GREEN’S CONJECTURE FOR CURVES ON RATIONAL SURFACES WITH AN
ANTICANONICAL PENCIL

MARGHERITA LELLI-CHIESA

ABSTRACT. Green’s conjecture is proved for smooth curves C' lying on a rational surface S with
an anticanonical pencil, under some mild hypotheses on the line bundle L = Os(C). Constancy of
Clifford dimension, Clifford index and gonality of curves in the linear system || is also obtained.

1. INTRODUCTION

Green’s Conjecture concerning syzygies of canonical curves was first stated in [G] and pro-
poses a generalization of Noether’s Theorem and the Enriques-Babbage Theorem in terms of
Koszul cohomology, predicting that for a curve C

(1) K,2(Ciwe) =0 if and only if p < Cliff(C).

Quite remarkably, this would imply that the Clifford index of C' can be read off the syzygies
of its canonical embedding. The implication K, 2(C,wc) # 0 for p > Cliff(C') was immedi-
ately achieved by Green and Lazarsfeld ([G, Appendix]) and the conjectural part reduces to the
vanishing K. 2(C,w¢c) = 0 for ¢ = Cliff(C), or equivalently, K,_._1,1(C,wc) = 0.

One naturally expects the gonality & of C' to be also encoded in the vanishing of some Koszul
cohomology groups. In fact, Green-Lazarsfeld’s Gonality Conjecture predicts that any line bun-
dle A on C of sufficiently high degree satisfies

(2) Ky1(C,A)=0 if and only if p > 1h°(C, A) — k.

Green ([G]) and Ehbauer ([E]) have shown that the statement holds true for any curve of gonality
kE < 3. As in the case of Green’s Conjecture, one implication is well-known (cf. [G, Appendix]);
it was proved by Aprodu (cf. [Al]) that the conjecture is thus equivalent to the existence of a
non-special globally generated line bundle A such that Ko 4)—,1(C, A) = 0.

Both Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture are in their full gener-
ality still open. However, by specialization to curves on K3 surfaces, they were proved for a
general curve in each gonality stratum of M, by Voisin and Aprodu (cf. [V1, V2, A2]). Com-
bining this with an earlier result of Hirschowitz and Ramanan (cf. [HR]), the two conjectures
follow for any curve of odd genus g = 2k — 3 and maximal gonality k.

In [A2], Aprodu provided a sufficient condition for a genus g curve C of gonality k£ < (g+2)/2
to satisfy both conjectures; this is known as the linear growth condition and is expressed in terms
of the Brill-Noether theory of C' only:

(3) dimWj(C)<d—k fork<d<g—Fk+2.

Aprodu and Farkas ([AF]) used the above characterization in order to establish Green’s Con-

jecture for smooth curves lying on arbitrary K3 surfaces. It is natural to ask whether a similar

strategy can solve Green’s Conjecture for curves lying on anticanonical rational surfaces, since

these share some common behaviour with K3 surfaces. The situation gets more complicated

because such a surface S is in general non-minimal and its canonical bundle is non-trivial; in

particular, given a line bundle L € Pic(S), smooth curves in the linear system |L| do not form
1
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a family of curves with constant syzygies, as it happens instead in the case of K3 surfaces. Our
main result is the following:

Theorem 1.1. Let S be a smooth, projective, rational surface with an anticanonical pencil and let L be a
line bundle on S such that L ® wg is nef and big. In the special case where h°(S,w¥) = x(S,w¥) = 2,
also assume that the Clifford index of a general curve in |L| is not computed by the restriction of the
anticanonical bundle w{.

Then, any smooth, irreducible curve C' € |L| satisfies Green’s Conjecture.

With no hypotheses on the line bundle L, we obtain Green’s Conjecture and Green-Lazarsfeld’s
Gonality Conjecture for a general curve in |L|;, where |L|; denotes the locus of smooth and
irreducible curves in the linear system |L| (cf. Proposition 5.2). For later use, we denote by
g(L) =1+ (c1(L)? + c1(L) - Kg)/2 the genus of any curve in |L|s.

Examples of surfaces as in Theorem 1.1 are given by all rational surfaces S whose canonical
divisor satisfies Kg > 0, or equivalently, having Picard number p(S) < 9, such as Del Pezzo
surfaces (—Kg is ample), generalized Del Pezzo surfaces (— K is nef and big), some blow-ups
of Hirzebruch surfaces. However, the class of surfaces that we are considering also includes
surfaces S with K2 < 0, such as rational elliptic surfaces (i.e., smooth complete complex surfaces
that can be obtained by blowing up P? at 9 points, which are the base locus of a pencil of cubic
curves with at least one smooth member).

