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Abstract. Let (Y,L) be a general primitively polarized K3 surface of
genus g. For every 0 ≤ δ ≤ g we consider the Severi variety parametriz-
ing integral curves in |L| with exactly δ nodes as singularities. We prove
that its closure in |L| is connected as soon as δ ≤ g − 1. If δ ≤ g − 4,
we obtain the stronger result that the Severi variety is irreducible, as
predicted by a well-known conjecture. The results are obtained by de-
generation to Halphen surfaces.

1. Introduction.

Let L be a polarization on a smooth irreducible projective surface S de-
fined over the field of complex numbers, and denote by g the arithmetic
genus of all curves in |L|. For any fixed integer 0 ≤ δ ≤ g the Severi variety
of δ-nodal curves in |L| is the locally closed subscheme of |L| defined as

Vδ(S,L) := {C ∈ |L| s.t. C is integral with exactly δ nodes as singularities};
the same definition applies to singular surfaces S with the further require-
ment that the curves C lie in the smooth locus of S. These varieties are
named after Severi, who introduced them in the case S = P2 [Se], where
he proved that they are nonempty and smooth of the expected dimension,
namely, dim |L| − δ. Severi also claimed that they are irreducible, but a
rigorous proof of this fact was accomplished only some sixty years later by
Harris [Ha]. Since then, Severi varieties were thoroughly investigated for
many types of surfaces, in particular as regards their nonemptiness, their
local geometry and their irreducibility; the last issue became known as the
Severi problem. Nonemptiness has been established in many cases, as for
instance K3 surfaces [MM, Ch1], abelian surfaces [KLM, KL], Enriques sur-
faces [CDGK]. As concerns their local geometry, Severi varieties behave well
on rational surfaces and surfaces of Kodaira dimension 0, while on surfaces of
general type wild unexpected phenomena occur, as highlighted in [CS, CC].

On the other hand, very little is known about the global geometry of Severi
varieties even for surfaces of non-maximal Kodaira dimension. In particular,
the Severi problem proves very challenging and has been solved in very few
cases: for Hirzebruch surfaces by Tyomkin [Tyo], for Del Pezzo surfaces in
the case of rational curves (that is, for maximal δ) by Testa [Tes], while
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partial results for blow-ups of the projective plane are due to Greuel-Lossen-
Shustin [GLS]. In recent times, many papers focused on the case of toric
surfaces [Bo, LT], and Zahariuc [Za] worked out the Severi problem for a
general abelian surface with a polarization of any primitive type.

A vast literature is devoted to the case of K3 surfaces, motivated by the
following well-known folklore conjecture.

Conjecture 1.1. Let (Y, L) be a general polarized K3 surface of genus g ≥ 2.
Then, for any fixed 0 ≤ δ ≤ g − 1, the Severi variety Vδ(Y,L) is irreducible.

We recall that dim |L| = g. The constraint δ ≤ g− 1 is necessary because
it is well-known that the linear system |L| contains finitely many rational
curves: since this number is computed by the Yau-Zaslow formula [Be] and is
different from 1, the Severi variety Vδ(Y,L) is definitely reducible for δ = g.
Quite surprisingly, the above conjecture has remained open until now, despite
numerous attempts. We will prove it for primitive linear systems as soon as
δ ≤ g − 4 and g ≥ 5.

Theorem 1.2. Let (Y, L) be a general primitively polarized K3 surface of
genus g ≥ 2. Then the following hold:

(1) for every 0 ≤ δ ≤ g − 1, the closure of the Severi variety Vδ(Y,L) ⊂
|L| is connected;

(2) if g ≥ 5 and 0 ≤ δ ≤ g− 4, the Severi variety Vδ(Y,L) is irreducible.

Previous results in the literature due to Keilen [Kei], Kemeny [Kem],
Ciliberto-Dedieu [CD2], Dedieu [De2] only concerned cases where δ is small
with respect to the arithmetic genus g (roughly bounded by g/4) and it was
clear that they cannot be further improved with similar proof techniques.
A weaker form of the conjecture concerning the so-called universal Severi
variety Vg,δ was considered more approachable. Let Fg be the irreducible
19-dimensional moduli stack of genus g primitively polarized K3 surfaces.
The stack Vg,δ is smooth of pure dimension 19+g−δ and admits a morphism
φg,δ : Vg,δ → F◦g to a suitable open substack F◦g of Fg whose fiber over a
general point (Y, L) ∈ Fg equals the Severi variety Vδ(Y, L).

Conjecture 1.3. For every 0 ≤ δ ≤ g, the universal Severi variety Vg,δ is
irreducible.

This prediction makes perfect sense even for δ = g, when it becomes a
question on the monodromy of the finite morphism φg,g. It is related to the
non-existence of self-rational maps of degree > 1 on a general K3 surface in
Fg, which was predicted by Dedieu in [De1] and achieved by Chen in [Ch4].
Conjecture 1.3 was proved by Ciliberto-Dedieu [CD] for 2 ≤ g ≤ 11 and
g 6= 10, which is exactly the range where a general genus g curve lies on a
K3 surface. We remark that, since the morphism φg,δ is known to be smooth
and dominant on all components of Vg,δ for every δ [FKPS], Conjecture 1.1
implies Conjecture 1.3 for every 0 ≤ δ ≤ g − 1. In particular, the following
result comes straightforward from Theorem 1.2.
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Corollary 1.4. For every g ≥ 5 and every 0 ≤ δ ≤ g − 4 the universal
Severi variety Vg,δ is irreducible.

The assumption δ ≤ g − 4 in Theorem 1.2(2) and in Corollary 1.4 is due
to proof technique, and is only used in the proof of Theorem 5.2. However,
there is no evidence for the existence of counterexamples to Conjecture 1.1
in the remaining cases g − 3 ≤ δ ≤ g − 1.

1.1. Strategy and organization of the paper. Theorem 1.2 is proved
by degeneration to a so-called Halphen surface Sg ⊂ Pg, which has an el-
liptic singularity and is limit of primitively embedded K3 surfaces of genus
g. These surfaces, introduced in [CD], appeared in the characterization of
hyperplane sections of K3 surfaces accomplished by Arbarello-Bruno-Sernesi
[ABS], and were first exploited in [ABFS] and then in [AB, FT]. We recall
their construction. Let S be the blow-up of P2 at 9 general points and de-
note by |Lg| the g-dimensional linear system on S parametrizing the strict
transforms of plane curves of degree 3g having multiplicity g at the first 8
points that we have blown up and multiplicity g−1 at the last one; these are
called Du Val curves of genus g after Du Val, who first considered them [Du].
The surface Sg is realized as the closure in Pg of the rational map S 99K Pg
defined by |Lg|. In particular, Severi varieties of nodal hyperplane curves on
Sg are linked to Severi varieties Vδ(S,Lg) on S. A major advantage is that
the surface S possesses polarizations Lg for every genus g ≥ 2 and is thus the
right environment where to perform some sort of induction. In Section 2, af-
ter recalling the main features of Halphen surfaces, we show that the results
known for Severi varieties on a general K3 surface of genus g still hold true
for Vδ(S,Lg). In particular, Chen’s proof of the density of Severi varieties
in any equigeneric locus on a general polarized K3 surface [Ch2, Ch3] works
with essentially no change in the context of Halphen surfaces. Moreover, the
irreducibility of Vδ(S,Lg) is easily obtained when δ is small with respect to
g: this is the basis for our induction.

In §2.1, we show that for any fixed integer k ≥ 1 the linear system |Lg|
sits as a linear space of codimension k inside of |Lg+k|. The main idea is to
use this inclusion along with the irreducibility of Vδ(S,Lg+k) for big enough
k in order to deduce connectedness of Vδ(S,Lg+k) for every 0 ≤ δ ≤ g − 1.
The main difficulty arises from the fact that the subspaces |Lg+k−j | ⊂ |Lg+k|
for j ≥ 2 have excess intersection with the Severi varieties Vδ(S,Lg+k), as
follows from the following equality:

|Lg+k−1| ∩ Vδ(S,Lg+k) =

δ⋃
h=0

Vδ−h(S,Lg+k−h−1).

To circumvent this problem, we need to consider expanded degenerations of
the surface S along the divisor J introduced by Jun Li in [Li1, Li2]. We
recall that an expanded degeneration of S is a semistable model of S

S[n]0 := S ∪J R ∪J . . . ∪J R



4 ANDREA BRUNO AND MARGHERITA LELLI-CHIESA

obtained attaching to S a chain of n ≥ 0 ruled surfaces R := P(OJ ⊕
NJ/S) over J (cf. §3.1 for details). The theory of good degenerations of
relative Hilbert schemes developed in [LW] is used to define an expanded
linear system |Lg|exp, whose points parametrize stable curves that live in
some expansion S[n]0 of S and have no components in its singular locus
or in the last copy of J . For every 0 ≤ δ ≤ g we consider the expanded
Severi variety Vδ(S/J, Lg), that is, the closure in |Lg|exp of the Severi variety
Vδ(S,Lg). We will also make use of the moduli stackMg−δ(S/J, Lg) of stable
maps to some expansion of S introduced and studied in [Li1, Li2].

Having fixed k >> 0, we first show that |Lg+k|exp admits a map α̃ to a

variety |̃Lg+k| obtained from |Lg+k| blowing up the flag of subspaces |L0| ⊂
. . . ⊂ |Lg+k−2|. We then define a natural map Ψ : |̃Lg+k| → P̃k, where P̃k
is obtained from Pk again by blowing up a complete flag. It turns out that
|Lg|exp may be realized as a fiber of the composition Ψ ◦ α̃, and Vδ(S/J, Lg)
as a fiber of the restriction ψ of Ψ◦α̃ to Vδ(S/J, Lg+k). We then show that ψ
admits a section over an open subset of P̃k and, by a standard argument using
Stein factorization and Zariski’s Main Theorem, obtain the connectedness of
Vδ(S/J, Lg) from the irreducibility of Vδ(S/J, Lg+k) (cf. Theorem 3.4).

Connectedness for positive dimensional Severi varieties on a general K3
surface is then obtained in Section 4. We consider a stable type II degener-
ation Y0 := S ∪J S′ constructed by appropriately gluing two surfaces S, S′,
which are both a blow-up of P2 at 9 general points as above, have isomorphic
anticanonical divisor J and satisfy NJ/S ' N∨J/S′ . Let Y → D be a family
of genus g polarized K3 surfaces degenerating to Y0. The limit on Y0 of a
relative genus g linear system |L|∗ → D∗ is not unique (for instance, one
of such limits contracts S′ and maps S to Sg ⊂ Pg). Furthermore, in any
such limit the deformations of a curve containing the singular locus of Y0

encounter extra obstructions. To circumvent these problems, we apply the
theory of good degenerations of relative Hilbert schemes developed in [LW]
and obtain a good degeneration |L|exp → D of the relative linear system
|L|∗ → D∗. Points in the central fiber of |L|exp parametrize curves living in
some expanded degenerations

S ∪J R ∪J . . . ∪J R ∪J S′

of Y0. More precisely, the central fiber admits the following decomposition
in a non-disjoint union of Cartier divisors:

(1.1)
⋃

g1+g2=g

|Lg1 |exp × |L′g2 |
exp.

Recalling that Severi varieties are functorially defined, we consider the clo-
sure in |L|exp of the relative Severi variety V(Y,L)∗ → D∗ and denote by
Vδ(Y exp

0 , L) its central fiber. In Lemma 4.1 we prove that the latter coin-
cides with the closure in (1.1) of the locus of curves with δ nodes outside of
the singular locus of Y0 (or of its expansions). In other words, Vδ(Y exp

0 , L)
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splits in the following non-disjoint union:

Vδ(Y exp
0 , L) =

⋃
g1+g2=g
δ1+δ2=δ

Vδ1(S/J, Lg1)× Vδ2(S′/J, L′g2);

we mention that the analogous decomposition for the space of stable maps
proved in [Li1, Li2] was already used in [MPT]. In Proposition 4.2 we exploit
this decomposition and the connectedness of Vδ(S/J, Lg) obtained in the
previous section to prove that Vδ(Y exp

0 , L) is connected as soon as δ ≤ g− 1.
Part (1) of Theorem 1.2 is then the content of Theorem 4.3; a key point is

that any two components of Vδ(Y exp
0 , L) can be connected through a sequence

of components whose intersection is generically contained in the reduced
locus of Vδ(Y exp

0 , L), as follows form Propositions 3.6 and 4.2.
Section 5 is then devoted to the proof of part (2). First of all, we show

that, if (S,L) ∈ Fg is general and 0 ≤ δ ≤ g−1, two irreducible components
of the Severi variety Vδ(S,L) intersect in codimension 1, if they meet at all
(cf. Propositions 5.1, 2.7 and Lemma 2.8). This is obtained by realizing
Vδ(S,L) ⊂ |L| as the image under a generically finite map of a degeneracy
locus in S[δ] × |L| and using the fact that degeneracy loci of the expected
dimension are Cohen-Macaulay. Knowing that Vδ(S,L) is connected, in order
to prove its irreducibility it is thus enough to show that the codimension
1 components of its singular locus cannot contain the intersection of two
irreducible components. This holds true for Vδ+1(S,L) ⊂ SingVδ(S,L) as the
relative normalization of Vδ(S,L) along Vδ+1(S,L) remains connected (which
is also part of Theorem 4.3). Let W be any codimension 1 component of
SingVδ(S,L) not contained in Vδ+1(S,L). By deformation theory (cf. [CD2]
for similar arguments), we show that a general point of W parametrizes
either a curve whose singularities consist of (possibly non-transverse) smooth
linear branches except at most for one cusp, or a curve whose normalization
is hyperelliptic of genus g− δ. In the former case, it turns out that Vδ(S,L)
is unibranched along W . The latter case can be excluded as soon as W
has dimension ≥ 3, or equivalently, δ ≤ g − 4, because curves in |L| with
hyperelliptic normalization of any fixed geometric genus ≥ 2 are known to
move in dimension 2 (cf. [KLM, Rmk. 5.6]); this is the only part of the
proof where the assumption δ ≤ g − 4 is used.

