul cohomology ofX to that of a smooth
hypersurface Y ⊂ X in the following way.

Theorem 2.1. Let X be a smooth irreducible projective variety and assume L,N ∈ Pic(X) satisfy

H0(X,N ⊗ L∨) = 0(5)
H1(X,N q ⊗ L∨) = 0, ∀ q ≥ 0.(6)

Then, for every smooth integral divisor Y ∈ |L|, there exists a long exact sequence

· · · → Kp,q(X,L
∨, N)→ Kp,q(X,N)→ Kp,q(Y,N ⊗OY )→ Kp−1,q+1(X,L∨, N)→ · · · .
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3. PETRI MAP VIA VECTOR BUNDLES

Let S be a smooth rational surface with an anticanonical pencil and C ⊂ S be a smooth,
irreducible curve of genus g. We set L := OS(C). If A is a complete, base point free grd on C, as
in the case of K3 surfaces, let FC,A be the vector bundle on S defined by the sequence

0→ FC,A → H0(C,A)⊗OS
evA,S−→ A→ 0,

and set EC,A := F∨C,A. Since NC|S = OC(C), by dualizing the above sequence we get

(7) 0→ H0(C,A)∨ ⊗OS → EC,A → OC(C)⊗A∨ → 0.

This trivially implies that:
• χ(S,EC,A ⊗ ωS) = h0(S,EC,A ⊗ ωS) = g − d+ r,
• rkEC,A = r + 1, c1(EC,A) = L, c2(E) = d,
• h2(S,EC,A) = 0, χ(S,EC,A) = g − d+ r − c1(L) ·KS .

Being a bundle of type EC,A is an open condition. Indeed, a vector bundle E of rank r + 1 is of
type EC,A whenever h1(S,E ⊗ ωS) = h2(S,E ⊗ ωS) = 0 and there exists Λ ∈ G(r + 1, H0(S,E))
such that the degeneracy locus of the evaluation map evΛ : Λ⊗OS → E is a smooth connected
curve.

Notice that the dimension of the space of global sections ofEC,A depends not only on the type
of the linear series A but also on A⊗ ωS . In particular, one has

h0(S,EC,A) = r + 1 + h0(C,OC(C)⊗A∨),

h1(S,EC,A) = h0(C,A⊗ ωS).

Moreover, if the line bundleOC(C)⊗A∨ has sections, then EC,A is generated off its base points.
In the case r = 1, we prove the following.

Lemma 3.1. Let A be a complete, base point free g1
d on C ⊂ S. If either

• h0(S, ω∨S ) > 2, or
• h0(S, ω∨S ) = 2 and A 6' ω∨S ⊗OC

holds, then h0(C,A⊗ ωS) = 0.

Proof. Since L⊗ ωS is effective, the short exact sequence

0→ L∨ ⊗ ω∨S → ω∨S → ω∨S ⊗OC → 0

implies h0(C,ω∨S ⊗ OC) ≥ h0(S, ω∨S ) and the statement follows trivially if h0(S, ω∨S ) > 2. Let
h0(S, ω∨S ) = 2 and h0(C,A ⊗ ωS) > 0. Then necessarily h0(C,ω∨S ⊗ OC) = 2 and A ⊗ ωS is the
fixed part of the linear system of sections of A. Since A is base point free by hypothesis, then
A ' ω∨S ⊗OC . �

Under the hypotheses of the above Lemma, the bundle EC,A is globally generated off a finite
set and χ(S,EC,A) = h0(S,EC,A) = g − d + 1 − c1(L) · KS . We remark that the vanishing
of h1(S,EC,A) turns out to be crucial in most of the following arguments and this is why the
assumptions on the anticanonical linear system of S are needed.

The following proposition gives a necessary and sufficient condition for the injectivity of the
Petri map µ0,A : H0(C,A)⊗H0(C,ωC ⊗A∨)→ H0(C,ωC).