We also obtain the following:

Theorem 1.2. Assume the same hypotheses as in Theorem 1.1 and let g(L) > 4. Then, all curves in
|L|s have the same Clifford dimension r, the same Clifford index and the same gonality. Moreover, if the
curves in |L|s are exceptional, then one of the following occurs:

(i) » = 2 and any curve in |L|s is the strict transform of a smooth, plane curve under a morphism
¢ = S — P2 which is the composition of finitely many blow-ups.

(ii) r = 3 and S can be realized as the blow-up of a normal cubic surface S' C P at a finite number
of points (possibly infinitely near); any curve in |L|s is the strict transform under the blow-up
map of a smooth curve in | — 3Kg|.

This generalizes results of Pareschi (cf. [P1]) and Knutsen (cf. [K]) concerning the Brill-
Noether theory of curves lying on a Del Pezzo surface S. In [K], the author proved that line
bundles violating the constancy of the Clifford index only exist when K% = 1; they are de-
scribed in terms of the coefficients of the generators of Pic(S) in their presentation. In fact, one
can show that such line bundles are exactly those satisfying: L ® wg is nef and big and the re-
striction of the anticanonical bundle w to a general curve in | L|; computes its Clifford index (cf.
Remark 2).

The proofs of Theorem 1.1 and Theorem 1.2 rely on vector bundle techniques a la Lazars-
feld (cf. [Lal]); in particular, we consider rank-2 bundles E¢ 4, which are the analogue of the
Lazarsfeld-Mukai bundles for K 3 surfaces. The key fact proved in Section 3 is that, if A is a com-
plete, base point free pencil on a general curve C € |L|,, the dimension of ker y_4 is controlled
by H 2(5, Eca® Eg 4); if this is nonzero, the bundle E¢ 4 cannot be slope-stable with respect to
any polarization H on S.

By considering Harder-Narasimhan and Jordan-Holder filtrations, in Section 4 we perform
a parameter count for pairs (C, A) such that E¢ 4 is not py-stable; this gives an upper bound
for the dimension of any irreducible component W of W1(|L|) which dominates |L| under the
natural projection 7 : W1(|L|) — |L|s. It turns out (cf. Proposition 5.1) that, if a general curve
C € |L|s is exceptional, the same holds true for all curves in |L|; and one is either in case (i)
or (ii) of Theorem 1.2; in this context we recall that Green’s Conjecture for curves of Clifford
dimension 2 and 3 was verified by Loose in [Lo]. If instead C has Clifford dimension 1, our pa-
rameter count ensures that it satisfies the linear growth condition (3). In order to deduce Green’s
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Conjecture for every curve in |L|;, we make use of the hypotheses made on L and show that the
Koszul group K,_.—1,1(C,wc) does not depend (up to isomorphism) on the choice of C' € |L],
as soon as c equals the Clifford index of a general curve in |L|s. Semicontinuity will imply the
constancy of the Clifford index and the gonality.

Acknowledgements: I am grateful to my advisor Gavril Farkas, who suggested me to investi-
gate the topic.

2. SYZYGIES AND K0OszUL COHOMOLOGY

If L is an ample line bundle on a complex projective variety X, let S := Sym*H°(X,L)
be the homogeneous coordinate ring of the projective space P(H’(X, L)V) and set R(X) :=
@®,, H°(X, L™). Being a finitely generated S-module, R(X) admits a minimal graded free reso-
lution

0—>Es— ...~ FE — Ey— R(X)—0,

where for k > 1 one can write B, = >, S(—i — 1)%x+. The syzygies of X of order k are by
definition the graded components of the S-module Ej. We say that the pair (X, L) satisfies
property (N,) if By = S and Ej, = S(—k — 1)%* for all 1 < k < p. In other words, property (No)
is satisfied whenever ¢ embeds X as a projectively normal variety, while property (/Ni) also
requires that that the ideal of X in P(H°(X, L)) is generated by quadrics; for p > 1, property
(Np) means that the syzygies of X up to order p are linear.

