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ABSTRACT. The Gieseker-Petri locus GPg is defined as the locus insideMg consisting
of curves which violate the Gieseker-Petri Theorem. It is known that GPg has always
some divisorial components and it has been conjectured that it is of pure codimension
1 insideMg . We prove that this holds true for genus up to 13.

1. INTRODUCTION

LetMg be the coarse moduli space of smooth irreducible projective curves of genus
g. Given [C] ∈Mg and a line bundle L on C, we consider the Petri map

µ0,L : H0(C,L)⊗H0(C,KC ⊗ L−1)→ H0(C,KC).

This map has been studied in detail because of its importance in the description of the
Brill-Noether varieties Grd(C) and W r

d (C). The most important result in this sense is
the Gieseker-Petri Theorem (cf. [15], [8]), which asserts that for the generic curve and
for any line bundle on it the Petri map is injective. This implies that if [C] ∈ Mg is
general and the Brill-Noether number ρ(g, r, d) := g− (r+1)(g−d+r) is nonnegative,
then Grd(C) is smooth of dimension ρ(g, r, d) and the natural map Grd(C) → W r

d (C) is
a rational resolution of singularities. The Gieseker-Petri locus is defined as

GPg = {[C] ∈Mg |C does not satisfy the Gieseker-Petri Theorem}.

It is conjectured that GPg has pure codimension 1 inside Mg; an explanation why
this is plausible is given below. The expectation has been proved in genus up to 8 by
Castorena (cf. [5], [7]). Our main result is:

Theorem 1.1. The locus GPg has pure codimension 1 insideMg for 9 ≤ g ≤ 13.

Our strategy is to look at the different components of GPg determined by the nu-
merical type of the linear series for which the Gieseker-Petri Theorem fails. For values
of g, r, d such that both r + 1 and g − d + r are at least 2 we define the Gieseker-Petri
locus of type (r, d) as

GP rg,d := {[C] ∈Mg | ∃ a base point free (L, V ) ∈ Grd(C) with kerµ0,V 6= 0},

where µ0,V denotes the restriction of the Petri map to V ⊗H0(C,KC ⊗ L−1).
Clifford’s Theorem, along with Riemann-Roch Theorem, restricts to the range 0 <

2r ≤ d ≤ g − 1 the values of g, r, d for which it is necessary to study the component
GP rg,d. We also recall that, given [C] ∈ GPg, at least one of the linear series on C for
which the Gieseker-Petri Theorem fails is primitive, that is, complete and such that
both L and KC ⊗ L−1 are base point free.

In some cases the codimension of GP rg,d insideMg is known but in general it seems
quite difficult to determine the irreducible components of GPg and control their di-
mension. When ρ(g, r, d) < 0, the Petri map corresponding to any grd on a genus g
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curve cannot be injective for dimension reasons and the study of GP rg,d essentially
coincides with that of the Brill-Noether variety

Mr
g,d := {[C] ∈Mg |W r

d (C) 6= ∅}.
In particular, when ρ(g, r, d) = −1, the locus Mr

g,d, if nonempty, is an irreducible
divisor (cf. [10], [19]), known as the Brill-Noether divisor. On the other side, if
ρ(g, r, d) < −1, the codimension of any component Z ofMr

g,d inMg is strictly greater
than 1. If it is true that GPg has pure codimension 1 insideMg, then Z must be con-
tained in some divisorial1 component of GPg.

When ρ(g, r, d) ≥ 0, the Gieseker-Petri locus GP rg,d can be locally described in the
following way. Recall that, given [C] ∈ Mg, there exists a neighborhood [C] ∈ U ⊂
Mg, a finite ramified covering π : Ũ → U , a universal curve ϕ : Γ

Ũ
→ Ũ and a variety

Grd
p→ Ũ , which is proper over Ũ and parametrizes pairs (C, l) with [C] ∈ Ũ and

l ∈ Grd(ϕ−1([C])). The locusGP rg,d∩U coincides with the image under the composition
π ◦ p of the degeneracy locus X of a map of vector bundles locally defined on Grd
and globalizing the Petri map. Divisoriality of GP rg,d is suggested by the fact that the
expected codimension of X is ρ(g, r, d) + 1 and it would imply that the restriction of
π◦p toX has finite fibers. Farkas proved thatGP rg,d always has a divisorial component
if ρ(g, r, d) ≥ 0 (cf. [12], [13]). However, there are only two cases when GP rg,d is
completely understood. The first one is GP 1

g,g−1, which can be identified with the
locus of curves with a vanishing theta-null and is an irreducible divisor (cf. [20]). The
second case is GP 1

g, g+2
2

, for even genus g ≥ 4. It has been proved by Eisenbud and

Harris (cf. [9]), that this is a divisor which can be described as the branch locus of the
natural map Hg, g+2

2
→Mg from the Hurwitz scheme Hg, g+2

2
parametrizing coverings

of P1 of degree (g + 2)/2 having as source a smooth curve C of genus g.
We summarize our results. We show that when g ≤ 13 the components of GPg

whose codimension is either unknown or strictly greater than 1 are contained in some
divisorial components. Most of the inclusions easily follow from some basic facts
established in the first section. In particular, the components GP 1

g,k with ρ(g, 1, k) <

−1 are all contained in the Brill-Noether divisorM1
g, g+1

2

if g is odd, and in the locus

GP 1
g, g+2

2

if g is even.

As a matter of notation, let
◦
M

r

g,d be the locus of curves having a primitive grd. We
define

G̃P
r

g,d := {[C] ∈Mg | ∃ (L, V ) ∈ Grd(C) with kerµ0,V 6= 0};
notice that here we do not require that (L, V ) be base point free. If the Brill-Noether

number ρ(g, r, d) is either 0 or 1, we can prove the inclusion of both
◦
M

r+1

g,d+1 and
◦
M

r

g,d−1

inside G̃P
r

g,d. We use a very recent result, due to Bruno and Sernesi, according to
which for values of g, r, d such that ρ(g, r, d) ≥ 0 and ρ(g, r+ 1, d) < 0, the locus G̃P

r

g,d

is divisorial outside its intersection withMr+1
g,d (cf. [4]). As a corollary we obtain that,

in even genus, G̃P
1

g, g+2
2

coincides with the divisor GP 1
g, g+2

2

studied by Eisenbud and

Harris.
In the second section we prove Theorem 1.1 in genera 9, 10, 11. In addition to the

results of the previous section, we use some well known facts about plane curves. The

1By divisorial we will always mean a locus of pure codimension 1.
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study of the component M3
10,9 requires extra work: we prove that it is contained in

GP 1
10,6 by remarking that any curve of degree 9 and genus 10 in P3 is either a curve of

type (3, 6) on a non singular quadric surface or the intersection of two cubic surfaces;
linear series on a cubic surface X can be easily written down remembering that X is
isomorphic to the blow-up of the projective plane in 6 points.

