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Abstract. We survey basic results concerning Prym varieties, the Prym-
Brill-Noether theory initiated by Welters, and Brill-Noether theory of general
étale double covers of curves of genus g ≥ 2. We then specialize to curves
on Nikulin surfaces and show that étale double covers of curves on Nikulin
surfaces of standard type do not satisfy Welters’ Theorem. On the other
hand, by specialization to curves on Nikulin surfaces of non-standard type, we
prove that general double covers of curves ramified at b = 2, 4, 6 points are
Brill-Noether general; the case b = 2 was already obtained by Bud [Bu] with
different techniques.

1. Introduction

Double covers of complex curves are a classical and still very hot topic in
algebraic geometry. Part of the interest in them stems from the fact that any étale
double cover π : C̃ → C of a smooth irreducible curve C of genus g ≥ 2 naturally
defines a principally polarized abelian variety (P,Ξ) of dimension g − 1, known as
the Prym variety of π. Prym varieties were introduced by Schottky and Jung [SJ] in
relation to the Schottky problem and were named after the German mathematician
Prym by Mumford ([M1]), who was the first to investigate them from an algebraic
point of view. Despite a vast literature on the topic, many questions concerning
the geometry of general double covers remain open, both in the étale and in the
ramified case. We will here focus on Brill-Noether type questions.

We recall that the Brill-Noether theory of a general curve C of genus g is
quite well understood since the 1980s. The Brill-Noether Thorem establishes that
the Brill-Noether variety W r

d (C), parametrizing degree d line bundles on C with a
space of global sections of dimension ≥ r+1, is nonempty if and only if the so-called
Brill-Noether number ρ(g, r, d) := g − (r + 1)(g − d + r) is nonnegative. Further-
more, if nonempty, W r

d (C) is smooth of dimension ρ(g, r, d) outside of W r+1
d (C)

by the Gieseker-Petri Theorem. The existence part of the Brill-Noether Theorem
is actually valid for any smooth curve of genus g and is due to Kleiman-Laksov
[KL] and Kempf [Ke]. The first proofs of both the non-existence part of the Brill-
Noether Theorem and of the Gieseker-Petri Theorem, all based on degeneration
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techniques, were achieved by Griffiths-Harris [Gr], Eisenbud-Harris [EH1, EH2],
and Gieseker [Gi]. A big breakthrough came with Lazarsfeld’s alternative proof of
the Gieseker-Petri Theorem [La, Pa], that avoided any type of degeneration and
proceeded instead by specialization to smooth curves lying on K3 surfaces.

If π : C̃ → C is a double cover of a general genus g ≥ 2 curve C, the curve C̃
is obviously non-general in moduli and it thus makes sense to investigate its Brill-
Noether theory. In the étale case C̃ has genus 2g − 1 and is never Petri general
because W 1

2g−2(C̃) turns out to be singular (cf. [We] and Section 3.2 below).
Moreover, if g is even, C̃ possesses a pencil of degree g which prevents it from
being Brill-Noether general (cf. [AF] and Section 4 later in this paper). Hence,
the Brill-Noether behaviour of C̃ seems quite wild. The picture is much nicer
if one considers instead the so-called Prym-Brill-Noether theory of C̃. This is the
study of the geometry of the Prym-Brill-Noether varieties V r, that were introduced
by Welters [We] and are related to the geometry of the Prym variety P ; indeed,
they are obtained by intersecting the Brill-Noether varieties W r

2g−2(C̃) with an
appropriate translate of P living in Pic2g−2(C̃). Using the degeneration techniques
developed by Eisenbud and Harris, Welters proved (cf. Thm. 2.3 below) that for a
general π the varieties V r are smooth of dimension ρ−(g, r) := g−1−(r+1)r/2. In
particular, they are empty if ρ−(g, r) < 0; conversely, V r is nonempty if ρ−(g, r) ≥ 0
for any étale double cover π by a result of Bertram [Ber]. These statements are
the analogues in Prym-Brill-Noether theory of the Brill-Noether Theorem and the
Gieseker-Petri Theorem.

Perhaps discouraged by the intricate picture in the étale case, people ignored
the Brill-Noether theory of C̃ in the ramified case until recently, where Bud [Bu]
proved that C̃ is both Brill-Noether and Petri general (that is, it satisfies both the
the Brill-Noether Theorem and the Gieseker-Petri Theorem) if π : C̃ → C is a
double cover of a general genus g curve branched over 2 general points of C. This
result is quite amazing as it highlights that ramified double covers behave better
then étale ones from a Brill-Noether viewpoint.

This paper was born from the desire to make K3 surfaces and Lazarsfeld’s tech-
niques enter the picture. This is ensured by specialization to Nikulin surfaces, that
is, primitively polarizedK3 surfaces (S,H) endowed with a double cover πS : Ŝ → S
ramified along eight (−2)-curves, which are both pairwise disjoint and disjoint from
smooth curves in the linear system |H|. The minimal model of Ŝ is again a K3 sur-
face S̃ endowed with an involution having 8 fixed points. The Picard ranks of both
S and S̃ are ≥ 9 and, when equality holds, the Picard groups have been described in
[VGS, GS]. It turns out that there are two types of Nikulin surfaces, depending on
whether the embedding of the rank 9 sublattice generated byH and the (−2)-curves
in Pic(S) is primitive or not: according to the terminology introduced in [KLV1],
(S,H) is called of standard type in the former case, and of non-standard type in
the latter. Note that π induces an étale double cover π|C : C̃ := π−1(C) → C of
any smooth curve C ∈ |H|, and the curve C̃ can be identified with its image in
S̃. In the last decade Nikulin surfaces have been largely exploited in the study of
étale double covers of curves (or equivalently, Prym curves) and their moduli space
Rh. In particular, Farkas and Verra [FV2] proved that for 6 6= h ≤ 7, general étale
double covers of genus h curves live on Nikulin surfaces of standard type, and used
this fact to describe the birational geometry of Rh in low genera. Furthermore, in
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the standard case the curve C̃ ⊂ S has the gonality of a general étale double cover
of a genus h curve [AF]. It is thus natural to wonder whether a different proof of
Welters’ Theorem can be obtained by specialization to étale double covers living
on Nikulin surfaces of standard type. Unfortunately, we will answer negatively to
this question proving the following theorem.