The most effective tool in order to compute syzygies is Koszul cohomology, whose definition
is the following. Let L € Pic(X) and F be a coherent sheaf on X. The Koszul cohomology group
K, .(X, F, L) is defined as the cohomology at the middle-term of the complex

p+1
N HO(L ®H0F®L‘11—>/\HO L)® HY(F ® L9) — /\HO )® HY(F @ LIt).

When F' ~ Ox, the Koszul cohomology group is conventionally denoted by K, ,(X, L). It turns
out (cf. [G]) that property (NN,) for the pair (X, L) is equivalent to the vanishing

K;q(X,L)=0 forall i < pandgq > 2.

In particular, Green’s Conjecture can be rephrased by asserting that (C,w¢) satisfies property
(Np) whenever p < Cliff(C).

In the sequel we will make use of the following results, which are due to Green. The first one
is the Vanishing Theorem (cf. [G, Theorem (3.a.1)]), stating that

@ Kpo(X,E,L)=0  ifp>h'(X,E® L9).

The second one (cf. [G, Theorem (3.b.1)]) relates the Koszul cohomology of X to that of a smooth
hypersurface Y C X in the following way.

Theorem 2.1. Let X be a smooth irreducible projective variety and assume L, N € Pic(X) satisfy

(5) HYX,N® L") =
(6) HY(X,Ni@L") = o0, Vg > 0.

Then, for every smooth integral divisor Y € |L|, there exists a long exact sequence

= KP»Q(X7 vaN) - KP#](Xv N) — KP»Q(Y7N® Oy) — KP—LQ-H(Xv LV7N) -
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3. PETRI MAP VIA VECTOR BUNDLES

Let S be a smooth rational surface with an anticanonical pencil and C C S be a smooth,
irreducible curve of genus g. We set L := Og(C). If A is a complete, base point free g, on C, as
in the case of K3 surfaces, let Fio 4 be the vector bundle on S defined by the sequence

0— Foa— HO(C,A) ® Og 6&5 A—0,

and set Ec 4 := Fp. 4. Since Ngjg = Oc(C), by dualizing the above sequence we get
(7) 0—>H0(C,A)v®05—>EC’A—>Oc(C)®Av—>0.
This trivially implies that:

* X(5,Ec.a ®ws) = h°(S, Eca ®@ws) = g —d+,

e rtkEca=r+1,c1(Eca) =L, c2(E) =d,

o 1*(S,Ec,a) =0,X(S,Ec,a) =g —d+r—ci(L) - Ks.
Being a bundle of type E¢ 4 is an open condition. Indeed, a vector bundle E of rank r + 1 is of
type Ec.4 whenever h(S, E ® wg) = h?(S, E ® wg) = 0 and there exists A € G(r + 1, H’(S, E))
such that the degeneracy locus of the evaluation map evy : A ® Og — E is a smooth connected
curve.

Notice that the dimension of the space of global sections of ¢ 4 depends not only on the type
of the linear series A but also on A ® wg. In particular, one has

h(S,Eca) = r+1+h%C,0c(C)® AY),
hl(S, EQA) = hO(C, AR wg).
Moreover, if the line bundle O¢(C) ® A" has sections, then E¢ 4 is generated off its base points.
In the case r = 1, we prove the following.
Lemma 3.1. Let A be a complete, base point free gk on C C S. If either
o hO(S,w¥) > 2, or
o hO(S,w¥) =2and A # wf® Oc
holds, then h°(C, A ® wg) = 0.
Proof. Since L ® wg is effective, the short exact sequence
0= LY Qwd— wd—wi®0c—0

implies h°(C,w¥ @ O¢) > hP(S,wY) and the statement follows trivially if A(S,w¥) > 2. Let
hO(S,w¥) = 2 and h%(C, A ® wg) > 0. Then necessarily h°(C,w¢ ® O¢) = 2 and A ® wg is the
tixed part of the linear system of sections of A. Since A is base point free by hypothesis, then
A~ wg ® O¢. O

Under the hypotheses of the above Lemma, the bundle E¢ 4 is globally generated off a finite
set and x(S,Ec,a) = h%(S,Eca) = g —d+ 1 — c1(L) - Ks. We remark that the vanishing
of h!(S, Ec,a) turns out to be crucial in most of the following arguments and this is why the
assumptions on the anticanonical linear system of S are needed.