1.2. Preliminaries on Severi varieties on K3 surfaces. We will here
collect known properties of Severi varieties on K3 surfaces that are rele-
vant for this paper and will be generalized to Halphen surfaces in Section
2. Standard deformation theory yields the following result (cf., e.g., [DS,
§3–4]):

Proposition 1.5. Let (Y,L) be a polarized K3 surface of genus g. For any
fixed integer 0 ≤ δ ≤ g the Severi variety Vδ(Y,L), if nonempty, is smooth
of dimension g − δ.
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Indeed, for any C ∈ Vδ(Y,L) the projective tangent space to Vδ(Y,L) at
C coincides with P(H0(Y,L ⊗ IN )), where N is the scheme of nodes of C.
Furthermore, the nodes of any such curve C can be smoothed independently.
Therefore, the nonemptiness of Vδ(Y, L) for every δ reduces to the existence
in the linear system |L| of a nodal rational curve. This was achieved by
Mori-Mukai for a general primitively polarized K3 surface, and was then
generalized by Chen to non primitive polarizations.

Theorem 1.6 ([MM, Ch1]). Let (Y, L) be a general K3 surface of genus g.
For any fixed integer 0 ≤ δ ≤ g, the Severi variety Vδ(Y,L) is nonempty.

For primitive polarizations, Chen obtained the following much stronger
result:

Theorem 1.7 ([Ch2]). Let (Y,L) be a general primitively polarized K3 sur-
face of genus g. Then, all rational curves in the linear system |L| are nodal.

The above result is deeply linked to the natural question whether every
curve in |L| can be deformed to a nodal curve having the same geometric
genus. A positive answer is again due to Chen and, defining the equigeneric
locus

V h(Y, L) := {C ∈ |L| s.t. C is integral of geometric genus h}
for every 0 ≤ h ≤ g, it can be phrased in the following way.

Theorem 1.8 ([Ch3]). Let (Y,L) be a general primitively polarized K3 sur-
face of genus g. Then, for every 0 ≤ δ ≤ g, the Severi variety Vδ(Y, L) and
the equigeneric locus V g−δ(Y, L) have the same closure in |L|.

Acknowledgements: We are especially grateful to Xi Chen and Adrian Za-
hariuc for pointing out a mistake in a previous version of this paper and for
suggesting Proposition 2.10. We also thank Thomas Dedieu and Edoardo
Sernesi for numerous valuable conversations on the topic. We were sup-
ported by the Italian PRIN-2017 "Moduli Theory and Birational Classifica-
tion", PRIN-2020 "Curves, Ricci flat Varieties and their Interactions" and
by GNSAGA.

2. Halphen surfaces and their Severi varieties

Let S be the blow-up of P2 at nine general points p1, . . . , p9 and denote
by E1, . . . , E9 the exceptional curves of this blow-up. As the points pi are
general, there exists a unique plane cubic passing through the pi’s, whose
strict transform on S we denote by J . Hence, J is the only anticanonical
divisor on S and satisfies

J ∼ −KS ∼ 3l − E1 − · · · − E9,

where ` is the strict transform of a line in P2. For any fixed g ≥ 1, let C be
the strict transform on S of a so-called Du Val curve of genus g, that is, a
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plane curve of degree 3g having points of multiplicity g at p1, . . . , p8 and a
point of multiplicity g − 1 at p9:

C ∼ 3g`− gE1 − · · · − gE8 − (g − 1)E9.

Defining Lg := OS(C) ∈ Pic(S), the linear system |Lg| has dimension g and
its general element is a smooth irreducible curve of genus g. Since C ·J = 1,
every irreducible curve C ∈ |Lg| intersects J at the same point, that we
denote by p10(g). It turns out that p10(g) is the only base point of |Lg| (cf.
[ABFS, Lem. 2.4]) and is uniquely determined by the condition

gp1 + . . .+ gp8 + (g − 1)p9 + p10(g) ∈ |OJ(3g`)|.
We will sometimes use the notation L0 := E9 and p10(0) = p9.

Let σ : S̃ −→ S be the blow-up of S at p10(g). We still denote by
E1, . . . , E9 the inverse images under σ of the exceptional curves on S and by
E10 the exceptional divisor of σ. Let J̃ be the strict transform of J and C̃
be the strict transform of a curve C ∈ |Lg|. The following relations hold on
S̃:

(2.1)

−KS̃ ∼ J̃ ∼ 3`− E1 − · · · − E10,

C̃ ∼ 3g`− gE1 − · · · − gE8 − (g − 1)E9 − E10 ,

C̃ · J̃ = 0 .

The line bundle L̃g := OS̃(C̃) is base-point-free [ABFS, Lem. 2.4] and thus
defines a morphism from S̃ to a surface Sg ⊂ Pg having trivial dualizing sheaf,
canonical hyperplane sections and a single elliptic singularity o resulting from
the contraction of J̃ . As in [AB], we call such a surface Sg ⊂ Pg a polarized
Halphen surface of genus g. A general hyperplane section of Sg is a smooth
irreducible curve of genus g [ABFS, Lem. 2.4], while a general hyperplane
section of Sg passing through o has a cusp at o. The following result is due
to Arbarello-Bruno-Sernesi:

Proposition 2.1 ([ABS], Cor. 10.5). If the points p1, . . . , p9 are general,
the surface Sg is the limit of smooth K3 surfaces in Pg.

Halphen surfaces Sg as above share some common behaviour with K3
surfaces of Picard rank 1. This depends on the following property, firstly
exploited by Arbarello-Bruno-Farkas-Saccà [ABFS].

Lemma 2.2. If the points p1, . . . , p9 are general, for any fixed integer g ≥ 1
the only possible decompositions of Lg into two effective line bundles are of
the form

Lg ' OS(kJ)⊗ Lg−k
for some 0 ≤ k ≤ g − 1.

Proof. By choosing p1, . . . , p9 general, we may assume that S contains no
(−2)-curves and that h0(S,OS(kJ)) = 1 for every k ≥ 1; in other words,
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p1, . . . , p9 are chosen k-general in the sense of [AB, Def. 2.2] for every k ≥ 1
(cf. also [CD]). Let Lg ' N ⊗ M be a decomposition into two effective
line bundles N,M ∈ Pic(S). Since c1(Lg) · J = 1 and (J)2 = 0, possibly
by exchanging N and M we obtain J · c1(N) = 0 and J · c1(M) = 1.
The statement thus follows by a theorem of Nagata ([ABFS, Prop. 2.3]),
ensuring that under the genericity assumption the only effective divisors
having vanishing intersection with J are the nonnegative multiples of J . �

The above result was used by Arbarello-Bruno-Farkas-Saccà in order to
prove the following analogue of Lazarsfeld’s Theorem.

Theorem 2.3 ([ABFS], Thm. 4.4). If the points p1, . . . , p9 are general, then
a general curve C ∈ |Lg| satisfies Petri’s Theorem and all irreducible nodal
curves in |Lg| satisfy the Brill-Noether Theorem.

We now investigate Severi varieties Vδ(S,Lg) and equigeneric loci V h(S,Lg)

on S. We recall that the normalization Ṽ h(S,Lg) of V h(S,Lg) admits a
universal family C → Ṽ h(S,Lg) together with a simultaneous resolution of
singularities C̃ → C (cf. [Tei, I, Thm. 1.3.2] and also [DS, Thm. 1.5]). This
implies the existence of an étale cover W → Ṽ h(S,Lg) along with a gener-
ically injective morphism w : W → Mh(S,Lg) to the coarse moduli space
of genus h stable maps in |Lg|. The image of w consists of the irreducible
components of Mh(S,Lg) parametrizing stable maps which are smoothable,
that is, can be deformed to a map from a nonsingular curve, birational to
its image (cf. [Va]). We denote by Mh(S,Lg)

sm the closure in Mh(S,Lg) of
the image of w.

Viceversa, by [Ko1, I.6] the semi-normalization M̃h(S,Lg)
sm ofMh(S,Lg)

sm

admits a morphism

(2.2) µ : M̃h(S,Lg)
sm → V h(S,Lg) ⊂ |Lg|,

that maps a stable map f : C → S to its image f(C).

Proposition 2.4. The following hold true:
(i) For every 0 ≤ δ ≤ g the Severi variety Vδ(S,Lg) is nonempty and

smooth of dimension g − δ.
(ii) For every 0 ≤ h ≤ g the equigeneric locus V h(S,Lg) andMh(S,Lg)

sm

have pure dimension h.
(iii) For every 0 ≤ h ≤ g a general point C in any irreducible component

of V h(S,Lg) is immersed1; equivalently, a general map f in any irre-
ducible component of Mh(S,Lg)

sm is unramified. In particular, both
V h(S,Lg) and Mh(S,Lg)

sm are generically reduced.

Proof. We recall that the expected dimension Vδ(S,Lg) is g−δ. The nonempti-
ness statement in (i) follows from [GLS, Thm. B]. By standard deformation
theory, the projective tangent space to Vδ(S,Lg) at a point C is isomorphic

1A curve is called immersed if the differential of its normalization map is everywhere
injective.
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to P(H0(S,Lg⊗IN )), where N is the scheme of nodes of C. Hence, Vδ(S,Lg)
is smooth at C of dimension g− δ if and only if h0(Lg ⊗ IN ) = g+ 1− δ, or
equivalently, h1(Lg ⊗ IN ) = 0. This vanishing can be easily deduced by the
short exact sequence

0→ OS → Lg ⊗ IN → ωC(p10(g))⊗ IN → 0,

using the isomorphism ωC(p10(g))⊗ IN ' ν∗ωC̃(p), where ν : C̃ → C is the
normalization map and p = ν−1(p10(g)).

As concerns part (ii), let C be a general point in any irreducible com-
ponent V of V h(S,Lg) and let f : C̃ → S be the stable map defined as
the composition of the normalization map ν : C̃ → C with the inclusion
C ⊂ S. The discussion above the statement of this proposition yields that
dim[C] V = dim[f ]Mh(S,Lg) and, by standard deformation theory, the latter
is bounded below by χ(Nf ), where Nf is the normal sheaf to f defined by
the short exact sequence

0→ TC̃ → f∗TS → Nf → 0.

It is then easy to check that χ(Nf ) = χ(ωC̃(p)) = h and thus dimV ≥ h.
In order to prove equality, we apply a result by Arbarello and Cornalba

[AC, p. 26] as in [DS, proof of Thm. 2.8] getting

dimV = dimT[C]V ≤ h0(C̃,Nf ) = h0(ωC̃(p−R)) ≤ h,

where Nf denotes the quotient of Nf by its torsion subsheaf, which coincides
with the zero divisor R ⊂ C̃ of the differential of f . Since ωC̃(p) is globally
generated off p and p10(g) = f(p) is a smooth point of C, we conclude that
dimV = h (thus getting (ii)) and R = 0. Hence, C is immersed and this
yields (iii) because T[f ]Mh(S,Lg) = h0(Nf ) = h and µ is an isomorphism
locally around [f ]. �

It is natural to ask whether the closure in |Lg| of the Severi variety
Vδ(S,Lg) coincides with that of the equigeneric locus V g−δ(S,Lg), as it hap-
pens on a general K3 surface. The following result generalizes Theorem 1.8
to our setting.

Proposition 2.5. If the points p1, . . . , p9 are general, then for every g ≥ 1
and 0 ≤ δ ≤ g one has the equality

Vδ(S,Lg) = V g−δ(S,Lg)

in the linear system |Lg|.

Proof. We follow Chen’s proof of the analogous result for a general genus g
polarized K3 surface [Ch3, Cor. 1.2]. Let V be any irreducible component
of the equigeneric locus V h(S,Lg) with 0 ≤ h ≤ g. In order to prove that a
general point of V parametrizes a nodal curve, it is enough to show that V
contains a component of V h−1(S,Lg) as soon as h ≥ 1, and that all rational
curves in |Lg| are nodal. Both the statements were proved for a general
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genus g polarized K3 surface by Chen (in [Ch3, Thm. 1.1] and [Ch2, Thm.
1.1], respectively), by specialization to a so-called Bryan-Leung K3 surface,
that is, a K3 surface X0 admitting an elliptic fibration π : X0 → P1 with
a section s and 24 nodal singular fibers. If f is a fiber, the line bundle
L0 := OX0(s+ gf) is a genus g polarization on X0 and every element in |L0|
is completely reducible, that is, it is union of s and g fibers of π.