In the last section we deal with genera 12 and 13. The situation gets more compli-
cated because the methods used before do not enable us to control the codimension of
GP 1

g,g−2. We prove the following theorem:

Theorem 1.2. Let [C] ∈ GP 1
g,g−2 be a non hyperelliptic curve with no vanishing theta-null.

Let us assume that for any L ∈ G1
g−2(C) such that µ0,L is not injective, L is primitive and

KC ⊗ L−1 ∈ W 2
g (C) defines a birational morphism. Then C carries only a finite number of

L ∈W 1
g−2(C) for which kerµ0,L 6= 0.

This generalizes [6], where it is assumed that the plane model Γ of C corresponding
to KC ⊗L−1 has only singularities which become nodes after a finite number of blow-
ups (in a somewhat oldfashioned way these are called possibly infinitely near nodes).
The idea of our proof is to show that we do not need any assumption on the singulari-
ties of Γ because the non injectivity of µ0,L implies that Γ has at least one double point,
which cannot be a cusp of any order if [C] 6∈ GP 1

g,g−1; then we proceed like in [6]. The-
orem 1.2 implies Theorem 1.1 in genus 13 because no g2

13 can be composed with an
involution. Instead, for a curve [C] ∈ GP 1

12,10 it may happen that a g2
12, for which the

Petri map is not injective, induces a finite covering of a plane curve of lower genus.
We prove that this can be the case only for [C] ∈ GP 1

12,7 ∪GP 1
12,8 (cf. Theorem 4.5).

I would like to thank my Ph.D. advisor Gavril Farkas for all the helpful discussions.

2. SOME USEFUL INCLUSIONS

In this section we prove some inclusions among different components ofGPg, which
enable us to restrict the values of r and d for which the codimension of GP rg,d must be
determined.

We start by stating the following result, due to Bruno and Sernesi, which exhibits
some other divisorial components of GPg:

Theorem 2.1. Let g, r, d be integers such that 0 < 2r ≤ d ≤ g − 1, ρ(g, r, d) ≥ 0 and
ρ(g, r + 1, d) < 0. Then G̃P

r

g,d \ (Mr+1
g,d ∩ G̃P

r

g,d) has pure codimension 1 insideMg.

The proof of Theorem 2.1 has just appeared in [4] and we briefly recall the idea.
The condition ρ(g, r + 1, d) < 0 assures that on a generic curve of genus g every grd is
complete. In this situation we consider ϕ : C → S a family of smooth curves of genus
g not belonging toMr+1

g,d such that the induced map S →Mg is dominant and finite,

and the relative scheme Wr,d
C/S

σ→ S parametrizing couples (Cs, Ls), withLs ∈W r
d (Cs).

The scheme
GP rg,d(C/S) := {s ∈ S |ϕ−1(s) ∈ G̃P

r

g,d}
turns out to be image in S of the degeneracy locus X(r+1)(g−d+r)−1(µ) of a map of
vector bundles µ : E1⊗E2 → F defined over Wr,d

C/S ; if X(r+1)(g−d+r)−1(µ) is nonempty,

then its codimension inside Wr,d
C/S is at most ρ(g, r, d)+1. The finiteness of the fibers of

the restriction of σ to X(r+1)(g−d+r)−1(µ) follows by a result of Steffen (cf.[19]), which
can be applied because σ is projective and dominant and the sheaf (E1 ⊗ E2)∨ ⊗ F is
ample relative to σ, namely it is ample when restricted to any fiber of σ.
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Without the condition ρ(g, r+ 1, d) < 0, we could still define the sheaves E1, E2 and
F in the same way but E1 and E2 would be locally free only when restricted to the
open subset Wr,d

C/S \W
r+1,d
C/S . Unfortunately, the restriction of σ to Wr,d

C/S \W
r+1,d
C/S is

not projective and so Steffen’s Theorem cannot be applied in this situation.
We now prove some basic inclusions:

Lemma 2.2. For ρ(g, r − 1, d− 1) < 0 and r > 1, we have that:

Mr
g,d ⊂Mr−1

g,d−1 = G̃P
r−1

g,d−1.

Proof. From any grd we can trivially get a gr−1
d−1 by subtracting a point outside its base

locus. �

Next result concerns the components GP 1
g,k:

Lemma 2.3. If g is odd, the following sequence of inclusions holds:

M1
g,2 ⊆M1

g,3 ⊆ . . . ⊆M1
g, g+1

2

,

andM1
g, g+1

2

is a Brill-Noether divisor.

Similarly when g is even we have that:

M1
g,2 ⊆M1

g,3 ⊆ . . . ⊆ G̃P
1

g, g+2
2
.

Proof. Cosider k < g+1
2 if g is odd and k < g+2

2 if g is even. Let [C] ∈ M1
g,k and L

be a complete g1
k on C. By defining L′ := L ⊗ OC(P ) with P a point outside the base

locus of KC ⊗ L−1, one may prove all the inclusions butM1
g, g

2
⊂ G̃P

1

g, g+2
2

. When L

is a complete g1
g
2

on C with base locus B (not necessarily empty), the Base Point Free
Pencil Trick implies both

dim kerµ0,L = h0(C,KC ⊗ L−2 ⊗OC(B)) ≥ −ρ(g, 1, g/2) = 2

and
dim kerµ0,L′ = h0(C,KC ⊗ L−2 ⊗OC(B − P )) ≥ 1.

Thus L′ is a g1
g+2

2

on C violating the Gieseker-Petri Theorem and [C] ∈ G̃P
1

g, g+2
2

. �

The following result is a corollary of Theorem 2.1. Together with the previous
Lemma, it implies that all the loci GP 1

g,k such that ρ(g, 1, k) < 0 are contained in a
divisorial component of GPg.

Corollary 2.4. In even genus the following equality holds:

G̃P
1

g, g+2
2

= GP 1
g, g+2

2

.

Proof. By Lemma 2.3, we have thatM1
g, g

2
⊂ G̃P

1

g, g+2
2

and so we can write

G̃P
1

g, g+2
2

= GP 1
g, g+2

2

∪M1
g, g

2
,

where GP 1
g, g+2

2

is a divisor onMg. FurthermoreM1
g, g

2
is irreducible and of codimen-

sion 2 inMg (cf. [14]). Our goal is to show thatM1
g, g

2
⊂ GP 1

g, g+2
2

.
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Theorem 2.1 implies that G̃P
1

g, g+2
2
\M2

g, g+2
2

is divisorial, and by Lemma 2.2 we know

thatM2
g, g+2

2

⊂M1
g, g

2
. It follows that

M1
g, g

2
\M2

g, g+2
2

⊂ GP 1
g, g+2

2

,

and the same must be true for its closure. If we show that M1
g, g

2
\ M2

g, g+2
2

is open

in M1
g, g

2
, then the irreducibility of M1

g, g
2

implies that M1
g, g

2
⊂ GP 1

g, g+2
2

and we have

finished. To end the proof it is enough to remark that the generic curve inM1
g, g

2
has a

unique g1
g
2

(cf. [2]) while a curve insideM2
g, g+2

2

has at least a 1-dimensional space of

g1
g
2
’s (all obtained from a g2

g+2
2

by the subtraction of a point). �

Other useful inclusions come from the following fact:

Lemma 2.5. If ρ(g, r, d) ∈ {0, 1}, then
◦
M

r+1

g,d+1⊂ GP rg,d and
◦
M

r

g,d−1⊂ G̃P
r

g,d.

