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m P(a, b,1) = C3\{0,0,0}/( a.b1) = weighted projective plane
m Assume: gcd(a, b) = 1.
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Gromov—Witten invariants

Fix ordered partitions P1, Po; P; = (p;), |Pi| = ZPU

such that lenP; = /;.
Suppose

|P1| = ka, |P2| = kb. (= gcd(|P1], |P2]) = k)



Gromov—Witten invariants

Fix ordered partitions P1, Po; P; = (p;), |Pi| = ZPU

such that lenP; = /;.
Suppose

|P1| = ka, |P2| = kb. (= gcd(|P1], |P2]) = k)

Then one can define GW invariants

rational curves intersecting the distinct
fixed ¢; points of DY with multiplicities
N P, Py)] =¢"" : ' "
(a)|(P1, P2)] =1 given by the p;; for i = 1,2,
and being tangent to DZ,, of order k
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Examples

(a) Naa[(1L,1+1+1)] =1 given by

1
X1X2X3

(u:v)—(u:— (u—x1v)(u—xv)(u—x3v):v)

(b) Napl(1+1,1+1)] =2 given by

(u:v) = (u(u—v): (u—2v)(u—14v):v?

. HUU—iV'—U— vilu iV'V
(0:0) o (o= Z2v) s =(u =230+ —2v) V)



Conjectural BPS structure

Define a series

[oe]
Np(ap1y = Y Neay[(kP1, kPo)]7¥
k=1

where gcd(|P1]|, |P2|) = 1 (start with coprime pair of partitions).
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Conjectural BPS structure

Define a series

[oe]
Np(ap1y = Y Neay[(kP1, kPo)]7¥
k=1

where gcd(|P1]|, |P2|) = 1 (start with coprime pair of partitions).

Then rewrite formally

e ¢] o0

1 k—1 1
Np(a,p,1) := Z n(a,p)[(kP1, kP2)] Zd( )1 )Tdk

The n(, p)[(kP1, kP2)] are the BPS invariants underlying the GW
invariants N(a,b) [(kPl, kP2)]
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Conjecture (GPS)

N(a,b) [(kpl, sz)] €7 for every a, b7 k, Pl, P>.

Remark. When k = 1, n¢, py[(P1,P2)] = Ni, 1) [(P1,P2)].

Vague expectation I

In great generality, people expect BPS invariants to be integers
because they are the Euler characteristic x of something (some
suitable moduli space).

This is true for N(a,b)[(Pl, P>)] in the coprime case!



Reineke—Weist Theorem

Theorem (Reineke—Weist)
If gcd(|P1], |P2|) = 1, then

Na,py[(P1,P2)] = x (M(P1,P2))

moduli space of stable representations
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Reineke—Weist Theorem

Theorem (Reineke—Weist)
If gcd(|P1],|P2]) =1, then

Na,py[(P1,P2)] = x (M(P1,P2))

moduli space of stable representations
of complete bipartite quiver

K = K({1,¢2) quiver with

set of vertices

Q0 = i1y ey dtys 150 by

and

one arrow from each vertex j to
each vertex i

62 : ° 61
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Vague expectation Il:
In great generality, BPS invariants should admit a natural
g-deformation (or quantization).

In our case the Reineke—Weist Theorem provides a natural
candidate:

N'[(P1,P2)] = P(M(P1,P2))(q)

— q_% dim M(P1,P2) P(M(P1,P2))(q),

where ,E’(M(Pl, P2))(q) is the symmetrized Poincaré polynomial.
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Tropical vertex group

Fix integers a, b and a function f, ) € Clx,x Ly, y 1[[t]] of the
form

fapy =1+ txyPg(xyP 1)

geClz][[t]]

Define 0, )1, ,, € Autc[(] Clx, x~, v,y H[[t]] by

0(ab) fra () = X0,
Oa,b),fiany V) = ¥ 15 1)

Definition (KS, GS)
The tropical vertex group V < Autcqpy) C|x, x7L oy, y (8] is

the (t)-adic completion of the subgroup generated by all H(Q,b),f(a b
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Remark. Elements of V are formal 1-parameter families of
holomorphic symplectomorphisms of C* x C*:

they preserve the form
dx dy

— A —.
X y

Example
Fix 51762 e N.

