GREEN'S CONJECTURE FOR CURVES ON RATIONAL SURFACES WITH AN ANTICANONICAL PENCIL

MARGHERITA LELLI-CHIESA

ABSTRACT. Green's conjecture is proved for smooth curves *C* lying on a rational surface *S* with an anticanonical pencil, under some mild hypotheses on the line bundle $L = O_S(C)$. Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system |L| is also obtained.

1. INTRODUCTION

Green's Conjecture concerning syzygies of canonical curves was first stated in [G] and proposes a generalization of Noether's Theorem and the Enriques-Babbage Theorem in terms of Koszul cohomology, predicting that for a curve C

(1)
$$K_{p,2}(C,\omega_C) = 0$$
 if and only if $p < \text{Cliff}(C)$.

Quite remarkably, this would imply that the Clifford index of *C* can be read off the syzygies of its canonical embedding. The implication $K_{p,2}(C, \omega_C) \neq 0$ for $p \geq \text{Cliff}(C)$ was immediately achieved by Green and Lazarsfeld ([G, Appendix]) and the conjectural part reduces to the vanishing $K_{c-1,2}(C, \omega_C) = 0$ for c = Cliff(C), or equivalently, $K_{q-c-1,1}(C, \omega_C) = 0$.

One naturally expects the gonality k of C to be also encoded in the vanishing of some Koszul cohomology groups. In fact, Green-Lazarsfeld's Gonality Conjecture predicts that any line bundle A on C of sufficiently high degree satisfies

(2)
$$K_{p,1}(C,A) = 0 \quad \text{if and only if } p \ge h^0(C,A) - k.$$

Green ([G]) and Ehbauer ([E]) have shown that the statement holds true for any curve of gonality $k \leq 3$. As in the case of Green's Conjecture, one implication is well-known (cf. [G, Appendix]); it was proved by Aprodu (cf. [A1]) that the conjecture is thus equivalent to the existence of a non-special globally generated line bundle A such that $K_{h^0(C,A)-k,1}(C,A) = 0$.

Both Green's Conjecture and Green-Lazarsfeld's Gonality Conjecture are in their full generality still open. However, by specialization to curves on K3 surfaces, they were proved for a general curve in each gonality stratum of M_g by Voisin and Aprodu (cf. [V1, V2, A2]). Combining this with an earlier result of Hirschowitz and Ramanan (cf. [HR]), the two conjectures follow for any curve of odd genus g = 2k - 3 and maximal gonality k.

In [A2], Aprodu provided a sufficient condition for a genus *g* curve *C* of gonality $k \le (g+2)/2$ to satisfy both conjectures; this is known as the *linear growth condition* and is expressed in terms of the Brill-Noether theory of *C* only:

(3)
$$\dim W^1_d(C) \le d-k \qquad \text{for } k \le d \le g-k+2.$$

Aprodu and Farkas ([AF]) used the above characterization in order to establish Green's Conjecture for smooth curves lying on arbitrary K3 surfaces. It is natural to ask whether a similar strategy can solve Green's Conjecture for curves lying on anticanonical rational surfaces, since these share some common behaviour with K3 surfaces. The situation gets more complicated because such a surface S is in general non-minimal and its canonical bundle is non-trivial; in particular, given a line bundle $L \in Pic(S)$, smooth curves in the linear system |L| do not form

MARGHERITA LELLI-CHIESA

a family of curves with constant syzygies, as it happens instead in the case of K3 surfaces. Our main result is the following:

Theorem 1.1. Let S be a smooth, projective, rational surface with an anticanonical pencil and let L be a line bundle on S such that $L \otimes \omega_S$ is nef and big. In the special case where $h^0(S, \omega_S^{\vee}) = \chi(S, \omega_S^{\vee}) = 2$, also assume that the Clifford index of a general curve in |L| is not computed by the restriction of the anticanonical bundle ω_S^{\vee} .

Then, any smooth, irreducible curve $C \in |L|$ satisfies Green's Conjecture.

With no hypotheses on the line bundle L, we obtain Green's Conjecture and Green-Lazarsfeld's Gonality Conjecture for a general curve in $|L|_s$, where $|L|_s$ denotes the locus of smooth and irreducible curves in the linear system |L| (cf. Proposition 5.2). For later use, we denote by $g(L) := 1 + (c_1(L)^2 + c_1(L) \cdot K_S)/2$ the genus of any curve in $|L|_s$.

Examples of surfaces as in Theorem 1.1 are given by all rational surfaces S whose canonical divisor satisfies $K_S^2 > 0$, or equivalently, having Picard number $\rho(S) \leq 9$, such as Del Pezzo surfaces ($-K_S$ is ample), generalized Del Pezzo surfaces ($-K_S$ is nef and big), some blow-ups of Hirzebruch surfaces. However, the class of surfaces that we are considering also includes surfaces S with $K_S^2 \leq 0$, such as rational elliptic surfaces (i.e., smooth complete complex surfaces that can be obtained by blowing up \mathbb{P}^2 at 9 points, which are the base locus of a pencil of cubic curves with at least one smooth member).

We also obtain the following:

Theorem 1.2. Assume the same hypotheses as in Theorem 1.1 and let $g(L) \ge 4$. Then, all curves in $|L|_s$ have the same Clifford dimension r, the same Clifford index and the same gonality. Moreover, if the curves in $|L|_s$ are exceptional, then one of the following occurs:

- (i) r = 2 and any curve in $|L|_s$ is the strict transform of a smooth, plane curve under a morphism $\phi: S \to \mathbb{P}^2$ which is the composition of finitely many blow-ups.
- (ii) r = 3 and S can be realized as the blow-up of a normal cubic surface $S' \subset \mathbb{P}^3$ at a finite number of points (possibly infinitely near); any curve in $|L|_s$ is the strict transform under the blow-up map of a smooth curve in $|-3K_{S'}|$.

This generalizes results of Pareschi (cf. [P1]) and Knutsen (cf. [K]) concerning the Brill-Noether theory of curves lying on a Del Pezzo surface S. In [K], the author proved that line bundles violating the constancy of the Clifford index only exist when $K_S^2 = 1$; they are described in terms of the coefficients of the generators of Pic(S) in their presentation. In fact, one can show that such line bundles are exactly those satisfying: $L \otimes \omega_S$ is nef and big and the restriction of the anticanonical bundle ω_S^{\vee} to a general curve in $|L|_s$ computes its Clifford index (cf. Remark 2).