Proof. Assume ρ(g, r, d) = 0. We fix [C] ∈
◦
M

r+1

g,d+1 and L a primitive gr+1
d+1 on C. For any

P ∈ C, the linear series L⊗OC(−P ) is a grd on C and so Grd(C) contains

C ′ := {L⊗OC(−P ) |P ∈ C} ∼= C.

It follows that dim TL⊗OC(−P )(G
r
d(C)) ≥ dimL⊗OC(−P )G

r
d(C) ≥ 1. By remembering

that

dim TL⊗OC(−P )(G
r
d(C)) = ρ(g, r, d) + dim kerµ0,L⊗OC(−P ) = dim kerµ0,L⊗OC(−P ),

one deduces that L ⊗ OC(−P ) does not satisfy the Gieseker-Petri Theorem. Analo-

gously, given [C] ∈
◦
M

r

g,d−1 and L a primitive, complete grd−1 on C, one defines

C ′′ := {L⊗OC(P ) |P ∈ C} ∼= C

and, reasoning as above, proves that [C] ∈ G̃P
r

g,d.

For ρ(g, r, d) = 1, we consider [C] ∈
◦
M

r

g,d−1 and L a primitive grd−1 on C. The
definition of C ′′ is the same. Since we can assume that dim Grd(C) = 1 (otherwise we
could soon conclude that [C] ∈ GP rg,d), it follows that C ′′ is an irreducible component
of Grd(C). As C must have a base point free grd, there exist components of Grd(C)
different from C ′′. By the Connectedness Theorem (cf.[3], p. 212), Grd(C) is connected.
It follows that Grd(C) is singular and so [C] ∈ G̃P

r

g,d. We proceed very similarly if

[C] ∈
◦
M

r+1

g,d+1. �

3. PROOF OF THEOREM 1.1 IN GENUS 9, 10, 11

In this section we prove that, for genus g ∈ {9, 10, 11}, the Gieseker-Petri locus GPg
is of pure codimension 1 insideMg.

Let us fix g = 9. For r ∈ {4, 3} and 2r ≤ d ≤ 8 and for r = 2 and 4 ≤ d ≤ 6,
the Brill-Noether number ρ(g, r − 1, d − 1) is negative and so, by Lemma 2.2, we can
restrict our analysis to the components GP 2

9,d and GP 1
9,k for d ∈ {7, 8} and 2 ≤ k ≤ 8.

Moreover, Lemma 2.3 implies thatM1
9,k is contained in the Brill-Noether divisorM1

9,5

for k ≤ 4.
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Since ρ(9, 2, 7) < 0, we now study
◦
M

2

9,7. Given [C] ∈
◦
M

2

9,7, if we assume thatC does
not lie inM1

9,5, then any g2
7 on C is base point free and defines an embedding

φ : C → Γ ⊂ P2,

where Γ is a plane curve of degree 7 and genus 9. By the Genus Formula it follows
that Γ is singular, which is a contradiction.

Regarding the component GP 2
9,8, we note that ρ(9, 2, 8) = 0 and ρ(9, 3, 8) < 0, so

Theorem 2.1 implies that G̃P
2

9,8 \ (M3
9,8∩ G̃P

2

9,8) is divisorial. We do not need to study
M3

9,8 ∩GP 2
9,8 separately because, by Lemma 2.2, the inclusionM3

9,8 ⊆M2
9,7 holds.

Let us consider the components GP 1
9,k for k ∈ {6, 7, 8}. For k ∈ {6, 7} we have that

ρ(9, 1, k) > 0 and ρ(9, 2, k) < 0 and so the locus G̃P
1

g,k \ (G̃P
1

g,k ∩M2
g,k) is divisorial.

As GP 1
9,8 is the irreducible divisor consisting of curves with a vanishing theta-null,

Theorem 1.1 is proved in genus 9.

Before dealing with the case of genus 10, we prefer to treat the case of genus 11,
which is very similar to the one we have just studied. As before, by applying Lemma
2.2 and Lemma 2.3 we reduce to considering the components GP 2

11,d and GP 1
11,k for

8 ≤ d ≤ 10 and 7 ≤ k ≤ 10.

We can prove that
◦
M

2

11,8 is contained in the Brill-Noether divisorM1
11,6 simply by

remarking that any g2
8 on a genus 11 curve [C] 6∈ M1

11,6 is base point free and defines
an embedding

φ : C → Γ ⊂ P2.

We get a contradiction because Γ is a plane curve of degree 8 and genus 11 and so it
must be singular by the Genus Formula.

Concerning the other components, the locusM2
11,9 is a Brill-Noether divisor, while

G̃P
2

11,10 is divisorial outside its intersection withM3
11,10 as ρ(11, 2, 10) > 0 and ρ(11, 3, 10) <

0.
Theorem 2.1 can be applied in order to prove that G̃P

1

11,k \ (M2
11,k ∩ G̃P

1

11,k) is
divisorial for 7 ≤ k ≤ 9, too. The component GP 1

11,10 is the irreducible divisor of
curves with a vanishing theta-null and so Theorem 1.1 is proved in genus 11.

We now deal with the case of genus 10. As above, by Lemmas 2.2 and 2.3, the only
components of GP10 we have to consider are GP 2

10,d and GP 1
10,k for 7 ≤ d ≤ 9 and

7 ≤ k ≤ 9.

As ρ(10, 1, 6) = 0, Lemma 2.5 implies that
◦
M

2

10,7⊂ GP 1
10,6.

