Supergeometria, Supervarietà di Calabi-Yau "Non-Projected" e loro Immersioni

Simone Noja

Università del Piemonte Orientale simone.noja@uniupo.it

Genova - 29 May 2018

Simone Noja

メロト メポト メヨト メヨト

Motivations and Premises

Why Supergeometry?

- Modern QFT's: bosonic/even and fermionic/odd fields
- Supersymmetry: a symmetry that relates bosonic/even and fermionic/odd fields

Why Supergeometry?

- Modern QFT's: bosonic/even and fermionic/odd fields
- Supersymmetry: a symmetry that relates bosonic/even and fermionic/odd fields

What is Supergeometry?

Supergeometry is the study of varieties characterized by sheaves of $\mathbb{Z}_2\text{-}\mathsf{graded}$ algebras, whose

- even elements commute
- odd elements anticommute (...and as such they are nilpotent!)

Such algebras are called **superalgebras**.

Why Supergeometry?

- Modern QFT's: bosonic/even and fermionic/odd fields
- Supersymmetry: a symmetry that relates bosonic/even and fermionic/odd fields

What is Supergeometry?

Supergeometry is the study of varieties characterized by sheaves of $\mathbb{Z}_2\text{-}\mathsf{graded}$ algebras, whose

- even elements commute
- odd elements anticommute (...and as such they are nilpotent!)

Such algebras are called superalgebras.

• Superstring Theory: the (supposedly...) "Theory of Everything"

Why Supergeometry?

- Modern QFT's: bosonic/even and fermionic/odd fields
- Supersymmetry: a symmetry that relates bosonic/even and fermionic/odd fields

What is Supergeometry?

Supergeometry is the study of varieties characterized by sheaves of $\mathbb{Z}_2\text{-}\mathsf{graded}$ algebras, whose

- even elements commute
- odd elements anticommute (...and as such they are nilpotent!)

Such algebras are called superalgebras.

• Superstring Theory: the (supposedly...) "Theory of Everything"

Superstrings are complex supermanifolds ("Super Riemann Surfaces")!

11

Sigma Models:

• fundamental ingredient to write the action of a supersymmetric theory;

- Sigma Models:
 - fundamental ingredient to write the action of a supersymmetric theory;
 - mathematically, they are controlled by an embedding of supermanifolds

$$\varphi:\mathcal{N} \hookrightarrow \mathcal{M}.$$

- Sigma Models:
 - fundamental ingredient to write the action of a supersymmetric theory;
 - mathematically, they are controlled by an embedding of supermanifolds

$$\varphi:\mathcal{N} \hookrightarrow \mathcal{M}.$$

- **2** Interactions in Superstrings:
 - Computing "loop amplitudes" in Superstring theory;

- Sigma Models:
 - fundamental ingredient to write the action of a supersymmetric theory;
 - mathematically, they are controlled by an embedding of supermanifolds

$$\varphi:\mathcal{N} \hookrightarrow \mathcal{M}.$$

- **2** Interactions in Superstrings:
 - Computing "loop amplitudes" in Superstring theory;
 - Mathematically, understanding the geometry of non-projected supermanifolds

- Sigma Models:
 - fundamental ingredient to write the action of a supersymmetric theory;
 - mathematically, they are controlled by an embedding of supermanifolds

$$\varphi:\mathcal{N} \hookrightarrow \mathcal{M}.$$

- Interactions in Superstrings:
 - Computing "loop amplitudes" in Superstring theory;
 - Mathematically, understanding the geometry of **non-projected** supermanifolds

Loop Amplitudes in Superstrings - The Path Integral

Where all begins: the Path Integral

$$Z_{vac} = \int [\mathcal{D} \operatorname{Fields}] \exp\left(-S_{\scriptscriptstyle ext{TOT}}
ight)$$

where $S_{\text{TOT}} = \text{complete}$ action functional of a superstring $S\Sigma_g$

▶ ∢ ∃ ▶ .

Loop Amplitudes in Superstrings - The Path Integral

Where all begins: the Path Integral

$$Z_{vac} = \int [\mathcal{D} \operatorname{Fields}] \exp\left(-S_{\scriptscriptstyle ext{TOT}}
ight)$$

where S_{TOT} = complete action functional of a superstring $S\Sigma_g$

Quantization \rightsquigarrow Geometry

Quantizing requires to fix the huge gauge group $\mathcal{G} = SWeyl \ltimes SDiff imes U(1)_{S\Sigma}$

∃ >

Loop Amplitudes in Superstrings - The Path Integral

Where all begins: the Path Integral

$$Z_{vac} = \int [\mathcal{D} \operatorname{Fields}] \exp(-S_{\scriptscriptstyle \mathrm{TOT}})$$

where $S_{\text{TOT}} =$ complete action functional of a superstring $S\Sigma_g$

Quantization ~~ Geometry

Quantizing requires to fix the huge gauge group $\mathcal{G} = SWeyl \ltimes SDiff imes U(1)_{\mathcal{S}\Sigma}$

Superstring Quantization \iff Reduction to Supermoduli Space \mathfrak{M}_g

 $\mathfrak{M}_g = \{ \text{isomorphy classes of super Riemann surfaces } \mathcal{S}\Sigma_g \text{ of genus } g \}$

$$\dim_{\mathbb{C}}\mathfrak{M}_{g} = \begin{cases} 0|0 & g = 0\\ 1|0_{e} \ 1|1_{o} & g = 1\\ 3g - 3|2g - 2 & g \ge 2. \end{cases}$$

/□ ▶ 《 글 ▶ 《 글

Superstring Perturbation Theory - Partition Function

Superstring Partition Function = Sum Over Topologies

$$Z_{vac} = \sum_{g=0}^{+\infty} \left\{ e^{\lambda(1-g)} \int_{\mathfrak{M}_g} d\mu_g
ight\}$$

Superstring Perturbation Theory - Partition Function

Superstring Partition Function = Sum Over Topologies

$$Z_{vac} = \sum_{g=0}^{+\infty} \left\{ e^{\lambda(1-g)} \int_{\mathfrak{M}_g} d\mu_g
ight\}$$

Superstring and Supermoduli Space

Integral over the Supermoduli Space

Superstring Interactions \implies Measure for Supermoduli Space \mathfrak{M}_g

▶ < ∃ ▶

Integral over the Supermoduli Space

Superstring Interactions \Longrightarrow Measure for Supermoduli Space \mathfrak{M}_g

The Idea: get rid of the fermionic part of \mathfrak{M}_g !

- integrate the fermionic fibers out;
- deal with \mathcal{M}_{g}^{spin} instead;

Integral over the Supermoduli Space

Superstring Interactions \Longrightarrow Measure for Supermoduli Space \mathfrak{M}_g

The Idea: get rid of the fermionic part of \mathfrak{M}_g !