The proofs of Theorem 1.1 and Theorem 1.2 rely on vector bundle techniques à la Lazarsfeld (cf. [La1]); in particular, we consider rank-2 bundles $E_{C,A}$, which are the analogue of the Lazarsfeld-Mukai bundles for K3 surfaces. The key fact proved in Section 3 is that, if A is a complete, base point free pencil on a general curve $C \in |L|_s$, the dimension of ker $\mu_{0,A}$ is controlled by $H^2(S, E_{C,A} \otimes E_{C,A}^{\vee})$; if this is nonzero, the bundle $E_{C,A}$ cannot be slope-stable with respect to any polarization H on S.

By considering Harder-Narasimhan and Jordan-Hölder filtrations, in Section 4 we perform a parameter count for pairs (C, A) such that $E_{C,A}$ is not μ_H -stable; this gives an upper bound for the dimension of any irreducible component \mathcal{W} of $\mathcal{W}_d^1(|L|)$ which dominates |L| under the natural projection $\pi : \mathcal{W}_d^1(|L|) \to |L|_s$. It turns out (cf. Proposition 5.1) that, if a general curve $C \in |L|_s$ is exceptional, the same holds true for all curves in $|L|_s$ and one is either in case (i) or (ii) of Theorem 1.2; in this context we recall that Green's Conjecture for curves of Clifford dimension 2 and 3 was verified by Loose in [Lo]. If instead *C* has Clifford dimension 1, our parameter count ensures that it satisfies the linear growth condition (3). In order to deduce Green's Conjecture for *every* curve in $|L|_s$, we make use of the hypotheses made on L and show that the Koszul group $K_{g-c-1,1}(C, \omega_C)$ does not depend (up to isomorphism) on the choice of $C \in |L|_s$, as soon as c equals the Clifford index of a general curve in $|L|_s$. Semicontinuity will imply the constancy of the Clifford index and the gonality.

Acknowledgements: I am grateful to my advisor Gavril Farkas, who suggested me to investigate the topic.

2. SYZYGIES AND KOSZUL COHOMOLOGY

If *L* is an ample line bundle on a complex projective variety *X*, let $S := \text{Sym}^* H^0(X, L)$ be the homogeneous coordinate ring of the projective space $\mathbb{P}(H^0(X, L)^{\vee})$ and set $R(X) := \bigoplus_m H^0(X, L^m)$. Being a finitely generated *S*-module, R(X) admits a minimal graded free resolution

$$0 \to E_s \to \ldots \to E_1 \to E_0 \to R(X) \to 0,$$

where for $k \ge 1$ one can write $E_k = \sum_{i\ge k} S(-i-1)^{\beta_{k,i}}$. The *syzygies* of X of order k are by definition the graded components of the S-module E_k . We say that the pair (X, L) satisfies property (N_p) if $E_0 = S$ and $E_k = S(-k-1)^{\beta_{k,k}}$ for all $1 \le k \le p$. In other words, property (N_0) is satisfied whenever ϕ_L embeds X as a projectively normal variety, while property (N_1) also requires that the ideal of X in $\mathbb{P}(H^0(X, L)^{\vee})$ is generated by quadrics; for p > 1, property (N_p) means that the syzygies of X up to order p are linear.

The most effective tool in order to compute syzygies is Koszul cohomology, whose definition is the following. Let $L \in \text{Pic}(X)$ and F be a coherent sheaf on X. The Koszul cohomology group $K_{p,q}(X, F, L)$ is defined as the cohomology at the middle-term of the complex

$$\bigwedge^{p+1} H^0(L) \otimes H^0(F \otimes L^{q-1}) \to \bigwedge^p H^0(L) \otimes H^0(F \otimes L^q) \to \bigwedge^{p-1} H^0(L) \otimes H^0(F \otimes L^{q+1}).$$

When $F \simeq \mathcal{O}_X$, the Koszul cohomology group is conventionally denoted by $K_{p,q}(X, L)$. It turns out (cf. [G]) that property (N_p) for the pair (X, L) is equivalent to the vanishing

$$K_{i,q}(X,L) = 0$$
 for all $i \le p$ and $q \ge 2$.

In particular, Green's Conjecture can be rephrased by asserting that (C, ω_C) satisfies property (N_p) whenever p < Cliff(C).

In the sequel we will make use of the following results, which are due to Green. The first one is the Vanishing Theorem (cf. [G, Theorem (3.a.1)]), stating that

(4)
$$K_{p,q}(X, E, L) = 0 \quad \text{if } p \ge h^0(X, E \otimes L^q).$$

The second one (cf. [G, Theorem (3.b.1)]) relates the Koszul cohomology of *X* to that of a smooth hypersurface $Y \subset X$ in the following way.

Theorem 2.1. Let X be a smooth irreducible projective variety and assume $L, N \in Pic(X)$ satisfy

(5)
$$H^0(X, N \otimes L^{\vee}) = 0$$

(6) $H^1(X, N^q \otimes L^{\vee}) = 0, \qquad \forall q \ge 0.$

Then, for every smooth integral divisor $Y \in |L|$, there exists a long exact sequence

$$\cdots \to K_{p,q}(X, L^{\vee}, N) \to K_{p,q}(X, N) \to K_{p,q}(Y, N \otimes \mathcal{O}_Y) \to K_{p-1,q+1}(X, L^{\vee}, N) \to \cdots$$

MARGHERITA LELLI-CHIESA

3. Petri map via vector bundles

Let S be a smooth rational surface with an anticanonical pencil and $C \subset S$ be a smooth, irreducible curve of genus g. We set $L := \mathcal{O}_S(C)$. If A is a complete, base point free g_d^r on C, as in the case of K3 surfaces, let $F_{C,A}$ be the vector bundle on S defined by the sequence

$$0 \to F_{C,A} \to H^0(C,A) \otimes \mathcal{O}_S \xrightarrow{c_{\mathcal{O}_A,S}} A \to 0,$$

and set $E_{C,A} := F_{C,A}^{\vee}$. Since $N_{C|S} = \mathcal{O}_C(C)$, by dualizing the above sequence we get