The following proposition gives a necessary and sufficient condition for the injectivity of the
Petri map o4 : HY(C, A) @ HY(C,we ® AY) — H(C,wc).
Proposition 3.2. If C € |L|, is general and either h°(S,wY) > 2 or h%(S,w¥) = 2and A # w¥ ® O¢,
then for any complete, base point free pencil A on C one has:

ker pg 4 =~ H*(S, Ec.a ® E57A).

In particular, the vanishing of the one side implies the vanishing of the other.
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Proof. The proof proceeds as in [P2], hence we will not enter into details. As A is a pencil,
the kernel of the evaluation map evac : H YC,A) @ Oc — Ais ismomorphic to A" and
ker po 4 ~ H Y(C,we ® A~2). Since det Fe,a = LY, by adjunction one finds the following short
exact sequence:

(8) O—>ws®@c—>FC,A®wc®Av—>wc®A72—>O.

The coboundary map 6 : H(C,wc ® A™2) — H'(C,ws ® O¢) coincides, up to multiplication by
a nonzero scalar factor, with the composition of the Gaussian map

f1,4 < ker pig 4 — HO(C, w%)
and the dual of the Kodaira spencer map
p’ HY(C,w?) — (Te|L])Y = HO(C, Neys)Y = H' (C,ws ® Oc).
Indeed, as in [P2, Lemma 1], one finds a commutative diagram

0—>ws®0c —>FoaQwec @A —>we @ A2 —=0

l |

0 —ws ®0¢c Q}g@)wc w% 0,

where the homomorphism induced by s on global sections is ;1,4 and the coboundary map
H(C,w?) = HY(C,ws ® O¢) equals (up to a scalar factor) p".

If A has degree d, look at the natural projection 7 : W (|L|) — |L|s. First order deformation
arguments (see, for instance, [ACG, p. 722]) imply that

Im(dm(c,a)) C Ann(Im(p” o pi1,4)).

Therefore, by Sard’s Lemma, if C' € |L|; is general, the short exact sequence (8) is exact on the
global sections for any base point free A € W (C)\W2(C), and ker i, 4 ~ H°(C, Fo a®wc®AY).
By tensoring short exact sequence (7) with F¢ 4 ® wg, one finds that

HO(C, Fooa®we ® AY) ~ HO(S, E\C/‘,A ® Ec A ® ws)

because H'(S, Fo a®@ws) ~ H* (S, Ec,.4)" = 0fori = 0, 1. The statement follows now by Serre
duality. 0

Corollary 3.3. Let H be any polarization on S and W be an irreducible component of W (|L|) which
dominates |L| and whose general points correspond to pp-stable bundles; in the special case where
hO(S,w¥) = 2, assume that general points of W are not of the form (C,w¥ @ O¢).

Then, p(g,1,d) > 0and W is reduced of dimension equal to dim |L| + p(g, 1, d).

Proof. Let (C, A) be a general point of W. If E¢ 4 is stable, Ec 4 ® wg also is. The inequality
pr(Ec.a) > pu(Ec.a @ wg) implies that H?(S, Eg’A ® Ec,a) ~ Hom(Ec 4, Ec,a @wg)Y = 0. As
a consequence, W is smooth in (C, A) of the expected dimension. O

Remark 1. Corollary 3.3 can be alternatively proved by arguing in the following way.

Let M := M}’(c) be the moduli space of py-stable vector bundles on S of total Chern class
c=2+ci1(L)+dw € H?*(S,Z), where w is the fundamental cocycle. Since every [E] € M satisfies
Ext?(E, E)o = 0, it turns out that M is a smooth, irreducible projective variety of dimension
4d — ¢1(L)? — 3 (cf. [CoMR, Remark 2.3]), as soon as it is non-empty. Let M 0 be the open
subset of M parametrizing vector bundles [E] of type E¢ 4; if this is nonempty, define G as the
Grassmann bundle on M° with fiber over [E] equal to G(2, HY(S, E)). Look at the rational map
h: G --» WI(|L|) sending a general (E, A) € G to the pair (Cy, Ay), where Cj is the degeneracy
locus of the evaluation map evy : A ® Og — E and O¢, (Cp) ® AV is its cokernel. Since any
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[E] € M is simple, one easily checks that & is birational onto its image, that is denoted by W.
As a consequence, the dimension of W equals:

4d —c1(L)* =3+2(g—d—1—¢ (L) - Kg) =2d -3 —¢)- Kg <dim|L| + p(g,1,d).