- integrate the fermionic fibers out;
- deal with \mathcal{M}_{g}^{spin} instead;

Look for a global holomorphic projection

$$\pi_{hol}:\mathfrak{M}_g
ightarrow\mathcal{M}_g^{spin}$$

Theorem (Donagi-Witten 2013)

For $g \ge 5$, the supermoduli space \mathfrak{M}_g is **not** projected. That is, there is no global holomorphic projection

$$\pi_{hol}:\mathfrak{M}_{g}\longrightarrow\mathcal{M}_{g}^{spin}$$

In particular, \mathfrak{M}_g is **not** split.

Theorem (Donagi-Witten 2013)

For $g \ge 5$, the supermoduli space \mathfrak{M}_g is **not** projected. That is, there is no global holomorphic projection

$$\pi_{hol}:\mathfrak{M}_g\longrightarrow\mathcal{M}_g^{spin}$$

In particular, \mathfrak{M}_g is **not** split.

...so what?

- The Physics:
 - issues in computing higher loop amplitudes: maybe divergencies?
 - In o reliable methods for higher loops amplitudes!

• The Mathematics:

- what about g = 3 and g = 4? (...and also g = 2)
- 2 ...call for a deeper understanding of non-projected supermanifolds!

通 ト イヨト イヨト

Definition (Superspace)

A superspace is a pair $(|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$, where

- $|\mathcal{M}|$ is a topological space;
- $\mathcal{O}_{\mathcal{M}}$ is a sheaf of superalgebras over $|\mathcal{M}|$ and such that the stalks $\mathcal{O}_{\mathcal{M},\times}$ at every point of $|\mathcal{M}|$ are local rings.

Definition (Superspace)

A superspace is a pair $(|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$, where

- $|\mathcal{M}|$ is a topological space;
- $\mathcal{O}_{\mathcal{M}}$ is a sheaf of superalgebras over $|\mathcal{M}|$ and such that the stalks $\mathcal{O}_{\mathcal{M},\times}$ at every point of $|\mathcal{M}|$ are local rings.

Definition (Local Model $\mathfrak{S}(|\mathcal{M}|, \mathcal{E}))$

Let $|\mathcal{M}|$ be a topological space and \mathcal{E} a vector bundle over $|\mathcal{M}|$. Then we call $\mathfrak{S}(|\mathcal{M}|, \mathcal{E})$ the superspace such that

- $|\mathcal{M}|$ is the underlying topological space;
- $\mathcal{O}_{\mathcal{M}}$ is given by the $\mathcal{O}_{|\mathcal{M}|}$ -valued sections of the exterior algebra $\bigwedge^{\bullet} \mathcal{E}^*$.

Examples of Local Models

Affine Superspaces $\mathbb{A}^{n|m}$

Affine Superspaces $\mathbb{A}^{n|m}$ are constructed as the local models $\mathfrak{S}(\mathbb{A}^n, \mathcal{O}_{\mathbb{A}^n}^{\oplus m})$, where

- \mathbb{A}^n is the *n*-dimensional affine space over the ring (or field) \mathbb{A} ;
- $\mathcal{O}_{\mathbb{A}^n}$ is the trivial sheaf over it.

$\mathbb{R}^{n|m}$ and $\mathbb{C}^{n|m|}$

- These are the most common example of superspaces in Theoretical Physics;
- They enter the definition of differentiable and complex supermanifolds respectively!

Definition (Supermanifold)

A supermanifold is a superspace \mathcal{M} that is locally isomorphic to some local model $\mathfrak{S}(|\mathcal{M}|, \mathcal{E})$.

Let $\{U_i\}_{i \in I}$ be an open covering of $|\mathcal{M}|$, then $\mathcal{O}_{\mathcal{M}}$ is described via a collection $\{\psi_{U_i}\}_{i \in I}$ of local isomorphisms of sheaves

$$U_i\longmapsto \psi_{U_i}:\mathcal{O}_{\mathcal{M}}\lfloor_{U_i}\longrightarrow \bigwedge^{\bullet}\mathcal{E}^*\lfloor_{U_i}$$

where is $\bigwedge^{\bullet} \mathcal{E}^*$ the sheaf of sections of the exterior algebra of \mathcal{E} .

Definition (Supermanifold)

A supermanifold is a superspace \mathcal{M} that is locally isomorphic to some local model $\mathfrak{S}(|\mathcal{M}|, \mathcal{E})$.

Let $\{U_i\}_{i \in I}$ be an open covering of $|\mathcal{M}|$, then $\mathcal{O}_{\mathcal{M}}$ is described via a collection $\{\psi_{U_i}\}_{i \in I}$ of local isomorphisms of sheaves

$$U_i \longmapsto \psi_{U_i} : \mathcal{O}_{\mathcal{M}} \lfloor_{U_i} \longrightarrow \bigwedge^{\bullet} \mathcal{E}^* \lfloor_{U_i}$$

where is $\bigwedge^{\bullet} \mathcal{E}^*$ the sheaf of sections of the exterior algebra of \mathcal{E} .

Complex Supermanifolds

Are characterized by holomorphic local models.

- |M| has a complex manifold structure.
- \mathcal{E} is a holomorphic vector bundle.

Split Supermanifold

If one has a **global** isomorphism $\mathcal{O}_{\mathcal{M}} \cong \bigwedge^{\bullet} \mathcal{E}^*$ then \mathcal{M} is said **split**.

Split Supermanifold

If one has a **global** isomorphism $\mathcal{O}_{\mathcal{M}} \cong \bigwedge^{\bullet} \mathcal{E}^*$ then \mathcal{M} is said **split**.

Transition functions on an intersection $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ of a split supermanifold:

• even: $z_{\alpha}^{i} = f_{\alpha\beta}^{i}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \longrightarrow$ ordinary complex manifolds;

• odd: $\theta_{\alpha}^{j} = \sum_{\ell=1}^{m} g_{\alpha\beta}^{\ell}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \theta_{\beta}^{\ell} \longrightarrow$ vector bundle (rank 0|m)

= 990

Split Supermanifold

If one has a **global** isomorphism $\mathcal{O}_{\mathcal{M}} \cong \bigwedge^{\bullet} \mathcal{E}^*$ then \mathcal{M} is said **split**.

Transition functions on an intersection $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ of a split supermanifold:

• even: $z_{\alpha}^{i} = f_{\alpha\beta}^{i}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \longrightarrow$ ordinary complex manifolds;

• odd: $\theta_{\alpha}^{j} = \sum_{\ell=1}^{m} g_{\alpha\beta}^{\ell}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \theta_{\beta}^{\ell} \longrightarrow$ vector bundle (rank 0|m)

A split supermanifolds can be looked at as the total space of a certain fermionic/odd vector bundle.