Moreover, ρ(10, 2, 9) = 1 and so Lemma 2.5 implies that
◦
M

2

10,8⊂ G̃P
2

10,9, too. Since

ρ(10, 3, 9) < 0, the locus G̃P
2

10,9 is divisorial outside M3
10,9. In this case we have to

study the componentM3
10,9 separately because our remarks imply only that

◦
M

3

10,9⊆
◦
M

2

10,8⊆

GP 2
10,9. We postpone the study of

◦
M

3

10,9. For k ∈ {7, 8}, the locus G̃P
1

10,k \ (G̃P
1

10,k ∩
M2

10,k) is divisorial because ρ(10, 2, k) < 0, while GP 1
10,9 is the irreducible divisor con-

sisting of curves with a vanishing theta-null.
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In order to end the proof of Theorem 1.1 in genus 10, we now study M3
10,9. We

consider [C] ∈ M3
10,9 and L a g3

9 on C. We can assume [C] 6∈ M3
10,8 and so L, being

base point free, defines a morphism φ : C → Γ ⊂ P3. Furthermore, we can assume that
[C] 6∈ M2

10,7, which forces φ to be an embedding. Therefore C can be seen as a curve
of genus 10 and degree 9 in P3. By the classification of curves in P3, we know that C
is either a curve of type (3, 6) on a non singular quadric surface S or the intersection
of two cubic surfaces (cf. [17] Example 6.4.3. chp.IV). In the first case the lines of type
(0, 1) on S cut out a g1

3 on Γ. The second case is treated in the following lemma:

Lemma 3.1. Let [C] ∈ M10 be the intersection of two cubic surfaces X,Y in P3. Then
[C] ∈ GP 1

10,6.

Proof. It is classically known that X is isomorphic to the blow-up of P2 in 6 points
P1, . . . , P6. We denote by π : X → P2 the projection and byEi the exceptional divisors.
The Picard group Pic(X) ∼= Z7 is generated by l, e1, e2, . . . , e6, where l is the class of
the strict transform of a line in P2 and ei is the class of Ei. The class of the hyperplane
section is h = 3l −

∑
ei, while

KX ∼ −h = −3l +
∑

ei.

As C lies on another cubic surface Y , then

C ∼ 3h = 9l − 3
∑

ei,

namely C is the strict transform of a plane curve C̃ of degree 9 with 6 triple points
P1, . . . , P6. The pencil of cubics through P1, . . . , P6 with a double point in P1 cuts out
a g1

6 on C̃. The strict transforms of these cubics cut out on C the linear series

L := OC(3l −
∑
i 6=1

ei − 2e1).

In order to check that L is a g1
6 on C, we tensor with OX(3l −

∑
i 6=1 ei − 2e1) the exact

sequence
0→ OX(−C)→ OX → OC → 0,

getting

0→ OX(−6l + 2
∑
i 6=1

ei + e1)→ OX(3l −
∑
i 6=1

ei − 2e1)→ OC(3l −
∑
i 6=1

ei − 2e1)→ 0.

As 6l − 2
∑

i 6=1 ei − e1 is ample (cf. [17] Cor.4.13 chap.V), Kodaira Vanishing Theorem
implies that hi(X,OX(−6l + 2

∑
i 6=1 ei + e1)) = 0 for i = 0, 1. It follows that

h0(C,OC(3l −
∑

i 6=1 ei − 2e1)) = h0(X,OX(3l −
∑

i 6=1 ei − 2e1)) =

= h0(P2,OP2(3)⊗OP2(−
∑

i 6=1 Pi − 2P1)) =

= 2

and this is enough to conclude that L is a pencil on C; it is trivial to check that its
degree is 6.
By the Base Point Free Pencil Trick we have that

kerµ0,L
∼= H0(C,KC ⊗ L−2) = H0(C,OC(2e1)).

As OC(2e1) is effective, it follows that [C] ∈ GP 1
10,6. �
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Remark 1. The previous Lemma can also be proved by using the results of [18].
Curves of genus 10 which are the complete intersection of two cubic surfaces in P3

are the only curves of Clifford dimension 3. Martens proved that such curves are 6-
gonal and carry a one-dimensional family of g1

6 . Since ρ(10, 1, 6) = 0, this is enough to
conclude that they lie in GP 1

10,6.
It is natural to ask whether all curves of Clifford dimension greater than 1 lie in

a divisorial component of the Gieseker-Petri locus. Curves of Clifford dimension 2
are smooth plane curves of degree d ≥ 5. Their gonality is d − 1 and there is a one-
dimensional family of pencils computing it. As ρ

((
d−1

2

)
, 1, d− 1

)
≤ 0 for d ≥ 5,

Lemma 2.3 implies that they lie in the Brill-Noether divisorM1
g, g+1

2

when g =
(
d−1

2

)
is

odd, and in the irreducible divisor GP 1
g, g+2

2

when g is even.

It was conjectured in [11] that, if a curve C has Clifford dimension r > 3, then
g(C) = 4r−2, gon(C) = 2r and there is a one-dimensional family of pencils computing
the gonality (this conjecture was proved in [11] for r ≤ 9). Since ρ(4r − 2, 1, 2r) = 0,
such curves lie in the divisor GP 1

g, g+2
2

= GP 1
4r−2,2r.

4. PROOF OF THEOREM 1.1 IN GENUS 12, 13

The situation in genus 12 and 13 is slightly more complicated as there is a compo-
nent in GPg which cannot be studied using the methods explained in the previous
sections.

In genus 12, by Remarks 2.2 and 2.3, we have to analyze only the components
◦
M

3

12,11, GP 2
12,d for 8 ≤ d ≤ 11 and GP 1

12,k for 8 ≤ k ≤ 11. Since ρ(12, 2, 10) = 0,

Lemma 2.5 implies that both
◦
M

3

12,11 and
◦
M

2

12,9 are contained in G̃P
2

12,10. Lemma 2.5

can also be used in order to show that
◦
M

2

12,8⊂ GP 1
12,7; indeed, ρ(12, 1, 7) = 0.

As ρ(12, 3, d) < 0 for d ∈ {10, 11}, the loci G̃P
2

12,10 and G̃P
2

12,11 are divisorial out-
side their intersection withM3

12,10 andM3
12,11 respectively. We have to studyM3

12,10

separately because our remarks only imply that
◦
M

3

12,10⊂
◦
M

2

12,9⊂ GP 2
12,10.

Given [C] ∈ M3
12,10, we can suppose that [C] 6∈ M2

12,8 and so any g3
10 on C is base

point free and defines an embedding φ : C → Γ ⊂ P3. It can be seen that Γ has ten
4-secant lines (cf. [3], p. 351), each of which corresponds to a g1

6 on it.

Theorem 2.1 can be applied in order to show that the locus G̃P
1

12,k is divisorial
outside M2

12,k for k ∈ {8, 9}. The component GP 1
12,11 is an irreducible divisor. We

postpone the study of GP 1
12,10 to the end of the section.

The situation in genus 13 is very similar to that in genus 12. By Remarks 2.2 and

2.3, we reduce to considering
◦
M

3

13,12, GP 2
13,d for 9 ≤ d ≤ 12 and GP 1

13,k for 8 ≤ k ≤ 12.