Proposition 3.2. If C ∈ |L|s is general and either h0(S, ω∨S ) > 2 or h0(S, ω∨S ) = 2 and A 6' ω∨S ⊗OC ,
then for any complete, base point free pencil A on C one has:

kerµ0,A ' H2(S,EC,A ⊗ E∨C,A).

In particular, the vanishing of the one side implies the vanishing of the other.
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Proof. The proof proceeds as in [P2], hence we will not enter into details. As A is a pencil,
the kernel of the evaluation map evA,C : H0(C,A) ⊗ OC � A is ismomorphic to A∨ and
kerµ0,A ' H0(C,ωC ⊗ A−2). Since detFC,A = L∨, by adjunction one finds the following short
exact sequence:

(8) 0→ ωS ⊗OC → FC,A ⊗ ωC ⊗A∨ → ωC ⊗A−2 → 0.

The coboundary map δ : H0(C,ωC ⊗A−2)→ H1(C,ωS ⊗OC) coincides, up to multiplication by
a nonzero scalar factor, with the composition of the Gaussian map

µ1,A : kerµ0,A → H0(C,ω2
C)

and the dual of the Kodaira spencer map

ρ∨ : H0(C,ω2
C)→ (TC |L|)∨ = H0(C,NC|S)∨ = H1(C,ωS ⊗OC).

Indeed, as in [P2, Lemma 1], one finds a commutative diagram

0 // ωS ⊗OC // FC,A ⊗ ωC ⊗A∨ //

��

ωC ⊗A−2 //

s

��

0

0 // ωS ⊗OC // Ω1
S ⊗ ωC // ω2

C
// 0,

where the homomorphism induced by s on global sections is µ1,A and the coboundary map
H0(C,ω2

C)→ H1(C,ωS ⊗OC) equals (up to a scalar factor) ρ∨.
If A has degree d, look at the natural projection π : W1

d(|L|) → |L|s. First order deformation
arguments (see, for instance, [ACG, p. 722]) imply that

Im(dπ(C,A)) ⊂ Ann(Im(ρ∨ ◦ µ1,A)).

Therefore, by Sard’s Lemma, if C ∈ |L|s is general, the short exact sequence (8) is exact on the
global sections for any base point freeA ∈W 1

d (C)\W 2
d (C), and kerµ0,A ' H0(C,FC,A⊗ωC⊗A∨).

By tensoring short exact sequence (7) with FC,A ⊗ ωS , one finds that

H0(C,FC,A ⊗ ωC ⊗A∨) ' H0(S,E∨C,A ⊗ EC,A ⊗ ωS)

becauseH i(S, FC,A⊗ωS) ' H2−i(S,EC,A)∨ = 0 for i = 0, 1. The statement follows now by Serre
duality. �

Corollary 3.3. Let H be any polarization on S and W be an irreducible component of W1
d(|L|) which

dominates |L| and whose general points correspond to µH -stable bundles; in the special case where
h0(S, ω∨S ) = 2, assume that general points ofW are not of the form (C,ω∨S ⊗OC).

Then, ρ(g, 1, d) ≥ 0 andW is reduced of dimension equal to dim |L|+ ρ(g, 1, d).

Proof. Let (C,A) be a general point of W . If EC,A is stable, EC,A ⊗ ωS also is. The inequality
µH(EC,A) > µH(EC,A ⊗ ωS) implies that H2(S,E∨C,A ⊗EC,A) ' Hom(EC,A, EC,A ⊗ ωS)∨ = 0. As
a consequence,W is smooth in (C,A) of the expected dimension. �

Remark 1. Corollary 3.3 can be alternatively proved by arguing in the following way.
Let M := Mµs

H (c) be the moduli space of µH -stable vector bundles on S of total Chern class
c = 2+c1(L)+dω ∈ H2∗(S,Z), where ω is the fundamental cocycle. Since every [E] ∈M satisfies
Ext2(E,E)0 = 0, it turns out that M is a smooth, irreducible projective variety of dimension
4d − c1(L)2 − 3 (cf. [CoMR, Remark 2.3]), as soon as it is non-empty. Let M0 be the open
subset of M parametrizing vector bundles [E] of type EC,A; if this is nonempty, define G as the
Grassmann bundle on M0 with fiber over [E] equal to G(2, H0(S,E)). Look at the rational map
h : G 99KW1

d(|L|) sending a general (E,Λ) ∈ G to the pair (CΛ, AΛ), where CΛ is the degeneracy
locus of the evaluation map evΛ : Λ ⊗ OS → E and OCΛ