ミト ▲ ミト ミー の へ ()

Split Supermanifold

If one has a **global** isomorphism $\mathcal{O}_{\mathcal{M}} \cong \bigwedge^{\bullet} \mathcal{E}^*$ then \mathcal{M} is said **split**.

Transition functions on an intersection $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ of a split supermanifold:

• even: $z_{\alpha}^{i} = f_{\alpha\beta}^{i}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \longrightarrow$ ordinary complex manifolds;

• odd: $\theta_{\alpha}^{j} = \sum_{\ell=1}^{m} g_{\alpha\beta}^{\ell}(z_{\beta}^{1}, \dots z_{\beta}^{n}) \theta_{\beta}^{\ell} \longrightarrow$ vector bundle (rank 0|m)

A split supermanifolds can be looked at as the total space of a certain fermionic/odd vector bundle.

Projective Superspaces
$$\mathbb{P}^{n|m} = \mathfrak{S}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus m})$$

$$\mathcal{O}_{\mathbb{P}^{n|m}} = \bigoplus_{k \text{ even}} \bigwedge^k \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus m} \oplus \bigoplus_{k \text{ odd}} \bigwedge^k \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus m}$$

Definition (Nilpotent Sheaf $\mathcal{J}_{\mathcal{M}}$)

Given \mathcal{M} we will call $\mathcal{J}_{\mathcal{M}}$ the sheaf of ideals generated by all the (nilpotent) odd sections.

Definition (Nilpotent Sheaf $\mathcal{J}_{\mathcal{M}}$)

Given \mathcal{M} we will call $\mathcal{J}_{\mathcal{M}}$ the sheaf of ideals generated by all the (nilpotent) odd sections.

Definition (Reduced Manifold \mathcal{M}_{red})

Given $\mathcal{M} = (|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$, we call reduced manifold \mathcal{M}_{red} the ordinary manifold given as a ringed space by the pair $(|\mathcal{M}|, \mathcal{O}_{\mathcal{M}_{red}})$, where $\mathcal{O}_{\mathcal{M}_{red}}$ is defined as $\mathcal{O}_{\mathcal{M}_{red}} := \mathcal{O}_{\mathcal{M}} / \mathcal{J}_{\mathcal{M}}$.

프 문 문 프 문 문 문

Definition (Nilpotent Sheaf $\mathcal{J}_{\mathcal{M}}$)

Given \mathcal{M} we will call $\mathcal{J}_{\mathcal{M}}$ the sheaf of ideals generated by all the (nilpotent) odd sections.

Definition (Reduced Manifold \mathcal{M}_{red})

Given $\mathcal{M} = (|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$, we call reduced manifold \mathcal{M}_{red} the ordinary manifold given as a ringed space by the pair $(|\mathcal{M}|, \mathcal{O}_{\mathcal{M}_{red}})$, where $\mathcal{O}_{\mathcal{M}_{red}}$ is defined as $\mathcal{O}_{\mathcal{M}_{red}} := \mathcal{O}_{\mathcal{M}} / \mathcal{J}_{\mathcal{M}}$.

Definition (Structural Exact Sequence)

The sheaves $\mathcal{J}_{\mathcal{M}},\,\mathcal{O}_{\mathcal{M}}$ and $\mathcal{O}_{\mathcal{M}_{red}}$ fit together into

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \xrightarrow{\iota^{\sharp}} \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0$$

The maps $\iota^{\sharp}: \mathcal{O}_{\mathcal{M}} \to \mathcal{O}_{\mathcal{M}_{red}}$ corresponds to the **inclusion** $\mathcal{M}_{red} \hookrightarrow \mathcal{M}$.

Does the Structural Exact Sequence split?

Does exist a morphism $\pi^{\sharp}: \mathcal{O}_{\mathcal{M}_{red}} \to \mathcal{O}_{\mathcal{M}}$ such that $\pi^{\sharp} \circ \iota^{\sharp} = \mathit{Id}_{\mathcal{O}_{\mathcal{M}}}$?

This corresponds to the existence of a **projection** $\pi : \mathcal{M} \to \mathcal{M}_{red}$ satisfying $\pi \circ \iota = id_{\mathcal{M}_{red}}$.

Does the Structural Exact Sequence split?

Does exist a morphism $\pi^{\sharp}: \mathcal{O}_{\mathcal{M}_{red}} \to \mathcal{O}_{\mathcal{M}}$ such that $\pi^{\sharp} \circ \iota^{\sharp} = \mathit{Id}_{\mathcal{O}_{\mathcal{M}}}$?

This corresponds to the existence of a **projection** $\pi : \mathcal{M} \to \mathcal{M}_{red}$ satisfying $\pi \circ \iota = id_{\mathcal{M}_{red}}$.

Definition (Projected Supermanifolds)

A supermanifold that admits such a projection is said to be projected.

 $0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$

イロト イポト イヨト イヨト

= nar

Does the Structural Exact Sequence split?

Does exist a morphism $\pi^{\sharp}: \mathcal{O}_{\mathcal{M}_{red}} \to \mathcal{O}_{\mathcal{M}}$ such that $\pi^{\sharp} \circ \iota^{\sharp} = \mathit{Id}_{\mathcal{O}_{\mathcal{M}}}$?

This corresponds to the existence of a **projection** $\pi : \mathcal{M} \to \mathcal{M}_{red}$ satisfying $\pi \circ \iota = id_{\mathcal{M}_{red}}$.

Definition (Projected Supermanifolds)

The structure sheaf of a projected supermanifold is a sheaf of $\mathcal{O}_{\mathcal{M}_{red}}$ -algebras:

ONE CAN USE ALL OF THE ORDINARY ALGEBRAIC/COMPLEX GEOMETRIC TOOLS TO STUDY PROJECTED SUPERMANIFOLDS!

= nar

伺 と く ヨ と く ヨ と
$\mathcal{N}=1$ Supermanifolds Are Projected

Definition (Fermionic Sheaf)

We call **fermionic sheaf** $\mathcal{F}_{\mathcal{M}}$ the sheaf of $\mathcal{O}_{\mathcal{M}_{red}}$ -modules given by $\mathcal{J}_{\mathcal{M}} / \mathcal{J}_{\mathcal{M}}^2$.

Theorem (Supermanifolds of dimension $n|1 \ (\mathcal{N} = 1))$

Let $\mathcal{M} := (|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$ a (complex) supermanifold of odd dimension 1. Then \mathcal{M} is defined up to isomorphism by the pair $(\mathcal{M}_{red}, \mathcal{F}_{\mathcal{M}})$.

Why is it so?