Theorem. Let π : C̃ → C be an étale double cover on a Nikulin surface S of
standard type, with C in the primitive linear system |H| of genus h. If h > 7 or
h = 6, the curve C̃ does not satisfy Welters’ Theorem.

Nikulin surfaces of non-standard type have not received as much attention, and
their investigation essentially started in [KLV1, KLV2]. As emerged in [KLV1],
in the non-standard case the curve C̃ is quite special as it possesses two theta
characteristics with many sections cut out by two line bundles R1, R2 ∈ Pic(S̃).
The main result of the paper suggests that Nikulin surfaces of non-standard type
are instead the right environment to investigate double covers of curves ramified at
2, 4, 6 points, which can be realized on a Nikulin surface of non-standard type by
restricting πS to the inverse image of smooth curves in the linear systems |R1| and
|R2|. By specialization to ramified double covers of curves on Nikulin surfaces of
non-standard type, we obtain the following generalization of Bud’s result.

Theorem. Let π : C̃ → C be a general double cover of a genus g ≥ 2 curve
ramified at 2, 4, or 6 points. Then the curve C̃ is Brill-Noether general.

The paper is organized as follows. Section 2 surveys the basic theory of Prym
varieties and Prym-Brill-Noether theory, with particular attention to Welters’ in-
finitesimal study of V r in terms of the Prym-Petri map, which is the anti-invariant
part µ−0,L of the Petri map µ0,L of any line bundle L ∈ V r. The sections ends with
a discussion and interpretation of its invariant counterpart µ+

0,L, as well as with a
conjectural picture concerning its injectivity. Section 3 recalls some prerequisites
on theta characteristics in order to show, following an argument by Beauville [Bea],
that for any irreducible étale double cover π : C̃ → C the curve C̃ possesses some
invariant vanishing thetanulls: in particular, C̃ is not Petri general. In Section
4 we concentrate on the Brill-Noether theory of C̃ when π is general. More pre-
cisely, we recall Schwarz’s non-existence result [Sc] concerning linear series whose
Brill-Noether number is negative enough, and Aprodu-Farkas’ theorem [AF] on the
gonality of C̃. The latter prevents C̃ from being Brill-Noether general if the genus
of C is even, while the Brill-Noether generality/speciality in the odd genus case is
still unknown in full generality, up to our knowledge. We also recall Bud’s result
concerning the ramified case. Section 5 is focused on Nikulin surfaces of standard
and non-standard type and on the proof of the above theorems.

2. Prym-Brill-Noether theory

2.1. Preliminaries on Prym varieties. Prym varieties are principally po-
larized abelian varieties arising from étale double covers of curves, and they are
useful to link the geometry of curves to that of abelian varieties.

Let C be a complex smooth irreducible curve, and let π : C̃ → C be an
irreducible étale double cover of C. Denoting by g and g̃ the genus of C and C̃,
respectively, Hurwitz’s formula yields g̃ = 2g−1. The cover π induces the so-called
Norm map between the Jacobians J(C) and J(C̃) of C and C̃, respectively:
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Nm: J(C̃) −→ J(C)

OC̃(D) 7−→ OC(π(D)).

This fits in the following commutative diagram:

C̃

π

��

ay0 // J(C̃)

Nm

��
C

ax0

// J(C),

where ax0 and ay0 are the Abel-Jacobi maps associated with some fixed points
x0 ∈ C and y0 ∈ C̃ such that π(y0) = x0.

In particular, the principally polarized Abelian varieties (J(C),Θ) and (J(C̃), Θ̃)
are related by two maps

π∗ : J(C)→ J(C̃), Nm : J(C̃)→ J(C),

such that π∗ and Nm are dual to each other and Nm◦π∗ : J(C)→ J(C) is multipli-
cation by two ([M1]). Indeed, ifN = OC(D) ∈ J(C), then π∗N = OC̃(π−1(D)) ∈ J(C̃)

and thus Nm(π∗N) = OC(π(π−1(D))) ∈ J(C); since π is a double cover, we get
π(π−1(D)) = 2D.
Denote by ι : C̃ → C̃ the involution that interchanges the sheets of π. For every
divisor D̃ on C̃, the following equality is straightforward:

π−1(π(D̃)) = D̃ + ι(D̃).

It follows that
π∗(Nm(M)) = M ⊗ ι∗(M), ∀ M ∈ J(C̃).

Since Nm is surjective, we also get that

ι∗(π∗(N)) = π∗N, ∀ N ∈ J(C),

that is, the involution ι∗ acts as the identity on π∗(J(C)) ⊂ J(C̃). On the other
hand, ι∗ acts as −1 on Ker(Nm) ⊂ J(C̃). In [M2] Mumford decomposed the kernel
of Nm into two irreducible components:

P0 := {M ⊗ ι∗M∨ | M ∈ Pic0(C̃)},

P1 := {M ⊗ ι∗M∨ | M ∈ Pic1(C̃)}.
More precisely, he proved the following:

Lemma 2.1 ([M2] Lem. 1). If L is a line bundle on C̃ such that NmL ' OC ,
then L 'M ⊗ ι∗M∨ for some line bundle M on C̃. Moreover, M can be chosen of
degree 0 or 1.

A classical theorem by Wirtinger ([Wi]) yields that the dimension of the space
of global sections is constant mod 2 on P0 and P1 and it has opposite parity on the
two components. The component P := P0 of Ker(Nm) containing the origin is an
abelian subvariety of J(C̃) of dimension

dimP = dim J(C̃)− dim J(C) = g − 1;
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furthermore, it turns out that the canonical polarization of J(C̃) restricts to twice
a principal polarization Ξ on P . The principally polarized abelian variety (P,Ξ) is
called the Prym variety associated with π (cf. [M1, §3] for more details).

By the same argument [M1], the inverse image Nm−1(ωC) ⊂ Pic2g−2(C̃) of
the canonical line bundle ωC ∈ Pic2g−2(C) breaks up in two components

P+ := {L ∈ Pic2g−2(C̃) | Nm(L) ' ωC , h0(C,L) ≡ 0 (mod 2)},

P− := {L ∈ Pic2g−2(C̃) | Nm(L) ' ωC , h0(C,L) ≡ 1 (mod 2)},
which are both translates of P .