(CΛ) ⊗ A∨ is its cokernel. Since any



6 MARGHERITA LELLI–CHIESA

[E] ∈ M0 is simple, one easily checks that h is birational onto its image, that is denoted byW .
As a consequence, the dimension ofW equals:

4d− c1(L)2 − 3 + 2(g − d− 1− c1(L) ·KS) = 2d− 3− c(L) ·KS ≤ dim |L|+ ρ(g, 1, d).

4. PARAMETER COUNT

By the analysis performed in the previous section, given a polarization H on S, the linear
growth condition for a general curve in |L|s can be verified by controlling the dimension of
every dominating component W ⊂ W1

d(|L|), whose general points are pairs (C,A) such that
A 6' ω∨S ⊗OC and the bundle EC,A is not µH -stable. Indeed, if A ' ω∨S ⊗OC for a general point
ofW , then ω∨S ⊗OC′ is an isolated point of W 1

d (C ′) for every C ′ ∈ |L|s.
Let A be a complete, base point free g1

d on a curve C ∈ |L|s such that the bundle E := EC,A is
not µH -stable and A 6' ω∨S ⊗OC if h0(S, ω∨S ) = 2. The maximal destabilizing sequence of E has
the form

(9) 0→M → E → N ⊗ Iξ → 0,

where M,N ∈ Pic(S) satisfy

(10) µH(M) ≥ µH(E) ≥ µH(N),

with both or none of the inequalities being strict, and Iξ is the ideal sheaf of a 0-dimensional
subscheme ξ ⊂ S of length l = d− c1(N) · c1(M).

Lemma 4.1. In the above situation, assume that general curves in |L|s have Clifford index c. If µ0,A is
non-injective and C is general in |L|, then the following inequality holds:

(11) c1(M) · c1(N) + c1(N) ·KS ≥ c.

Proof. Being a quotient of E := EC,A off a finite set, N is base component free and is non-
trivial since H2(S,N ⊗ ωS) = 0. As a consequence, h0(S,N) ≥ 2. Proposition 3.2 implies that
Hom(E,E ⊗ ωS) 6= 0. Applying Hom(E,−) to the short exact sequence (9) twisted with ωS , we
obtain

0→ Hom(E,M ⊗ ωS)→ Hom(E,E ⊗ ωS)→ Hom(E,N ⊗ ωS ⊗ Iξ)→ · · · .
Apply now Hom(−, N ⊗ ωS ⊗ Iξ) (respectively Hom(−,M ⊗ ωS)) to exact sequence (9), and
find that Hom(E,N ⊗ ωS ⊗ Iξ) = 0 (resp. Hom(E,M ⊗ ωS) ' Hom(N ⊗ Iξ,M ⊗ ωS)), hence
N∨ ⊗M ⊗ ωS is effective and h0(S,M ⊗ ωS) ≥ 2. This ensures that N ⊗ OC contributes to the
Clifford index of C and

c ≤ Cliff(N ⊗OC) = c1(N) · (c1(N) + c1(M))− 2h0(C,N ⊗OC) + 2

≤ c1(N)2 + c1(N) · c1(M)− 2h0(S,N) + 2

= c1(N) · c1(M) + c1(N) ·KS .