- The topology is fixed by the underlying manifolds \mathcal{M}_{red} .
- The parity splitting is: $\mathcal{O}_{\mathcal{M}} = \mathcal{O}_{\mathcal{M},0} \oplus \mathcal{O}_{\mathcal{M},1}$, then:

It follows that $\mathcal{O}_{\mathcal{M}} = \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{F}_{\mathcal{M}}.$

$\mathcal{N}=2$ Supermanifolds

• • = • • = •

æ

$\mathcal{N}=2$ Supermanifolds

Theorem (Obstruction to Splitting)

Let ${\mathcal M}$ be a supermanifold of odd dimension 2.

- The even part of the structure sheaf $\mathcal{O}_{\mathcal{M},0}$ uniquely defines a class $\omega_{\mathcal{M}} \in H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$
- \mathcal{M} is projected if and only if the obstruction class $\omega_{\mathcal{M}}$ is zero in $H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$

$\mathcal{N}=2$ Supermanifolds

Theorem (Obstruction to Splitting)

Let ${\mathcal M}$ be a supermanifold of odd dimension 2.

- The even part of the structure sheaf $\mathcal{O}_{\mathcal{M},0}$ uniquely defines a class $\omega_{\mathcal{M}} \in H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$
- \mathcal{M} is projected if and only if the obstruction class $\omega_{\mathcal{M}}$ is zero in $H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$

Theorem (Supermanifolds of dimension n|2)

Let $\mathcal{M} := (|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$ be a complex supermanifold of dimension n|2. Then \mathcal{M} is defined up to isomorphism by the triple $(\mathcal{M}_{red}, \mathcal{F}_{\mathcal{M}}, \omega_{\mathcal{M}})$ where $\omega_{\mathcal{M}} \in H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$

Theorem (Supermanifolds of dimension n|2)

Let $\mathcal{M} := (|\mathcal{M}|, \mathcal{O}_{\mathcal{M}})$ be a complex supermanifold of dimension n|2. Then \mathcal{M} is defined up to isomorphism by the triple $(\mathcal{M}_{red}, \mathcal{F}_{\mathcal{M}}, \omega_{\mathcal{M}})$ where $\omega_{\mathcal{M}} \in H^1(\mathcal{M}_{red}, \mathcal{T}_{\mathcal{M}_{red}} \otimes Sym^2 \mathcal{F}_{\mathcal{M}}).$

Even Transition Functions

The even transition functions gets "corrected" by $\omega_{\mathcal{M}}!$

In an intersection $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ we have:

$$z^{i}_{lpha}(\underline{z}_{eta}, \underline{ heta}_{eta}) = z^{i}_{lpha}(\underline{z}_{eta}) + \omega_{lphaeta}(\underline{z}_{eta}, \underline{ heta}_{eta})(z^{i}_{lpha}) \qquad i = 1, \dots, n,$$

where

- $\omega_{\alpha\beta}$ is a representative of $\omega_{\mathcal{M}}$;
- the theta's can only appear through their product $\theta_{1\beta}\theta_{2\beta}$ in $\omega_{\alpha\beta}$: indeed $\omega_{\alpha\beta}$ takes values into $Sym^2\mathcal{F}_{\mathcal{M}}$

$\mathcal{N}=2$ Supermanifolds over \mathbb{P}^n

How to evaluate $H^1(\mathbb{P}^n, \mathcal{T}_{\mathbb{P}^n} \otimes Sym^2 \mathcal{F}_{\mathcal{M}})$?

$\mathcal{N}=2$ Supermanifolds over \mathbb{P}^n

How to evaluate $H^1(\mathbb{P}^n, \mathcal{T}_{\mathbb{P}^n} \otimes Sym^2\mathcal{F}_{\mathcal{M}})$?

$Sym^2\mathcal{F}_{\mathcal{M}}\cong\mathcal{O}_{\mathbb{P}^n}(k)$

 $\mathcal{F}_{\mathcal{M}}$ is a sheaf of $\mathcal{O}_{\mathbb{P}^n}$ -modules of rank $0|2 \Rightarrow Sym^2 \mathcal{F}_{\mathcal{M}}$ is a line bundle on $\mathbb{P}^n \Rightarrow$ $Sym^2 \mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^n}(k)$ for some $k \in \mathbb{Z}$.

It follows that

$$H^1(\mathbb{P}^n,\mathcal{T}_{\mathbb{P}^n}\otimes Sym^2\mathcal{F}_{\mathcal{M}})\cong H^1(\mathbb{P}^n,\mathcal{T}_{\mathbb{P}^n}(k)).$$

물에 귀로에 다

3

$\mathcal{N}=2$ Supermanifolds over \mathbb{P}^n

How to evaluate $H^1(\mathbb{P}^n, \mathcal{T}_{\mathbb{P}^n} \otimes Sym^2\mathcal{F}_{\mathcal{M}})$?

$Sym^2\mathcal{F}_{\mathcal{M}}\cong\mathcal{O}_{\mathbb{P}^n}(k)$

 $\mathcal{F}_{\mathcal{M}}$ is a sheaf of $\mathcal{O}_{\mathbb{P}^n}$ -modules of rank $0|2 \Rightarrow Sym^2 \mathcal{F}_{\mathcal{M}}$ is a line bundle on $\mathbb{P}^n \Rightarrow$ $Sym^2 \mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^n}(k)$ for some $k \in \mathbb{Z}$.

It follows that

$$H^1(\mathbb{P}^n,\mathcal{T}_{\mathbb{P}^n}\otimes Sym^2\mathcal{F}_{\mathcal{M}})\cong H^1(\mathbb{P}^n,\mathcal{T}_{\mathbb{P}^n}(k)).$$

How to evaluate $H^1(\mathbb{P}^n, \mathcal{T}_{\mathbb{P}^n}(k))$?

We use the twisted Euler sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(k) \longrightarrow \mathcal{O}_{\mathbb{P}^n}(k+1)^{\oplus n+1} \longrightarrow \mathcal{T}_{\mathbb{P}^n}(k) \longrightarrow 0.$$

$\mathcal{M}_{\mathit{red}} = \mathbb{P}^1$

•
$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2+k)) \neq 0 \iff k \leq -4.$$

• \mathcal{M} non-projected $\iff \mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^1}(\ell_1) \oplus \mathcal{O}_{\mathbb{P}^1}(\ell_2)$ such that $\ell_1 + \ell_2 \leq -4$.

Ξ.

$\overline{\mathcal{M}_{\mathsf{red}}} = \mathbb{P}^1$

 $\mathcal{M}_{red} = \mathbb{P}^2$

•
$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2+k)) \neq 0 \iff k \leq -4.$$

• \mathcal{M} non-projected $\iff \mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^1}(\ell_1) \oplus \mathcal{O}_{\mathbb{P}^1}(\ell_2)$ such that $\ell_1 + \ell_2 \leq -4$.