4. PARAMETER COUNT

By the analysis performed in the previous section, given a polarization H on S, the linear
growth condition for a general curve in |L|s; can be verified by controlling the dimension of
every dominating component W C Wi (|L|), whose general points are pairs (C, 4) such that
A # wf ® Oc¢ and the bundle E¢ 4 is not pp-stable. Indeed, if A ~ w$ ® O¢ for a general point
of W, then w{ ® O is an isolated point of W} (C') for every C’ € |L|s.

Let A be a complete, base point free g} on a curve C € |L|s such that the bundle E := E( 4 is
not pg-stable and A # w¥ ® Oc if h°(9,wy) = 2. The maximal destabilizing sequence of E has
the form

) 0—-M—FE— NI =0,
where M, N € Pic(S) satisfy
(10) p(M) = pa(E) 2 pa(N),

with both or none of the inequalities being strict, and I¢ is the ideal sheaf of a 0-dimensional
subscheme £ C S oflengthl =d — ¢ (N) - ¢1(M).

Lemma 4.1. In the above situation, assume that general curves in |L|s have Clifford index c. If po 4 is
non-injective and C'is general in |L|, then the following inequality holds:

(11) Cl(M)~Cl(N)+Cl(N)-K526.

Proof. Being a quotient of £/ := FE¢ 4 off a finite set, IV is base component free and is non-
trivial since H2(S, N ® wg) = 0. As a consequence, h°(S, N) > 2. Proposition 3.2 implies that
Hom(E, E ® ws) # 0. Applying Hom(E, —) to the short exact sequence (9) twisted with wg, we
obtain

0 — Hom(E, M ® wg) = Hom(E, E ® wg) = Hom(E, N @ ws @ I¢g) — - - - .

Apply now Hom(—, N ® wg ® I¢) (respectively Hom(—, M ® wg)) to exact sequence (9), and
find that Hom(E, N ® wg ® I¢) = 0 (resp. Hom(F, M ® wg) ~ Hom(N ® I¢, M ® wg)), hence
NV ® M ® wg is effective and h%(S, M ® wg) > 2. This ensures that N ® O¢ contributes to the
Clifford index of C and

c<Clff(N®Oc) = c1(N)-(c1(N)+ei(M)) —2h°(C, N @ O¢) + 2
Cl(N)2 + Cl(N) . Cl(M) — 2h0(8, N) + 2
Cl(N) . Cl(M) —i—Cl(N) - Kg.

IN

g

Now, upon fixing a nonnegative integer / and a line bundle N such that (10) is satisfied for
M := L ® NY, we want to estimate the number of moduli of pairs (C, A) such that the bun-
dle E¢c 4 sits in a short exact sequence like (9). The following construction is analogous to
the one performed in [LC, Section 4] in the case of K3 surfaces. Let £y, be the moduli stack
of extensions of type (9), where ((¢) = I. Having fixed ¢ € H?*(S,Z), we denote by M(c)
the moduli stack of coherent sheaves of total Chern class c. We consider the natural maps
p: Eng = M(c(M)) x M(e(N ® I¢)) and ¢ : Eng — M(c(E)), which send the C-point
of En,; corresponding to extension (9) to the classes of (M, N ® I¢) and E respectively. No-
tice that, since M, N lie in Pic(S), the stack M(c(M)) has a unique C-point endowed with a
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1-dimensional space of automorphisms, while M(c(N ® I¢)) is corepresented by the Hilbert
scheme Sl parametrizing 0-dimensional subschemes of S of length /.

We denote by Q; the closure of the image of ¢ and by Q; its open substack consisting of
vector bundles of type E¢ 4 for some C € |L|s and A € W}(C), with d := 1 + ¢;(M) - ¢1(N)
and 4 # wl ® O¢ if Ro(S, wg) = 2. Let Gny — Qn, be the Grassmann bundle whose fiber
over [E] € Qn,(C) is G(2,H°(S, E)). By construction, a C-point of Gy, corresponding to a
pair ([E],A), with A € G(2, H°(S, E)), comes endowed with an automorphism group equal to
Aut(E). We define Wy, to be the closure of the image of the rational map Gn,; --» Wj(|L|),
which sends a general point ([E],A) € Gn,;(C) to the pair (Cy, Ax) where the evaluation map
evpy : A ® Og — FE degenerates on C and has O¢, (Cy) ® AY as cokernel. The following
proposition gives an upper bound for the dimension of Wy ;.