�

Now, upon fixing a nonnegative integer l and a line bundle N such that (10) is satisfied for
M := L ⊗ N∨, we want to estimate the number of moduli of pairs (C,A) such that the bun-
dle EC,A sits in a short exact sequence like (9). The following construction is analogous to
the one performed in [LC, Section 4] in the case of K3 surfaces. Let EN,l be the moduli stack
of extensions of type (9), where l(ξ) = l. Having fixed c ∈ H2∗(S,Z), we denote by M(c)
the moduli stack of coherent sheaves of total Chern class c. We consider the natural maps
p : EN,l → M(c(M)) × M(c(N ⊗ Iξ)) and q : EN,L → M(c(E)), which send the C-point
of EN,l corresponding to extension (9) to the classes of (M,N ⊗ Iξ) and E respectively. No-
tice that, since M,N lie in Pic(S), the stack M(c(M)) has a unique C-point endowed with a
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1-dimensional space of automorphisms, while M(c(N ⊗ Iξ)) is corepresented by the Hilbert
scheme S[l] parametrizing 0-dimensional subschemes of S of length l.

We denote by Q̃N,l the closure of the image of q and by QN,l its open substack consisting of
vector bundles of type EC,A for some C ∈ |L|s and A ∈ W 1

d (C), with d := l + c1(M) · c1(N)
and A 6' ω∨S ⊗ OC if h0(S, ω∨S ) = 2. Let GN,l → QN,l be the Grassmann bundle whose fiber
over [E] ∈ QN,l(C) is G(2, H0(S,E)). By construction, a C-point of GN,l corresponding to a
pair ([E],Λ), with Λ ∈ G(2, H0(S,E)), comes endowed with an automorphism group equal to
Aut(E). We define WN,l to be the closure of the image of the rational map GN,l 99K W1

d(|L|),
which sends a general point ([E],Λ) ∈ GN,l(C) to the pair (CΛ, AΛ) where the evaluation map
evΛ : Λ ⊗ OS ↪→ E degenerates on CΛ and has OCΛ

(CΛ) ⊗ A∨Λ as cokernel. The following
proposition gives an upper bound for the dimension ofWN,l.

Proposition 4.2. Assume that general curves in |L|s have Clifford index c. Then, every irreducible
componentW ofW1

d(|L|s) which dominates |L| and is contained inWN,l satisfies

dimW ≤ dim |L|+ d− c− 2.

Proof. The fiber of p over a C-point ofM(c(M)) ×M(c(N ⊗ Iξ)) corresponding to (M,N ⊗ Iξ)
is the quotient stack

[Ext1(N ⊗ Iξ,M)/Hom(N ⊗ Iξ,M)],

where the action of the Hom group on the Ext group is trivial. The fiber of q over [E] ∈ Q̃N,l(C)
is the Quot-scheme QuotS(E,P ), where P is the Hilbert polynomial of N ⊗ Iξ. The condition
µH(M) ≥ µH(N) implies that Ext2(N ⊗ Iξ,M) ' Hom(M,N ⊗ ωS ⊗ Iξ)∨ = 0, hence the dimen-
sion of the fibers of p is constant and equals

−χ(S,N ⊗M∨ ⊗ ωS ⊗ Iξ) = −g + 2c1(N) · c1(M) + c1(M) ·KS + l.

By looking at the tangent and obstruction spaces at any point, one shows that the Quot schemes
constituting the fibers of q are either all 0-dimensional or all smooth of dimension 1; indeed,
Hom(M,N ⊗ Iξ) = 0 unless M ' N and l = 0, in which case Ext1(M,N ⊗ Iξ) = H1(S,OS) = 0.
As a consequence, if nonempty,QN,l has dimension at most 3l−2−g+2c1(N)·c1(M)+c1(M)·KS .

Since the map hN,l forgets the automorphisms, its fiber over a pair (C,A) ∈ WN,l is the quo-
tient stack

[U/Aut(EC,A)],

where U is the open subscheme of P(Hom(EC,A,OC(C) ⊗ A∨)) whose points correspond to
morphisms with kernel equal to O⊕2

S , and Aut(EC,A) acts on U by composition. Using the
vanishing hi(S,EC,A ⊗ ωS) = 0 for i = 1, 2, one checks that

Hom(EC,A,OC(C)⊗A∨) ' H0(S,EC,A ⊗ E∨C,A),

and U is isomorphic to PAut(EC,A). Hence, the fibers of hN,l are stacks of dimension −1 and

dimWN,l ≤ 3l − 1− g + 2c1(N) · c1(M) + c1(M) ·KS + 2(g − d− 1− c1(L) ·KS)

= d+ g − 3− c1(N) · c1(M)− c1(N) ·KS − c1(L) ·KS .