We now exhibit a limit of our surfaces S that appeared in [ABFS, §4.1]
and is very similar to a Bryan-Leung K3 surface. By specializing the points
p1, . . . , p9 ∈ P2 to the base locus of a general pencil of plane cubics, the
surface S specializes to a rational elliptic surface q : S0 → P1; the fibers of
q are the anticanonical divisors of S0 and thus q admits precisely 12 nodal
singular fibers. It is easy to verify that on S0 the exceptional divisor E9

becomes a section of q and every element in the linear system |Lg| is the
union of E9 with g fibers of q. Chen’s proof of [Ch3, Thm. 1.1] works in our
setting with no change, yielding that on S0 (and thus on a general S) every
component of V h(S,Lg) with h ≥ 1 contains a component of V h−1(S,Lg).
Also the proofs in [Ch2] still work if, instead of a family of K3 surfaces whose
central fiber is a Bryan-Leung K3 surface, one considers a family of surfaces
S → ∆ whose general fibers are general S and whose central fiber is S0. The
only difference that is worth remarking concerns [Ch2, Prop. 2.1], whose
proof becomes even simpler in our case because every vector of the space
H1(TS0) parametrizing first order deformation of S0 can be realized as the
Kodaira-Spencer class of a projective family S. �

The following result is a generalization of [Kem, CD2], ensuring irreducibil-
ity of Severi varieties in |Lg| when δ is small with respect to g.

Proposition 2.6. If δ ≤ 1
6g −

1
12 , then Vδ(S,Lg) is irreducible.

Proof. Let Uδ ⊂ S[δ] be the open subset parametrizing 0-dimensional sub-
schemes consisting of δ distinct points none of which lies on J . The nodes of
any curve C ∈ Vδ(S,Lg) define a point in Uδ because they all lie outside of J
as C · J = 1. As in [Kem, App. A, proof of Thm. A.0.6], the Severi variety
is an open subset of a projective bundle over Uδ as soon as H1(Lg ⊗ I2

z ) = 0

for all z ∈ Uδ. We will show that H1(Lg ⊗ Iw) = 0 for every w ∈ S[3δ]

whose support is disjoint from J . By contradiction, if this is not the case,
up to replacing w with a subscheme of length d ≤ 3δ, we may assume that
h1(Lg ⊗ Iw) = 1 (use [BS, Lem. 1.2]) and h1(Lg ⊗ Iw′) = 0 for every proper
subscheme w′ of w (that is, w is Lg-stable in the sense of Tyurin [Tyu, Def.
1.2]). By [Tyu, Lem. 1.2] there exists a rank 2 vector bundle E fitting into
an extension

(2.3) 0→ OS → E → Lg−1 ⊗ Iw → 0,

where we have used that Lg ⊗ KS ' Lg−1. Since c1(E) = c1(Lg−1) and
c2(E) = d ≤ 3δ, the Riemann-Roch formula yields

χ(E⊗E∨) = c1(E)2−4c2(E)+4χ(OS) = 2g−3−4d+4 ≥ 2g−12δ+1 ≥ 2,
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and thus either h0(E ⊗ E∨) ≥ 2 or h2(E ⊗ E∨) = h0(E ⊗ E∨ ⊗KS) ≥ 1.
In both cases, E is not µLg−1- stable and thus sits in a destabilizing short
exact sequence

(2.4) 0→ N → E →M ⊗ Iξ → 0,

where ξ ⊂ S is a 0-dimensional subscheme and N,M ∈ Pic(S) satisfy

µLg−1(N) ≥ µLg−1(E) =
2g − 3

2
≥ µLg−1(M).

In particular, one gets h0(N∨) = 0. We will use short exact sequence (2.4)
and Lemma 2.2 to reach a contradiction. As in [Kn, Lem 3.6], by tensoring
(2.3) with N∨ and taking global sections, one obtains h0(M ⊗ Iw) > 0 and
thus M possesses a global section vanishing along a divisor that contains
w; in particular, M is effective and M 6' O(kJ) for any k ≥ 0. If (2.4)
splits, the same holds true for N by inverting the roles of N and M . Since
c1(Lg−1) = c1(N) + c1(M), this would contradict Lemma 2.2: we conclude
that (2.4) does not split.

In the case where h0(E ⊗ E∨) ≥ 2, by standard computations (cf., e.g.,
[AF, Lem. 3.4]) one concludes that h0(N ⊗M∨) > 0 and thus N is effective,
too. By Lemma 2.2, we get that N ' O(kJ) and M ' L′g−k for some
0 ≤ k ≤ g − 1 and this contradicts the inequalities on the slopes.

In order to arrive at the same conclusion in the case where h0(E ⊗ E∨ ⊗
KS) ≥ 1, we tensor (2.3) with KS and then apply Hom(E,−) in order to
get

h0(E ⊗ E∨ ⊗KS) ≤ dim Hom(E,N ⊗KS) + dim Hom(E,M ⊗KS ⊗ Iξ).

By applying Hom(−,M⊗KS⊗Iξ) to (2.3) and using the fact that Hom(N,M⊗
KS⊗ Iξ) = 0 as µLg−1(N) > µLg−1(M ⊗KS), one obtains that Hom(E,M ⊗
KS ⊗ Iξ) = 0. Analogously, applying Hom(−, N ⊗KS) to (2.3), one shows
that 1 ≤ Hom(E,N ⊗ KS) ' H0(M∨ ⊗ N ⊗ KS); hence, N is effective
yielding the same contradiction as above. �

The following result controls the intersection of two irreducible compo-
nents of Vδ(S,Lg).

Proposition 2.7. Fix g ≥ 2 and 0 ≤ δ ≤ g − 1. Let V and W be two
intersecting components of Vδ(S,Lg). Then every irreducible component of
V ∩W not contained in |Lg−1| has pure codimension 1; furthermore, any
such component contains a closed point which is a reduced point of Vδ(S,Lg)
(that is, the local ring of Vδ(S,Lg) at that point has no nilpotents2).

Proof. Set U := |Lg| \ |Lg−1| ⊂ |Lg| and consider the incidence variety

(2.5) I :=
{

(C, z) ∈ U × S[δ] s.t. C ∈ |Lg ⊗ I2
z |
}
⊂ |Lg| × S[δ].

2Since this is an open condition, the same will hold for a general point in any compo-
nent of V ∩W , that is, for all closed points in a Zariski open subset of it.
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We will express I as the degeneracy locus of a map of vector bundles on
|Lg|×S[δ]. Let p : S×S[δ] −→ S and q : S×S[δ] −→ S[δ] be the projections,
and denote by ∆ ⊂ S × S[δ] the universal subscheme. Let E := q∗(p

∗Lg)

denote the vector bundle of rank g + 1 on S[δ] whose fiber over any point
z ∈ S[δ] equals H0(S,Lg). Let F := q∗(p

∗Lg|2∆) be the vector bundle of rank
3δ on S[δ] whose fiber over a point z ∈ S[δ] is the vector space H0(S,Lg|2z),
where 2z denotes the 0-dimensional subscheme of S defined by the ideal I2

z .
There is a natural map

φ : E −→ F

of vector bundles on S[δ]. Note that |Lg|×S[δ] is isomorphic to the projective
bundle

π : P(E) −→ S[δ].

Denoting by U ⊂ π∗E the universal subbundle, we consider the degeneracy
locus D(φ̃) of the map

φ̃ : U −→ π∗F,

of vector bundles on P(E) ' |Lg|×S[δ] obtained by composing π∗φ with the
inclusion of U in π∗E. By construction, the incidence variety I is contained
in D(φ̃) and, if (C, z) ∈ D(φ̃) \ I, then C ∈ |Lg−1|. It can be easily checked
that the expected dimension of D(φ̃) equals g − δ. In order to show that
D(φ̃) has the expected dimension along I, we consider the projection t :

D(φ̃) −→ |Lg|. If (C, z) ∈ D(φ̃), the curve C is singular along z. Hence, if
(C, z) ∈ I and C is reduced, then the δ-invariant of C is ≥ δ: this implies that
t(I) ⊂ V g−δ(S,Lg) = Vδ(S,Lg), where the equality follows from Proposition
2.5. On the other hand, if (C, z) ∈ D(φ̃) \ I, then C ∈ |Lg−1| ⊂ |Lg|. We
conclude that I consists of the irreducible components of D(φ̃) whose image
is not entirely contained in |Lg−1|. In particular, tI := t|I is birational and
a general curve in t(I) is integral. The following Lemma 2.8 yields that the
locus in I \ (t−1|Lg−1| ∩ I) where the fibers of tI are not finite has dimension
≤ g − δ − 2, and thus

g − δ = dimVδ(S,Lg) ≥ dim I;

hence, I consists of irreducible components of D(φ̃) that dominate Vδ(S,Lg)
and has pure dimension g− δ, as expected. In particular, I is locally Cohen-
Macaulay (cf. [ACGH, II, Prop. 4.1]). Being birational to Vδ(S,Lg), which is
generically reduced by Proposition 2.4, we conclude that I is reduced because
generic reducedness is equivalent to reducedness for locally Cohen-Macaulay
schemes. Furthermore, every irreducible component I ′ of the intersection
of two components of I has codimension 1 by Hartshorne’s Connectedness
Theorem (cf. [Ei, Thm. 18.12]). Let Z be a component of the intersec-
tion of two irreducible components of Vδ(S,Lg) such that Z is not contained
in |Lg−1|. Since any component I ′ of t−1(Z) has codimension 1 in I, the
following Lemma 2.8 yields that a general fiber of the restriction of t to
I ′ is finite and thus Z has codimension 1 in Vδ(S,Lg). If a general curve
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in Z has δ-invariant precisely δ, then the restriction of t to t−1(Z) is bi-
rational. In particular, the open subset of I where tI is an isomorphism
intersects t−1(Z) and thus, using that I is reduced, we may conclude that
Vδ(S,Lg) is reduced at a general closed point of Z. If instead a general
curve in Z has δ-invariant > δ, by dimensional reasons Z is a component
of Vδ+1(S,Lg) = V g−δ−1(S,Lg). We recall that Vδ(S,Lg) = V g−δ(S,Lg) is
singular at the points of V g−δ−1(S,Lg) (cf. [DH]). More precisely, exactly
as in the case of a K3 surface (cf. [CD, Prop. 6]), Proposition 2.4(i) implies
that locally around a general C ∈ V g−δ−1(S,Lg), the locus V g−δ(S,Lg) is
the union of δ + 1 transversal sheets corresponding to the partial normal-
izations of C of arithmetic genus g − δ. In particular, since V g−δ−1(S,Lg)
is generically reduced by Proposition 2.4(iii), then every irreducible compo-
nent of V g−δ−1(S,Lg) contains a closed point which is a reduced point of
V g−δ(S,Lg)(that is, the local ring of V g−δ(S,Lg) at a general closed point
of V g−δ−1(S,Lg) has no nilpotents). �

Lemma 2.8. Let I ⊂ |Lg| × S[δ] be the incidence variety defined in (2.5)
and let tI : I −→ |Lg| be the first projection. Then, the locus in I \ t−1

I |Lg−1|
where the fibers of tI are not finite has dimension ≤ g − δ − 2.

Proof. Given C ∈ Vδ(S,Lg), let us denote by ν : C̃ → C its normalization, by
AC := HomOC (ν∗OC̃ ,OC) its adjoint ideal, and by EC ⊂ C the subscheme
defined by AC . First of all, we show that, if (C, z) ∈ I \ t−1

I |Lg−1|, then
z ⊂ EC . Indeed, by normalizing an affine curve contained in I passing
through the point (C, z) and pulling back the universal families over I, one
may construct a family of curves f : C → B and a family of 0-dimensional
subschemes h : Z → B over a smooth 1-dimensional scheme B such that
Z ⊂ C, a general fiber Cb := f−1(b) is a curve in Vδ(S,Lg) and zb := h−1(b)
is its scheme of nodes, while for a special point b0 ∈ B we have C := f−1(b0)
and z := h−1(b0). Let n : C′ → C be the normalization of C along Z. For a
general b ∈ B the curve C ′b := n−1(f−1(b)) is the normalization of Cb, while
C ′ := n−1(f−1(b0)) is the partial normalization of C along z. In particular,
z is the subscheme of C defined by the ideal HomOC (n∗OC′ ,OC). The
inclusion z ⊂ EC thus follows from the factorization of ν as C̃ → C ′→C.