(7)
$$0 \to H^0(C, A)^{\vee} \otimes \mathcal{O}_S \to E_{C,A} \to \mathcal{O}_C(C) \otimes A^{\vee} \to 0.$$

This trivially implies that:

- $\chi(S, E_{C,A} \otimes \omega_S) = h^0(S, E_{C,A} \otimes \omega_S) = g d + r$,
- $\operatorname{rk} E_{C,A} = r + 1$, $c_1(E_{C,A}) = L$, $c_2(E) = d$,
- $h^2(S, E_{C,A}) = 0, \chi(S, E_{C,A}) = g d + r c_1(L) \cdot K_S.$

Being a bundle of type $E_{C,A}$ is an open condition. Indeed, a vector bundle E of rank r + 1 is of type $E_{C,A}$ whenever $h^1(S, E \otimes \omega_S) = h^2(S, E \otimes \omega_S) = 0$ and there exists $\Lambda \in G(r+1, H^0(S, E))$ such that the degeneracy locus of the evaluation map $ev_{\Lambda} : \Lambda \otimes \mathcal{O}_S \to E$ is a smooth connected curve.

Notice that the dimension of the space of global sections of $E_{C,A}$ depends not only on the type of the linear series A but also on $A \otimes \omega_S$. In particular, one has

$$h^{0}(S, E_{C,A}) = r + 1 + h^{0}(C, \mathcal{O}_{C}(C) \otimes A^{\vee}),$$

$$h^{1}(S, E_{C,A}) = h^{0}(C, A \otimes \omega_{S}).$$

Moreover, if the line bundle $\mathcal{O}_C(C) \otimes A^{\vee}$ has sections, then $E_{C,A}$ is generated off its base points. In the case r = 1, we prove the following.

Lemma 3.1. Let A be a complete, base point free g_d^1 on $C \subset S$. If either

- $h^0(S, \omega_S^{\vee}) > 2$, or $h^0(S, \omega_S^{\vee}) = 2$ and $A \not\simeq \omega_S^{\vee} \otimes \mathcal{O}_C$

holds, then $h^0(C, A \otimes \omega_S) = 0$.

Proof. Since $L \otimes \omega_S$ is effective, the short exact sequence

$$0 \to L^{\vee} \otimes \omega_S^{\vee} \to \omega_S^{\vee} \to \omega_S^{\vee} \otimes \mathcal{O}_C \to 0$$

implies $h^0(C, \omega_S^{\vee} \otimes \mathcal{O}_C) \ge h^0(S, \omega_S^{\vee})$ and the statement follows trivially if $h^0(S, \omega_S^{\vee}) > 2$. Let $h^0(S, \omega_S^{\vee}) = 2$ and $h^0(C, A \otimes \omega_S) > 0$. Then necessarily $h^0(C, \omega_S^{\vee} \otimes \mathcal{O}_C) = 2$ and $A \otimes \omega_S$ is the fixed part of the linear system of sections of A. Since A is base point free by hypothesis, then $A \simeq \omega_S^{\vee} \otimes \mathcal{O}_C.$

Under the hypotheses of the above Lemma, the bundle $E_{C,A}$ is globally generated off a finite set and $\chi(S, E_{C,A}) = h^0(S, E_{C,A}) = g - d + 1 - c_1(L) \cdot K_S$. We remark that the vanishing of $h^1(S, E_{C,A})$ turns out to be crucial in most of the following arguments and this is why the assumptions on the anticanonical linear system of S are needed.

The following proposition gives a necessary and sufficient condition for the injectivity of the Petri map $\mu_{0,A}: H^0(C,A) \otimes H^0(C,\omega_C \otimes A^{\vee}) \to H^0(C,\omega_C).$

Proposition 3.2. If $C \in |L|_s$ is general and either $h^0(S, \omega_S^{\vee}) > 2$ or $h^0(S, \omega_S^{\vee}) = 2$ and $A \not\simeq \omega_S^{\vee} \otimes \mathcal{O}_C$, then for any complete, base point free pencil A on C one has:

$$\ker \mu_{0,A} \simeq H^2(S, E_{C,A} \otimes E_{C,A}^{\vee}).$$

In particular, the vanishing of the one side implies the vanishing of the other.

Proof. The proof proceeds as in [P2], hence we will not enter into details. As A is a pencil, the kernel of the evaluation map $ev_{A,C} : H^0(C,A) \otimes \mathcal{O}_C \twoheadrightarrow A$ is isomorphic to A^{\vee} and $\ker \mu_{0,A} \simeq H^0(C, \omega_C \otimes A^{-2})$. Since det $F_{C,A} = L^{\vee}$, by adjunction one finds the following short exact sequence:

(8)
$$0 \to \omega_S \otimes \mathcal{O}_C \to F_{C,A} \otimes \omega_C \otimes A^{\vee} \to \omega_C \otimes A^{-2} \to 0.$$

The coboundary map $\delta : H^0(C, \omega_C \otimes A^{-2}) \to H^1(C, \omega_S \otimes \mathcal{O}_C)$ coincides, up to multiplication by a nonzero scalar factor, with the composition of the Gaussian map

$$\mu_{1,A}: \ker \mu_{0,A} \to H^0(C, \omega_C^2)$$

and the dual of the Kodaira spencer map

$$\rho^{\vee}: H^0(C, \omega_C^2) \to (T_C|L|)^{\vee} = H^0(C, N_{C|S})^{\vee} = H^1(C, \omega_S \otimes \mathcal{O}_C).$$

Indeed, as in [P2, Lemma 1], one finds a commutative diagram

where the homomorphism induced by *s* on global sections is $\mu_{1,A}$ and the coboundary map $H^0(C, \omega_C^2) \to H^1(C, \omega_S \otimes \mathcal{O}_C)$ equals (up to a scalar factor) ρ^{\vee} .