The conclusion follows now from the fact that dim |L| ≥ g − 1 − c1(L) ·KS , along with Lemma
4.1. �

5. PROOF OF THE MAIN RESULTS

We recall some facts about exceptional curves, that is, curves of Clifford dimension greater
than 1. Coppens and Martens ([CM]) proved that, if C is an exceptional curve of gonality k
and Clifford dimension r, then Cliff(C) = k − 3 and C possesses a 1-dimensional family of
g1
k. Furthermore, if r ≤ 9, there exists a unique line bundle computing Cliff(C) (cf. [ELMS]);
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this is conjecturally true for any r. Curves of Clifford dimension 2 are precisely the smooth
plane curves of degree ≥ 5, while the only curves of Clifford dimension 3 are the complete
intersections of two cubic surfaces in P3 (cf. [Ma]). We will use these results in the proof of the
following:

Proposition 5.1. Let L be a line bundle on a smooth, rational surface S with an anticanonical pencil.
If g(L) ≥ 4 and a general curve C ∈ |L|s is exceptional, then any other curve inside |L|s has the same
Clifford dimension r of C and either case (i) or (ii) of Theorem 1.2 occurs.

Proof. Since any curve of odd genus and maximal gonality has Clifford dimension 1 (cf. [A3,
Corollary 3.11]), we can assume that general curves in |L|s have gonality k ≤ (g + 2)/2 and are
exceptional. There exists a component W of W1

k(|L|) of dimension at least dim |L| + 1 and, by
Corollary 3.3, this is contained in WN,l for some N and l. Notice that the line bundle N is nef
since it is globally generated off a finite set. Furthermore, it follows from the proof of Proposition
4.2 that N and M := L⊗N∨ satisfy equality in (11), that is,

k − 3 = c1(M) · c1(N) + c1(N) ·KS = k − l + c1(N) ·KS ;

in particular, N ⊗ OC computes the Clifford index of a general C ∈ |L|s and h1(S,M∨) = 0.
Having at least a 2-dimensional space of sections, the line bundle ω∨S ⊗OC has degree ≥ k, thus
−c1(M) ·KS ≥ k − 3 + l.

Assume h0(S,N ⊗ ωS) ≥ 2; the restriction of M to a general curve C ∈ |L|s contributes to its
Clifford index and

k − 3 ≤ Cliff(M ⊗OC) = c1(M) · c1(N) + c1(M) ·KS ≤ 3− 2l.

As k ≥ 2r (cf. [ELMS, Proposition 3.2]), we have r ≤ 3; if r = 3, then l = 0, while r = 2 implies
l ≤ 1. Let r = 2; since χ(S,N) = h0(S,N) = h0(C,N ⊗ OC) = 3 and hi(S,N ⊗ ωS) = 0 for
i = 1, 2 (as one can check twisting (9) with ωS and taking cohomology), then c1(N)2 = l+ 1 and
h0(S,N ⊗ ωS) = l ≤ 1, contradicting our assumption. Hence, the inequality h0(S,N ⊗ ωS) ≥ 2
implies r = 3 and l = 0.

Assume instead that h0(S,N⊗ωS) ≤ 1; we get c1(N)2 ≤ 3−l and h0(C,N⊗OC) = h0(S,N) =
χ(S,N) ≤ 4− l. Since N ⊗OC computes the Clifford index of C, then r ≤ 3 holds in this case as
well. Moreover, l = 0 when r = 3, and l ≤ 1 if r = 2.