For any k ≥ 1, let Zδ,k ⊂ Vδ(S,Lg) be the locus of irreducible curves
C ∈ Vδ(S,Lg) such that the subscheme EC ⊂ C defined by AC contains a
k-dimensional family of subschemes of length-δ; the above discussion yields
that, if dim t−1

I (tI(C)) ≥ k, then C ∈ Zδ,k. We will show that Zδ,k ⊂
Vδ+k+2(S,Lg) for all 0 ≤ δ ≤ g − 1 and k ≥ 1 and thus

(2.6) dim t−1
I (Zδ,k) = dim Zδ,k + k ≤ dim Vδ+k+2(S,Lg) + k = g − δ − 2,

that yields our statement .
We proceed by induction on k. The case k = 1 amounts to showing that, if

C ∈ Zδ,1, then the δ-invariant δ(C) of C (i.e., the length of EC) is≥ δ+3; this
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holds true because any subscheme ξt of length δ contained in EC corresponds
to a partial normalization νt : Ĉt → C with pa(Ĉt) = pa(C)− δ. If δ(C) = δ,
then necessarily νt = ν, and thus ξt = EC is unique. Analogously, if δ(C) =

δ + 1, then any such Ĉt is obtained from C̃ by creating either one node or
one cusp at the finitely many points of C̃ mapping to the singular locus of C;
hence, the partial normalizations νt (or, equivalently, the subschemes ξt) are
finitely many in this case. The remaining case δ(C) = δ+ 2 is treated in the
same way using the fact that the only singularity having δ-invariant equal to
2 are tacnodes, ramphoid cusps and triple points of embedding dimension 3.

We now assume that the inclusion Zδ,h ⊂ Vδ+h+2(S,Lg) holds for any
0 ≤ δ ≤ g − 1 and 1 ≤ h ≤ k − 1, and prove it for h = k ≥ 2. Fix a general
C ∈ Zδ,k, that is, C has a k-dimensional family of length-δ subschemes
contained in EC . We will prove that C possesses a (k − 1)-dimensional
family of subschemes of length δ + 1; this is enough to conclude because it
implies that C ∈ Zδ+1,k−1 ⊂ Vδ+k+2(S,Lg), where the inclusion follows from
the induction assumption. In order to pass from subschemes of length δ to
subschemes of length δ + 1, we consider the nested Hilbert scheme S[δ,δ+1]

parametrizing pairs (ξ, ξ′) ∈ S[δ] × S[δ+1] such that ξ ⊂ ξ′. This is endowed
with two natural morphisms

S[δ,δ+1]

φ

yy

ψ

&&
S[δ] × S S[δ+1] × S,

mapping a pair (ξ, ξ′) to (ξ, x) and (ξ′, x), respectively, with x ∈ S being
the point where ξ and ξ′ differ. As explained in [Le, p.12], the dimensions
of the fibers of φ and ψ are related as follows: given (ξ, ξ′) ∈ S[δ,δ+1], if
φ−1(φ(ξ, ξ′)) ' Pi−1, then ψ−1(ψ(ξ, ξ′)) ' Pi′−2 for some integer i′ satisfying
|i− i′| ≤ 1. Let us consider the k-dimensional family

B := {ξ ∈ S[δ] | ξ ⊂ EC ⊂ C},

the subscheme

W := {(ξ, ξ′) ∈ S[δ,δ+1] | ξ ⊂ ξ′ ⊂ EC} ⊂ φ−1(B × Supp(EC)),

and set B′ := ψ(W ) ⊂ ψ(φ−1(B × Supp(EC))). We want to show that B′
has dimension ≥ k − 1. Let (ξ, ξ′) ∈ φ−1(B × Supp(EC)) be general, and
denote by i − 1 the dimension of φ−1(φ(ξ, ξ′)) and by i′ − 2 the dimension
of ψ−1(ψ(ξ, ξ′)). Since i− i′ ≥ −1, we obtain

dim ψ(φ−1(B × Supp(EC))) = dimB + i− 1− (i′ − 2) ≥ k.

In order to conclude that dim B′ ≥ k − 1, it is thus enough to show that
the fiber at (ξ, ξ′) of the restriction φ|W has codimension at most 1 in the
fiber φ−1(ξ, x), where (ξ, x) = φ(ξ, ξ′). We need to recall that φ−1(ξ, x) '
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P((Iξ/mxIξ)
∨) where mx is the maximal ideal of the point x; indeed, any

pair (ξ, ξ′) ∈ φ−1(ξ, x) corresponds to a short exact sequence

0 −→ Iξ′ −→ Iξ
α−→ Ox −→ 0,

(where Ox is the structure sheaf of x) and thus to a linear map αx :
Iξ/mxIξ → C. Since ξ ⊂ EC , we have an inclusion ι : IEC/S → Iξ and
a linear map ιx : IEC/S/mxIEC/S → Iξ/mxIξ; the subscheme ξ′ is contained
in EC precisely when the composition αx ◦ ιx is zero. Note that this is a
linear condition and, in order to show that it is a codimension 1 condition
on P((Iξ/mxIξ)

∨), we prove that IEC/S/mxIEC/S is 1-dimensional, or equiv-
alently, EC is contained in at most one subscheme of S of length δ(C) + 1
differing from EC only at x. Consider the standard short exact sequence of
ideals

0 −→ OS(−C)
j−→ IEC/S−→AC −→ 0,

where j is the multiplication by the section of Lg defining C. We recall (cf.,
e.g., [DS, §3]) that the support of EC is the singular locus of C and that,
if C has multiplicity h at a point x ∈ Supp(EC), then C ∈ |Lg ⊗mh

x|. The
computation of the adjoint ideal of a curve contained in a smooth surface
in terms of an embedded resolutions of its singularities (cf., e.g., [CD, Lem.
3.7]) thus yields that C ∈ |Lg ⊗mxIEC/S |; in other words, the image of j
is contained in mxIEC/S and we have an isomorphism IEC/S/mxIEC/S '
AC/mxAC . It is thus enough to verify that AC/mxAC ' C, or equivalently,
EC is contained in at most one subscheme τ of C of length δ(C)+1 differing
from EC only at x. Since τ ∈ P((AC/mxAC)∨), its unicity follows as soon as
we show that we have finitely many choices for it. This holds true because
any such τ corresponds to a rank 1 torsion free sheaf on C of the form
ν∗OC̃(y) for one of the finitely many points y mapping to x. �

2.1. Severi varieties and excess intersections. For every g ≥ 2 and
0 ≤ p ≤ g, we consider the natural injection

ip,g : |Lp| ↪→ |Lg|
mapping a curve C ∈ |Lp| to the divisor C + (g − p)J ∈ |Lg|.

Lemma 2.9. The image ip,g(|Lp|) ⊂ |Lg| coincides with the codimension
g−p linear subspace |Lg⊗Ig−px |, where x ∈ J is a general point. In particular,
identifying |Lp| with its image in |Lg| under the map ip,g for every 0 ≤ p ≤ g,
we have the following chain of inclusions in |Lg|:
(2.7) {E9} = |L0| ⊂ |L1| ⊂ · · · ⊂ |Lg−1| ⊂ |Lg|

Proof. The inclusion ip,g(|Lp|) ⊂ |Lg ⊗ Ig−px | is obvious. In order to prove
equality, it is enough to show that h0(Lg ⊗ Ig−px ) = p + 1. We proceed by
induction on g − p. The case g − p = 1 is trivial and the induction step
follows from the short exact sequences

0 −→ Lg−1 ⊗ Ig−p−1
x −→ Lg ⊗ Ig−px −→ Lg ⊗ Ig−px |J −→ 0,
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along with the isomorphism Lg ⊗ Ig−px |J ' OJ(p10(g)− (g − p)x). �

It is natural to investigate the intersection of a Severi variety Vδ(S,Lg)
with the subspaces |Lp| in the flag (2.7). The following proposition yields
that this intersection is not dimensionally proper as soon as p ≤ g− 2. Even
though we will not use this result in the rest of the paper, we include it as it
motivates the necessity of introducing expanded Severi varieties in the next
section.

Proposition 2.10. For every g ≥ 2 and 0 ≤ δ ≤ g−1, the following equality
holds in |Lg|:

(2.8) |Lg−1| ∩ Vδ(S,Lg) =

δ⋃
h=0

Vδ−h(S,Lg−h−1).

Proof. First of all, we verify the inclusion ⊃ in (2.8) by showing that, if
0 ≤ h ≤ δ and C is general in any irreducible component of Vδ−h(S,Lg−h−1),
the curve X = C + (h+ 1)J ∈ |Lg| can be deformed to an irreducible curve
in |Lg| of geometric genus g− δ (which thus lies in Vδ(S,Lg) by Proposition
2.5). The curve X is the image of a stable map f : C̃ ∪p J̃ → S of genus
g− δ, where J̃ is a smooth elliptic degree h+ 1 cover of J , the curve C̃ is the
normalization of C and has genus g−δ−1, and the gluing point p is mapped
to C ∩ J = {p10(g − h− 1)}. We denote by fC := f |C̃ : C̃ → C ⊂ S and by
fJ := f |J̃ : J̃ → J ⊂ S the restrictions of f to C̃ and J̃ , respectively. As fJ
is étale and C is nodal, both fJ and fC are unramified and the same holds
true for the map f since C and J intersect transversally at p10(g − h − 1).
The normal sheaf Nf sits in the following short exact sequence:

0 −→ Nf (−p)|J̃ −→ Nf −→ Nf |C̃ −→ 0.

By [GHS, Lem. 2.5] we have isomorphisms

Nf |C̃ ' NfC (p) ' ωC̃(2p),

and analogously
Nf (−p)|J̃ ' NfJ ' f

∗
JOJ(J).

Since the line bundle f∗JOJ(J) is non-trivial of degree 0, we obtain that
h0(Nf ) = h0(ωC̃(2p)) = g − δ and h1(Nf ) = 0, and thus f defines a smooth
point of a (g− δ)-dimensional component of Mg−δ(S,Lg). However, fC is an
unramified stable map of genus g−1−δ and thus dim[fC ]Mg−1−δ(S,Lg−h−1) =
g − 1 − δ. Analogously, the map fJ is rigid in M1(S, (h + 1)J). Hence, a
general deformation of f parametrizes a stable map from an integral (and
smooth by dimensional arguments) curve of genus g − δ. This proves that
f is smoothable and thus the existence of the morphism (2.2) yields that
X ∈ Vδ(S,Lg).

It remains to verify the inclusion ⊂ in (2.8). Any irreducible component
V of |Lg−1| ∩ Vδ(S,Lg) satisfies dimV = g− 1− δ because no component of
Vδ(S,Lg) is contained in |Lg−1| by Proposition 2.4 and |Lg−1| is a hyperplane
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in |Lg|. Assume now that a general element X of V parametrizes a curve
in |Lg−h−1| \ |Lg−h−2| for some h ≥ 0, that is, X = C + (h + 1)J with
C irreducible. We need to show that h ≤ δ and C ∈ Vδ−h(S,Lg−h−1); by
dimensional reasons and Proposition 2.5, it is enough to check that C has
geometric genus ≤ g−1−δ. This trivially follows becauseX = C+(h+1)J ∈
Vδ(S,Lg) = V g−δ(S,Lg) and J is an elliptic curve. �

3. Connectedness of expanded Severi varieties on Halphen
surfaces

3.1. Jun Li’s expanded degenerations and expanded Severi vari-
eties. We briefly recall the theory of expanded degenerations developed by
Jun Li [Li1, Li2]. An expanded degeneration of S along J is a semistable
model of S

S[n]0 := S ∪J R ∪J · · · ∪J R, R := P(OJ ⊕NJ/S),

which is the union of S with a length-n tree of ruled surfaces R as above for
some n ≥ 0. More precisely, denoting by J0 and J∞ the two distinguished
sections on R such that NJ0/R ' N∨J/S and NJ∞/R ' NJ/S , the above
expansion S[n]0 is obtained by gluing the first copy of R with S along J0,
while two adjacent copies of R are glued identifying the J∞ on the left
surface with the J0 on the right one. The section J∞ on the latter copy of
R is referred to as the relative divisor J .

We apply Li and Wu’s construction [LW] (cf. also [Li3] for a nice survey) of
stacks of relative ideal sheaves with fixed Hilbert polynomial. This provides a
moduli stack |Lg|exp, which we call expanded linear system, that parametrizes
equivalence classes of connected curves X living in some expanded degener-
ation S[n]0 of S such that: the image of X under the projection S[n]0 → S
lies in |Lg|, the curve X is normal to the singular locus of S[n]0 and to the
relative divisor J , and its automorphism group is finite. Since J · Lg = 1
on S, curves in |Lg|exp can be easily described. The condition of X being
normal to the singular locus SingS[n]0 and to the relative divisor J reduces
to the requirement that X has no component contained in these loci and
intersects each component of SingS[n]0 at a node that connects two irre-
ducible components of X living in two adjacent components of S[n]0. We
decompose X ⊂ S[n]0 in subcurves as follows:

(3.1) X = X0 ∪X1 ∪ · · · ∪Xn,

where X0 ⊂ S, while Xi is contained in the i-th copy of R if i ≥ 1, and
two adjacent Xi share a node along the singular locus of S[n]0. Since its
automorphism group is finite, X contains no fiber of a ruled surface R.
Denoting by gi the arithmetic genus of Xi, the condition that the image of
X in S lies in |Lg| yields

∑n
i=0 gi = g. The curve X0 ∈ |Lg0 | while, denoting

by f the numerical class of a fiber of R → J , for i ≥ 1 the numerical
class of Xi ⊂ R is giJ0 + f (and thus gi > 0 as Xi is not a fiber). Note
that (giJ0 + f) · J0 = 1 and thus a reducible curve with this numerical
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class necessarily contains either J0 or J∞. We thus conclude that Xi is
irreducible. The linear equivalence class of Xi is determined by the gluing
condition as follows. Setting g = (g0, . . . , gn) and x1(g) := p10(g0 + g1),
we have f(C1) ∈ |N1(g)| with N1(g) := g1J0 + fx1(g). As in [FT, §2], one
verifies thatN1(g) has two base points, namely, p10(g0) ∈ J0 and x1(g) ∈ J∞.
Analogously, setting xi(g) := p10(g0 + · · ·+ gi) for every 1 ≤ i ≤ n, we have
f(Ci) ∈ |Ni(g)| where the line bundle Ni(g) := giJ0 + fxi(g) has base points
xi−1(g) ∈ J0 and xi(g) ∈ J∞. In particular, the evaluation map

|Lg|exp → J

at the relative divisor always takes the value p10(g).
The multiplicative group C∗ acts fiberwise on R preserving the sections

J0 and J∞; this induces an action of (C∗)n on S[n]0 for every n ≥ 1. Two
curves define the same point of |Lg|exp if they live in the same S[n]0 and
lie in the same orbit under the action of (C∗)n. Summing up, thanks to
the decomposition (3.1), a point [X] ∈ |Lg|exp representing a curve in S[n]0
defines points of the following moduli stacks

X0 ∈ |Lg0 | , [Xi] ∈ |Ni(g)|/C∗ for i ≥ 1.