Proposition 4.2. Assume that general curves in |L|s have Clifford index c. Then, every irreducible
component W of WA (|L|s) which dominates |L| and is contained in Wy satisfies

dimW <dim|L|+d—c—2.
Proof. The fiber of p over a C-point of M(c(M)) x M(c¢(N ® I¢)) corresponding to (M, N ® I¢)
is the quotient stack
[Ext! (N @ Ig, M) /Hom(N @ I, M),
where the action of the Hom group on the Ext group is trivial. The fiber of ¢ over [E] € Qy,(C)
is the Quot-scheme Quotg(F, P), where P is the Hilbert polynomial of N ® I¢. The condition
pi (M) > py(N) implies that Ext*(N ® Ig, M) ~ Hom(M, N ® ws ® I¢)” = 0, hence the dimen-
sion of the fibers of p is constant and equals
XS, N M"Y @ws®@I¢) = —g+2c1(N) - c1(M)+c1(M) - Kg +1.

By looking at the tangent and obstruction spaces at any point, one shows that the Quot schemes
constituting the fibers of ¢ are either all 0-dimensional or all smooth of dimension 1; indeed,
Hom(M, N ® I¢) = 0 unless M ~ N and | = 0, in which case Ext'(M, N ® I¢) = H'(S,Os) = 0.
As a consequence, if nonempty, @ n; has dimension at most 31 —2—g+2¢; (N )-c1(M)+c1(M)-Kg.

Since the map hy; forgets the automorphisms, its fiber over a pair (C, A) € Wy is the quo-
tient stack

[U/Aut(Ec,a)],

where U is the open subscheme of P(Hom(Ec¢ 4, 0c(C) ® AY)) whose points correspond to
morphisms with kernel equal to (’)gﬂ, and Aut(E¢c ) acts on U by composition. Using the
vanishing h*(S, Ec,4 ® wg) = 0 for i = 1,2, one checks that

Hom(Ec,4,00(C) ® AY) ~ H(S, Ec,a ® EY »),
and U is isomorphic to PAut(E¢ 4). Hence, the fibers of iy are stacks of dimension —1 and
dimWy; < 3l—1—g+2a(N)-aco(M)+cai(M)-Ks+2(g—d—1—-c1(L) - Kg)
= d+g9g—-3—ca(N)-aq(M)—c1(N)-Kg—c1(L) - Kg.

The conclusion follows now from the fact that dim|L| > g — 1 — ¢;(L) - Kg, along with Lemma
4.1. O

5. PROOF OF THE MAIN RESULTS

We recall some facts about exceptional curves, that is, curves of Clifford dimension greater
than 1. Coppens and Martens ([CM]) proved that, if C' is an exceptional curve of gonality &
and Clifford dimension r, then Cliff(C) = k£ — 3 and C possesses a 1-dimensional family of
g,i. Furthermore, if r < 9, there exists a unique line bundle computing Cliff(C) (cf. [ELMS]);
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this is conjecturally true for any r. Curves of Clifford dimension 2 are precisely the smooth
plane curves of degree > 5, while the only curves of Clifford dimension 3 are the complete
intersections of two cubic surfaces in P? (cf. [Ma]). We will use these results in the proof of the
following;:

Proposition 5.1. Let L be a line bundle on a smooth, rational surface S with an anticanonical pencil.
If (L) > 4 and a general curve C' € |L|s is exceptional, then any other curve inside |L|s has the same
Clifford dimension r of C and either case (i) or (ii) of Theorem 1.2 occurs.

Proof. Since any curve of odd genus and maximal gonality has Clifford dimension 1 (cf. [A3,
Corollary 3.11]), we can assume that general curves in |L|; have gonality £ < (g + 2)/2 and are
exceptional. There exists a component W of W} (|L|) of dimension at least dim |L| + 1 and, by
Corollary 3.3, this is contained in Wy ; for some N and [. Notice that the line bundle N is nef
since it is globally generated off a finite set. Furthermore, it follows from the proof of Proposition
4.2 that N and M := L ® NV satisfy equality in (11), that is,

k‘—3201(M)'Cl(N)—I-Cl(N)'KS:k—l+Cl(N)-Ks;

in particular, N ® O¢ computes the Clifford index of a general C' € |L|s and h'(S, M) = 0.
Having at least a 2-dimensional space of sections, the line bundle wg ® Oc¢ has degree > k, thus
—cl(M)‘KS >k—-3+1L

Assume hO(S, N ® wg) > 2; the restriction of M to a general curve C € |L|; contributes to its
Clifford index and

k—3< Cllﬁ(M@Oc) :Cl(M) 'Cl(N)—I—Cl(M)'KS <3-2l.