As ρ(13, 2, 11) = 1, Lemma 2.5 implies that both
◦
M

3

13,12 and
◦
M

2

13,10 are contained

in G̃P
2

13,11.
ConcerningM2

13,9, any g2
9 on a genus 13 curve [C] 6∈ M1

13,7 defines an embedding
φ : C → Γ ⊂ P2. We get a contradiction because the Genus Formula forces Γ to be
singular.
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The components G̃P
2

13,11 and G̃P
2

13,12 are divisorial outsideM3
13,11 andM3

13,12 re-
spectively. As before we have to study M3

13,11 separately. Given [C] ∈ M3
13,11 such

that [C] 6∈ M2
13,9, by taking the 4-secant lines to the space model of C corresponding

to any l ∈ G3
11(C), one shows that C has a g1

7 .

Regarding the other components, the locus G̃P
1

13,k is divisorial outside its intersec-
tion with M2

13,k for k ∈ {8, 9, 10}, while GP 1
13,12 is an irreducible divisor. Therefore

Theorem 1.1 is proved also in genus 13 if we are able to verify that the component
GP 1

g,g−2 is divisorial. In order to show this, we generalize a result of Castorena (cf. [6])
as follows.

We consider curves [C] ∈ GP 1
g,g−2 such that for any L ∈ G1

g−2(C) for which µ0,L is
not injective the following are satisfied:

(1) L is primitive.
(2) The morphism φ := φKC⊗L−1 is birational.

We remark that the first condition is satisfied if [C] 6∈ GP 1
g,g−3 ∪ GP 2

g,g−2 ∪ GP 2
g,g−1,

because if L were not complete (respectively not base point free), this would imply
[C] ∈ GP 2

g,g−2 (resp. [C] ∈ GP 1
g,g−3). Similarly, if KC ⊗ L−1 is not base base point free,

then [C] ∈ GP 2
g,g−1. We prove the following result:

Proposition 4.1. LetZg ⊂ GP 1
g,g−2 be the locus consisting of curves [C] ∈ GP 1

g,g−2 such that
if L ∈ G1

g−2(C) satisfies kerµ0,L 6= 0, then L is primitive and the morphism φ := φKC⊗L−1

is birational. The scheme Zg has pure codimension 1 inMg outside its intersection with the
hyperelliptic locus and the divisor GP 1

g,g−1.

It is clear that Zg is open in GP 1
g,g−2 but in general it is not dense. Indeed, given an

irreducible componentW ⊂ GP 1
g,g−2, it may happen that the general element ofW lies

in GP 1
g,g−3 ∪ GP 2

g,g−2 ∪ GP 2
g,g−1 and that it does not satisfy condition 1. Analogously,

we could have that, if [C] ∈ W is general, there exists a primitive L ∈ G1
g−2(C) such

that kerµ0,L 6= 0 and φKC⊗L−1 defines a finite covering of a plane curve of degree
strictly less than g − 2. In order to prove Proposition 4.1 we need the following:

Lemma 4.2. If [C] ∈ Zg and L is a g1
g−2 on C such that kerµ0,L 6= 0, then L is the pullback

to C of the pencil cut out on Γ := φKC⊗L−1(C) by the lines through a singular point x. In
particular, x is a double point of Γ and KC ⊗ L−2 = 1

kφ
∗OΓ(x), where k is the number of

blow-ups necessary to desingularize Γ in x (e.g., if x is a tacnode, then k = 2).

Proof. The statement follows directly from the Base Point Free Pencil Trick, which im-
plies that KC ⊗L−2 = φ∗(OP2(1))⊗L−1 has at least a 1-dimensional space of sections.
The point x must be a double point because L is base point free. �

We can now prove the following fact:

Lemma 4.3. If [C] ∈ Zg, [C] 6∈ GP 1
g,g−1 and C is not hyperelliptic, then there exists only a

finite number of L ∈W 1
g−2(C) such that µ0,L is not injective.

Proof. We recall and adapt the proof of Castorena, referring to [6] for further details.
Given L a g1

g−2 on C with kerµ0,L 6= 0, we have that

KC ⊗ L−2 =
1

k
φ∗OΓ(x) = OC(P +Q),

and we can assume P 6= Q because otherwise L ⊗ OC(P ) would be a theta char-
acteristic with a 2-dimensional space of sections, thus contradicting [C] 6∈ GP 1

g,g−1.
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We remark that asking that P 6= Q is equivalent to requiring that x be not a cusp
of any order. As C is not hyperelliptic, we have that h0(C,OC(P + Q)) = 1 and
h0(C,KC ⊗ OC(−P − Q)) = g − 2. It follows that L2 lies in the intersection of the
following two subvarieties of Pic2g−4(C):

X1 := {L2 |L ∈W 1
g−2(C)},

X2 := {KC ⊗OC(−P −Q) |P,Q ∈ C} ⊂W g−3
2g−4(C).

We have to show that L2 is an isolated point in X1 ∩ X2, that is, the intersection
TL2(X1) ∩ TL2(X2) = {0} in H1(C,OC) = TL2(Pic2g−2r(C)). This is equivalent to re-
quiring that TL2(X1)⊥+TL2(X2)⊥ generate the wholeH0(C,KC) = TL2(Pic2g−4(C))⊥.
In fact, the following holds:

dim TL2(X1)⊥ = dim Imµ0,L = 5.

Since µ0,L2 is injective, TL2(X2)⊥ ' Im, µ0,L2 ' H0(C,KC ⊗ OC(−P − Q)), which is
(g − 2)-dimensional.
We claim that Imµ0,L ∩ H0(C,KC ⊗ OC(−P − Q)) concides with the image of the
restriction of µ0,L to H0(C,L)⊗H0(C,KC ⊗ L−1 ⊗OC(−P −Q)). This enables us to
conclude that dim TL2(X1)⊥ ∩ TL2(X2)⊥ = 3, since the space

H0(C,L)⊗H0(C,KC ⊗ L−1 ⊗OC(−P −Q)) ' H0(C,L)⊗H0(C,L)

is 4-dimensional and contains the 1-dimensional kernel of µ0,L. Our claim follows by
the fact that x becomes a node after k− 1 blow-ups. Indeed, having denoted by φk−1 :
Xk−1 → P2 the composition of these blow-ups and by Ck−1 the strict transform of Γ
under φk−1, there exist two distinct lines l1 and l2 in P2 whose strict transforms inXk−1

are the two tangent lines to Ck−1 in (φk−1|Ck−1
)∗(x). The linear system |L⊗OC(−P )|

(resp. |L⊗OC(−Q)|) contains a unique divisor D1 (resp. D2). The divisors D1 and D2

are distinct since one of them is cut out by the strict transform under φ of l1 and the
other by the strict transform of l2; moreover, D1 does not contain Q and D2 does not
contain P . This implies that H0(C,L⊗OC(−P −Q)) = 0 and, since

H0(C,KC ⊗ L−1 ⊗OC(−P )) = H0(C,KC ⊗ L−1 ⊗OC(−P −Q))

= H0(C,KC ⊗ L−1 ⊗OC(−Q)),

our claim follows. �

Proof of Proposition 4.1. Let [C] ∈ Zg be a non hyperelliptic curve with no vanishing
theta-null. One may find a neighborhood U ⊂ Mg of C, intersecting neither the
hyperelliptic locus nor the divisor GP 1

g,g−1, such that there exists a finite ramified cov-

ering π : Ũ → U , a universal curve ϕ : Γ
Ũ
→ Ũ and a variety G1

g−2
ξ→ Ũ proper over Ũ

which parametrizes pairs (C, (V,L)) with [C] ∈ Ũ and (V,L) a g1
g−2 on ϕ−1(C). Up to

restricting U , we can also assume that U ∩GP 1
g,g−2 ⊂ Zg. The scheme G1

g−2 is smooth
of dimension ρ(g, 1, g − 2) + dim Mg (cf. [1]). We define the following subvariety of
G1
g−2:

Z̃g := {(C,L) ∈ G1
g−2 | [C] ∈ π−1(Zg ∩ U), kerµ0,L 6= 0}.