Since (giJ0 + f) · f = gi ≥ 1, any curve with numerical class giJ0 + f is
a degree gi cover of J ; in particular, the linear system |Ni(g)| contains no
rational curves. We will later use the following result concerning equigeneric
loci in the linear systems |Ni(g)| on R.

Proposition 3.1. Let R and Ni(g) := giJ0 + fxi(g) ∈ Pic(R) be defined as
above. Then for every integer 1 ≤ hi ≤ gi the following hold:

(i) Both the equigeneric locus V hi(R,Ni(g)) ⊂ |Ni(g)| and the moduli
stack of smoothable stable maps Mhi(R,Ni(g))sm with image in the
linear system |Ni(g)| have pure dimension hi and are generically re-
duced.

(ii) Let V and W be two intersecting components of V hi(R,Ni(g)) and
let Z be an irreducible component of V ∩ W whose general point
parametrizes a curve containing neither J0 nor J∞; then Z has pure
codimension 1 in V hi(R,Ni(g)) and a general point of Z is a reduced
point of V hi(R,Ni(g)).

Proof. Let η ∈ Pic0(J) be the line bundle such that R = P(OJ ⊕ η) and
denote by φ : R → J the natural projection; we have J∞ ≡ J0 − φ∗(η).
We recall from [FT] that curves in |Ni(g)| have arithmetic genus gi and
dim |Ni(g)| = gi. According to our notation, the moduli stackMhi(R,Ni(g))
parametrizes maps f such that f(C) lies in the linear system |Ni(g)|; this is
a closed substack of the moduli stackMhi(R, giJ0 + f) where only the nu-
merical class of f(C) is fixed. LetMhi(R,Ni(g))sm andMhi(R, giJ0 +f)sm

be the closed substacks parametrizing smoothable maps. The deformations
of a map [f ] ∈ Mhi(R, giJ0 + f)sm are governed by the normal sheaf Nf .
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As in the proof of Proposition 2.4(ii)-(iii), one shows that a general [f ] in
any irreducible component of Mhi(R, giJ0 + f)sm is unramified and thus
Mhi(R, giJ0 + f)sm is generically reduced and has pure dimension hi + 1.
Being a fiber of the evaluation map Mhi(R, giJ0 + f)sm → J0, the stack
Mhi(R,Ni(g))sm is generically reduced and of pure dimension hi. The same
holds true for the equigeneric locus V hi(R,Ni(g)) thanks to the existence
of a birational map µ̃ : M̃hi(R, giJ0 + f)sm → V h(R,Ni(g)) from the semi-
normalization M̃hi(R, giJ0 + f)sm ofMhi(R, giJ0 + f)sm. This proves (i).

To obtain (ii), one proceeds exactly as in the proofs of Proposition 2.7
and Lemma 2.10, where the density of the Severi variety in the equigeneric
locus (whose validity on R is unknown) was never used. The proofs work
the same way. In particular, in the proof of Proposition 2.7 the fact that a
general point in t(I) parametrizes an integral curve still holds true; indeed,
the equality Ni(g) ·J0 = 1 implies that all curves in the linear system |Ni(g)|
are integral except for those lying in the two hyperplanes of |Ni(g)| defined
by the linear subsystem J0 + |(gi−1)J0 +fxi(g)| and J∞+ |(gi−1)J0 +fyi(g)|,
where yi(g) := p10(g0 + · · ·+ gi − 1). �

Coming back to |Lg|exp, this is a proper and separated Deligne-Mumford
stack [Li3, Thm. 3.36]. We briefly recall why it is DM. By Li’s construction
[Li4, §2], there is a scheme

S[n]→ An

(obtained from S × An via a sequence of blow-ups) combining all possible
expansions S[k]0 for 0 ≤ k ≤ n; in particular, a fiber over a general t ∈ An
is isomorphic to S, the central fiber over 0 ∈ An is the n-th expansion S[n]0,
while the fibers over any coordinate (n − k)-dimensional plane in An are
isomorphic to S[k]0. The natural action of (C∗)n on An lifts to an action
on S[n] so that its restriction to S[n]0 is trivial on S, while the i-th copy of
C∗ acts on the i-th copy of R fiberwise so that J0 and J∞ are fixed. By its
construction, S[n] is endowed with a projection

βn : S[n]→ S

and we consider the line bundle Lg[n] := β∗nLg. Let |Lg[n]|Li be the closed
DM substack of the linear system |Lg[n]| parametrizing curves that live in
some expanded degeneration S[k]0 with k ≤ n and satisfy the same condi-
tions required to define a point in |Lg|exp. Note that |Lg[n]|Li admits a (C∗)n
action that is induced by the one on S[n] and has finite stabilizers. Since the
linear systems |Ni(g)| contain no rational curves, in the decomposition (3.1)
for a curve in |Lg|exp one has n ≤ g; in other words, there is a surjective
map |Lg[g]|Li → |Lg|exp. The fact that |Lg|exp is DM thus follows from the
properties of the induced map

|Lg[g]|Li/(C∗)g → |Lg|exp,

which is surjective, finite and étale.
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We will also occasionally make use of the moduli stack Mg−δ(S/J, Lg)
of stable relative maps to expanded degenerations of (S, J) with multiplicity
1 along the relative divisor J ; its introduction by Jun Li [Li1, Li2] is prior
to the constructions in [LW] recalled above. Remembering that J · Lg = 1
on S, a stable relative map of genus g − δ to the expansion S[n]0 is a map
f : C → S[n]0 from a connected prestable curve of genus g − δ such that
the image f(C) defines a point of the expanded linear system |Lg|exp, no
component of C is mapped entirely to the singular locus of S[n]0 or to the
relative divisor J and the automorphism group of f is finite. By (3.1), any
such map can be thus decomposed as

(3.2) f = f0 ∪ · · · ∪ fn : C = C0 ∪ C1 ∪ · · · ∪ Cn → S[n]0,

where

[f0] ∈Mh0(S,Lg0) , [fi] ∈Mhi(R,Ni(g))/C∗ for i ≥ 1

for some integers gi ≥ hi ≥ 0 satisfying
∑n

i=0 gi = g,
∑n

i=0 hi = g − δ and
hi > 0 if i 6= 0 .

For every 0 ≤ δ ≤ g, we define the expanded Severi variety Vδ(S/J, Lg)
to be the closure in |Lg|exp of the Severi variety Vδ(S,Lg). Closed points of
Vδ(S/J, Lg) thus parametrize curves X = X0∪X1∪ . . .∪Xn in |Lg|exp whose
normalization outside of the nodes ni := Xi∩Xi+1 is a nodal connected curve
of arithmetic genus ≤ g − δ. Denoting byMg−δ(S/J, Lg)

sm the substack of
Mg−δ(S/J, Lg) parametrizing smoothable maps and by M̃g−δ(S/J, Lg)

sm

its semi-normalization, the stack Vδ(S/J, Lg) can be alternatively described
as the image of the natural map

µ̃ : M̃g−δ(S/J, Lg)
sm → |Lg|exp

sending a stable map to its image. Our next goal is to prove connectedness
of Vδ(S/J, Lg) for 0 ≤ δ < g.

3.2. A sequence of blow-ups. We fix k >> 0 so that Vδ(S,Lg+k) is ir-
reducible by Proposition 2.6; the same holds true for the expanded linear
system Vδ(S/J, Lg+k). To prove connectedness of Vδ(S/J, Lg), we will re-
alize it as a fiber of a morphism Vδ(S/J, Lg+k) → P̃k admitting a section,
where P̃k is obtained from Pk via a sequence of blow-ups.

As a first step, we perform a sequence of blow-ups of |Lg+k| and in §3.3
we will relate it to the expanded linear system |Lg+k|exp.

Inside |Lg+k| we consider the chain of inclusions provided by Lemma 2.9

{E9} = |L0| ⊂ |L1| ⊂ · · · ⊂ |Lg+k−1| ⊂ |Lg+k|.

We start by blowing up |Lg+k| along |L0| and denote by E0 the exceptional
divisor. We then blow up the strict transform of |L1| and denote by E1 the
exceptional divisor, and so on until we finally blow up the strict transform



IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES 21

of |Lg+k−2| and get the last exceptional divisors Eg+k−2. Let

π : |̃Lg+k| −→ |Lg+k|
be the composition of these g + k − 1 blow-ups 3.

Let q : |Lg+k| 99K Pk be the projection of |Lg+k| from |Lg−1|, and let
q̃ : Bl|Lg−1||Lg+k| → Pk be its minimal resolution. Since π−1|Lg−1| = E0 +

· · ·+Eg−1 is a Cartier divisor on |̃Lg+k|, the universal property of blow-ups

[St, 71.17] implies that π factors trough a map π̃ : |̃Lg+k| → Bl|Lg−1||Lg+k|.
We consider the composition p := q̃ ◦ π̃ : |̃Lg+k| → Pk.

For 0 ≤ j ≤ k − 2 consider the j-dimensional projective subspace Wj =

q(|Lg+j |) ⊂ Pk, and blow-up Pk first at the point W0, then at the strict
transform of the line W1 and so on, until finally at the strict transform of
Wk−2. We denote by b : P̃k → Pk the composition of these k − 1 blow-
ups. Since p−1(W0) = Eg is a Cartier divisor on |̃Lg+k|, then again by

the universal property of blow-ups p factors through a map p0 : |̃Lg+k| →
BlW0Pk. The inverse image under p0 of the strict transform ofW1 in BlW0Pk
is again a Cartier divisor as it coincides with Eg+1, and thus p0 factors
through the blow-up of BlW0Pk along the strict transform of W1. By the
same argument, after k − 1 steps we obtain that p factors through a map

(3.3) Ψ : |̃Lg+k| → P̃k.
We will need the following results concerning Ψ.

Lemma 3.2. Let H̃1 denote the strict transform of |Lg+k−1| in |̃Lg+k|. Then,
the following hold:

(i) the intersection H̃1 ∩
(⋂k−2

i=0 Eg+i

)
is a fiber of Ψ;

(ii) if X = X0 + (k + 1)J ∈ |Lg−1| \ |Lg−2| ⊂ |Lg+k|, then the fiber

π−1(X) defines a section of Ψ : |̃Lg+k| → P̃k.

Proof. Denote by e0, . . . , ek−2 the exceptional divisors of b : P̃k → Pk, by
numbering them so that b(ej) has dimension j. By construction, we have
Eg+j = Ψ∗(ej) for every 0 ≤ j ≤ k − 2. Furthermore, on P̃k there exists a
divisor D̃1 ∈ |b∗OPk(1) −

∑k−2
j=0 ej | such that H̃1 = Ψ∗D̃1. It then follows

that the intersection

H̃1 ∩

(
k−2⋂
i=0

Eg+i

)
is the inverse image under Ψ of the point ξ ∈ D̃1∩ e0∩ . . .∩ ek−2 determined
by P(ND1/Pk,W0

), where D1 = b(D̃1) = π(|Lg+k−1|). This gives (i).

3the attentive reader may note that for our purposes it would be enough to perform
only k + 1 blow-ups, starting from that of |Lg−1|; however, we consider the choice of
blowing up the entire flag more natural.
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Let X ∈ |Lg−1| \ |Lg−2| be as in (ii). By construction, the fiber π−1(X)

is a Pk = P(N|Lg−1|/|Lg+k|,X) blown-up at the point P(N|Lg−1|/|Lg |,X) (the
exceptional divisor being identified with P(N|Lg |/|Lg+k|,X)) and then at the
strict transform of the line P(N|Lg−1|/|Lg+1|,X) (with exceptional divisor given
by a P(N|Lg+1|/|Lg+k|,X) = Pk−2-bundle) and so on until, finally, at the strict
transform of P(N|Lg−1|/|Lg+k−2|,X) (the exceptional divisor over it being a
P(N|Lg+k−2|/|Lg+k|,X) = P1-bundle). Hence, Ψ maps π−1(X) isomorphically

onto P̃k, that is, π−1(X) defines a section of Ψ : |̃Lg+k| → P̃k. �

3.3. Connectedness results. We will now use the map Ψ in (3.3) to obtain
a map from the expanded linear system |Lg+k|exp defined in §3.1 to P̃k, a
fiber of which will be isomorphic to |Lg|exp.