• $H^1(\mathbb{P}^2, \mathcal{T}_{\mathbb{P}^2}(k)) \neq 0 \iff k = -3$. In particular

$$\mathcal{H}^1(\mathbb{P}^2,\mathcal{T}_{\mathbb{P}^2}(-3))\cong\mathcal{H}^2(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(-3))\cong\mathcal{H}^2(\mathbb{P}^2,\mathcal{K}_{\mathbb{P}^2})\cong\mathbb{C}.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

$\mathscr{M}_{\mathit{red}} = \mathbb{P}^1$

•
$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2+k)) \neq 0 \iff k \leq -4.$$

• \mathcal{M} non-projected $\iff \mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^1}(\ell_1) \oplus \mathcal{O}_{\mathbb{P}^1}(\ell_2)$ such that $\ell_1 + \ell_2 \leq -4$.

$\mathcal{M}_{red} = \mathbb{P}^2$

•
$$H^1(\mathbb{P}^2, \mathcal{T}_{\mathbb{P}^2}(k))
eq 0 \iff k = -3$$
. In particular

$$H^1(\mathbb{P}^2,\mathcal{T}_{\mathbb{P}^2}(-3))\cong H^2(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(-3))\cong H^2(\mathbb{P}^2,\mathcal{K}_{\mathbb{P}^2})\cong\mathbb{C}.$$

$\mathcal{M}_{red} = \mathbb{P}^n$ for $n \geq 3$

•
$$H^1(\mathbb{P}^n,\mathcal{T}_{\mathbb{P}^n}(k))=0 \ \forall k\in\mathbb{Z}.$$

• All of the supermanifolds $\mathcal{N} = 2$ over \mathbb{P}^n with $n \ge 3$ are projected!.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Theorem $(\mathbb{P}^1_{\omega}(m, n))$

Every non-projected $\mathcal{N} = 2$ supermanifold over \mathbb{P}^1 is characterised up to isomorphism by a triple $(\mathbb{P}^1, \mathcal{F}_{\mathcal{M}}, \omega)$ where $\mathcal{F}_{\mathcal{M}}$ is a rank 0|2 locally-free sheaf of $\mathcal{O}_{\mathbb{P}^1}$ -modules such that

$$\mathcal{F}_{\mathcal{M}}\cong\mathcal{O}_{\mathbb{P}^1}(m)\oplus\mathcal{O}_{\mathbb{P}^1}(n)$$

with $m + n = -\ell$, $\ell \ge 4$ and ω is a non-zero cohomology class in $H^1(\mathcal{O}_{\mathbb{P}^1}(2-\ell)) \cong \mathbb{C}^{\ell-3}$.

The even transition function of the supermanifold reads:

$$z = rac{1}{w} + \sum_{j=1}^{\ell-3} \lambda_j rac{\psi_1 \psi_2}{w^{2+j}},$$

where $\lambda_i \in \mathbb{C}$ for $i = 1, \ldots, \ell - 3$.

3

Theorem $(\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}}))$

Let \mathcal{M} be a supermanifold over \mathbb{P}^2 having odd dimension equal to 2. Then \mathcal{M} is non-projected if and only if it arises from a triple $(\mathbb{P}^2, \mathcal{F}_{\mathcal{M}}, \omega)$ where $\mathcal{F}_{\mathcal{M}}$ is a rank 0|2 locally free sheaf of $\mathcal{O}_{\mathbb{P}^2}$ -modules such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$ and ω is a non-zero cohomology class $\omega \in H^2(\mathcal{O}_{\mathbb{P}^2}(-3)) \cong \mathbb{C}$.

One can write the transition functions for an element of the family $\mathbb{P}^2_{\omega}(\mathcal{F})$ from coordinates on \mathcal{U}_0 to coordinates on \mathcal{U}_1 as follows

$$z_{10} = \frac{1}{z_{11}}, \qquad z_{20} = \frac{z_{21}}{z_{11}} + \lambda \frac{\theta_{11}\theta_{21}}{(z_{11})^2}$$
$$\begin{pmatrix} \theta_{10} \\ \theta_{20} \end{pmatrix} = M \begin{pmatrix} \theta_{11} \\ \theta_{21} \end{pmatrix}$$

where $\lambda \in \mathbb{C}$ is a representative of the class $\omega \in H^1(\mathcal{T}_{\mathbb{P}^2}(-3)) \cong \mathbb{C}$ and M is a 2×2 matrix with coefficients in $\mathbb{C}[z_{11}, z_{11}^{-1}, z_{21}]$ such that det $M = 1/z_{11}^3$. Similar transformations hold between the other pairs of open sets.

Theorem $(\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Calabi-Yau)

Regardless how one chooses $\mathcal{F}_{\mathcal{M}}$, if it is such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, then $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is a Calabi-Yau supermanifold, that is

 $\mathcal{B}er(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}}))\cong\mathcal{O}_{\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})}.$

Theorem $(\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Calabi-Yau)

Regardless how one chooses $\mathcal{F}_{\mathcal{M}}$, if it is such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, then $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is a Calabi-Yau supermanifold, that is

$$\mathcal{B} extsf{er}(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}}))\cong\mathcal{O}_{\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})}.$$

CY Condition and Supergeometry

Definition (CY Manifold)

A CY manifold is a Kähler manifold with trivial canonical sheaf $K_M = \bigwedge^{top} T_M^*$.

伺 ト イヨト イヨト

э

Theorem $(\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Calabi-Yau)

Regardless how one chooses $\mathcal{F}_{\mathcal{M}}$, if it is such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, then $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is a Calabi-Yau supermanifold, that is

$$\mathcal{B} extsf{er}(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}}))\cong\mathcal{O}_{\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})}.$$

CY Condition and Supergeometry

Definition (CY Manifold)

A CY manifold is a Kähler manifold with trivial canonical sheaf $K_M = \bigwedge^{top} T_M^*$.

...this definition is meaningless in supergeometry:

- there is no top-form in supergeometry: $(d\theta)^n := d\theta \land \ldots \land d\theta \neq 0 \quad \forall n \in \mathbb{N}$
- the De Rham complex is not bounded from above on a supermanifold!

イロト イポト イヨト イヨト

= 990

Theorem $(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})$ is Calabi-Yau)

Regardless one chooses $\mathcal{F}_{\mathcal{M}}$, if it is such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, then $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is a Calabi-Yau supermanifold, that is

$$\mathcal{B}\mathit{er}(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}}))\cong\mathcal{O}_{\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})}.$$

CY Condition and Supergeometry

Definition (CY Manifold)

A CY manifold is a Kähler manifold with trivial canonical sheaf $K_M = \bigwedge^{top} T_M^*$.