We recall that the cover π : C̃ → C defines a class of order two η ∈ J(C)[2]
such that π∗OC̃ = OC ⊕ η; viceversa, any non-trivial η ∈ J(C)[2] determines an
étale double cover of C by setting C̃ := Spec(OC⊕η). Therefore, the datum of π is
equivalent to that of the pair (C, η), which is called a Prym curve of genus g. The
moduli space

Rg := {(C, η) |C smooth curve of genus g, η ∈ J(C)[2] , η 6' OC} ,
has attracted much attention in the last decades; we refer to [F3] for a very nice
survey on its geometry.

2.2. Prym-Brill-Noether varieties and Welters’ Theorem. In [We] Wel-
ters initiated a Brill-Noether study of the varieties P− and P+ and introduced the
following closed subsets of Nm−1(ωC), defined for any integer r ≥ −1:

V r(C, η) := {L ∈ Pic2g−2(C̃) |Nm(L) ' ωC , h0(C,L) ≥ r+1, h0(C,L) ≡ r+1 (mod 2)}.
Scheme-theoretically, these can be realized as the intersections

V r(C, η) = W r
2g−2(C̃) ∩ P+ if r is odd,(2.1)

V r(C, η) = W r
2g−2(C̃) ∩ P− if r is even,

where
W r

2g−2(C̃) =
{
L ∈ Pic2g−2(C̃) | h0(C,L) ≥ r + 1

}
is the classical Brill-Noether variety; this justifies the name Prym-Brill-Noether
varieties used for the loci V r(C, η). The following result proved in [M2] and [Ha]
concerns their expected dimension.

Proposition 2.2. Let L ∈ Nm−1(ωC) and set h0(L) = r + 1. Then, the
dimension of V r(C, η) at L satisfies

dimL(V r(C, η)) ≥ g − 1−
(
r + 1

2

)
.

We will refer to the number

ρ−(g, r) := g − 1−
(
r + 1

2

)
,

as the Prym-Brill-Noether number.
A priori one may hope that classical results of Brill-Noether theory carry over to

étale double covers of smooth curves and to the varieties V r(C, η), but unfortunately
this is not the case. Indeed, many statements of this theory, such as the Brill-
Noether Theorem and the Gieseker-Petri Theorem, hold only for a general curve C̃
of genus g̃ and they fail in the case where C̃ is the étale double cover of a genus g



6 SIMONA D’EVANGELISTA AND MARGHERITA LELLI-CHIESA

curve. Nevertheless, an analogue of the Gieseker-Petri Theorem for Prym varieties
was obtained by Welters [We] by a degeneration argument similar to the one used
by Eisenbud and Harris [EH2] in their proof of the classical statement.

Since ωC̃ = π∗ωC , the push-pull formula yields the decomposition

(2.2) H0(C̃, ωC̃) = H0(C,ωC)⊕H0(C,ωC(η)).

into invariant and anti-invariant forms under the action of ι. Fix a line bundle
L ∈ Nm−1(ωC) and set h0(L) = r + 1. Since the composition Nm ◦ π∗ is the
multiplication by 2, the differential of Nm at L is 2(tπ∗), where

tπ∗ : (H0(C̃, ωC̃))∨ → (H0(C,ωC))∨

is the transpose of the pull-back of differential forms. By taking kernels, we obtain
the identification

(2.3) TL(Nm−1(ωC)) = (H0(C,ωC(η)))∨ ↪→ (H0(C̃, ωC̃))∨,

where the inclusion is the transpose of the projection map

p : H0(C̃, ωC̃) −→ H0(C,ωC(η))

λ 7−→ 1

2
(λ− ι∗λ)

.

By classical Brill-Noether theory (cf., e.g., [ACGH]), we know that

(2.4) TL(W r
2g−2(C̃)) = (Imµ0,L)⊥ ⊂ (H0(C̃, ωC̃))∨,

where the so-called Petri map

µ0,L : H0(C̃, L)⊗H0(C̃, ωC̃ ⊗ L
∨)→ H0(C̃, ωC̃)

is multiplication of global sections. In particular, the dimension of the tangent
space at L to W r

2g−2(C̃) is:

(2.5) dimTL(W r
2g−2(C̃)) = ρ(2g − 1, r, 2g − 2) + dim(Kerµ0,L),

where the number ρ(2g − 1, r, 2g − 2) := 2g − 1 − (r + 1)2 equals the difference
between the dimensions of the codomain and the domain of µ0,L. Recalling (2.1)
and (2.3), we obtain:

(2.6) TL(V r(C, η)) = (Imµ0,L)⊥ ∩ (H0(C,ωC(η))∨ = (Im(p ◦ µ0,L))⊥.

By applying π∗ to the isomorphism NmL ' ωC , one gets L ⊗ ι∗L ' ωC̃ , or
equivalently, ωC̃ ⊗ L

∨ ' ι∗L. Consider the following composition of maps:

H0(C̃, L)⊗H0(C̃, L)
1⊗ι∗ // H0(C̃, L)⊗H0(C̃, ω

C̃
⊗ L∨)

µ0,L // H0(C,ω
C̃
)

p // H0(C,ωC(η))

s⊗ t � // s⊗ ι∗t � // s · ι∗t � // 1
2
(s · (ι∗t)− (ι∗s) · t),

which is clearly skew-symmetric. By restriction to ∧2H0(C̃, L), we thus obtain the
map

µ−0,L : ∧2 H0(C̃, L)→ H0(C,ωC(η))

s ∧ t 7→ 1

2
(s · (ι∗t)− (ι∗s) · t),
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which is called the Prym-Petri map of L. We can rewrite (2.6) in terms of µ−0,L as

TL(V r(C, η)) = (Imµ−0,L)⊥.

Since ρ−(g, r) equals the difference between the dimensions of the codomain and
the domain of µ−0,L, we conclude that

(2.7) dim(TL(V r(C, η))) = ρ−(g, r) + dim(Kerµ−0,L),

and V r(C, η) is smooth of dimension ρ−(g, r) at L if and only if the Prym-Petri map
is injective. Welters proved that this is the case for all L ∈ Nm−1(ωC) provided
that the cover π is general.

Theorem 2.3 ([We] Thm. 1.11). Let (C, η) ∈ Rg be general and let π : C̃ → C
be the étale double cover defined by η. Then the Prym-Petri map µ−0,L is injective
for all L ∈ Nm−1(ωC).