As k > 2r (cf. [ELMS, Proposition 3.2]), we have r < 3;if » = 3, then | = 0, while » = 2 implies
[ < 1. Letr = 2; since x(S,N) = h%(S,N) = h°(C,N ® O¢) = 3 and h*(S,N ® wg) = 0 for
i = 1,2 (as one can check twisting (9) with wg and taking cohomology), then ¢; (N)? = [ + 1 and
hO(S, N ® wg) = I < 1, contradicting our assumption. Hence, the inequality h°(S, N ® wg) > 2
impliesr =3 and [ = 0.

Assume instead that h°(S, N@ws) < 1; we get ¢;(N)? < 3—land h°(C, N®O¢) = h°(S,N) =
X(S,N) <4 —1. Since N ® O¢ computes the Clifford index of C, then r < 3 holds in this case as
well. Moreover,l = 0whenr =3,and [ < 1ifr = 2.

Letr = 2and [ = 1; then, ¢;(N)? = —¢;(N) - Kg = 2. By [Ha, Lemma 2.6, Theorem 2.11],
N is base point free and not composed with a pencil, hence it defines a generically 2 : 1 mor-
phism ¢ := ¢ : S — P? splitting into the composition of a birational morphism ¢ : § — &/,
which contracts the finitely many curves Ey, - - - , Ej, having zero intersection with ¢;(/N), and
a ramified double cover © : S’ — P2 Set N’ := 7*(Op2(1)); since N = ¢*(N’) and ¢*
preserves both the intersection products and the dimensions of cohomology groups, we have
Cl(N/)2 = —Cl(N/) . KS/ = 2 and

1= hO(S,N ®wg) > hO(S,N Quws(—E1—---—Ep)) = hO(S/,N/ ® wgr).

We apply Theorem 3.3. in [Ha] and get N’ = w{, and K32, = 2 (cases (b), (c), (d) of the aforemen-
tioned theorem cannot occur since they would contradict ¢; (N')? = 2). The line bundle N ® O¢
is very ample because it computes Cliff (C') (cf. [ELMS, Lemma 1.1]); hence, C' is isomorphic to
C" = ¢Y(C) and w¢, ® Ocr is also very ample. Proceeding as in the proof of [P1, Lemma 2.6]
(wWhere the ampleness of w, is not really used), one shows that ¢(C’) € | — 2Kg/|. This gives a
contradiction because it implies g(C’) = ¢(C') = 3.

Up to now, we have shown that » < 3 and [ = 0, hence —¢; (V) - Kg = 3 and c1(N)2 > 0. By
[Ha, Proposition 3.2], the line bundle N defines a morphism ¢y : S — P” which is birational to
its image and only contracts the finitely many curves which have zero intersection with ¢; (V).
If r = 2, then ¢y is the blow-up of P? at finitely many points (maybe infinitely near) and any
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curve in |L|, is the strict transform of a smooth plane curve. For r = 3, the image of ¢y is a
normal cubic surface S’ C P3 and any curve in |L|; is the strict transform of a smooth curve in
| — 3K s|, hence has Clifford dimension 3. O

The following result is now straightforward.

Proposition 5.2. Let C' be a smooth, irreducible curve lying on a rational surface S with an anticanonical
pencil. If C is general in its linear system, then C satisfies Green’s Conjecture; if moreover C' is not
isomorphic to the complete intersection of two cubics in P, then it satisfies Green-Lazarsfeld’s Gonality
Conjecture as well.

Proof. We assume that C has genus g > 4, Clifford dimension 1, Clifford index c and gonality
k < (g+2)/2. Having fixed k < d < g—k+2, Corollary 3.3 and Proposition 4.2 imply that every
dominating component W of W} (| L|) has dimension < dim |L|+d—Fk, hence C satisfies the linear
growth condition (3). Green’s Conjecture for smooth plane curve and complete intersection of
two cubics in P? was established by Loose in [Lo], while Aprodu proved Green-Lazarsfeld’s
Gonality Conjecture for curves of Clifford dimension 2 in [A1]. O

We proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. We can assume g(L) > 4. By Proposition 5.2, if C € |L|, is general then
Ky c—11(C,wc) = 0, where ¢ = Cliff(C). If we show that the group K,_._1,1(C,wc) does not
depend (up to isomorphism) on the choice of C' in its linear system, by semicontinuity of the
Clifford index, Green’s Conjecture follows for any curve in |L|s.