•
$$K_M \quad \rightsquigarrow \quad dx_1 \wedge \ldots \wedge dx_n = \det(Jac \Phi)dx'_1 \wedge \ldots \wedge dx'_n;$$

一日、

Theorem $(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})$ is Calabi-Yau)

Regardless one chooses $\mathcal{F}_{\mathcal{M}}$, if it is such that $Sym^2\mathcal{F}_{\mathcal{M}} \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, then $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is a Calabi-Yau supermanifold, that is

$$\mathcal{B} extsf{er}(\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}}))\cong\mathcal{O}_{\mathbb{P}^2_\omega(\mathcal{F}_{\mathscr{M}})}.$$

CY Condition and Supergeometry

Definition (CY Manifold)

A CY manifold is a Kähler manifold with trivial canonical sheaf $K_M = \bigwedge^{top} T_M^*$.

•
$$K_M \quad \rightsquigarrow \quad dx_1 \wedge \ldots \wedge dx_n = \det(Jac \Phi)dx'_1 \wedge \ldots \wedge dx'_n;$$

• $\mathcal{B}er(\mathcal{M}) \rightsquigarrow [dx_1 \dots dx_n | d\theta_1 \dots d\theta_m] = ber(\mathcal{S}Jac \Phi)[dx'_1 \dots dx'_n | d\theta'_1 \dots d\theta'_m].$

・ロト ・ 同ト ・ ヨト ・ ヨト

= nar

...what to do now?

The idea is to look at these "strange" non-projected geometries inside "friendly" varieties, such as projective superspaces $\mathbb{P}^{n|m}$.

Embeddings of Supermanifolds

... in other words, we are looking for an embedding of supermanifolds

 $\varphi: \mathcal{M} \longrightarrow \mathbb{P}^{n|m}$

Theorem ("Very Ample" Line Bundles and Embedding)

If \mathcal{E} is a certain globally-generated sheaf of $\mathcal{O}_{\mathcal{M}}$ -modules of rank 1|0, having n + 1|m global sections $\{s_0, \ldots, s_n | \xi_1, \ldots, \xi_m\}$, then there exists a morphism $\phi_{\mathcal{E}} : \mathcal{M} \to \mathbb{P}^{n|m}$ such that $\mathcal{E} = \phi_{\mathcal{E}}^*(\mathcal{O}_{\mathbb{P}^{n|m}}(1))$ and such that $s_i = \phi_{\mathcal{E}}^*(X_i)$ and $\xi_j = \phi_{\mathcal{E}}^*(\Theta_j)$ for $i = 0, \ldots, n$ and $j = 1, \ldots, m$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

...what to do now?

The idea is to look at these "strange" non-projected geometries inside more regular and friendly varieties, such as projective superspaces $\mathbb{P}^{n|m}$.

Embeddings of Supermanifolds

... in other words, we are looking for an embedding of supermanifolds

 $\varphi: \mathcal{M} \longrightarrow \mathbb{P}^{n|m}$

Theorem ("Embedding for Projected Supermanifolds)

Any projected supermanifold whose reduced manifold \mathcal{M}_{red} is projective, i.e. $\exists \varphi_{red} : \mathcal{M}_{red} \to \mathbb{P}^n$, is super-projective, i.e. $\exists \varphi : \mathcal{M} \to \mathbb{P}^{n|m}$.

"Proof"

Let $\pi : \mathcal{M} \to \mathcal{M}_{red}$ be the projection and \mathcal{L}_{red} a very ample line bundle on \mathcal{M}_{red} . Then $\pi^* \mathcal{L}_{red}$ is very ample on \mathcal{M} .

Obstructions to Embed a Supermanifolds

...Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi: \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

Obstructions to Embed a Supermanifolds

...Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi: \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

• Trivial Picard group:
$$H^1(\mathcal{M}, \mathcal{O}^*_{\mathcal{M},0}) = 0.$$

Obstructions to Embed a Supermanifolds

... Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi: \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

- Trivial Picard group: $H^1(\mathcal{M}, \mathcal{O}^*_{\mathcal{M},0}) = 0.$
 - ...but also: a non-trivial Picard group, but NO very ample line bundles!

... Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi : \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

- Trivial Picard group: $H^1(\mathcal{M}, \mathcal{O}^*_{\mathcal{M},0}) = 0.$
 - ...but also: a non-trivial Picard group, but NO very ample line bundles!
- **②** "Obstruction" class: $H^2(\mathcal{M}, Sym^{2k}\mathcal{F}_{\mathcal{M}}) \neq 0$ for $k = 1, ..., \operatorname{rank} \mathcal{F}_{\mathcal{M}}/2$

... Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi : \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

- Trivial Picard group: $H^1(\mathcal{M}, \mathcal{O}^*_{\mathcal{M},0}) = 0.$
 - ...but also: a non-trivial Picard group, but NO very ample line bundles!
- **2** "Obstruction" class: $H^2(\mathcal{M}, Sym^{2k}\mathcal{F}_{\mathcal{M}}) \neq 0$ for $k = 1, ..., \operatorname{rank} \mathcal{F}_{\mathcal{M}}/2$

Theorem

Let \mathcal{M} be a complex supermanifold and let $\varphi_{red} : \mathcal{M}_{red} \hookrightarrow \mathbb{P}^n$ an embedding of its reduced manifold. Then the obstructions to extending φ_{red} to an embedding $\varphi : \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$ are elements of $H^2(\mathcal{M}, Sym^{2k}\mathcal{F}_{\mathcal{M}}) \neq 0$ for $k = 1, \ldots, rank \mathcal{F}_{\mathcal{M}}/2$

... Issues and Obstructions

Instances that obstruct the existence of an embedding $\phi: \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$:

- Trivial Picard group: $H^1(\mathcal{M}, \mathcal{O}^*_{\mathcal{M},0}) = 0.$
 - ...but also: a non-trivial Picard group, but NO very ample line bundles!
- **2** "Obstruction" class: $H^2(\mathcal{M}, Sym^{2k}\mathcal{F}_{\mathcal{M}}) \neq 0$ for $k = 1, ..., \operatorname{rank} \mathcal{F}_{\mathcal{M}}/2$

Theorem

Let \mathcal{M} be a complex supermanifold and let $\varphi_{red} : \mathcal{M}_{red} \hookrightarrow \mathbb{P}^n$ an embedding of its reduced manifold. Then the obstructions to extending φ_{red} to an embedding $\varphi : \mathcal{M} \hookrightarrow \mathbb{P}^{n|m}$ are elements of $H^2(\mathcal{M}, \operatorname{Sym}^{2k} \mathcal{F}_{\mathcal{M}}) \neq 0$ for $k = 1, \ldots, \operatorname{rank} \mathcal{F}_{\mathcal{M}}/2$

Any Super Curve is Super Projective

...indeed $H^2(\mathcal{M}, \mathcal{G}) = 0$ for any coherent sheaf \mathcal{G} on a (compact) curve, simply because dim $\mathcal{M}_{red} = 1 < 2!$

イロト イポト イヨト イヨト

э.