Lemma 4.3 implies that the fiber of the projection from Z̃g on Zg ∩ U is finite. For any
(C,L) ∈ Z̃g, the curve C is not hyperelliptic and so dim Imµ0,L = 5. Locally the Petri
map defines a homomorphism µ of vector bundles on G1

g−2 and Z̃g can be identified
with the fifth degeneracy locus of µ. By the fact that each irreducible component of
Z̃g has codimension ≤ ρ(g, 1, g − 2) + 1 in G1

g−2 and by the finiteness of the fibers of
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π ◦ ξ over the points of π ◦ ξ(Z̃g), we can deduce that each component of Zg ∩ U has
codimension at most 1 in U . It must be 1 because of the Gieseker-Petri Theorem. �

Remark 2. Lemma 4.2 can be generalized in the following way. Fix 2 < r < g+6
4 such

that ρ(g, 1, g − r) > 0. If C ∈ GP 1
g,g−r has maximal gonality and L is a primitive g1

g−r
on C such that kerµ0,L 6= 0 and φKC⊗L−1 is birational, then L is the pullback to C of
the pencil cut out on Γ := φKC⊗L−1(C) by the hyperplanes containing an (r−2)-plane
π ⊂ Pr, which is (2r − 2)-secant to Γ. In order to gain a statement analogous to that
of Lemma 4.3, we need some assumptions on Γ. If π cuts out a divisor D2r−2 on Γ
consisting of 2r − 2 distinct smooth points, then the hypothesis on the gonality of C
assures that kerµ0,L is 1-dimensional and µ0,L2 is injective. It follows that L2 lies in
two subvarieties X1 and X2 of Pic2g−2r(C) whose definition is analogous to the one
given above. However, in order to show that L2 is an isolated point in X1 ∩ X2, we
need to assume that there do not exist a k-plane π1 ⊂ Pr for some k ≤ r − 3 and a
hyperplane H ⊃ π such that H is tangent to Γ in all the points of D2r−2 not lying in
π1.

Proposition 4.1 implies the following:

Corollary 4.4. The locus GP13 has pure codimension 1 inM13.

Proof. By the above discussion we should only study the component GP 1
13,11. Given

[C] ∈ GP 1
13,11, we assume that [C] does not lie in GP 1

13,10 ∪ GP 2
13,11 ∪ GP 2

13,12. In
particular, condition 1 is satisfied for any L ∈ G1

13(C) for which the Gieseker-Petri
Theorem fails. Moreover, KC ⊗ L−1 cannot be composed with any involution and so
condition 2 is satisfied, too. It follows that [C] ∈ Zg and so Proposition 4.1 is enough
to conclude. �

Next we turn to the case of genus 12. Given [C] ∈ GP 1
12,10 such that condition 1 is

satisfied for any L ∈ G1
10(C) with kerµ0,L 6= 0, it could still happen that some of the

above L ∈W 1
10(C) violate condition 2, that is, φKC⊗L−1 is not birational. We prove the

following:

Theorem 4.5. Let [C] ∈ GP 1
12,10 and let us assume that condition 1 is satisfied for any

L ∈ G1
10(C) such that kerµ0,L 6= 0. If for one of such L ∈W 1

10(C) the morphism KC ⊗ L−1

defines a finite covering of a plane curve Γ of degree strictly less than 12, then [C] lies in
GP 1

12,7 ∪GP 1
12,8.

Proof. Let [C] ∈ GP 1
12,10 be as in the hypothesis and L be a g1

10 on C for which the
Gieseker-Petri Theorem fails. If φ := φKC⊗L−1 : C → Γ ⊂ P2 is not birational, then it
is a finite covering of degree 6, 4, 3 or 2. We analyze these cases.

(I): deg φKC⊗L−1 = 6. In this case Γ is rational and so C has a g1
6 .

(II): deg φKC⊗L−1 = 3. Then Γ has degree 4 and genus at most 3. If g(Γ) < 3, then
Γ has at least one singular point and by taking the lines through it one sees that Γ is
hyperelliptic and so C has a g1

6 .
Let us consider g(Γ) = 3. As the triple cover is induced by KC ⊗L−1, it follows that

KC ⊗ L−1 = φ∗OΓ(1) = φ∗KΓ and so L = OC(R), where R is the ramification locus.
The Base Point Free Pencil Trick thus implies that

kerµ0,L ' H0(C,KC ⊗OC(−2R)) ' H0(C, φ∗OΓ(1)⊗OC(−R)).
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If this were not zero, then there would exist a divisor D on Γ, OΓ(D) = OΓ(1), such
that φ∗D − R ≥ 0. This would imply that D contains the branch locus B but this is
impossible because degB ≥ 1

2 degR = 5 while degD = 4.

(III): deg φKC⊗L−1 = 4. The curve Γ has degree 3 and so it is either a rational curve
or a smooth elliptic curve. In the first case C has a g1

4 and lies in GP 1
12,7.

If Γ is elliptic , then we have that KC ⊗ L−1 = φ∗OΓ(1) and

L = φ∗(KΓ ⊗OΓ(−1))⊗OC(R) = φ∗OΓ(−1)⊗OC(R).

It follows that

kerµ0,L ' H0(C,OC(R)⊗ (OC(R)⊗ φ∗OΓ(−1))−2) = H0(φ∗OΓ(2)⊗OC(−R)).

This is nonzero whenever there exists a divisor D on Γ such that O(D) = OΓ(2) and
φ∗D − R ≥ 0. This never happens because D has degree 6 and it should contain the
base locus B, whose degree is at least 1

3 degR > 7.

(IV): deg φKC⊗L−1 = 2. The degree of Γ is 6 and by the Riemann-Hurwitz Formula
it follows that g(Γ) ≤ 6. We can assume that Γ has only double points as singularities
because otherwise Γ has a g1

k for some k ≤ 3 and Lemma 2.3 implies that [C] ∈ GP 1
12,7.