If *A* has degree *d*, look at the natural projection $\pi : W^1_d(|L|) \to |L|_s$. First order deformation arguments (see, for instance, [ACG, p. 722]) imply that

$$\operatorname{Im}(d\pi_{(C,A)}) \subset \operatorname{Ann}(\operatorname{Im}(\rho^{\vee} \circ \mu_{1,A})).$$

Therefore, by Sard's Lemma, if $C \in |L|_s$ is general, the short exact sequence (8) is exact on the global sections for any base point free $A \in W_d^1(C) \setminus W_d^2(C)$, and ker $\mu_{0,A} \simeq H^0(C, F_{C,A} \otimes \omega_C \otimes A^{\vee})$. By tensoring short exact sequence (7) with $F_{C,A} \otimes \omega_S$, one finds that

$$H^0(C, F_{C,A} \otimes \omega_C \otimes A^{\vee}) \simeq H^0(S, E_{C,A}^{\vee} \otimes E_{C,A} \otimes \omega_S)$$

because $H^i(S, F_{C,A} \otimes \omega_S) \simeq H^{2-i}(S, E_{C,A})^{\vee} = 0$ for i = 0, 1. The statement follows now by Serre duality.

Corollary 3.3. Let *H* be any polarization on *S* and *W* be an irreducible component of $\mathcal{W}_d^1(|L|)$ which dominates |L| and whose general points correspond to μ_H -stable bundles; in the special case where $h^0(S, \omega_S^{\vee}) = 2$, assume that general points of *W* are not of the form $(C, \omega_S^{\vee} \otimes \mathcal{O}_C)$.

Then, $\rho(g, 1, d) \ge 0$ and W is reduced of dimension equal to dim $|L| + \rho(g, 1, d)$.

Proof. Let (C, A) be a general point of \mathcal{W} . If $E_{C,A}$ is stable, $E_{C,A} \otimes \omega_S$ also is. The inequality $\mu_H(E_{C,A}) > \mu_H(E_{C,A} \otimes \omega_S)$ implies that $H^2(S, E_{C,A}^{\vee} \otimes E_{C,A}) \simeq \operatorname{Hom}(E_{C,A}, E_{C,A} \otimes \omega_S)^{\vee} = 0$. As a consequence, \mathcal{W} is smooth in (C, A) of the expected dimension.

Remark 1. Corollary 3.3 can be alternatively proved by arguing in the following way. Let $M := M_H^{\mu s}(c)$ be the moduli space of μ_H -stable vector bundles on S of total Chern class $c = 2+c_1(L)+d\omega \in H^{2*}(S,\mathbb{Z})$, where ω is the fundamental cocycle. Since every $[E] \in M$ satisfies $Ext^2(E, E)_0 = 0$, it turns out that M is a smooth, irreducible projective variety of dimension $4d - c_1(L)^2 - 3$ (cf. [CoMR, Remark 2.3]), as soon as it is non-empty. Let M^0 be the open subset of M parametrizing vector bundles [E] of type $E_{C,A}$; if this is nonempty, define \mathcal{G} as the Grassmann bundle on M^0 with fiber over [E] equal to $G(2, H^0(S, E))$. Look at the rational map $h: \mathcal{G} \dashrightarrow \mathcal{W}_d^1(|L|)$ sending a general $(E, \Lambda) \in \mathcal{G}$ to the pair (C_Λ, A_Λ) , where C_Λ is the degeneracy locus of the evaluation map $ev_\Lambda : \Lambda \otimes \mathcal{O}_S \to E$ and $\mathcal{O}_{C_\Lambda}(C_\Lambda) \otimes A^{\vee}$ is its cokernel. Since any $[E] \in M^0$ is simple, one easily checks that *h* is birational onto its image, that is denoted by \mathcal{W} . As a consequence, the dimension of \mathcal{W} equals:

$$4d - c_1(L)^2 - 3 + 2(g - d - 1 - c_1(L) \cdot K_S) = 2d - 3 - c_(L) \cdot K_S \le \dim |L| + \rho(g, 1, d).$$

4. PARAMETER COUNT

By the analysis performed in the previous section, given a polarization H on S, the linear growth condition for a general curve in $|L|_s$ can be verified by controlling the dimension of every dominating component $\mathcal{W} \subset \mathcal{W}^1_d(|L|)$, whose general points are pairs (C, A) such that $A \not\simeq \omega_S^{\vee} \otimes \mathcal{O}_C$ and the bundle $E_{C,A}$ is not μ_H -stable. Indeed, if $A \simeq \omega_S^{\vee} \otimes \mathcal{O}_C$ for a general point of \mathcal{W} , then $\omega_S^{\vee} \otimes \mathcal{O}_{C'}$ is an isolated point of $W^1_d(C')$ for every $C' \in |L|_s$.

Let *A* be a complete, base point free g_d^1 on a curve $C \in |L|_s$ such that the bundle $E := E_{C,A}$ is not μ_H -stable and $A \neq \omega_S^{\vee} \otimes \mathcal{O}_C$ if $h^0(S, \omega_S^{\vee}) = 2$. The maximal destabilizing sequence of *E* has the form

(9)
$$0 \to M \to E \to N \otimes I_{\mathcal{E}} \to 0,$$

where $M, N \in Pic(S)$ satisfy

(10)
$$\mu_H(M) \ge \mu_H(E) \ge \mu_H(N),$$

with both or none of the inequalities being strict, and I_{ξ} is the ideal sheaf of a 0-dimensional subscheme $\xi \subset S$ of length $l = d - c_1(N) \cdot c_1(M)$.