Embedding of a Super Curve

The Supermanifold $\mathbb{P}^1_{\omega}(2,2)$

Let us consider the easiest example of **non-projected** supermanifold over \mathbb{P}^1 : it is characterized by transition functions

$$z = \frac{1}{w} + \frac{\psi_1 \psi_2}{w^3}, \qquad \theta_1 = \frac{\psi_1}{w^2}, \qquad \theta_2 = \frac{\psi_2}{w^2}.$$

The Supermanifold $\mathbb{P}^1_{\omega}(2,2)$

Let us consider the easiest example of **non-projected** supermanifold over \mathbb{P}^1 : it is characterized by transition functions

$$z = \frac{1}{w} + \frac{\psi_1 \psi_2}{w^3}, \qquad \theta_1 = \frac{\psi_1}{w^2}, \qquad \theta_2 = \frac{\psi_2}{w^2}.$$

It has a very ample line bundle that admits an embedding $\varphi : \mathbb{P}^1_{\omega}(2,2) \hookrightarrow \mathbb{P}^{2|2}$, whose image in $\mathbb{P}^{2|2}$ is given by the equation

$$X_0^2 + X_1^2 + X_2^2 + \Theta_1 \Theta_2 = 0.$$

where X_i, Θ_i are the homogeneous coordinates of $\mathbb{P}^{2|2}$.

The Supermanifold $\mathbb{P}^1_{\omega}(2,2)$

Let us consider the easiest example of **non-projected** supermanifold over \mathbb{P}^1 : it is characterized by transition functions

$$z = \frac{1}{w} + \frac{\psi_1 \psi_2}{w^3}, \qquad \theta_1 = \frac{\psi_1}{w^2}, \qquad \theta_2 = \frac{\psi_2}{w^2}.$$

It has a very ample line bundle that admits an embedding $\varphi : \mathbb{P}^1_{\omega}(2,2) \hookrightarrow \mathbb{P}^{2|2}$, whose image in $\mathbb{P}^{2|2}$ is given by the equation

$$X_0^2 + X_1^2 + X_2^2 + \Theta_1 \Theta_2 = 0.$$

where X_i, Θ_j are the homogeneous coordinates of $\mathbb{P}^{2|2}$.

...so what?

Non-projected supermanifolds are ubiquitous in complex supergeometry!

伺 ト イヨト イヨト

Embedding of a Super Surface

The Supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$

Let us consider the *only* non-projected supermanifold over \mathbb{P}^2 .

The Supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$

Let us consider the *only* non-projected supermanifold over \mathbb{P}^2 .

$\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Not Super Projective!

The non-projected supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ cannot be embedded in any projective superspace $\mathbb{P}^{n|m}$, regardless how one chooses $\mathcal{F}_{\mathcal{M}}$!

Indeed one finds that:

- it has trivial Picard group $H^1(\mathbb{P}^2, \mathcal{O}^*_{\mathcal{M},0}) \cong 0$;
- (2) it has non-trivial obstruction $H^2(\mathbb{P}^2, Sym^2\mathcal{F}_{\mathcal{M}}) \cong H^2(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-3)) \cong \mathbb{C}$.

• • = • • = •

The Supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$

Let us consider the *only* non-projected supermanifold over \mathbb{P}^2 .

$\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Not Super Projective!

The non-projected supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ cannot be embedded in any projective superspace $\mathbb{P}^{n|m}$, regardless how one chooses $\mathcal{F}_{\mathcal{M}}$!

Indeed one finds that:

- it has trivial Picard group $H^1(\mathbb{P}^2, \mathcal{O}^*_{\mathcal{M},0}) \cong 0$;
- (2) it has non-trivial obstruction $H^2(\mathbb{P}^2, Sym^2\mathcal{F}_{\mathcal{M}}) \cong H^2(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-3)) \cong \mathbb{C}$.

$..\mathbb{P}^{n|m}$ is not special!

• $\mathbb{P}^{n|m}$ is not a privileged ambient for complex algebraic supergeometry!

・回・ ・ヨ・ ・ヨ・

э

The Supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$

Let us consider the *only* non-projected supermanifold over \mathbb{P}^2 .

$\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ is Not Super Projective!

The non-projected supermanifold $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ cannot be embedded in any projective superspace $\mathbb{P}^{n|m}$, regardless how one chooses $\mathcal{F}_{\mathcal{M}}$!

Indeed one finds that:

- it has trivial Picard group $H^1(\mathbb{P}^2, \mathcal{O}^*_{\mathcal{M},0}) \cong 0$;
- (2) it has non-trivial obstruction $H^2(\mathbb{P}^2, Sym^2\mathcal{F}_{\mathcal{M}}) \cong H^2(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-3)) \cong \mathbb{C}$.

$..\mathbb{P}^{n|m}$ is not special!

- $\mathbb{P}^{n|m}$ is not a privileged ambient for complex algebraic supergeometry!
- ...is there any suitable embedding space though?

< ロト < 同ト < ヨト < ヨト

э

Theorem (Existence of Embedding)

Let \mathcal{M} be a non-projected supermanifold of the family $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ and $\mathcal{T}_{\mathcal{M}}$ its tangent sheaf. Let $V = H^0(Sym^k\mathcal{T}_{\mathcal{M}})$. Then, for any $k \gg 0$ the evaluation map $V \otimes \mathcal{O}_{\mathcal{M}} \to Sym^k\mathcal{T}_{\mathcal{M}}$ induces an embedding

 $\Phi_k: \mathcal{M} \hookrightarrow \mathbb{G}(2k|2k, V).$

Definition (Super Grassmannians)

A super Grassmannian $\mathbb{G}(a|b; V^{n|m})$ is a universal parameter space for a|b-dimensional linear subspaces of a given n|m-dimensional space $V^{n|m}$

Properties of Super Grassmannians

- Super Grassmannians are in general non-projected;
- Super Grassmannians are in general non-projective.

$\mathbb{G}(1|1;\mathbb{C}^{2|2})$

• $\mathbb{G}(1|1; \mathbb{C}^{2|2})$ is non-projected:

$$H^1(\mathcal{T}_{\mathbb{P}^1_0 imes \mathbb{P}^1_1} \otimes Sym^2 \mathcal{F}_G) \cong \mathbb{C} \oplus \mathbb{C}$$

• $\mathbb{G}(1|1; \mathbb{C}^{2|2})$ is non-projective: $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(\ell, -\ell)$ lifts to $\mathbb{G}(1|1; \mathbb{C}^{2|2})$ but it has no cohomology!