Let r = 2 and l = 1; then, c1(N)2 = −c1(N) · KS = 2. By [Ha, Lemma 2.6, Theorem 2.11],
N is base point free and not composed with a pencil, hence it defines a generically 2 : 1 mor-
phism φ := φN : S → P2 splitting into the composition of a birational morphism ψ : S → S′,
which contracts the finitely many curves E1, · · · , Eh having zero intersection with c1(N), and
a ramified double cover π : S′ → P2. Set N ′ := π∗(OP2(1)); since N = ψ∗(N ′) and ψ∗

preserves both the intersection products and the dimensions of cohomology groups, we have
c1(N ′)2 = −c1(N ′) ·KS′ = 2 and

1 = h0(S,N ⊗ ωS) ≥ h0(S,N ⊗ ωS(−E1 − · · · − Eh)) = h0(S′, N ′ ⊗ ωS′).

We apply Theorem 3.3. in [Ha] and get N ′ = ω∨S′ and K2
S′ = 2 (cases (b), (c), (d) of the aforemen-

tioned theorem cannot occur since they would contradict c1(N ′)2 = 2). The line bundle N ⊗OC
is very ample because it computes Cliff(C) (cf. [ELMS, Lemma 1.1]); hence, C is isomorphic to
C ′ = ψ(C) and ω∨S′ ⊗ OC′ is also very ample. Proceeding as in the proof of [P1, Lemma 2.6]
(where the ampleness of ω∨S′ is not really used), one shows that φ(C ′) ∈ | − 2KS′ |. This gives a
contradiction because it implies g(C ′) = g(C) = 3.

Up to now, we have shown that r ≤ 3 and l = 0, hence −c1(N) ·KS = 3 and c1(N)2 > 0. By
[Ha, Proposition 3.2], the line bundle N defines a morphism φN : S → Pr which is birational to
its image and only contracts the finitely many curves which have zero intersection with c1(N).
If r = 2, then φN is the blow-up of P2 at finitely many points (maybe infinitely near) and any
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curve in |L|s is the strict transform of a smooth plane curve. For r = 3, the image of φN is a
normal cubic surface S′ ⊂ P3 and any curve in |L|s is the strict transform of a smooth curve in
| − 3KS′ |, hence has Clifford dimension 3. �

The following result is now straightforward.

Proposition 5.2. LetC be a smooth, irreducible curve lying on a rational surface S with an anticanonical
pencil. If C is general in its linear system, then C satisfies Green’s Conjecture; if moreover C is not
isomorphic to the complete intersection of two cubics in P3, then it satisfies Green-Lazarsfeld’s Gonality
Conjecture as well.

Proof. We assume that C has genus g ≥ 4, Clifford dimension 1, Clifford index c and gonality
k ≤ (g+2)/2. Having fixed k ≤ d ≤ g−k+2, Corollary 3.3 and Proposition 4.2 imply that every
dominating componentW ofW1

d(|L|) has dimension≤ dim |L|+d−k, henceC satisfies the linear
growth condition (3). Green’s Conjecture for smooth plane curve and complete intersection of
two cubics in P3 was established by Loose in [Lo], while Aprodu proved Green-Lazarsfeld’s
Gonality Conjecture for curves of Clifford dimension 2 in [A1]. �

We proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. We can assume g(L) ≥ 4. By Proposition 5.2, if C ∈ |L|s is general then
Kg−c−1,1(C,ωC) = 0, where c = Cliff(C). If we show that the group Kg−c−1,1(C,ωC) does not
depend (up to isomorphism) on the choice of C in its linear system, by semicontinuity of the
Clifford index, Green’s Conjecture follows for any curve in |L|s.

Set N := L⊗ ωS ; since N is nef and big, the hypotheses of Theorem 2.1 are satisfied. Indeed,
(5) and (6) for q = 1 follow directly from the fact that S is regular and has geometric genus 0.
We remark that this also implies that

H0(C,ωC) ' H0(S,L⊗ ωS), ∀C ∈ |L|s.
Equality (6) for q = 0 is trivial since |L| contains a smooth, irreducible curve. For q ≥ 2, the line
bundle N q−1 is nef and big and the Kawamata-Viehweg Vanishing Theorem (cf. [La2, Theorem
4.3.1]) implies that

0 = H1(S,N−(q−1))∨ ' H1(S, (L⊗ ωS)q−1 ⊗ ωS) = H1(S,N q ⊗ L∨).