Lemma 4.1. In the above situation, assume that general curves in $|L|_s$ have Clifford index c. If $\mu_{0,A}$ is non-injective and C is general in |L|, then the following inequality holds:

(11)
$$c_1(M) \cdot c_1(N) + c_1(N) \cdot K_S \ge c.$$

Proof. Being a quotient of $E := E_{C,A}$ off a finite set, N is base component free and is non-trivial since $H^2(S, N \otimes \omega_S) = 0$. As a consequence, $h^0(S, N) \ge 2$. Proposition 3.2 implies that $\text{Hom}(E, E \otimes \omega_S) \ne 0$. Applying Hom(E, -) to the short exact sequence (9) twisted with ω_S , we obtain

$$0 \to \operatorname{Hom}(E, M \otimes \omega_S) \to \operatorname{Hom}(E, E \otimes \omega_S) \to \operatorname{Hom}(E, N \otimes \omega_S \otimes I_{\xi}) \to \cdots$$

Apply now $\operatorname{Hom}(-, N \otimes \omega_S \otimes I_{\xi})$ (respectively $\operatorname{Hom}(-, M \otimes \omega_S)$) to exact sequence (9), and find that $\operatorname{Hom}(E, N \otimes \omega_S \otimes I_{\xi}) = 0$ (resp. $\operatorname{Hom}(E, M \otimes \omega_S) \simeq \operatorname{Hom}(N \otimes I_{\xi}, M \otimes \omega_S)$), hence $N^{\vee} \otimes M \otimes \omega_S$ is effective and $h^0(S, M \otimes \omega_S) \ge 2$. This ensures that $N \otimes \mathcal{O}_C$ contributes to the Clifford index of *C* and

$$c \leq \text{Cliff}(N \otimes \mathcal{O}_{C}) = c_{1}(N) \cdot (c_{1}(N) + c_{1}(M)) - 2h^{0}(C, N \otimes \mathcal{O}_{C}) + 2$$

$$\leq c_{1}(N)^{2} + c_{1}(N) \cdot c_{1}(M) - 2h^{0}(S, N) + 2$$

$$= c_{1}(N) \cdot c_{1}(M) + c_{1}(N) \cdot K_{S}.$$

Now, upon fixing a nonnegative integer l and a line bundle N such that (10) is satisfied for $M := L \otimes N^{\vee}$, we want to estimate the number of moduli of pairs (C, A) such that the bundle $E_{C,A}$ sits in a short exact sequence like (9). The following construction is analogous to the one performed in [LC, Section 4] in the case of K3 surfaces. Let $\mathcal{E}_{N,l}$ be the moduli stack of extensions of type (9), where $l(\xi) = l$. Having fixed $c \in H^{2*}(S,\mathbb{Z})$, we denote by $\mathcal{M}(c)$ the moduli stack of coherent sheaves of total Chern class c. We consider the natural maps $p : \mathcal{E}_{N,l} \to \mathcal{M}(c(M)) \times \mathcal{M}(c(N \otimes I_{\xi}))$ and $q : \mathcal{E}_{N,L} \to \mathcal{M}(c(E))$, which send the \mathbb{C} -point of $\mathcal{E}_{N,l}$ corresponding to extension (9) to the classes of $(M, N \otimes I_{\xi})$ and E respectively. Notice that, since M, N lie in $\operatorname{Pic}(S)$, the stack $\mathcal{M}(c(M))$ has a unique \mathbb{C} -point endowed with a

1-dimensional space of automorphisms, while $\mathcal{M}(c(N \otimes I_{\xi}))$ is corepresented by the Hilbert scheme $S^{[l]}$ parametrizing 0-dimensional subschemes of S of length l.

We denote by $Q_{N,l}$ the closure of the image of q and by $Q_{N,l}$ its open substack consisting of vector bundles of type $E_{C,A}$ for some $C \in |L|_s$ and $A \in W_d^1(C)$, with $d := l + c_1(M) \cdot c_1(N)$ and $A \not\simeq \omega_S^{\vee} \otimes \mathcal{O}_C$ if $h^0(S, \omega_S^{\vee}) = 2$. Let $\mathcal{G}_{N,l} \to Q_{N,l}$ be the Grassmann bundle whose fiber over $[E] \in Q_{N,l}(\mathbb{C})$ is $G(2, H^0(S, E))$. By construction, a \mathbb{C} -point of $\mathcal{G}_{N,l}$ corresponding to a pair ($[E], \Lambda$), with $\Lambda \in G(2, H^0(S, E))$, comes endowed with an automorphism group equal to $\operatorname{Aut}(E)$. We define $\mathcal{W}_{N,l}$ to be the closure of the image of the rational map $\mathcal{G}_{N,l} \dashrightarrow \mathcal{W}_d^1(|L|)$, which sends a general point ($[E], \Lambda$) $\in \mathcal{G}_{N,l}(\mathbb{C})$ to the pair (C_Λ, A_Λ) where the evaluation map $ev_\Lambda : \Lambda \otimes \mathcal{O}_S \hookrightarrow E$ degenerates on C_Λ and has $\mathcal{O}_{C_\Lambda}(C_\Lambda) \otimes A_\Lambda^{\vee}$ as cokernel. The following proposition gives an upper bound for the dimension of $\mathcal{W}_{N,l}$.

Proposition 4.2. Assume that general curves in $|L|_s$ have Clifford index c. Then, every irreducible component W of $W^1_d(|L|_s)$ which dominates |L| and is contained in $W_{N,l}$ satisfies

$$\dim \mathcal{W} \le \dim |L| + d - c - 2.$$

Proof. The fiber of p over a \mathbb{C} -point of $\mathcal{M}(c(M)) \times \mathcal{M}(c(N \otimes I_{\xi}))$ corresponding to $(M, N \otimes I_{\xi})$ is the quotient stack

$$[\operatorname{Ext}^{1}(N \otimes I_{\xi}, M) / \operatorname{Hom}(N \otimes I_{\xi}, M)],$$

where the action of the Hom group on the Ext group is trivial. The fiber of q over $[E] \in Q_{N,l}(\mathbb{C})$ is the Quot-scheme $\text{Quot}_S(E, P)$, where P is the Hilbert polynomial of $N \otimes I_{\xi}$. The condition $\mu_H(M) \ge \mu_H(N)$ implies that $\text{Ext}^2(N \otimes I_{\xi}, M) \simeq \text{Hom}(M, N \otimes \omega_S \otimes I_{\xi})^{\vee} = 0$, hence the dimension of the fibers of p is constant and equals

$$-\chi(S, N \otimes M^{\vee} \otimes \omega_S \otimes I_{\xi}) = -g + 2c_1(N) \cdot c_1(M) + c_1(M) \cdot K_S + l.$$

By looking at the tangent and obstruction spaces at any point, one shows that the Quot schemes constituting the fibers of q are either all 0-dimensional or all smooth of dimension 1; indeed, $\text{Hom}(M, N \otimes I_{\xi}) = 0$ unless $M \simeq N$ and l = 0, in which case $\text{Ext}^1(M, N \otimes I_{\xi}) = H^1(S, \mathcal{O}_S) = 0$. As a consequence, if nonempty, $Q_{N,l}$ has dimension at most $3l-2-g+2c_1(N)\cdot c_1(M)+c_1(M)\cdot K_S$.