Theorem (Existence of Embedding)

Let \mathcal{M} be a non-projected supermanifold of the family $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ and $\mathcal{T}_{\mathcal{M}}$ its tangent sheaf. Let $V = H^0(Sym^k\mathcal{T}_{\mathcal{M}})$. Then, for any $k \gg 0$ the evaluation map $V \otimes \mathcal{O}_{\mathcal{M}} \to Sym^k\mathcal{T}_{\mathcal{M}}$ induces an embedding

 $\Phi_k: \mathcal{M} \hookrightarrow \mathbb{G}(2k|2k, V).$
Theorem (Existence of Embedding)

Let \mathcal{M} be a non-projected supermanifold of the family $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ and $\mathcal{T}_{\mathcal{M}}$ its tangent sheaf. Let $V = H^0(Sym^k\mathcal{T}_{\mathcal{M}})$. Then, for any $k \gg 0$ the evaluation map $V \otimes \mathcal{O}_{\mathcal{M}} \to Sym^k\mathcal{T}_{\mathcal{M}}$ induces an embedding

 $\Phi_k: \mathcal{M} \hookrightarrow \mathbb{G}(2k|2k, V).$

...Super Grassmannians as universal embedding spaces?

Conjecture

Let \mathcal{M} be a smooth complex supermanifold and let \mathcal{M}_{red} be projective.

Then \mathcal{M} can be embedded in some super Grassmannians.

イロト イポト イヨト イヨト

3

Theorem (Existence of Embedding)

Let \mathcal{M} be a non-projected supermanifold of the family $\mathbb{P}^2_{\omega}(\mathcal{F}_{\mathcal{M}})$ and $\mathcal{T}_{\mathcal{M}}$ its tangent sheaf. Let $V = H^0(Sym^k\mathcal{T}_{\mathcal{M}})$. Then, for any $k \gg 0$ the evaluation map $V \otimes \mathcal{O}_{\mathcal{M}} \to Sym^k\mathcal{T}_{\mathcal{M}}$ induces an embedding

 $\Phi_k: \mathcal{M} \hookrightarrow \mathbb{G}(2k|2k, V).$

...some open problems:

- The Theorem is not effective!
 - it does not identify the target super Grassmannian;
 - **2** *k* depends heavily on the choice of $\mathcal{F}_{\mathcal{M}}$;
 - $\bigcirc \Rightarrow calculate a uniform k and dim V.$
- Extend the Theorem to all (non-projected) supermanifolds $dim(\mathcal{M}_{red}) \geq 2!$
 - **9** $\mathcal{T}_{\mathcal{M}_{red}}$ is not ample for $\mathcal{M}_{red} \neq \mathbb{P}^n$;
 - $\bigcirc \Rightarrow \text{ identify an ample locally-free sheaf of } \mathcal{O}_{\mathcal{M}_{red}}\text{-}\text{modules on } \mathcal{M}_{red} \text{ and } \underbrace{\text{extend}}_{t} \text{ it to a locally-free sheaf on } \mathcal{M}.$

A (10) F (10)

Two Explicit Examples

Two Homogeneous Fermionic Sheaves

- Decomposable: $\mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-2);$
- Non-Decomposable: $\mathcal{F}_{\mathcal{M}} = \Omega^1_{\mathbb{P}^2}$.

Two Explicit Examples

Two Homogeneous Fermionic Sheaves

- Decomposable: $\mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-2);$
- Non-Decomposable: $\mathcal{F}_{\mathcal{M}} = \Omega^1_{\mathbb{P}^2}$.

Theorem (Embedding using $\mathcal{T}_{\scriptscriptstyle\mathscr{M}})$

- **Decomposable:** $i : \mathbb{P}^2_{\omega}(\mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-2)) \hookrightarrow \mathbb{G}(2|2; \mathbb{C}^{12|12}).$
- Non-Decomposable: $i : \mathbb{P}^2_{\omega}(\Omega^1_{\mathbb{P}^2}) \hookrightarrow \mathbb{G}(2|2; \mathbb{C}^{8|9}).$

伺 と く ヨ と く ヨ と

Two Explicit Examples

Two Homogeneous Fermionic Sheaves

- Decomposable: $\mathcal{F}_{\mathcal{M}} = \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-2);$
- Non-Decomposable: $\mathcal{F}_{\mathcal{M}} = \Omega^1_{\mathbb{P}^2}$.

Theorem (Embedding using $\mathcal{T}_{\scriptscriptstyle\mathscr{M}})$

- **Decomposable:** $i: \mathbb{P}^2_{\omega}(\mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-2)) \hookrightarrow \mathbb{G}(2|2; \mathbb{C}^{12|12}).$
- Non-Decomposable: $i : \mathbb{P}^2_{\omega}(\Omega^1_{\mathbb{P}^2}) \hookrightarrow \mathbb{G}(2|2; \mathbb{C}^{8|9}).$

$\mathcal{F}_{\scriptscriptstyle{\mathcal{M}}}=\Omega^1_{\scriptscriptstyle{\mathbb{P}^2}}$: a Minimal Embedding

$$i_{\mathcal{M}}: \mathbb{P}^{2}_{\omega}(\Omega^{1}_{\mathbb{P}^{2}}) \hookrightarrow \mathbb{G}(1|1; \mathbb{C}^{3|3}).$$
$$i_{\mathcal{M}}(\mathcal{M}) \lfloor_{\mathcal{Z}_{0}} = \left(\begin{array}{c|c} 1 & z_{10} & z_{20} & \parallel 0 & \theta_{10} & \theta_{20} \\ \hline 0 & -\theta_{10} & -\theta_{20} & \parallel 1 & z_{10} & z_{20} \end{array} \right)$$

▲帰▶ ▲ 臣▶ ▲ 臣▶ …

= nar

S.N., S.L. Cacciatori, F. Dalla Piazza, A. Marrani, R. Re, *One-Dimensional Super Calabi-Yau Manifolds and their Mirrors*, JHEP 04 (2017) 094

S.N., Supergeometry of Π-Projective Spaces, J.Geom.Phys., **124**, 286 (2018)

S.L. Cacciatori, S.N, *Projective Superspaces in Practice*, J.Geom.Phys., **130**, 40 (2018)

S.L. Cacciatori, S.N., R. Re, Non-Projected Calabi-Yau Supermanifolds over \mathbb{P}^2 , arXiv:1706.01354

S.N., *Topics in Algebraic Supergeometry over Projective Spaces*, Ph.D. Thesis, Università degli Studi di Milano (2018)