The result is analogous to the Gieseker-Petri Theorem, as it yields the smooth-
ness of the Prym-Brill-Noether varieties V r(C, η) for a general (C, η) and their
emptiness in the cases where ρ−(g, r) < 0. The analogue of the existence part of
the Brill-Noether Theorem for any Prym curve was instead established by Bertram:

Theorem 2.4 ([Ber] Thm. 1.4). Let (C, η) be a Prym curve of genus g and
let π : C̃ → C be the étale double cover defined by η. If ρ−(g, r) ≥ 0, the Prym-
Brill-Noether variety V r(C, η) is nonempty.

Welters’ proof is by degeneration to a reduced nodal curve C0 consisting of a
string of rational curves and g elliptic curves E1, ..., Eg, such that, if xi and yi are
the two intersection points of any Ei with two adjacent components, the line bundle
OEi

(xi − yi) is not a torsion point in Pic0(Ei). Consider a line bundle η0 on C0

which is trivial on every component except on Eg, where it restricts to a non-zero
point of Pic0(Eg)[2]. The étale double cover C̃0 of C0 defined by η0 then looks as
follows:
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The points P1 and P2 on Ẽg are not Z-independent; indeed, the line bundle
OẼg

(P1 − P2) ∈ Pic0(Ẽg) is a 2-torsion point. This is why Eisenbud and Har-

ris’ proof [EH2] of the Gieseker-Petri Theorem fails for C̃0. However, using the
theory of limit linear series and the Brill-Noether theory of a (non general) 2-pointed
elliptic curve, Welters wrote down the explicit form of any element ρ in the kernel
of the relevant Petri maps and, thanks to the skew-symmetry of 1⊗ ι∗, concluded
that such a ρ never lies in the kernel of the corresponding Prym-Petri map.

2.3. The map µ+
0,L. The decomposition (2.2) provides a splitting of the Petri

map µ0,L of any line bundle L ∈ Nm−1(ωC) into a ι-anti-invariant part, namely,
the Prym-Petri map µ−0,L, and a ι-invariant part

µ+
0,L : Sym2H0(C̃, L)→ H0(C,ωC)

s⊗ t+ t⊗ s 7→ s · (ι∗t) + (ι∗s) · t.

As already remarked, the Prym-Petri map µ−0,L governs the smoothness of the
varieties V r(C, η) and has thus been extensively investigated. By contrast, the
map µ+

0,L has been almost ignored so far. Up to our knowledge, it only appeared
in the proof of the uniruledness of R8 due to Farkas and Verra [FV2].

We provide an interpretation of the map µ+
0,L by considering the inclusion

V r(C, η) ⊂W r
2g−2(C̃) and the induced short exact sequence of linear maps

0→ TL(V r(C, η))→ TLW
r
2g−2(C̃)→ NV r(C,η)/W r

2g−2(C̃),L → 0,

whereNV r(C,η)/W r
2g−2(C̃),L is the normal space at the point L of V r(C, η) inW r

2g−2(C̃).
By (2.5) and (2.7), we get:

dimC(NV r(C,η)/W r
2g−2(C̃),L) =

= ρ(2g − 1, r, 2g − 2) + dim(Kerµ0,L)− ρ−(g, r)− dim(Kerµ−0,L) =

= g − (r + 1)(r + 2)

2
+ dim(Kerµ+

0,L),

where we have used that Kerµ0,L = Kerµ+
0,L ⊕Kerµ−0,L by construction. We set

ρ+(g, r) := ρ(2g − 1, r, 2g − 2)− ρ−(g, r) = g − (r + 1)(r + 2)

2

and notice that this number equals the difference between the dimensions of the
codomain and the domain of µ+

0,L. We conclude that the dimension of the nor-
mal space NV r(X̃)/W r

2g−2(X̃),L equals the dimension of the cokernel of µ+
0,L. More

precisely, (2.4) and (2.6) imply that

NV r(X̃)/W r
2g−2(X̃),L = (Imµ0,L)⊥ ∩ (H0(ωC))∨ = (Im(q ◦ µ0,L))⊥,

where q : H0(C̃, ωC̃)→ H0(C,ωC) is the projection mapping a form λ to 1
2 (λ+ι∗λ).

The composition

q ◦ µ0,L ◦ (1⊗ ι∗) : H0(C̃, L)⊗H0(C̃, L) −→ H0(C,ωC)
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maps a decomposable tensor s⊗ t to the invariant form s(ι∗t) + (ι∗s)t and is thus
symmetric. Its restriction to Sym2H0(C̃, L) coincides with the map µ+

0,L and this
provides the identification

NV r(X̃)/W r
2g−2(X̃),L = (Imµ+

0,L)⊥.

When (C, η) ∈ Rg is general, it is natural to wonder whether the map µ+
0,L

is injective for all L ∈ Nm−1(ωC). Unfortunately, this trivially fails for any line
bundle L ∈ V r(C, η) where r is any fixed integer r such that ρ−(g, r) ≥ 0 but
ρ(2g − 1, r, 2g − 2) < 0; indeed, the Prym-Petri map µ−0,L is injective by Theorem
2.3, but our assumptions prevent µ+

0,Lfrom being injective because dim Kerµ+
0,L ≥

−ρ+(g, r) > 0. More generally, the map µ+
0,L fails to be injective for any line bundle

L ∈ V r(C, η) as soon as

(2.8) ρ−(g, r) > max{−1, ρ(2g − 1, r, 2g − 2)},
which implies ρ+(g, r) < 0. The inequalities (2.8) can be rewritten only in terms
of ρ as

(2.9) −r ≤ ρ(2g − 1, r, 2g − 2) < r.

In this range, the equality dim Kerµ+
0,L = −ρ+(g, r) is the best one may hope

for; since V r(C, η) is smooth at L by Theorem 2.3, this hope is equivalent to the
expectation that W r

2g−2(C̃) and V r(C, η) coincide in a neighborhood of L.

Expectation 2.5. Let (C, η) ∈ Rg be general and let π : C̃ → C be the étale
double cover defined by η. Then, the following hold:

(i) If −r ≤ ρ(2g−1, r, 2g−2) < r, then W r
2g−2(C̃) = V r(C, η). In particular,

for all L ∈ V r(C, η) one has

dim(Kerµ0,L) = dim(Kerµ+
0,L) = −ρ+(g, r).

(ii) If ρ(2g − 1, r, 2g − 2) ≥ r, then both µ0,L and µ+
0,L are injective for all

L ∈ V r(C, η).

The situation in the remaining cases ρ(2g − 1, r, 2g − 2) < −r is already clear,
as W r

2g−2(C̃) turns out to be empty by a more general result of Schwarz [Sc] that
we will recall in Section 4.