Since the map $h_{N,l}$ forgets the automorphisms, its fiber over a pair $(C, A) \in W_{N,l}$ is the quotient stack

 $[U/\operatorname{Aut}(E_{C,A})],$

where U is the open subscheme of $\mathbb{P}(\text{Hom}(E_{C,A}, \mathcal{O}_C(C) \otimes A^{\vee}))$ whose points correspond to morphisms with kernel equal to $\mathcal{O}_S^{\oplus 2}$, and $\text{Aut}(E_{C,A})$ acts on U by composition. Using the vanishing $h^i(S, E_{C,A} \otimes \omega_S) = 0$ for i = 1, 2, one checks that

$$\operatorname{Hom}(E_{C,A}, \mathcal{O}_C(C) \otimes A^{\vee}) \simeq H^0(S, E_{C,A} \otimes E_{C,A}^{\vee}),$$

and U is isomorphic to $\mathbb{P}Aut(E_{C,A})$. Hence, the fibers of $h_{N,l}$ are stacks of dimension -1 and

$$\dim \mathcal{W}_{N,l} \leq 3l - 1 - g + 2c_1(N) \cdot c_1(M) + c_1(M) \cdot K_S + 2(g - d - 1 - c_1(L) \cdot K_S) = d + g - 3 - c_1(N) \cdot c_1(M) - c_1(N) \cdot K_S - c_1(L) \cdot K_S.$$

The conclusion follows now from the fact that $\dim |L| \ge g - 1 - c_1(L) \cdot K_S$, along with Lemma 4.1.

5. PROOF OF THE MAIN RESULTS

We recall some facts about exceptional curves, that is, curves of Clifford dimension greater than 1. Coppens and Martens ([CM]) proved that, if C is an exceptional curve of gonality kand Clifford dimension r, then Cliff(C) = k - 3 and C possesses a 1-dimensional family of g_k^1 . Furthermore, if $r \leq 9$, there exists a unique line bundle computing Cliff(C) (cf. [ELMS]); this is conjecturally true for any r. Curves of Clifford dimension 2 are precisely the smooth plane curves of degree ≥ 5 , while the only curves of Clifford dimension 3 are the complete intersections of two cubic surfaces in \mathbb{P}^3 (cf. [Ma]). We will use these results in the proof of the following:

Proposition 5.1. Let *L* be a line bundle on a smooth, rational surface *S* with an anticanonical pencil. If $g(L) \ge 4$ and a general curve $C \in |L|_s$ is exceptional, then any other curve inside $|L|_s$ has the same Clifford dimension *r* of *C* and either case (i) or (ii) of Theorem 1.2 occurs.

Proof. Since any curve of odd genus and maximal gonality has Clifford dimension 1 (cf. [A3, Corollary 3.11]), we can assume that general curves in $|L|_s$ have gonality $k \le (g+2)/2$ and are exceptional. There exists a component W of $W_k^1(|L|)$ of dimension at least dim |L| + 1 and, by Corollary 3.3, this is contained in $W_{N,l}$ for some N and l. Notice that the line bundle N is nef since it is globally generated off a finite set. Furthermore, it follows from the proof of Proposition 4.2 that N and $M := L \otimes N^{\vee}$ satisfy equality in (11), that is,

$$k - 3 = c_1(M) \cdot c_1(N) + c_1(N) \cdot K_S = k - l + c_1(N) \cdot K_S;$$

in particular, $N \otimes \mathcal{O}_C$ computes the Clifford index of a general $C \in |L|_s$ and $h^1(S, M^{\vee}) = 0$. Having at least a 2-dimensional space of sections, the line bundle $\omega_S^{\vee} \otimes \mathcal{O}_C$ has degree $\geq k$, thus $-c_1(M) \cdot K_S \geq k - 3 + l$.

Assume $h^0(S, N \otimes \omega_S) \ge 2$; the restriction of M to a general curve $C \in |L|_s$ contributes to its Clifford index and

$$k-3 \leq \operatorname{Cliff}(M \otimes \mathcal{O}_C) = c_1(M) \cdot c_1(N) + c_1(M) \cdot K_S \leq 3-2l.$$

As $k \ge 2r$ (cf. [ELMS, Proposition 3.2]), we have $r \le 3$; if r = 3, then l = 0, while r = 2 implies $l \le 1$. Let r = 2; since $\chi(S, N) = h^0(S, N) = h^0(C, N \otimes \mathcal{O}_C) = 3$ and $h^i(S, N \otimes \omega_S) = 0$ for i = 1, 2 (as one can check twisting (9) with ω_S and taking cohomology), then $c_1(N)^2 = l + 1$ and $h^0(S, N \otimes \omega_S) = l \le 1$, contradicting our assumption. Hence, the inequality $h^0(S, N \otimes \omega_S) \ge 2$ implies r = 3 and l = 0.

Assume instead that $h^0(S, N \otimes \omega_S) \leq 1$; we get $c_1(N)^2 \leq 3-l$ and $h^0(C, N \otimes \mathcal{O}_C) = h^0(S, N) = \chi(S, N) \leq 4-l$. Since $N \otimes \mathcal{O}_C$ computes the Clifford index of C, then $r \leq 3$ holds in this case as well. Moreover, l = 0 when r = 3, and $l \leq 1$ if r = 2.