By adjunction, for any curve C ∈ |L|s, we obtain the following long exact sequence

· · · → Kg−c−1,1(S,L∨, L⊗ ωS)→ Kg−c−1,1(S,L⊗ ωS)→ Kg−c−1,1(C,ωC)

→ Kg−c−2,2(S,L∨, L⊗ ωS)→ · · · .

The group Kg−c−1,1(S,L∨, L ⊗ ωS) trivially vanishes since H0(S, ωS) = 0. By the Vanishing
Theorem (4) applied to Kg−c−2,2(S,L∨, L⊗ ωS), we can conclude that

(12) Kg−c−1,1(S,L⊗ ωS) ' Kg−c−1,1(C,ωC),

provided that g− c− 2 ≥ h0(S,L⊗ω2
S). We can assume h0(S,L⊗ω2

S) ≥ 2 and we are under the
hypothesis that the anticanonical system contains a pencil. Hence, ω∨S ⊗ OC contributes to the
Clifford index and, if C ∈ |L|s is general, then:

c = Cliff(C) ≤ Cliff(ω∨S ⊗OC) = −c1(L) ·KS − 2h0(C,ω∨S ⊗OC) + 2(13)

= −c1(L) ·KS − 2h0(S, ω∨S ) + 2.

Since H1(S,L⊗ ω2
S) ' H1(S,L∨ ⊗ ω∨S )∨ = 0, we have

h0(S,L⊗ ω2
S) = χ(S,L⊗ ω2

S) = g + c1(L) ·KS +K2
S

≤ g − c+ 1− h0(S, ω∨S )− h1(S, ω∨S ).
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The conclusion is straightforward unless χ(S, ω∨S ) = h0(S, ω∨S ) = 2; in this case the hypothesis
that Cliff(ω∨S ⊗OC) > c for a general C ∈ |L|s is necessary in order to get to the conclusion. �

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 5.1, we can assume that general curves in |L|s have Clifford
dimension 1; we denote by c their Clifford index.

The isomorphism (12), valid for any curve C ∈ |L|s, together with Green and Lazarsfeld’s
result stating that Kp,1(C,ωC) 6= 0 for p ≤ g −Cliff(C)− 2, implies the constancy of the Clifford
index. By semicontinuity of the gonality, all curves in |L|s have Clifford dimension 1 and the
same gonality. �

Remark 2. Knutsen [K] proved that, if a line bundleL on a Del Pezzo surface S satisfies g(L) ≥ 4,
then the Clifford index curves in |L|s is constant unless S has degree 1, the line bundle L is
ample, c1(L) ·E ≥ 2 for every (−1)-curve E if c1(L)2 ≥ 8, and there is an integer k ≥ 3 such that
−c1(L) ·KS = k, c1(L)2 ≥ 5k− 8 ≥ 7 and c1(L) ·Γ ≥ k for every smooth rational curve such that
Γ2 = 0. In this case, the curves through the base point of ω∨s form a family of codimension 1 in
|L|s, have gonality k − 1 and Clifford index k − 3, while a general curve C ∈ |L|s has gonality k
and Clifford index k − 2; in particular, ω∨S ⊗OC computes Cliff(C). The easiest example where
the gonality is not constant is provided by L = ω−nS for n ≥ 3.

Vice versa, if S has degree 1 and Cliff(ω∨S⊗OC) = Cliff(C) for a generalC ∈ |L|s, one recovers
Knutsen’s conditions because, if Γ is a smooth rational curve with Γ2 = 0, then OS(Γ) cuts out a
base point free pencil on C and, if c1(L)2 ≥ 8 and E is a (−1)-curve, then OC(−KS +E) defines
a net on C which contributes to its Clifford index. This shows that the extra hypothesis we make
when χ(S, ω∨S ) = h0(S, ω∨S ) = 2 is unavoidable.
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