6?(1,0),(1-1-1‘><)Z1(X) = X
9(1,0),(1+tx)51 (y) = y(1+ tx)£1~

0(071)7(1+ty)£2 (X) = X(]. + ty)_b,
‘9(0,1),(1+ty)/»’2 ) = vy



Basic question: compute commutators in V. More precisely,
compute

-1 1
[0¢a,6),55 Oar br),£7] = 05 1y 00,0, £ O ar ), 0 oy ¢

as some expression involving the generators 0 pr) ¢n.
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Basic question: compute commutators in V. More precisely,
compute

-1 —1
[0¢a,6),55 Oar br),£7] = 05 1y 00,0, £ O ar ), 0 oy ¢

as some expression involving the generators 0 pr) ¢n.

result (KS): In principle, this is always possible.

Suppose that a, b,a’, b’ > 0, and that pu(a, b) < p(a', b')
((a, b) follows (&', b') in clockwise order).
Then 3! collection a”,b” > 0, and attached f(,» ;y such that

[6(2 b),f> 0(8’ b’) f’ = H 0(3” by, f( %
(a”,b")

J

~
decreasing slopes of rays

(from L to R)
with ged(a”,b") =1



Example

For 1 = 0> = 2 a closed formula is known:

[9(1,0),(1+tx)27 9(0,1)7(1+U’)2] -

N
[ T 00k fnsn 0100 * OUALR) oty
k



Example

For 1 = 0> = 2 a closed formula is known:

[9(1,0),(1+tx)27 9(0,1)7(1+U’)2] -

N
[ T 00k fnsn 0100 * OUALR) oty
k

where
hp = (1-— l'2xy)_4
fk7k+1 — (1 + t2k+1Xkyk+1)2
fork = (1+ t2k+1xk+1yk)2.
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For now we restrict to the simplest case:

—

[0(1,0), (14601 00,1, (15 1y)%2] = H 0(a,b),Fap) "
(a,b)

Even this is already very hard: Closed formulae are not known for
6152 >4,

However, there are very interesting theoretical results on
computing {(a, b), fap)}:

Theorem A (GPS '10)
Consider the formal power series

log fap) = Z clga’b)(tx)ak(ty)bk.
k=0

Then 5
CIE% ) _ k Z Z N(a7b)[(Paan)]v

|P,|=ka |Pp|=kb

where P,, Py, = ordered partitions, and lenP, = /1, len P, = {5.
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Tropical significance

The GPS Theorem is based on a tropical computation together
with some nice correspondence results. The tropical technique
leads to:

Theorem A’ (GPS '10)

40k 35 S e i)

|Po|=ka |Ppy|=kb W i=1

where w = (W1, W>) is a pair of weight vectors of arbitrary length

parametrizing a family of tropical counts {N<mg’) (w)}.

Rp,jw;» | Aut(w;)| are some ramification and automorphism factors.
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Example
Ntrop((l’ 1)7 (17 2)) =8

5/
1—1) 1 1
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Geometric meaning: rational plane tropical curves with |wy| + |wy]
incoming ends and a single outgoing end.

Example
N™°P((1,1),(1,2)) = 8

zf
1—1) 1 1

1{1) 1 1

1 2 1 2 1 2

Fact: These counts are well-defined, and depend only on w.
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Refinement
We can actually work over C[[s1, ..., s, t1, ..., tg,]], and consider

ﬁl 22
[ [0.0)145% | [ 011451
i=1 =1

Then again
él 62 —
[H 0(1,0),1+s;x> H9(o,1),1+rjy] = H O(a,b).f 1) (%)
i=1 j=1 (a,b)
where

log fapy =k Do D1 Neapl(P1,P2)]sPtP2xkoy kb,
|Pa|=kKa|Pp|=kb

Corollary
The invariants N, 1,)[(P1,P2)] are determined by the factorization

().
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Natural g-deformation

Basic idea: Some of the factorizations admit a natural
g-deformation. This can be used to g-deform the GW invariants.

To see the g-deformation we need a different point of view on the
0's.

Let (I',{(—,—)) be a lattice with antisymmetric, bilinear form.
Consider the Lie algebra

g generated by e,, «ae€l,

with
[ea7 eﬁ] = <Oé, /8> ea-i-ﬁ)
€a €5 = €q4(-

= Poisson algebra.
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The tropical vertex group revisited
Let R be a complete local or Artin C-algebra, and
g=g&R = lim g ®c R/mf.
Let f, € g be an element of the form
fa €14+ mgles]ea. (1.1)
Then we introduce 6, ¢, automorphisms of the R-algebra g by
Oa,r (€5) = esf ™.