Let r = 2 and l = 1; then, $c_1(N)^2 = -c_1(N) \cdot K_S = 2$. By [Ha, Lemma 2.6, Theorem 2.11], N is base point free and not composed with a pencil, hence it defines a generically 2 : 1 morphism $\phi := \phi_N : S \to \mathbb{P}^2$ splitting into the composition of a birational morphism $\psi : S \to S'$, which contracts the finitely many curves E_1, \dots, E_h having zero intersection with $c_1(N)$, and a ramified double cover $\pi : S' \to \mathbb{P}^2$. Set $N' := \pi^*(\mathcal{O}_{\mathbb{P}^2}(1))$; since $N = \psi^*(N')$ and ψ^* preserves both the intersection products and the dimensions of cohomology groups, we have $c_1(N')^2 = -c_1(N') \cdot K_{S'} = 2$ and

$$1 = h^0(S, N \otimes \omega_S) \ge h^0(S, N \otimes \omega_S(-E_1 - \dots - E_h)) = h^0(S', N' \otimes \omega_{S'}).$$

We apply Theorem 3.3. in [Ha] and get $N' = \omega_{S'}^{\vee}$ and $K_{S'}^2 = 2$ (cases (b), (c), (d) of the aforementioned theorem cannot occur since they would contradict $c_1(N')^2 = 2$). The line bundle $N \otimes \mathcal{O}_C$ is very ample because it computes $\operatorname{Cliff}(C)$ (cf. [ELMS, Lemma 1.1]); hence, C is isomorphic to $C' = \psi(C)$ and $\omega_{S'}^{\vee} \otimes \mathcal{O}_{C'}$ is also very ample. Proceeding as in the proof of [P1, Lemma 2.6] (where the ampleness of $\omega_{S'}^{\vee}$ is not really used), one shows that $\phi(C') \in |-2K_{S'}|$. This gives a contradiction because it implies g(C') = g(C) = 3.

Up to now, we have shown that $r \leq 3$ and l = 0, hence $-c_1(N) \cdot K_S = 3$ and $c_1(N)^2 > 0$. By [Ha, Proposition 3.2], the line bundle N defines a morphism $\phi_N : S \to \mathbb{P}^r$ which is birational to its image and only contracts the finitely many curves which have zero intersection with $c_1(N)$. If r = 2, then ϕ_N is the blow-up of \mathbb{P}^2 at finitely many points (maybe infinitely near) and any

9

curve in $|L|_s$ is the strict transform of a smooth plane curve. For r = 3, the image of ϕ_N is a normal cubic surface $S' \subset \mathbb{P}^3$ and any curve in $|L|_s$ is the strict transform of a smooth curve in $|-3K_{S'}|$, hence has Clifford dimension 3.

The following result is now straightforward.

Proposition 5.2. Let C be a smooth, irreducible curve lying on a rational surface S with an anticanonical pencil. If C is general in its linear system, then C satisfies Green's Conjecture; if moreover C is not isomorphic to the complete intersection of two cubics in \mathbb{P}^3 , then it satisfies Green-Lazarsfeld's Gonality Conjecture as well.

Proof. We assume that *C* has genus $g \ge 4$, Clifford dimension 1, Clifford index *c* and gonality $k \le (g+2)/2$. Having fixed $k \le d \le g-k+2$, Corollary 3.3 and Proposition 4.2 imply that every dominating component W of $W_d^1(|L|)$ has dimension $\le \dim |L| + d - k$, hence *C* satisfies the linear growth condition (3). Green's Conjecture for smooth plane curve and complete intersection of two cubics in \mathbb{P}^3 was established by Loose in [Lo], while Aprodu proved Green-Lazarsfeld's Gonality Conjecture for curves of Clifford dimension 2 in [A1].

We proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. We can assume $g(L) \ge 4$. By Proposition 5.2, if $C \in |L|_s$ is general then $K_{g-c-1,1}(C, \omega_C) = 0$, where c = Cliff(C). If we show that the group $K_{g-c-1,1}(C, \omega_C)$ does not depend (up to isomorphism) on the choice of C in its linear system, by semicontinuity of the Clifford index, Green's Conjecture follows for any curve in $|L|_s$.

Set $N := L \otimes \omega_S$; since N is nef and big, the hypotheses of Theorem 2.1 are satisfied. Indeed, (5) and (6) for q = 1 follow directly from the fact that S is regular and has geometric genus 0. We remark that this also implies that

$$H^0(C,\omega_C)\simeq H^0(S,L\otimes\omega_S), \ \ \forall \ C\in |L|_s.$$

Equality (6) for q = 0 is trivial since |L| contains a smooth, irreducible curve. For $q \ge 2$, the line bundle N^{q-1} is nef and big and the Kawamata-Viehweg Vanishing Theorem (cf. [La2, Theorem 4.3.1]) implies that

$$0 = H^1(S, N^{-(q-1)})^{\vee} \simeq H^1(S, (L \otimes \omega_S)^{q-1} \otimes \omega_S) = H^1(S, N^q \otimes L^{\vee}).$$

By adjunction, for any curve $C \in |L|_s$, we obtain the following long exact sequence

$$\cdots \rightarrow K_{g-c-1,1}(S, L^{\vee}, L \otimes \omega_S) \rightarrow K_{g-c-1,1}(S, L \otimes \omega_S) \rightarrow K_{g-c-1,1}(C, \omega_C) \rightarrow K_{g-c-2,2}(S, L^{\vee}, L \otimes \omega_S) \rightarrow \cdots .$$

The group $K_{g-c-1,1}(S, L^{\vee}, L \otimes \omega_S)$ trivially vanishes since $H^0(S, \omega_S) = 0$. By the Vanishing Theorem (4) applied to $K_{g-c-2,2}(S, L^{\vee}, L \otimes \omega_S)$, we can conclude that

(12)
$$K_{g-c-1,1}(S, L \otimes \omega_S) \simeq K_{g-c-1,1}(C, \omega_C),$$

provided that $g - c - 2 \ge h^0(S, L \otimes \omega_S^2)$. We can assume $h^0(S, L \otimes \omega_S^2) \ge 2$ and we are under the hypothesis that the anticanonical system contains a pencil. Hence, $\omega_S^{\vee} \otimes \mathcal{O}_C$ contributes to the Clifford index and, if $C \in |L|_s$ is general, then:

(13)
$$c = \operatorname{Cliff}(C) \leq \operatorname{Cliff}(\omega_S^{\vee} \otimes \mathcal{O}_C) = -c_1(L) \cdot K_S - 2h^0(C, \omega_S^{\vee} \otimes \mathcal{O}_C) + 2$$
$$= -c_1(L) \cdot K_S - 2h^0(S, \omega_S^{\vee}) + 2.$$

Since $H^1(S, L \otimes \omega_S^2) \simeq H^1(S, L^{\vee} \otimes \omega_S^{\vee})^{\vee} = 0$, we have

$$h^{0}(S, L \otimes \omega_{S}^{2}) = \chi(S, L \otimes \omega_{S}^{2}) = g + c_{1}(L) \cdot K_{S} + K_{S}^{2}$$

$$\leq g - c + 1 - h^{0}(S, \omega_{S}^{\vee}) - h^{1}(S, \omega_{S}^{\vee})$$

The conclusion is straightforward unless $\chi(S, \omega_S^{\vee}) = h^0(S, \omega_S^{\vee}) = 2$; in this case the hypothesis that $\operatorname{Cliff}(\omega_S^{\vee} \otimes \mathcal{O}_C) > c$ for a general $C \in |L|_s$ is necessary in order to get to the conclusion. \Box

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 5.1, we can assume that general curves in $|L|_s$ have Clifford dimension 1; we denote by c their Clifford index.