Proposition 3.3. The natural projection α : |Lg+k|exp → |Lg+k| factors
through a map α̃ : |Lg+k|exp → |̃Lg+k|. Furthermore, the composition

Ψ ◦ α̃ : |Lg+k|exp → P̃k

has a fiber that is isomorphic to |Lg|exp and parametrizes curves X = X0 ∪
X1 ∪ . . .∪Xk living in some expanded degeneration S[n]0 with n ≥ k so that
[X0] ∈ |Lg|exp and Xi ' J ∈ |J0 + fp10(g+i)| for 1 ≤ i ≤ k 4.

Proof. We exploit the family S[1]→ A1, whose general fibers St are isomor-
phic to S and whose central fiber is S[1]0 = S ∪ R. Let β1 : S[1] → S be
the projection and set Lg+k[1] := β∗1Lg+k. We exploit the theory of good
degenerations of relative Hilbert schemes introduced and studied in [LW].
Let

e : |Lg+k[1]|exp → A1

be the moduli stack of the good degeneration of the relative linear system
|Lg+k| × (A1 \ {0}) → A1 \ {0}. Over a point t ∈ \{0}, the fiber of e is
the linear system |Lg+k|, while the fiber over 0 is the stack |Lg+k[1]|exp

0 ,
parametrizing equivalence classes of curves X = X0 ∪ X1 ∪ . . . ∪ Xn ∪ X ′0
in some expanded degeneration of S[1]0 (or equivalently, in some expanded
degenerations S[n]0 of S with n ≥ 1) whose image in S lies in |Lg+k|. By
[Li3, Thm. 3.37] (whose analogue for stable maps was proved in [Li1, Li2]
and is clearly exposed in [Li4, Lem. 16]), the stack |Lg+k[1]|exp

0 admits the
following decomposition:

(3.4) |Lg+k[1]|exp
0 =

⋃
0≤g0≤g+k−1

|Lg0 |exp × |(g + k − g0)J0 + fp10(g+k)|exp,

4we will say that such a curve X has a tail of at least k copies of J
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where |(g+k−g0)J0 +fp10(g+k)|exp stands for the expansion of the linear sys-
tem |(g+k−g0)J0+fp10(g+k)| relative to the divisor J0 ⊂ R. In the above de-
composition, each factor appears with multiplicity one5 and defines a Cartier
divisor in |Lg+k[1]|exp that we denote by D′g0 . As it happens for |Lg+k|exp,
points of |Lg+k[1]|exp parametrize curves living in some expansion S[n]0 with
n ≤ g + k and thus there is a surjection |Lg+k[g + k]|Li → |Lg+k[1]|exp; the
divisor D′g0 is the image of a Cartier divisor on |Lg+k[g + k]|Li, which is
(C∗)g+k-equivariant. Its image under the étale map

|Lg+k[g + k]|Li/(C∗)g+k → |Lg+k|exp

thus defines a Cartier divisor on |Lg+k|exp, that we denote by Dg0 . By the
definition of D′g0 , if [X] ∈ Dg0 then α(X) ∈ |Lg0 | ⊂ |Lg+k|. Therefore, by
Lemma 2.9, for any fixed 0 ≤ g′ < g + k one has the equality

(3.5) α−1(|Lg′ |) =
⋃

0≤g0≤g′
Dg0 ,

implying that α−1(|Lg′ |) is a Cartier divisor on |Lg+k|exp. The case g′ = 0
yields, by the universal property of blow-ups [St, 70.17], a factorization of α
through the blow-up of |Lg+k| along |L0|:

|Lg+k|exp

α

77

α0 // Bl|L0||Lg+k|
b0 // |Lg+k|.

Denoting by |L1|t the strict transform of |L1| in Bl|L0||Lg+k|, we have

α−1(|L1|) = α−1
0 (|L1|t + E0) = α−1

0 (|L1|t) + α−1(|L0|),

and thus conclude that α−1
0 (|L1|t) is a Cartier divisor as it is difference of two

Cartier divisors. Therefore, α0 factors through the blow-up of Bl|L0||Lg+k|
along |L1|t. By the same argument, after g + k − 1 steps one obtains the
desired factorization of α through a map α̃ : |Lg+k|exp → |̃Lg+k|. By con-
struction, one has

α̃−1(E0) = α−1|L0| = D0

and then
α̃−1(E1) = α−1|L1| − α̃−1(E0) = D1.

Analogously, for every 1 ≤ i ≤ g + k − 2 one has

α̃−1(Ei) = α−1|Li| −
i−1∑
j=0

α̃−1(Ej) = Di.

5this follows from the fact that Lg · J = 1 and thus any curve X in |Lg+k[1]|exp0

intersects each component of the singular locus of S[n]0 at a node that connects two
irreducible components of X living in two adjacent components of S[n]0.
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Finally, one computes that

(3.6) α̃−1(H̃1) = α−1|Lg+k−1| −
g+k−2∑
j=0

α̃−1(Ej) = Dg+k−1.

We recall that points of Di represent curves X = X0 ∪X1 such that X0 ∈
|Li|exp andX1 ∈ |(g+k−i)J0+fp10(g+k)|exp. Hence, points in the intersection
α̃−1(H̃1)∩α̃−1(Eg+k−2) = α̃−1(H̃1∩Eg+k−2) = Dg+k−1∩Dg+k−2 parametrize
curves X0∪X1∪X2 such that X0 ∈ |Lg+k−2|exp, X1 ' J ∈ |J0 +fp10(g+k−1)|
and X2 ' J ∈ |J0 + fp10(g+k)|; since X1 and X2 are sections of R→ J , they
are both isomorphic to J and thus X has a tail of at least 2 copies of J .
By further intersecting with α̃−1(Eg+k−3) = Dg+k−3, we select curves with
a tail of at least 3 copies of J , and so on.

In conclusion, the intersection

(3.7) α̃−1

H̃1 ∩

g+k−2⋂
i=g

Ei

 =

g+k−1⋂
i=g

Di

parametrizes curves X = X0 ∪X1 ∪ . . .∪Xk living in some expanded degen-
eration S[m + k]0 = S[m]0 ∪ R ∪ . . . ∪ R with m ≥ 0 so that [X0] ∈ |Lg|exp

and Xi ' J ∈ |J0 + fp10(g+i)| for 1 ≤ i ≤ k. For 1 ≤ i ≤ k the class of Xi

under the action of C∗ is uniquely determined. In particular, the intersection
(3.7), which is a fiber of Ψ ◦ α̃ by Lemma 3.2, is isomorphic to |Lg|exp. �

Theorem 3.4. For every g ≥ 2 and 0 ≤ δ ≤ g − 1, the stack Vδ(S/J, Lg) is
connected. The same holds true for the relative normalization Vδ(S/J, Lg)

n

of Vδ(S/J, Lg) along Vδ+1(S/J, Lg).

Proof. Fix k >> 0 so that Vδ(S/J, Lg+k) is irreducible, and consider the
restriction

ψ := Ψ ◦ α̃|Vδ(S/J,Lg+k)
: Vδ(S/J, Lg+k)→ P̃k

of Ψ ◦ α̃ to the expanded Severi variety Vδ(S/J, Lg+k). Let ξ ∈ P̃k be the
point such that the fiber (Ψ◦α̃)−1(ξ) parametrizes curvesX = X0∪J∪. . .∪J
with X0 ∈ |Lg|exp and a tail of k copies of J as in Proposition 3.3. First of
all, we show that ψ−1(ξ) parametrizes those curves X = X0 ∪ J ∪ . . . ∪ J
such that X0 ∈ Vδ(S/J, Lg).

Take a general curve X = X0∪J ∪ . . .∪J with a tail of k copies of J that
lies in ψ−1(ξ). Defining a point in Vδ(S/J, Lg+k), the curve X is the limit of
a family of integral curves in |Lg+k| possessing δ nodes; the limit of any of
these nodes is non-disconnecting6, and thus lies in X0. The normalization of
X outside of its disconnecting nodes thus has arithmetic genus ≤ g + k − δ.

6A node x of a connected curve X is said to be disconnecting if the normalization of
X at x is not connected. In a family of curves, a disconnecting node of the central fiber
cannot be the limit of non-disconnecting nodes on general fibers. Indeed, otherwise, the
normalization would produce a flat family of curves whose general fiber is connected and
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By dimensional reasons using that every component of ψ−1(ξ) has dimension
≥ g− δ and Propositions 2.4 and 3.1, we conclude that X0 is irreducible and
X0 ∈ Vδ(S,Lg) ⊂ Vδ(S/J, Lg).

Viceversa, we need to show that if X0 ∈ Vδ(S,Lg), the curve X = X0 ∪
J ∪ . . . ∪ J ⊂ S[k]0 obtained by attaching to X0 a chain of k copies of J ,
each defining the only point of |J0 + fp10(g+i)|/C∗ in the i-th copy of R, lies
in Vδ(S/J, Lg+k). Let f0 : C0 → S denote the stable map inMg−δ(S,Lg)

sm

whose image is X0 and take [fi] ∈ M1(R, J0 + fp10(g+i))/C∗ for 1 ≤ i ≤ k;
the map f = f0∪f1∪ . . .∪fk is unramified and thus, by dimensional reasons
using Propositions 2.4 and 3.1, one checks that [f ] ∈Mg+k−δ(S/J, Lg+k)

sm.
SinceX coincides with the image of f , we conclude that [X] ∈ Vδ(S/J, Lg+k).
We have thus proved that Vδ(S/J, Lg) is isomorphic to the fiber ψ−1(ξ).

We claim that ψ admits a section sV : V → Vδ(S/J, Lg+k) over an open
subset V ⊂ P̃k. Assuming this, we consider the Stein factorization of ψ:

Vδ(S/J, Lg+k)

ψ

::
ψ′ // B

b // P̃k,

where b is finite and ψ′ has connected fibers. The composition tV := ψ′ ◦ sV
is a section of b over V . Denote by B′ ⊂ B the closure of the image of tV ;
since B and P̃k have the same dimension and B is irreducible, we conclude
that B′ = B. Therefore, b is a finite birational morphism and, since P̃k
is normal, Zariski’s Main Theorem implies that b is an isomorphism. We
conclude that the fibers of ψ are isomorphic to those of ψ′, which are all
connected; in particular, Vδ(S/J, Lg) is connected.

It only remains to prove our claim. Take X0 ∈ Vδ(S,Lg−1) with X0 6∈
|Lg−2| and set X := X0 + (k + 1)J ∈ |Lg−1| ⊂ |Lg+k|. Recalling that
α = π ◦ α̃ and that π−1(X) defines a section of Ψ by Lemma 3.2(ii), to
construct a section of ψ over an open subset V ⊂ P̃k it is enough to show
that α−1(X) = α̃−1(π−1(X)) is contained in Vδ(S/J, Lg+k) and that the
restriction of α̃ to α−1(X) is birational.

By (3.4) and (3.5), the fiber α−1(X) is contained in the divisor Dg−1

and is isomorphic to |(k + 1)J0 + fp10(g)|exp/C∗. Let f0 : C0 → X0 ⊂ S de-
note the stable map inMg−1−δ(S,Lg−1)sm obtained by composing the nor-
malization map of X0 with the inclusion X0 ⊂ S. By dimensional rea-
sons using Propositions 2.4 and 3.1, all stable maps f = f0 ∪ f1 with
[f1] ∈ Mk+1(R/J0, (k + 1)J0 + fp10(g))

sm/C∗ are smoothable. As a con-
sequence, all curves X0 ∪ X1 with [X1] ∈ |(k + 1)J0 + fp10(g)|exp/C∗ define

whose central fiber is not, in contradiction with lower semicontinuity of the number of
connected components.
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points of Vδ(S/J, Lg+k) and thus

Vδ(S/J, Lg+k) ⊃ α̃−1(π−1(X)) = α−1(X) ' |(k + 1)J0 + fp10(g)|exp/C∗.

In particular, α̃−1(π−1(X)) and π−1(X) have both dimension k and hence
a general fiber of the restriction α̃|π−1(X) is finite. However, α̃ is birational

and |̃Lg+k| is smooth, so that all fibers of α̃ are connected by Zariski’s Main
Theorem. We thus conclude that the restriction of α̃ to π−1(X) is birational,
as desired.

Let now ψn : Vδ(S/J, Lg+k)
n → P̃k denote the composition of the relative

normalization Vδ(S/J, Lg+k)
n → Vδ(S/J, Lg+k) along Vδ+1(S/J, Lg+k) with

the map ψ. The fiber (ψn)−1(ξ) is isomorphic to the relative normaliza-
tion Vδ(S/J, Lg)

n
of Vδ(S/J, Lg) along Vδ+1(S/J, Lg); therefore, in order to

prove that Vδ(S/J, Lg)
n
remains connected it is enough to show that, up to

restricting V , the section sV : V → Vδ(S/J, Lg+k) constructed above lifts to
a section snV : V → Vδ(S/J, Lg+k)

n
. This holds true because a general ele-

ment of α−1(X) does not lie in Vδ+1(S/J, Lg), and thus α−1(X) is birational
to its inverse image in Vδ(S/J, Lg+k)

n
. �

Since the image of the expanded Severi variety Vδ(S/J, Lg) under the
projection |Lg|exp → |Lg| coincides with Vδ(S,Lg), we obtain the following
corollary of independent interest.