3. Theta-characteristics and vanishing thetanulls

3.1. Preliminaries on theta-characteristics. A theta-characteristic on a
smooth irreducible curve C is a line bundle θ ∈ Picg−1(C) such that θ⊗2 = ωC .
Theta-characteristics are of two types, called odd and even according to the parity of
the dimension of the space of their global sections. The set of theta-characteristics
on C, denoted by Th(C), is a principal homogeneous space for the space J(C)[2] of
two-torsion points in the Jacobian of C, that is, J(C)[2] acts freely and transitively
on Th(C). In particular, we have |Th(C)| = |J(C)[2]| = 22g.

The F2-vector space J(C)[2] is endowed with a nondegenerate symplectic form

〈·, ·〉 : J(C)[2]× J(C)[2]→ F2,

which is called Weil pairing and is defined as follows ([M2]). For any pair of points
η, ε ∈ J(C)[2], one can write η = OC(D) and ε = OC(E) for two divisors D and E
on C with disjoint support, and choose rational functions f and g on C such that
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div(f) = 2D and div(g) = 2E. The condition on the supports of D and E ensures
the validity of the so-called Weil Reciprocity Law (see [Ha]):

f((g)) = g((f)),

where the evaluation of a rational function h at a divisor Z whose support is disjoint
from the set of zeros and poles of h is defined as h(Z) :=

∏
p∈C h(p)multpZ . Hence,

we get
f(2E)

g(2D)
=

(
f(E)

g(D)

)2

= 1,

and f(E)
g(D) = ±1. The value of the Weil pairing at the pair (η, ε) is given by the

following formula:

(−1)〈ε,η〉 =
f(E)

g(D)
,

and one can check that this definition is independent of both the divisors D, E and
the rational functions f , g.

Given a symplectic vector space (V, 〈·, ·〉) over F2, we denote by Q(V ) the set
of quadratic forms on V with fixed polarity equal to the symplectic form 〈·, ·〉, that
is, all functions q : V → F2 that satisfy the identity

q(x+ y) = q(x) + q(y) + 〈x, y〉, ∀ x, y ∈ V.
Having fixed a symplectic basis (e1, ..., eg, f1, ..., fg) of V , the so-called Arf invariant
of a quadratic form q ∈ Q(V ) is defined as

arf(q) :=

g∑
i=1

q(ei) · q(fi) ∈ F2,

this definition being independent of the basis. A quadratic form q ∈ Q(V ) is called
even if arf(q) = 0, and odd if arf(q) = 1. The space of even (respectively, odd)
quadratic forms is denoted by Q(V )+ (resp., Q(V )−). An easy computation gives
|Q(V )+| = 2g−1(2g + 1) and |Q(V )−| = 2g−1(2g − 1).

Coming back to theta-characteristics, to any θ ∈ Th(C) one associates the
so-called theta-form qθ : J(C)[2]→ F2, by setting

qθ(η) := h0(C, η ⊗ θ) + h0(C, θ) mod 2.

For any ε, η ∈ J(C)[2], the Riemann-Mumford relation ([M2]) yields:

h0(C, θ ⊗ ε⊗ η) + h0(C, θ ⊗ ε) + h0(C, θ ⊗ η) + h0(C, θ) ≡ 〈η, ε〉mod 2,

or equivalently, qθ ∈ Q(J(C)[2]). We thus identify the two spaces

(3.1) Th(C) = Q(J(C)[2]).

Since arf(qθ) = h0(C, θ) mod 2 for any θ ∈ Th(C), under this identification even
(respectively, odd) theta-characteristics correspond to forms in Q(J(C)[2])+ (resp.,
Q(J(C)[2])−). Hence, on a genus g curve C there are precisely 2g−1(2g + 1) even
theta-characteristics and 2g−1(2g − 1) odd ones.

Following Atiyah [At], a spin curve of genus g is a pair (C, θ), where C is a
smooth irreducible curve of genus g and θ ∈ Th(C). Mumford ([M2]) and Atiyah
([At]) proved that the parity of a spin curve, that is, the value of its Arf invariant,
is locally constant in families. As a consequence, the moduli space Sg parametrizing
spin curves of genus g splits into two connected components S+

g and S−g : a pair
(C, θ) lies in S+

g if θ is an even theta-characteristic, and in S−g otherwise.
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For each g, r ≥ 0 one can define the locus

Srg := {(C, θ) ∈ Sg | h0(C, θ) ≥ r + 1 and h0(C, θ) ≡ r + 1 mod 2}.

Harris ([Ha]) proved that the dimension of every component of Srg is bounded below
by the number 3g−3−

(
r+1

2

)
, to which we refer as the expected dimension of Srg . It

may well be the case that Srg is nonempty even when its expected dimension is neg-

ative. For instance, S [ g−1
2 ]

g 6= ∅ contains hyperelliptic curves and is thus nonempty
although in this case 3g − 3 −

(
r+1

2

)
is very negative. Existence of components of

Srg having the expected dimension has been established by Farkas [F2] in the range
1 ≤ r ≤ 11, r 6= 10 for all g ≥ g(r) where g(r) is an explicit integer.

In the case where r = 1, the locus S1
g parametrizes curves having a so-called

vanishing thetanull, that is, an effective even theta characteristic, and is a divisor
in S+

g . Indeed, every theta characteristic θ on a general curve C of genus g has at
most one section. This directly follows from the base-point-free pencil trick, which
implies that, as soon as H0(C, θ) contains a pencil V , the kernel of the Petri map

µ0,V : V ⊗H0(C, θ)→ H0(C,ωC)

is nonzero; indeed, one has Kerµ0,V ' H0(C,OC(B)) 6= 0, where B is the base locus
of V . The Gieseker-Petri Theorem thus excludes the existence of such a pencil if
the curve C is general.

3.2. Invariant vanishing thetanulls on étale double covers. We denote
by π : C̃ → C the irreducible étale double cover associated with a general Prym
curve (C, η) of genus g. As explained at the end of Section 2, the Brill-Noether
varieties W r

2g−2(C̃) governing the singularities of the theta divisor of J(C̃) are
nonempty as soon as ρ(2g − 1, r, 2g − 2) ≥ −r; in particular, for values of g for
which there exists an r yielding −r ≤ ρ(2g − 1, r, 2g − 2) < 0, the curve C̃ is
Brill-Noether special.