The isomorphism (12), valid for any curve $C \in |L|_s$, together with Green and Lazarsfeld's result stating that $K_{p,1}(C, \omega_C) \neq 0$ for $p \leq g - \text{Cliff}(C) - 2$, implies the constancy of the Clifford index. By semicontinuity of the gonality, all curves in $|L|_s$ have Clifford dimension 1 and the same gonality.

Remark 2. Knutsen [K] proved that, if a line bundle L on a Del Pezzo surface S satisfies $g(L) \ge 4$, then the Clifford index curves in $|L|_s$ is constant unless S has degree 1, the line bundle L is ample, $c_1(L) \cdot E \ge 2$ for every (-1)-curve E if $c_1(L)^2 \ge 8$, and there is an integer $k \ge 3$ such that $-c_1(L) \cdot K_S = k$, $c_1(L)^2 \ge 5k - 8 \ge 7$ and $c_1(L) \cdot \Gamma \ge k$ for every smooth rational curve such that $\Gamma^2 = 0$. In this case, the curves through the base point of ω_s^{\vee} form a family of codimension 1 in $|L|_s$, have gonality k - 1 and Clifford index k - 3, while a general curve $C \in |L|_s$ has gonality k and Clifford index k - 2; in particular, $\omega_S^{\vee} \otimes \mathcal{O}_C$ computes Cliff(C). The easiest example where the gonality is not constant is provided by $L = \omega_S^{-n}$ for $n \ge 3$. Vice versa, if S has degree 1 and Cliff $(\omega_S^{\vee} \otimes \mathcal{O}_C) = \text{Cliff}(C)$ for a general $C \in |L|_s$, one recovers

Vice versa, if *S* has degree 1 and $\operatorname{Cliff}(\omega_S^{\vee} \otimes \mathcal{O}_C) = \operatorname{Cliff}(C)$ for a general $C \in |L|_s$, one recovers Knutsen's conditions because, if Γ is a smooth rational curve with $\Gamma^2 = 0$, then $\mathcal{O}_S(\Gamma)$ cuts out a base point free pencil on *C* and, if $c_1(L)^2 \ge 8$ and *E* is a (-1)-curve, then $\mathcal{O}_C(-K_S + E)$ defines a net on *C* which contributes to its Clifford index. This shows that the extra hypothesis we make when $\chi(S, \omega_S^{\vee}) = h^0(S, \omega_S^{\vee}) = 2$ is unavoidable.

REFERENCES

- [A1] M. Aprodu, On the vanishing of higher syzygies of curves, Math. Zeit. 241 (2002), 1-15.
- [A2] M. Aprodu, Remarks on syzygies of d-gonal curves, Math. Res. Lett. 12 (2005), 387-400.
- [A3] M. Aprodu, Lazarsfeld-Mukai bundles and applications, ArXiv:1205.4415.
- [AF] M. Aprodu, G. Farkas, The Green Conjecture for smooth curves lying on arbitrary K3 surfaces, Compos. Math. 147 (2011), 839-851.
- [ACG] E. Arbarello, M. Cornalba, P. A. Griffiths, *Geometry of algebraic curves. Volume II. With a contribution by Joseph* Daniel Harris, Grundlehren der mathematischen Wissenschaften, 267, Springer-Verlag, Berlin (2011).
- [CM] M. Coppens, G. Martens, Secant spaces and Clifford's Theorem, Compos. Math. 78 (1991), 193-212.
- [CoMR] L. Costa, R. M. Miró-Roig, Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J. 165 (2002), 43-69.
- [E] S. Ehbauer, *Syzygies of points in projective space and applications*, Zero-dimensional schemes (Ravello, 1992), De Gruyter, Berlin, 1994, 145-170.
- [ELMS] D. Eisenbud, H. Lange, G. Martens, and F.-O. Schreyer, *The Clifford dimension of a projective curve*, Compos. Math. 72 (1989), 173-204.
- [G] M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Diff. Geom. 19 (1984), 125-171.
- [Ha] B. Harbourne, *Birational morphisms of rational surfaces*, J. Algebra **190** (1997), 145-162.
- [HR] A. Hirschowitz, S. Ramanan, *New evidence for Green's conjecture on syzygies of canonical curves*, Ann. Sci. Éc. Norm. Supér. (4) **31** (1998), 145-152.
- [K] A. L. Knutsen, Exceptional curves on Del Pezzo surfaces, Math. Nachr. 256 (2003), 58-81.
- [La1] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), 299-307.
- [La2] R. Lazarsfeld, *Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 49, Springer-Verlag, Berlin (2004).
- [LC] M. Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, ArXiv:1112.2938.
- [Lo] F. Loose, On the graded Betti numbers of plane algebraic curves, Manuscr. Math. 64 (1989), 503-514.
- [Ma] G. Martens, Über den Clifford-Index algebraischer Kurven, J. Reine Angew. Math. 336 (1982), 83-90.
- [P1] G. Pareschi, *Exceptional linear systems on curves on Del Pezzo surfaces*, Math. Ann. **291** (1991), 17-38.
- [P2] G. Pareschi, A proof of Lazarsfeld's Theorem on curves on K3 surfaces, J. Alg. Geom. 4 (1995), 195-200.

- [V1] C. Voisin, Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc. 4 (2002), 363-404.
- [V2] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), 1163-1190.