Corollary 3.5. For every g ≥ 2 and 0 ≤ δ ≤ g−1, the closure of the Severi
variety Vδ(S,Lg) ⊂ |Lg| is connected.

In the next section, we will make use of the following result.

Proposition 3.6. Fix g ≥ 2 and 0 ≤ δ ≤ g − 1. Let V and W be two
intersecting irreducible component of Vδ(S/J, Lg)

n
and let Z be a component

of their intersection; then a general closed point of Z is a reduced point of
Vδ(S/J, Lg)

n
.

Proof. Take Z as in the statement. Since normal singularities are uni-
branched (cf., e.g., [Ko2]), then Z is not contained in the inverse image
of Vδ+1(S/J, Lg) under the normalization map Vδ(S/J, Lg)

n → Vδ(S/J, Lg).
We first assume that a general point ζ of Z parametrizes an irreducible

curve, so that locally around ζ the morphism

Vδ(S/J, Lg)→ Vδ(S,Lg)

(obtained as restriction of |Lg|exp → |Lg|) is an isomorphism; the result then
follows from Proposition 2.7.

We now treat the case where a general point ζ of Z parametrizes a curve
X = X0 ∪ . . . ∪ Xn ∈ S[n]0 for some n ≥ 1. More precisely, there exist
h = (h0, . . . , hn) ∈ Zn+1 and g = (g0, . . . , gn) ∈ Zn+1 with

∑n
i=0 hi = g − δ,
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i=0 gi = g, 0 ≤ h0 ≤ g0 and 1 ≤ hi ≤ gi for i > 0, such that Z is contained

in the substack V(h, g) of Vδ(S/J, Lg) parametrizing curves

X = X0 ∪X1 ∪ . . . ∪Xn ⊂ S ∪R ∪ . . . ∪R = S[n]0

such that Xi has arithmetic genus gi and geometric genus hi. The closure
V(h, g) of V(h, g) in |Lg|exp fills up some components of the intersection of
Vδ(S/J, Lg) with the n Cartier divisors Dg0 ,Dg0+g1 , . . . ,Dg0+···+gn−1 defined
in the proof of Proposition 3.3. More precisely, V(h, g) is isomorphic to the
open substack

U ⊂ V h0(S,Lg0)×
[
V h1(R,N1(g))/C∗

]
× · · · ×

[
V hn(R,Nn(g))/C∗

]
parametrizing curves with no components in the singular locus of S[n]0.
Propositions 2.4 and 3.1 then imply that V(h, g) is a complete intersection
in Vδ(S/J, Lg) and has codimension n therein. In particular, if V(h, g) is
reduced at a general point of Z, then7 the same holds true for Vδ(S/J, Lg).
Again by Propositions 2.4 and 3.1, V(h, g) is generically reduced and we thus
conclude that Vδ(S/J, Lg) is reduced at a general point of Z if codimZ = n

(that is, when Z fills up a component of V(h, g)). If instead codimZ > n,
then V ′ := V ∩ V(h, g) and W ′ := W ∩ V(h, g) are unions of components of
V(h, g) and Z is a component of the intersection V ′ ∩ W ′. Hence, V ′ and
W ′ can be identified with open substacks of two products V ′0 × [V ′1/C∗] ×
· · · [V ′n/C∗] andW ′0×[W ′1/C∗]×· · · [W ′n/C∗], where V ′0,W ′0 are components of
V h0(S,Lg0), while V ′i,W ′i are components of V hi(R,Ni(g)) for i ≥ 1. Hence,
Z can be identified with an open subset of an irreducible component of

(V ′0 ∩W ′0)× [V ′1 ∩W ′1/C∗]× · · · [V ′n ∩W ′n/C∗];
again Propositions 2.7 and 3.1 (and the fact that a categorical quotient
of a generically reduced object is still generically reduced by the universal
property) imply that V(h, g) is reduced at a general closed point of Z, and
thus the same holds true for Vδ(S/J, Lg). �

4. Connectedness on a general K3 surface

In this section we will show how Theorem 3.4 implies connectedness of
positive dimensional Severi varieties on a general polarized K3 surface.

Let S and S′ be two surfaces both obtained as blow-ups of P2 at two
9-uples of general points, p1, . . . , p9 and p′1, . . . , p′9, respectively. We assume
that the anticanonical divisors on S and S′ are represented by the same

7it is enough to use that, given a commutative ring R, a prime ideal p ⊂ R and an
element x ∈ p which is not a zero divisor of R, if the quotient ring (R/(x))p/(x) ' Rp/xRp
has no nilpotents, then the same holds true for Rp. This can be proved as follows: if
r ∈ Rp is nilpotent, then r = xy ∈ xRp and y itself is nilpotent; this shows that the
Nilradical N (Rp) of Rp satisfies N (Rp) = xN (Rp) and thus N (Rp) = (0) by Nakayama’s
Lemma.
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elliptic curve J and that the relation NJ/S ' N∨J/S′ holds. We glue S and S′

along J so that p′9 = p10(g). Since NJ/S ' OJ(p10(h)− p10(h− 1)) for every
h ≥ 0, and the same holds for S′, our assumptions yield p10(h) = p10(g−h)′

for every 0 ≤ h ≤ g. In particular, all the pairs (Lh, L
′
g−h) ∈ Pic(S)×Pic(S′)

define equivalent polarizations on Y0 := S ∪J S′, in the sense that they differ
only by the twist for a multiple of (NJ/S , NJ/S′); we set L := [(Lh, L

′
g−h)].

The surface Y0 is a stable K3 surface of type II and thus occurs as the central
fiber of a flat map

χ : Y → D
over a disc whose general fiber Yt is a smooth K3 surface of genus g (cf. [Fr,
Prop. 2.5, Thm. 5.10]). Furthermore, for every 0 ≤ h ≤ g the family Y
comes equipped with a relative line bundle L(h) restricting to the genus g
polarization Lt on a general fiber Yt and to the polarization (Lh, L

′
g−h) on

Y0. Since the line bundles L(h) only differ by a twist for a multiple of some
component of the central fiber, they are all equivalent and we call L their
class. We remark that this degeneration in the particular case where S = S′

and the points p1, . . . , p9 ∈ P2 are the base locus of a general pencil of plane
cubics is the one used in [MPT, §4].

We denote by
χδ :Mg−δ(Yexp,L)→ D

the moduli stack of connected stable maps to expanded degenerations of χ
constructed in [Li1, Li2]. Over a point t ∈ D∗ = D \ {0}, the fiber of χδ is
simply the moduli stackMg−δ(Yt, Lt) of ordinary stable maps on Yt, while
the fiber over 0 is the stack Mg−δ(Y

exp
0 , L) parametrizing stable maps (in

the sense of J. Li) to some expanded target degeneration of Y0 of the form:

Y0[n]0 := S ∪J R ∪J . . . ∪J R ∪J S′

for some n ≥ 0. As already used in [MPT], a stable map to such an expanded
degeneration can be split in a non-unique way into relative stable maps to
(S, J) and (S′, J). In particular, Mg−δ(Y

exp
0 , L) can be written as a non-

disjoint union

(4.1) Mg−δ(Y
exp

0 , L) =
⋃

g1+g2=g
h1+h2=g−δ

Mh1(S/J, Lg1)×Mh2(S′/J, L′g2),

where each factor in the above decomposition can be realized as a Cartier
divisor onMg−δ(Yexp,L). Let

Mg−δ(Yexp,L)sm → D

be the substack of Mg−δ(Yexp,L) whose fiber over t ∈ D∗ is the substack
Mg−δ(Yt, Lt)

sm ofMg−δ(Yt, Lt) parametrizing smoothable stable maps, and
setMg−δ(Y

exp
0 , L)sm :=Mg−δ(Yexp,L)sm ×D 0.

Similarly, we denote by
e : |L|exp → D



IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES 29

the good degeneration of the relative linear system |L|∗ → D∗, which is a
particular case of good degenerations of relative Hilbert schemes introduced
and studied in [LW]. The space |L|exp is a Deligne-Mumford stack, separated,
proper over D and of finite type. A fiber of e over a general t ∈ D is
isomorphic to the linear system |Lt| on Yt. On the other hand, points of
the central fiber parametrize equivalence classes of curves X = X0 ∪ X1 ∪
. . . ∪ Xn ∪ X ′0 in some expanded target degenerations Y0[n]0 of Y0 with no
components in the singular locus of Y0[n]0. More precisely, by [LW, Thm.
5.27] the central fiber can be decomposed in the following non-disjoint union
of Cartier divisors

(4.2)
⋃

g1+g2=g

|Lg1 |exp × |L′g2 |
exp.

Since Severi varieties may be defined functorially, for any fixed 0 ≤ δ ≤ g
there is a χ-relative Severi variety sδ : Vδ(Y,L)∗ → D∗ such that the fiber
over t ∈ D∗ is the Severi variety Vδ(Yt, Lt). We denote by Vδ(Yexp,L) the
closure of Vδ(Y,L)∗ in |L|exp and by

sδ : Vδ(Yexp,L)→ D

the natural morphism. The stack Vδ(Yexp,L) can be alternatively realized as
the image of the natural map from the semi-normalization ofMg−δ(Yexp,L)sm

to |L|exp. The analogue of the decomposition (4.1) for the central fiber
Vδ(Y exp

0 , L) := Vδ(Yexp,L)×D 0 of sδ is then stated in the following result.

Lemma 4.1. The stack Vδ(Y exp
0 , L) decomposes in the following non-disjoint

union:

(4.3) Vδ(Y exp
0 , L) =

⋃
g1+g2=g
δ1+δ2=δ

Vδ1(S/J, Lg1)× Vδ2(S′/J, L′g2).

Each factor in the decomposition (4.3) appears with multiplicity 1 and defines
a Cartier divisor in Vδ(Yexp,L).

Proof. As concerns the inclusion ⊃, we recall that a general point in any irre-
ducible component of Vδ1(S/J, Lg1) (respectively, Vδ2(S′/J, L′g2)) parametrizes
an irreducible curve C ∈ Vδ1(S,Lg1) (respectively, C ′ ∈ Vδ2(S′, L′g2)). By
gluing C and C ′ along their intersection point p10(g1) = p10(g2)′ with J , one
obtains a curve X = C ∪C ′ ⊂ Y0 = S ∪ S′ with δ1 + δ2 nodes outside of X;
there is no obstruction to deforming such an X outside of the central fiber
of sδ and this proves ⊃.

We now prove the opposite inclusion ⊂. Let V be a component of the
central fiber Vδ(Y exp

0 , L) of sδ. Then V has dimension g − δ by upper semi-
continuity along with the fact that D is 1-dimensional. A general point of
V parametrizes a curve X ⊂ Y0[n]0 for some n ≥ 0 such that X ∈ |L|exp

and the normalization of X outside of the singular locus of Y0[n]0 has arith-
metic genus h ≤ g − δ. Propositions 2.4 and 3.1 then yield n = 0 and
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h = g − δ, so that X = C ∪ C ′ with C ∈ V g1−δ1(S,Lg1) = Vδ1(S,Lg1)

and C ′ ∈ V g2−δ2(S′, Lg2) = Vδ2(S′, L′g2) for some integers 0 ≤ δ1 ≤ g1,
0 ≤ δ2 ≤ g2 such that g1 + g2 = g and δ1 + δ2 = δ. This proves ⊂.

The last part of the statement is a consequence of the same property for
the decompositions (4.1) and (4.2), that follow from [Li2] and [LW, Thm.
5.27] since Lh · J = 1 for every h ≥ 0. �

Proposition 4.2. If 0 ≤ δ ≤ g − 1, every component V of Vδ(Y exp
0 , L) can

be connected to some component Vr of |L0|×Vδ(S′/J, L′g) through a sequence
of irreducible components

V = V0,V1, . . . ,Vr
such that for all 0 ≤ i ≤ r − 1 the following hold:

(i) the intersection Vi ∩ Vi+1 has codimension 1;
(ii) a general point of Vi ∩ Vi+1 parametrizes a curve

X = X0 ∪X1 ∪X ′0 ⊂ Y0[1]0

such that the components X0 ⊂ S and X ′0 ⊂ S′ are nodal, the com-
ponent X1 ⊂ R is immersed, the normalization of X outside of its
intersection points with the singular locus of Y0[1]0 has arithmetic
genus precisely g − δ.

In particular, Vδ(Y exp
0 , L) is reduced at a general closed point of any irre-

ducible component of Vi ∩ Vi+1.

Proof. By Lemma 4.1, there exist integers 0 ≤ δ1 ≤ g1, 0 ≤ δ2 ≤ g2 such
that g1 +g2 = g and δ1 +δ2 = δ and V0 := V =W0×W ′0 for some irreducible
components W0 of Vδ1(S/J, Lg1) and W ′0 of Vδ2(S′/J, L′g2).