Set N := L ® wg; since N is nef and big, the hypotheses of Theorem 2.1 are satisfied. Indeed,
(5) and (6) for ¢ = 1 follow directly from the fact that S is regular and has geometric genus 0.
We remark that this also implies that

H(C,we) ~ H(S, L @ wg), VC € |Ls.

Equality (6) for ¢ = 0 is trivial since |L| contains a smooth, irreducible curve. For ¢ > 2, the line
bundle N9~! is nef and big and the Kawamata-Viehweg Vanishing Theorem (cf. [La2, Theorem
4.3.1]) implies that

0=HY SN~ D)W~ HY(S, (L@ ws) ' @uwsg)=H' (S, N® L").

By adjunction, for any curve C' € |L|s, we obtain the following long exact sequence
— Kyc11(S, LY, L@ wg) = Ky—c—11(S, L @ ws) = Kg—c—11(C,we)
— Kg_c_QVQ(S, LV, L® wg) —> e

The group K,——1,1(S, LY, L ® wg) trivially vanishes since H°(S,wg) = 0. By the Vanishing
Theorem (4) applied to K;—c—22(S, LY, L ® wg), we can conclude that

(12) Kgfcfl,l(57L®WS) = Kgfcfl,l(ca WC)a

provided that g — ¢ — 2 > h%(S, L ® w?). We can assume h°(S, L ® w%) > 2 and we are under the
hypothesis that the anticanonical system contains a pencil. Hence, wg ® O¢ contributes to the
Clifford index and, if C € |L|, is general, then:

(13) ¢ = Cliff(C) < Cliff(wy ® O¢) = —c1(L) - Kg — 2h°(C,w¥ @ O¢) + 2
= —c1(L) - Kg — 2h°(S,w¥) + 2.
Since H!(S, L @ w?) ~ HY(S, LY ® w¥)" = 0, we have
(S, Low?) =x(S,Lowl) = g+e(l) Ks+ K2
< g—c+1-h(S w) —hr(S wY).
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The conclusion is straightforward unless x(S,w¥) = h%(S,w¥) = 2; in this case the hypothesis
that Cliff (w{ ® O¢) > c for a general C € |L|, is necessary in order to get to the conclusion. [

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 5.1, we can assume that general curves in | L|; have Clifford
dimension 1; we denote by c their Clifford index.

The isomorphism (12), valid for any curve C' € |L|,, together with Green and Lazarsfeld’s
result stating that K, 1 (C,w¢) # 0 for p < g — Cliff (C') — 2, implies the constancy of the Clifford
index. By semicontinuity of the gonality, all curves in |L|s have Clifford dimension 1 and the
same gonality. O

Remark 2. Knutsen [K] proved that, if a line bundle L on a Del Pezzo surface S satisfies g(L) > 4,
then the Clifford index curves in |L|s is constant unless S has degree 1, the line bundle L is
ample, ¢ (L) - E > 2 for every (—1)-curve E if ¢;(L)? > 8, and there is an integer k > 3 such that
—c1(L)-Ks =k, c1(L)? > 5k—8 > 7Tand ¢;(L) - T > k for every smooth rational curve such that
I'? = 0. In this case, the curves through the base point of w) form a family of codimension 1 in
|L|s, have gonality k£ — 1 and Clifford index k& — 3, while a general curve C € |L|, has gonality &
and Clifford index £ — 2; in particular, wg ® O¢ computes Cliff (C'). The easiest example where
the gonality is not constant is provided by L = wg" forn > 3.

Vice versa, if S has degree 1 and Cliff (w{ ® O¢) = Cliff (C) for a general C' € |L|,, one recovers
Knutsen’s conditions because, if I' is a smooth rational curve with I'? = 0, then Og(T") cuts out a
base point free pencil on C and, if ¢;(L)? > 8 and E is a (—1)-curve, then Oc(—Kg + E) defines
anet on C which contributes to its Clifford index. This shows that the extra hypothesis we make
when x(S,w¥) = h°(S,w¥) = 2 is unavoidable.
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