We now fix g, r such that ρ(2g−1, r, 2g−2) ≥ 0; under this condition, one may
still hope that W r

2g−2(C̃) is smooth and of the expected dimension. However, this
expectation fails even for r = 1, as observed by Welters himself [We, Rmk. 1.12];
in particular, C̃ never satisfies the Gieseker-Petri Theorem. By the base-point-free
pencil trick, W 1

2g−2(C̃) \ W 2
2g−2(C̃) is singular at any point defining a vanishing

thetanull. On the other hand, a vanishing thetanull on C̃ is easily obtained as
pullback π∗M of a theta-characteristics M on C such that both M and M ⊗ η are
odd. The following nice argument taken from [Bea, Prop. 4] counts the number of
such Ms and thus in particular proves their existence.

For any M ∈ Th(C), the push-pull formula yields

h0(C̃, π∗M) = h0(C, π∗π
∗M) = h0(C,M) + h0(C,M ⊗ η) = qM (η) mod 2.

We are looking for those M ∈ Th(C) such that qM (η) = 0 and arf(qM ) = 1. Pick
ε ∈ J(C)[2] such that the Weil pairing 〈η, ε〉 = 1 and denote by Σ ⊂ J(C)[2] the
plane spanned by η and ε. Since J(C)[2] = Σ⊕Σ⊥, any M ∈ Th(C) is completely
determined by the restrictions qM |Σ and qM |Σ⊥ . The condition qM (η) = 0 yields
arf(qM |Σ) = qM (η)qM (ε) = 0. Therefore, M is determined by the value qM (ε) ∈ F2

and by the restriction qM |Σ⊥ , which is a quadratic form on Σ⊥ of arf invariant 1
(because arf(qM ) = arf(qM |Σ) + arf(qM |Σ⊥)). Since dimF2 Σ⊥ = 2(g − 1), we have
2g−2(2g−1 − 1) choices for qM |Σ⊥ and, having the possibility of choosing qM (ε), we
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obtain 2g−1(2g−1 − 1) theta-characteristics M on C as above. Since π∗(M ⊗ η) '
π∗M , this construction provides precisely 2g−2(2g−1 − 1) vanishing thetanulls on
C̃, which are invariant under the covering involution.

4. Brill-Noether theory for double covers

Given the étale double cover π : C̃ → C of a general Prym curve (C, η) ∈ Rg, it
is natural to investigate not only the Prym-Brill-Noether varieties V r(C, η) but any
Brill-Noether varietyW r

d (C̃). However, not much is known about the Brill-Noether
theory of C̃. The following non-existence result follows from [Sc], where Schwarz
proved a more general statement concerning étale cyclic covers of arbitrary degree.

Theorem 4.1 ([Sc]). Let π : C̃ → C be the étale double cover associated with
a general Prym curve (C, η) ∈ Rg. Then the Brill-Noether variety W r

d (C̃) is empty
if

ρ(2g − 1, r, d) < −r.

The above result can be easily proved using Welters’ degeneration and applying
[F1, Prop. 4.1] on the Brill-Noether theory of 2-pointed elliptic curves. For r = 1

Theorem 4.1 is known to be optimal and this implies that C̃ is not Brill-Noether
general if g is even. Indeed, the existence of a pencil of degree g on C̃ in this case
follows from the surjectivity (cf. [ACGH]) of the difference map

φ g
2

: C
g
2 × C

g
2 −→ J(C)

(D,E) 7−→ OC(D − E),

yielding η = OC(D − E) for some effective divisors D,E both of degree g/2 on C.
The pullback π∗(OC(E)) ∈ Picg(C̃) then satisfies

h0(C̃, π∗OC(E)) = h0(C, π∗π
∗OC(E)) = h0(C,OC(E)) + h0(C,OC(D)) ≥ 2,

where we have again used the push-pull formula. On the other hand, in the odd
genus case the gonality of C̃ is maximal, as first proved by Aprodu and Farkas.

Theorem 4.2 ([AF] Thm. 0.4). Let π : C̃ → C be the étale double cover
associated with a general Prym curve (C, η) ∈ Rg. Then the following hold:

(i) if g ≡ 1 mod 2, the curve C̃ has maximal gonality, that is, gon(C̃) = g+1;
(ii) if g ≡ 0 mod 2, then gon(C̃) = g.

In both cases the Clifford index of C̃ equals gon(C̃)− 2.

Two different proofs are provided in [AF], one by degeneration and one by
specialization to curves on Nikulin surfaces; the latter are particular K3 surfaces
on which we will focus in the next section. Up to our knowledge, the following
natural question remains open:

Question 1. Let g be an odd positive integer such that the inequalities −r ≤
ρ(2g − 1, r, 2g − 2) < 0 admit no integral solution r ≥ 1. If (C, η) ∈ Rg is general,
is the cover C̃ Brill-Noether general?

We stress that, quite surprisingly, ramified double covers of curves seem to
behave better than étale ones from a Brill-Noether viewpoint. Following [Bu], let
Rg,2n be the moduli space parametrizing irreducible double covers of smooth genus
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g curves ramified at 2n points. The space Rg,2n can be alternatively defined as
follows:
Rg,2n := {(C, x1 + . . .+ x2n, η) | [C] ∈Mg, xi ∈ C ∀ 1 ≤ i ≤ n

η ∈ Pic−n(C), η2 = OC(−x1 − . . .− x2n)
}
.

While studying its birational geometry, Bud proved the following astonishing result,
which is in contrast to the étale case.

Theorem 4.3 ([Bu] Thm. 4.1). Let π : C̃ → C be the double cover associated
with a general (C, x+y, η) ∈ Rg,2. Then C̃ is both Brill-Noether and Petri general.

Bud’s proof relies on the study of divisors on a compactification Rg,2 of the
moduli space. In the next section we will provide a simpler proof of the Brill-
Noether generality of C̃ by specialization to ramified double covers of curves on
Nikulin surfaces of non-standard type, and we will extend the result to covers
ramified at 4 and 6 points.

5. Double covers of curves on Nikulin surfaces

5.1. Nikulin surfaces and their Picard group. Nikulin surfaces represent
a rather special class of K3 surfaces, which has been studied in relation to various
topics, including the theory of automorphisms [VGS], the study of Prym curves
[FK] and the birational geometry of their moduli spaces [FV1, FV2, KLV1,
KLV2]. We recall their definition and some basic properties.