If g1− δ1 ≥ 1, thenW0 contains in codimension 1 points that parametrize
curves C = C0 ∪ C1 ⊂ S[1]0 with C0 ∈ Vδ1(S,Lg1−1) and C1 ' J ∈ |J0 +
fp10(g1)|. For any C ′0 ∈ Vδ2(S′, L′g2) the nodal curve C := C0 ∪ C1 ∪ C ′0 also
defines a point of Vδ1(S/J, Lg1−1) × Vδ2(S′/J, L′g2+1) and this proves that
V0 :=W0 ×W ′0 can be connected to a component

V1 =W1 ×W ′1 ⊂ Vδ1(S/J, Lg1−1)× Vδ2(S′/J, L′g2+1)

so that the intersection V0 ∩ V1 satisfies conditions (i)-(ii) in the statement.
By repeating the same argument g1 − δ1 times, we find a sequence

V = V0,V1, . . . ,Vg1−δ1
of irreducible components of Vδ(Y exp

0 , L) such that Vi =Wi ×W ′i is an irre-
ducible component of Vδ1(S/J, Lg1−i)×Vδ2(S′/J, L′g2+i) and that conditions
(i)-(ii) in the statement hold for the intersection Vi ∩ Vi+1.

We now start from

Vg1−δ1 =Wg1−δ1 ×W ′g1−δ1 ⊂ Vδ1(S/J, Lδ1)× Vδ2(S′/J, L′g−δ1)
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and notice that W ′g1−δ1 ⊂ Vδ2(S′/J, L′g−δ1) contains in codimension 1 points
that parametrize curves D = J̃ ∪ D′0 ⊂ S[1]′0, where D′0 ∈ |L′g−δ−1| and J̃
is an irreducible elliptic curve such that J̃ ∈ V 1(R, (δ2 + 1)J0 + fp10(δ+1)).
For every rational curve D0 ∈ Vδ1(S,Lδ1) the curve D := D0 ∪ J̃ ∪D′0 also
defines a point of Vδ(S/J, Lδ+1) × |L′g−δ−1|exp; this proves that Vg1−δ1 can
be connected to a component

Vg1−δ1+1 :=Wg1−δ1+1 × |L′g−δ−1|exp ⊂ Vδ(S/J, Lδ+1)× |L′g−δ−1|exp

so that (i) and (ii) hold.
Finally, we use the fact that the component Wg1−δ1+1 ⊂ Vδ(S/J, Lδ+1)

contains in codimension 1 curves of the form E9 + J , where E9 is the ninth
exceptional divisor on S (and thus the only curve in the linear system |L0|)
and J is an irreducible curve such that J ∈ V 1(R, (δ+ 1)J0 + fp10(δ+1)). For
any curve F ′0 ∈ |L′g−δ−1|, the divisor E9 +J+F ′0 ∈ Y0[1]0 also defines a point
of |L0|×Vδ(S′/J, L′g). This proves that Vg1−δ1+1 is connected to a component
Vg1−δ1+2 of |L0| × Vδ(S′/J, L′g) so that (i)-(ii) hold for Vg1−δ1+1 ∩ Vg1−δ1+2.

It only remains to prove that conditions (i)-(ii) imply Vδ(Y exp
0 , L) is re-

duced at a general point the intersection Vi ∩ Vi+1. Conditions (i)-(ii) to-
gether with Propositions 2.4 and 3.1 yield that every component of Vi∩Vi+1

is birational to an open substack of

Vδ0(S,Lg0)×
[
V h1(R, g1J0 + fp10(g0+g1))/C∗

]
× Vδ′0(S′, L′

g′0
)

for some integers 0 ≤ δ0 ≤ g0, 0 ≤ δ′0 ≤ g′0, 1 ≤ h1 ≤ g1 such that
g0 + g1 + g′0 = g and δ0 + g1 − h1 + δ′0 = δ. Reducedness of Vδ(Y exp

0 , L) at
general points of Vi ∩Vi+1 thus follows from Propositions 2.4 and 3.1 (using
the same argument explained in footnote 7). �

Theorem 4.3. Let (Y, L) be a general primitively polarized K3 surface of
genus g ≥ 2 and fix 0 ≤ δ ≤ g − 1. Then the closure of the Severi va-
riety Vδ(Y,L) ⊂ |L| is connected and the same holds true for the relative
normalization Vδ(Y,L)

n
of Vδ(Y, L) along Vδ+1(Y, L).

Proof. Let sδ : Vδ(Yexp,L) → D be the good degeneration of the relative
Severi variety to the family χ : Y → D as at the beginning of this section. We
denote by snδ : Vδ(Yexp,L)

n → D the relative normalization of Vδ(Yexp,L)

along Vδ+1(Yexp,L). In particular, a general fiber of snδ is the normalization
of Vδ(Yt, Lt) along Vδ+1(Yt, Lt), while the central fiber is the normalization
Vδ(Y exp

0 , L)
n
of Vδ(Y exp

0 , L) along Vδ+1(Y exp
0 , L). We need to show that a

general fiber of snδ is connected.
First of all, we note that the central fiber Vδ(Y exp

0 , L) of sδ is generically re-
duced. Indeed, this follows directly from Lemma 4.1 and Proposition 2.4(iii).
Obviously, the same holds true for the central fiber of snδ , thus implying that
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two components of a general fiber of snδ remain distinct also on the central
fiber.

By Proposition 4.2, every component of the central fiber Vδ(Y exp
0 , L) of

sδ can be connected to |L0| ×Vδ(S′/J, L′g) through a sequence of irreducible
components V = V0,V1, . . . ,Vr with Vr ⊂ |L0| × Vδ(S′/J, L′g) such that for
all 0 ≤ i ≤ r − 1 the stack Vδ(Y exp

0 , L) is reduced at a general point of any
component of Vi ∩ Vi+1. Again by Proposition 4.2, no component of the
latter intersection is contained in Vδ+1(Y exp

0 , L) and we conclude that also
every component Vn of the normalization Vδ(Y exp

0 , L)
n
can be connected to

|L0| × Vδ(S′/J, L′g)
n
through a sequence of irreducible components Vn =

Vn0 ,Vn1 , . . . ,Vnr with Vnr ⊂ |L0| × Vδ(S′/J, L′g)
n
such that Vδ(Y exp

0 , L)
n
is

reduced at a general closed point of any component of the intersection Vni ∩
Vni+1. Since |L0| is a point, Proposition 3.6 implies that |L0| × Vδ(S′/J, L′g)

n

is connected and that Vδ(Y exp
0 , L)

n
is reduced at general closed points of the

intersection of two irreducible components of |L0| × Vδ(S′/J, L′g)
n
.

We use this in order to conclude that a general fiber of snδ is connected,
too. Let Z1 and Z2 be two connected components of Vδ(Yexp,L)

n
and,

by contradiction, assume that Z1 ∩ Z2 is contained in the central fiber of
snδ ; in particular, Z1 ∩ Z2 has codimension ≥ 2 in Vδ(Yexp,L)

n
. By the

above discussion, we may also assume that Vδ(Y exp
0 , L)

n
is reduced at gen-

eral closed points of Z1 ∩ Z2. Let τ : ˜Vδ(Yexp,L) → Vδ(Yexp,L)
n
be the

normalization of Vδ(Yexp,L)
n
. By Serre’s criterion for normality8 [Ma, Thm.

23.8], ˜Vδ(Yexp,L) satisfies Serre’s condition (S2) and thus the central fiber
of τ ◦ snδ , being a Cartier divisor, satisfies Serre’s condition (S1) (that is, it
has no embedded points). Since generic reducedness along with condition
(S1) is equivalent to reducedness [Ma, p. 183] and the central fiber of snδ is
generically reduced, we conclude that the central fiber of τ ◦ snδ is reduced.
By [St, 76.36.8], the number of its connected components is thus the same
as the number of connected components of a general fiber of τ ◦ snδ . This
implies that the normalization τ has separated Z1 and Z2 and thus Z1 ∩Z2

is contained in the non-normal locus of Vδ(Yexp,L)
n
. Since Z1 ∩ Z2 has

codimension ≥ 2, again by Serre’s criterion for normality we conclude that
Vδ(Yexp,L)

n
is not (S2) at a general point of Z1 ∩ Z2. Hence9, the central

fiber Vδ(Y exp
0 , L)

n
of snδ , which is a Cartier divisor containing Z1∩Z2, is not

(S1) at a general point of Z1 ∩ Z2. Since this contradicts the assumption of

8because normality and reducedness of an algebraic stack T can be checked on an atlas
T , we will say that T is reduced/ normal/ satisfies Serre’s condition (Sk) if T does.

9it is enough to use that, if R is a commutative ring and x ∈ R is not a zero divisor,
then for every prime ideal p ⊂ R containing x, one has (R/(x))p/(x) ' Rp/xRp and
depthRp/xRp = depthRp − 1.
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Vδ(Y exp
0 , L)

n
being reduced at a general point of Z1 ∩ Z2, we conclude that

a general fiber of snδ is connected. �

5. Irreducibility on a general K3 surface

In this section, we will focus on the Severi problem for general polarized
K3 surfaces. As we have already proved that Severi varieties of positive
dimension are connected, the irreducibility problem can be approached by
investigating how two irreducible components may intersect.

Proposition 5.1. Let (Y,L) be a general primitively polarized K3 surface
of genus g ≥ 2 and fix 0 ≤ δ ≤ g − 1. The intersection of two irreducible
components of Vδ(Y, L), if nonempty, has pure codimension 1.

Proof. Since (Y,L) is general, we may assume that all curves in |L| are
integral and that V δ(Y, L) = Vg−δ(Y,L). The proof proceeds as the one of
Proposition 2.7 and is actually easier because all curves in |L| are integral.
In this case I = D(φ̃) and the same proof as that of Lemma 2.8 implies that
the locus in I where the fibers of the projection t : I −→ |L| have positive
dimension has dimension ≤ g − δ − 2. �

Theorem 5.2. Let (Y, L) be a general primitively polarized K3 surface of
genus g ≥ 4 and fix 0 ≤ δ ≤ g − 4. Then, the Severi variety Vδ(Y,L) is
irreducible.

Proof. Since (Y,L) is general, we may assume that all curves in |L| are in-
tegral. By Theorem 4.3, Vδ(Y, L) and its relative normalization Vδ(Y, L)

n

along Vδ+1(Y, L) are connected. If reducible, Vδ(Y, L) contains two irre-
ducible components V,W whose intersection V ∩W is nonempty and thus of
codimension 1 by Proposition 5.1. Since Vδ(Y,L)

n
is still connected, we may

further assume that V ∩W is not contained in Vδ+1(Y, L). It is therefore
enough to show that no codimension 1 component of the singular locus of
Vδ(Y, L) may contain such an intersection.

Let Z be a component of SingVδ(Y,L) such that Z is not contained in
Vδ+1(Y,L) and Z has codimension 1. Let C ∈ Z be a general point and
denote by f the composition of the normalization map ν : C̃ → C with the
inclusion of C in Y . Since Z has dimension g − δ − 1, Theorem 1.8 and
Proposition 1.5 imply that C̃ is a smooth irreducible curve of genus either
g − δ or g − δ − 1, and the latter case does not occur because Z is not
contained in Vδ+1(Y,L) .

Hence, C̃ has genus g−δ and, by generality, we can assume that all points
in a dense open subset of Z parametrize curves with the same singularities
as C. We may thus apply [AC, p. 26] as in the proof of Proposition 2.4 to
obtain

(5.1) g − δ − 1 = dimZ ≤ h0(Nf ),
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where Nf ' ωC̃(−R) with R being the ramification divisor of f . Inequality
(5.1) then yields degR ≤ 2.

If degR = 0, then f is unramified and Nf = Nf = ωC̃ , If degR = 1, then
C has only one ordinary cusp and, denoting by Q the point of C̃ mapping to
it, we have Nf = ωC̃(−Q)⊕OQ. In both cases one has h0(Nf ) = g − δ and
thus f defines a smooth point of the moduli space of genus g−δ stable maps
Mg−δ(Y, L), and more precisely of the locus Mg−δ(Y,L)sm parametrizing
smoothable stable maps. Let µ be the morphism from the semi-normalization
of Mg−δ(Y,L)sm to V g−δ(Y,L) = Vδ(Y,L). Locally around f the morphism
µ is injective: indeed, the inverse image under µ of an irreducible curve of
geometric genus exactly g−δ is the only point defined by the composition of
its normalization map with its inclusion in S. Therefore, the smoothness of
Mg−δ(Y, L)sm at f yields that Vδ(S,L), if singular at C, has a unibranched
singularity there. In particular, W cannot lie in the intersection of two
irreducible components of Vδ(S,L).

We now treat the remaining case degR = 2, where (5.1) implies that C̃
is hyperelliptic and R is a divisor in the g1

2. By [KLM, Rmk. 5.6], curves in
|L| with hyperelliptic normalization of any fixed geometric genus ≥ 2 move
in dimension 2 and hence g− δ− 1 = dimW ≤ 2 yielding a contradiction as
soon as δ ≤ g − 4. �
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