If g(Γ) ≤ 4, it is easy to check that Γ has always a g1
3 and [C] ∈ GP 1

12,7. As a con-
sequence the only two cases that require a more detailed analysis are g(Γ) = 5 and
g(Γ) = 6.

Let us consider the case where Γ is a plane sextic of genus 5. We can assume that
the singularities of Γ are 5 double points P1, . . . , P5. Some of the Pi’s may coincide;
indeed, if we need k blow-ups in order to desingularize Γ in Pi, then this point appears
k times in the list. We denote by xi, yi the counterimage of Pi under the normalization
map p : Y → Γ. Denoting by B and R the branch locus and the ramification locus
respectively, the Riemann-Hurwitz Formula implies that both B and R have degree 6.
The double covering f : C → Y induced by φ is given by means of a divisor η on Y of
degree −3, which satisfies 2η = −B and f∗OC = OY ⊕OY (η). As Pic−3(Y ) = Y − Y4,
we can write η = x−D4.

We consider the divisor f∗(D4) ∈ Pic8(C). We can assume that

h0(C,OC(f∗D4))) = h0(Y,OY (D4)) + h0(Y,OY (D4 + η)) = 2,

because otherwise we can conclude that [C] ∈ M2
12,8 ⊂ GP 1

12,7. We would like to
prove that kerµ0,OC(f∗D4) 6= 0, which implies [C] ∈ GP 1

12,8. By the Base Point Free
Pencil Trick we know that kerµ0,OC(f∗D4)

∼= H0(C,KC ⊗ OC(f∗D4)−2), and this has
dimension equal to

h0(C, f∗(KY ⊗OY (−η−2D4))) = h0(Y,KY ⊗OY (−η−2D4))+h0(Y,KY ⊗OY (−2D4));

here we have used that KC = f∗(KY ⊗OY (−η)).
Since h0(Y,KY ⊗OY (−2D4)) 6= 0 whenever D4 is a theta characteristic on Y , our goal
is to show that h0(Y,KY ⊗OY (−η − 2D4)) > 0. As

KY ⊗OY (−η − 2D4) = OY (3)(−x1 − y1 − . . .− x5 − y5 −D4 − x),

we need to prove the existence of a plane cubic passing through the points P1, P2, P3,
P4, P5, p(x), p(z1), p(z2), p(z3), p(z4), where D4 = z1 + . . .+ z4.
We can assume that every g2

6 on Y is base point free and not composed with an involu-
tion and that every plane model of Y as a sextic has only double points as singularities
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(otherwise Y would have a g1
3 andC a g1

6); the same is true for all the curves in a neigh-
borhood U of Y inM5. Up to shrinking U , we can assume the existence of a proper
morphism ξ : G2

6 → U , where G2
6 parametrizes couples (Y ′, l′), with [Y ′] ∈ U and l′

a g2
6 on Y ′. We denote by V5,6 the variety of irreducible plane curves of degree 6 and

genus 5 and by m : V5,6 →M5 the natural morphism. The locus m−1(U) can be seen
as a PGL(2)-bundle on G2

6 parametrizing couples ((Y ′, l′),B′) with (Y ′, l′) ∈ G2
6 and B′

a frame of l′. Indeed, giving l′ and B′ is equivalent to fixing a plane model of Y ′. We
denote by p1 : m−1(U)→ G2

6 the natural morphism. The restrictionmU : m−1(U)→ U
coincides with the composition ξ ◦ p1 and it is proper because both ξ and p1 are. De-
noting by π :M5,5 →M5 the forgetful map, the morphism

m1 : m−1(U)×U π−1(U)→ π−1(U)

is proper because of the invariance of properness under base extension. A point of
m−1(U) ×U π−1(U) is of the form (Γ′, (Y ′, z′1, . . . , z

′
5)), where Y ′ is the normalization

of Γ′.
We remark that m−1(U)×U π−1(U) has dimension equal to

dim π−1(U) + ρ(5, 2, 6) + dim PGL(2) = dim π−1(U) + 10.

Let
E := H0(OP2(3))× (m−1(U)×U π−1(U))

be the trivial bundle on m−1(U) ×U π−1(U) and let us define F to be the bundle on
m−1(U)×U π−1(U) with fiber over (Γ′, (Y ′, z′1, . . . , z

′
5)) being the space

H0(OP2(3)⊗O∆Γ′ )⊕
5⊕
i=1

H0(OP2(3)⊗Oφ′(z′i)),

where ∆Γ′ is the scheme of all singular points of Γ′ and φ′ : Y ′ → Γ′ denotes the
normalization map. If Γ′ ∈ m−1(U) is generic, this space is

H0(OP2(3)⊗OP ′1)⊕ . . .⊕H0(OP2(3)⊗OP ′5)⊕
5⊕
i=1

H0(OP2(3)⊗Oφ′(z′i)),

where P ′1, . . . , P
′
5 are the nodes of Γ′. We consider the evaluation map F : E → F . Both

E and F have rank 10 and so the degeneracy locus X(F ), if nonempty, has codimen-
sion 1 in m−1(U)×U π−1(U).

In order to show that X(F ) 6= ∅ we observe that, given a cubic Γ3 ⊂ P2 and
P1, . . . , P10 ten points on it, one can always find a sextic Γ6 ⊂ P2 passing through
P6, . . . , P10 and having nodes in P1 . . . , P5 (because there exists a P27 of plane sextics).
If φ̃ : Ỹ → Γ6 is the normalization map, the point (Γ6, (Ỹ , φ̃

∗(P6), . . . , φ̃∗(P10))) lies in
X(F ). Thus we have that

dim X(F ) = dim m−1(U)×U π−1(U)− 1 = dim π−1(U) + 9.

As m1 is proper, it follows that m1(X(F )) is closed inside π−1(U). Moreover,

dim m1(X(F )) = dim X(F )− dim Xe = dim π−1(U) + 9− dim Xe,

where Xe is the generic fiber of m1|X(F ). Therefore dim m1(X(F )) < dim π−1(U)
if and only if dim Xe = 10, that is, the generic fiber of m1|X(F ) coincides with the
generic fiber of m1. If we prove that this cannot happen, then m1|X(F ) is surjective
and in particular (Y, x, z1, . . . , z4) ∈ m1(X(F )), which implies the existence of a plane
model Γ̃ of Y and of a cubic passing through the singular points of Γ̃ and through the
images in Γ̃ of x, z1, . . . , z4. Therefore it remains only to prove that dim Xe 6= 10.
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Given a general [Y ′] ∈ U , we have to find general points z′1, . . . , z
′
5 ∈ Y ′, a g2

6 on Y ′,
together with a frame B′ corresponding to a rational map

φ′ : Y ′ → Γ′ ⊂ P2,

such that Γ′ has 5 nodes P ′1, . . . , P
′
5 and there does not exist a cubic through P ′1, . . . , P

′
5,

φ′(z′1), . . . , φ′(z′5). We remark that any complete g2
6 on Y ′ is of the form

L′ = KY ′ ⊗OY ′(−a− b), a, b ∈ Y ′.
Having chosen a frame for H0(Y ′, L′) and denoted by φ′ : Y ′ → Γ′ ⊂ P2 the corre-
sponding morphism, this is equivalent to saying that

φ′∗OΓ′(1) = φ′∗(OΓ′(3)(−∆Γ′))⊗OY ′(−a− b),
that is, every cubic in P2 passing through the singular points of Γ′ and the points
φ′(a), φ′(b), intersects Γ′ in other points which are collinear. Choose B′ any frame
of KY ′(−z′1 − z′2); it is enough to take z′3, z

′
4, z
′
5 such that φ′(z′3), φ′(z′4), φ′(z′5) are not

collinear in the plane model of Y ′ corresponding to (KY ′ ⊗OY ′(−z′1 − z′2),B′).