Definition 1. A polarized Nikulin surface of genus h ≥ 2 is a triple (S,M,H)
consisting of a smooth K3 surface S and two line bundles OS(M), H ∈ PicS that
satisfy the following conditions:

• S contains 8 disjoint smooth rational curves N1, . . . , N8 such that

N1 + · · ·+N8 ∼ 2M.

• H is nef, H2 = 2(h− 1) and H ·M = 0.
We say that (S,M,H) is primitively polarized if the class of H is primitive in PicS.

The line bundle M defines a non-trivial double cover π : Ŝ → S branched
along

∑8
i=1Ni. Denoting by σ : Ŝ → S̃ the blow-down of the eight (−1)-curves

Ei := π−1(Ni) ⊂ Ŝ, the surface S̃ is a minimal K3 surface endowed with a so-called
Nikulin involution ι ∈ Aut(S̃) having eight fixed points corresponding to the images
σ(Ei) of the exceptional divisors. The quotient S̄ := S̃/ι has eight ordinary double
points and the quotient map π̄ : S̃ → S̄ fits in the following commutative diagram:

Ŝ

π

��

σ // S̃

π̄

��
S

σ̄
// S̄

,

where σ̄ is the contraction of the curves Ni to the eight nodes of S̄.

Definition 2. Let (S,M,H) be a polarized Nikulin surface of genus h. The
rank 8 sublattice of PicS generated by N1, . . . , N8 and M is called Nikulin lattice
and its denoted by N = N(S,M).
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Since the Picard group of a polarized Nikulin surface (S,M,H) contains both
the Nikulin lattice and the polarization H, its rank is at least 9. Consider the rank
9 lattice

Λh = Λ(S,M,H) := Z[H]⊕⊥ N ⊂ PicS;

the surface S is said to be a Nikulin surface of standard type if the embedding
Λh ⊂ PicS is primitive, and a Nikulin surface of non-standard type otherwise.
Garbagnati and Sarti [GS] proved that in the latter case h is forced to be odd. The
following result describes Pic(S) in the case of minimal Picard number.

Proposition 5.1 ([GS], Prop. 2.1). Let (S,M,H) be a genus h primitively
polarized Nikulin surface of Picard number 9. Then either PicS = Λh (standard
case), or h is odd and Λh ⊂ PicS has index two (non-standard case). In the latter
situation, possibly after renumbering the curves Ni, one falls in one of these cases:

• h ≡ 3 mod 4 and there are R1, R2 ∈ PicS such that

R1 ∼
H −N1 −N2

2
, R2 ∼

H −N3 − · · · −N8

2
;

in particular, one has g(R1) = (h+ 1)/4, g(R2) = (h− 3)/4.
• h ≡ 1 mod 4 and there are R1, R2 ∈ PicS such that

R1 ∼
H −N1 −N2 −N3 −N4

2
, R2 ∼

H −N5 −N6 −N7 −N8

2
;

in particular, one has g(R1) = g(R2) = (h− 1)/4.

The growing interest in Nikulin surfaces is motivated from the fact that some
Prym curves live on them. The condition H ·M = 0 in Definition 1 ensures that
the double cover π restricts to an étale double cover π|C : C̃ := π−1(C)→ C of any
smooth curve C ∈ |H|; in other words, the pair (C,M |C) is a Prym curve of genus
h. Since C̃ is disjoint from the (−1)-curves Ei, the curve C̃ can be identified with
its image in S̃ and we set H̃ := OS̃(C̃).

The Picard group of the K3 surface S̃ was described by Van Geemen and Sarti
[VGS] by investigating the action of the Nikulin involution ι on the cohomology
group H2(S̃,Z). It turns out that Pic(S̃) always contains the orthogonal com-
plement (H2(S̃,Z)ι)⊥, which is isomorphic to the rank 8 lattice E8(−2). Since
H̃ ∈ E8(−2)⊥ ⊂ Pic(S̃), the Picard number of S̃ is ≥ 9 and equality holds if and
only if the same holds for S. The following proposition summarizes results by Van
Geemen and Sarti [VGS, Prop. 2.2 and Prop. 2.7] and Aprodu and Farkas [AF,
Prop. 4.3] in the standard case.

Proposition 5.2. Let (S,M,H) be a genus h polarized Nikulin surface of
standard type and Picard number 9, and let S̃ be the K3 surface with a Nikulin
involution obtained from S. Then, the lattice

Λ̃h := ZH̃ ⊕ E8(−2)

has index 2 in Pic(S̃). The latter is generated by Λ̃h and a class H̃+v
2 , where v is

an element of E8(−2) satisfying v2 = −4 if h is even and v2 = −8 if h is odd.

We now turn to the non-standard case. By [GS, Prop. 3.5 (2)], for i = 1, 2 the
linear system |Ri| contains a smooth irreducible curve as soon as Ri has nonnegative
self-intersection. We stress that R1 · M = 2 and R2 · M = 6 if h ≡ 3 mod 4,
while R1 · M = R2 · M = 4 for h ≡ 1 mod 4. Therefore, for all smooth curves
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D1 ∈ |R1| and D2 ∈ |R2|, the cover π induces double covers πD1
: π−1(D1) → D1

and πD2
: π−1(D2) → D2 that are ramified at 2 and 6 points, respectively, if

h ≡ 3 mod 4; on the other hand, both πD1
and πD2

are ramified at 4 points if
h ≡ 1 mod 4. In any case, the curves π−1(D1) and π−1(D2) meet each exceptional
curve Ei in at most 1 point and are thus isomorphic to their images in S̃, that we
denote by D̃1 and D̃2 respectively. It is trivial to check that

σ∗D̃1 − E1 − E2 ∼ π∗D1, σ
∗D̃2 − E3 − · · · − E8 ∼ π∗D2 if h ≡ 3mod 4,(5.1)

σ∗D̃1 − E1 − E2 − E3 − E4 ∼ π∗D1, σ
∗D̃2 − E5 − E6 − E7 − E8 ∼ π∗D2 if h ≡ 1mod 4.

Note that Hurwitz’s formula always yields g(D̃1) = g(D̃2) = (h+ 1)/2.
The following result directly follows from [VGS, Prop. 2.2 and Prop. 2.7] in the
non-standard case.

Proposition 5.3. Let (S,M,H) be a genus h polarized Nikulin surface of non-
standard type and Picard number 9, and let S̃ be the K3 surface with a Nikulin
involution obtained from S. Then

Pic(S̃) = ZR̃⊕ E8(−2),

where R̃ is a polarization of genus (h+1)/2 such that the curves D̃1, D̃2 as in (5.1)
lie in |R̃|.

5.2. Standard Nikulin surfaces. As highlighted in [KLV1, Prop. 2.3], a
general curve C ∈ |H| on a very general genus h primitively polarized Nikulin
surface (S,M,H) of standard type is Brill-Noether general . Furthermore, it was
proved by Aprodu and Farkas [AF, Thm. 1.5] that the étale double cover C̃ ⊂ S̃
of C has the gonality of a general curve of genus 2h−1 that covers a genus h curve,
namely, h+1 if h is odd and h otherwise. It is thus natural to ask whether C̃ is gen-
eral from a Prym-Brill-Noether viewpoint, that is, if it satisfies Welters’ Theorem.
A positive answer would provide an alternative proof of Welters’ result avoiding
degeneration, in analogy with Lazarsfeld’s proof of the Gieseker-Petri Theorem by
specialization to curves on K3 surfaces. Unfortunately, the answer turns out to
be negative as soon h > 7 and h = 6. This bound on the genus agrees with the
following theorem by Farkas and Verra.

Theorem 5.4 ([FV2], Thm. 0.2). A general Prym curve (C, η) ∈ Rh lies on
a Nikulin surface if and only if h ≤ 7 and h 6= 6.

We thus prove the following result.

Theorem 5.5. Let (S,M,H) be a genus h primitively polarized Nikulin surface
of standard type with either h > 7, or h = 6. For any smooth curve C ∈ |H|, the
double cover C̃ ∈ |H̃| of C defined by M |C does not satisfy Welter’s Theorem.

Proof. Set A := H̃+v
2 ∈ Pic(S̃) with v ∈ E8(−2) as in Proposition 5.2. Since

C̃ · v = 0, the restriction A|C̃ is a line bundle on C̃ of degree 2h− 2 such that:

r := h0(C̃, A|C̃)− 1 = h0(S̃, A)− 1 ≥ χ(A)− 1 = 1 +
1

2

(
H̃ + v

2

)2

=

⌊
h

2

⌋
;

here, the first equality follows from the strong version of Bertini’s Theorem due to
Saint-Donat [SD] yielding h1(S̃, A(−C̃)) = 0, while in the last equality we have
used that v2 = −4 when h is even and v2 = −8 otherwise.
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Since E8(−2) = (H2(S̃,Z)ι)⊥ ⊂ Pic(S̃), one has ι∗H̃ = H̃ and ι∗v = −v. This
implies ι∗A|C̃ ' ωC̃ ⊗ A|

∨
C̃
, or equivalently, Nm(A|C̃) = ωC . Hence, A|C̃ defines

an element of the Prym-Brill-Noether variety V r(C,M |C). If h is odd, an easy
computation gives

ρ−(h, r) = − (h− 1)(h− 7)

8
,

which is negative when h > 7. Analogously, for even h one computes the Prym-
Brill-Noether number

ρ−(h, r) = − (h− 2)(h− 4)

8
,

which is negative for h ≥ 6. Hence, the Prym-Petri map of A|C̃ cannot be injective
if either h > 7 or h = 6, and this concludes the proof. �

5.3. Non-standard Nikulin surfaces. Let (S,M,H) be a very general genus
h primitively polarized Nikulin surface of non-standard type. As remarked in
[KLV1, Prop. 2.3 and Rmk. 2.4], in this case the line bundles R1, R2 ∈ Pic(S)
prevent curves in |H| from being Brill-Noether general; indeed, their restrictions
to any smooth curve C ∈ |H| define two theta-characteristics on C with negative
Brill-Noether number. Proposition 3.5 (2) in [GS] yields the existence of a smooth
irreducible curve in the linear systems |Ri| for i = 1, 2 as soon as c1(Ri)

2 ≥ 0. Let
us pick a smooth curve D lying in either |R1|, |R2|, and denote by g ≥ 1 its genus. If
h ≡ 1 mod 4, then g = (h−1)/4 and (D,M |C) ∈ Rg,4. If instead h ≡ 3 mod 4, then
either g = (h+ 1)/4 and (D,M |C) ∈ Rg,2, or g = (h− 3)/4 and (D,M |C) ∈ Rg,6,
depending on whether D lies in |R1| or |R2|. In any case the double cover D̃ ⊂ S̃
of D defined by M |C has genus (h+ 1)/2.

Proposition 5.6. Let (S,M,H) be a general non-standard Nikulin surface of
odd genus h and let D be a smooth curve in either |R1| or |R2|. Then the following
hold:

(i) D is always Brill-Noether general, and it is Petri general if it is general
in its linear system;

(ii) the ramified double cover D̃ of D defined by M |C is Brill-Noether general.

Proof. It is easy to verify that neither R1 nor R2 can be decomposed as the
tensor product of two line bundles on S both satisfying h0 ≥ 2, and thus (i) follows
proceeding as in Lazarsfeld’s proof of Petri’s Theorem [La, Pa]. Proposition 5.3
yields D̃ ∈ |R̃|, where R̃ is a generator of Pic(S̃). Again one can easily exclude
the existence of L1, L2 ∈ Pic(S̃) with R̃ ' L1 ⊗ L2 and h0(S̃, Li) ≥ 2. Hence,
Lazarsfelds’s Theorem implies that all smooth curves in the linear system |R̃| (thus,
in particular, D̃) are Brill-Noether general. �

A general curve D̃ as in the above statement is highly expected to be Petri
general, as well. However, this does not follow directly from Lazarsfeld’s Theorem.
Indeed, the latter only implies Petri generality for general curves in |R̃|; however,
a double cover D̃ of a curve D in |R1| or |R2| is never general in the linear system
|R̃|, as it lies in either the ι-invariant or the ι-anti-invariant part of it.

By varying h, one obtains all possible values for the genus g of D. Recalling
that the moduli space Rg,2n is irreducible for every g ≥ 2 and n ≥ 0 (cf. [Bu, Prop.
2.5]), Proposition 5.6 then implies the following generalization of Bud’s result.
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Theorem 5.7. Fix integers g ≥ 2 and n = 1, 2, 3.
Let (D,x1, . . . , x2n, η) ∈ Rg,2n be general and let D̃ the double cover of D

defined by η. Then the curve D̃ is Brill-Noether general.
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