Now we consider the case when g(Γ) = 6, namely Γ is a plane sextic with 4 double
points P1, . . . , P4. Using the notation introduced above, we now have that B has de-
gree 2 and so η ∈ Pic−1(Y ). Choose a point P ∈ Y . Since Pic−2(Y ) = Y2 − Y4, we can
always write η − P = D2 −D4; it follows that η = D3 −D4 with P a point of D3. As
in the previous case, we can assume that

h0(C,OC(f∗D4)) = h0(Y,OY (D4)) + h0(Y,OY (D3)) = 2,

and so f∗(D4) defines a g1
8 onC. In trying to prove that it does not satisfy the Gieseker-

Petri Theorem, the above method is unsuccessful. Indeed, we should prove the exis-
tence of a plane cubic passing through P1, . . . , P4, p(z1), . . . , p(z6), p(P ), where D4 =
z1 + . . . , z4, D3 = z5 + z6 + P . As P ∈ Y is arbitrarily chosen, it would be enough
to prove the existence of a cubic through P1, . . . , P4, z1, . . . , z6 and this is a divisorial
condition in (P2)10. Since ρ(6, 2, 6) = 0, in this case we do not have any degree of
freedom in the choice of a g2

6 on Y , namely in the choice of P1, . . . , P4.
Thus we proceed in a slightly different way. We have that ρ(6, 2, 7) = 3 and, given l

a base point free g2
7 on Y , we can assume that it defines a birational morphism

ϕ : Y → Λ ⊂ P2,

where Λ is a plane septic of genus 6; indeed, l cannot be composed with any invo-
lution. We expect Λ to have only nodes as singularities but in this case we cannot
exclude the possibility that Λ has some triple points. As Y is the normalization of Λ,
we have that

KY = ϕ∗(OΛ(4)(−∆Λ)) with ∆Λ =
∑

P∈SingΛ

(rP − 1)P,

where rP is the multiplicity of Λ in P . Of course for Λ generic, the singular locus ∆Λ is
the sum of the nine nodes P1, . . . , P9 and the condition kerµ0,OC(f∗D4) 6= 0 is equiva-
lent to the existence of a plane quartic through P1, . . . , P9, ϕ(z1), . . . , ϕ(z6). In the non
generic case the condition equivalent to kerµ0,OC(f∗D4) 6= 0 is different (for instance,
when Λ has a triple point Q and six double points P1, . . . , P6, then we require that the
plane quartic has a double point in Q and passes through P1, . . . , P6). However, the
number of independent conditions imposed on the plane quartics is the same.

As before, we consider a neighborhood U of Y inM6 such that there exists a proper
morphism ξ : G2

7 → U , where G2
7 parametrizes pairs (Y ′, l′), with [Y ′] ∈ U and l′ a g2

7
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on Y ′. We can assume that, given [Y ′] ∈ U , the generic g2
7 on Y ′ is base point free and

not composed with an involution but in this case the models of Y ′ as a plane septic
can have also some triple points. Denoting by m : V6,7 →M6 the natural morphism,
the restriction mU : m−1(U) → U is proper. If π : M6,6 → M6 is the forgetful map,
then the morphism m1 : m−1(U)×U π−1(U)→ π−1(U) is proper, too. We have that

dim m−1(U)×U π−1(U) = dim π−1(U) + ρ(6, 2, 7) + dim PGL(2) =
= dim π−1(U) + 11.

As in the previous case, we define

E := H0(OP2(4))× (m−1(U)×U π−1(U))

and F being the bundle over m−1(U)×U π−1(U) whose fiber over (Λ′, (Y ′, z′1, . . . , z
′
6))

is
H0(OP2(4)⊗O∆Λ′ )⊕H

0(OP2(4)⊗Oϕ′(z′1))⊕ . . .⊕H0(OP2(4)⊗Oϕ′(z′6)),

where ϕ′ : Y ′ → Λ′ is the normalization map. For Λ′ ∈ m−1(U) generic we have that

H0(OP2(4)⊗O∆Λ′ ) = H0(OP2(4)⊗OP ′1)⊕ . . .⊕H0(OP2(4)⊗OP ′9),

where P ′1, . . . , P
′
9 are the nodes of Λ′. Instead, if for instance Λ′ has one triple point Q′

and 6 nodes P ′1, . . . , P
′
6, then the following equality holds:

H0(OP2(4)⊗O∆Λ′ ) = H0(OP2(4)⊗O2Q′)⊕ . . .⊕H0(OP2(4)⊗OP ′6).

We define F : E → F to be the evaluation map. As both E and F have rank 15, the
situation is analogous to the one already treated. Therefore, in order to prove that the
image under m1 of the degeneracy locus X(F ) is the whole π−1(U), it is enough to
show that the generic fiber Xe of m1|X(F ) is nonempty and that it does not coincide
with the generic fiber of m1.

The fact that Xe 6= ∅ follows easily by observing that, given 15 points on a quartic
Λ4 ⊂ P2, there always exists a plane septic Λ7 passing through them and having nodes
in the first nine.

On the other hand, it can be shown that dim Xe 6= 15 by proceeding like in the
case of genus 5 because on a curve Y ′ of genus 6 any complete g2

7 is of the form l′ =
KY ′ ⊗OY ′(−a− b− c), with a, b, c ∈ Y ′. �

Finally, we obtain that:

Corollary 4.6. The locus GP12 has pure codimension 1 inM12.

Proof. By the remarks at the beginning of the section we have to study only the com-
ponent GP 1

12,10. Given [C] ∈ GP 1
12,10, we can assume that [C] does not lie in GP 1

12,9 ∪
GP 2

12,10 ∪ GP 2
12,11, which forces any l ∈ G1

10(C) for which the Gieseker-Petri The-
orem fails to verify condition 1. By Theorem 4.5, condition 2 is satisfied if [C] 6∈
GP 1

12,7 ∪GP 1
12,8. We can thus apply Proposition 4.1. �
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