Write: 927,:& = 0, ¢0 for every Q € Q.
Definition
The tropical vertex group Vr r is the completion with respect to

mgr C R of the subgroup of Autr(g) generated by all the
transformations 0, r, .
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The wall-crossing group
Elements of Vr g of the form 0, 145e, With 0 € mg play a special
role.
Definition N
The wall-crossing group Vr g < Vr g is the completion of the

subgroup generated by automorphisms 9271 toe, fora€el, cemg
and Q € Q.

Use the Poisson structure on g to give a different expression for the
special transformations 0n,1+ceme -
Fix 0 € mg, and define the dilogarithm:

akeka

Liz(ces) = ) 2

k=1

Fact: )
Oa1+0eme = EXP (m ad(Lig(—aema))) .
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The g-deformed algebra

We replace g with the associative, noncommutative algebra over
1
C(q™2):
gq generated by &,,a€l,
with .
8,83 = q§<a7ﬂ>éa+ﬁ‘

e 1 . . A
Classical limit:  lim — 1[eoé,eﬁ] ={a, 3)én+3.

g2—l

Fixing a local complete or Artin C-algebra R as usual, we define
aq = gq ®(CR-

(fundamental case: gq[[t]], where t is a central variable.)
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The g-wall-crossing group

Now we can define g-dilogarithm:

A (_q%aéa)n
Blot) = L T g ) - )

n=0

For Q € Q we introduce automorphisms éﬂ[aéa] of g4 acting by

002, ](85) = AdE%(08,)(85) = E%(08,)85E 2 (08,).

Definition
The g-wall-crossing group Ur g is the completion of the subgroup

~ A Iin o
OfAUt(C(qi%)@Cqu generated by the %[(—q2)"0&,)] for v €T,
cemg, QeQ, neZ.
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g-Factorization
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g-Factorization

The factorization [9(170)7(1“)()@1,9(071)7(1“),)@2] = H 9(a7b)’f(a7b)

has an analogue in the g-deformed case.
Suppose that a; follows as in clockwise order.

Lemma
Let T ~ Z? Then 3! Q,(ka) € Q such that

[0 [010,], 0% (028 ]) = [ T[T 10" "0 (—q2)"0* 72 .
Y k=1neZ
and, for each fixed k, Q,(k~y) vanishes for all but finitely many n.

Factorization problem: find

B, = [T ™00 g yora ).

k=1 neZ
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g-analogue of Theorem A’

Refinement: As in the numerical case, we can work over

C[[s1,---+5e;5 t1,-- -, te,]], and look at H O[siéq, ] H O[tién,].
i J

Then

Lemma (Stoppa-F.)

Doyortapa, = Ad exp( Yoy ZH |AUt,|w, NP (w)

‘P1| kal‘PQ‘ kap w =1

1

spltpzw),
g2 —q 2

where (-1) 1
~ —1)Wi—
RPi wi,qg = 7#“@07 P,'|W,'},
wid H wi[wiq
ptrop (w)= Block-Goéttsche invariant (replace my with [my]q).

(a1,00)
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Main theorem

Corollary
A natural candidate for the g-deformed GW invariant is

5 ~
~ RP;|W,’ nytro
/V[(PL P2)] = 2 H m’v(afaz)(w).

RW = N'[(P1,P2)] = P(M(P1,P2))(q).

Theorem (Stoppa-F.)

Suppose (|P1|, |P2|) coprime. Then the two choices of
quantization coincide:

N'[(P1, P,)] = N[(P1,P5)].



Sketch of the Proof |

Refinement (k1 k?) - (P1,P5) = sets of integers
(kl k) = ({kp.i}. (ks J})st fori=1,...,01andj=1,... 0

= Z Wkw,h P2j = 2 WkW,J
w w

A fixed refinement k' induces a weight vector .
w(k') = (wj1, ..., wi,) of length t; = me(k’), by

w—1 w
wjj = w for all j = Z mr(ki) + 1,...,2 mr(ki).
r=1 r=1

By combinatorial argument rearrange as

ki -(W*l)

N[(PLP)]= D] HHH

(ki,ko)=(P1,P2) i=1j=1 w k’ jiw WJ[ ]Wf

Ntmp (w(k'), w(k?)).

(e1,02)



Sketch of the proof Il

Introduce infinite bipartite quiver N/, with

NO = {i(w,m) | (Wv m) € N2} Y {j(w,m) | (Wa m) € Nz} and

Nl = {041, ey Oyt i(w,m) _>J.(W’,m’)7 v w, W/, m, m e N}

Fact: (k', k?) induces a thin (i.e. type one) dimension vector
d(kl, k2) for ' = moduli space of stable abelian representations
Md(k17k2)(N)'

MPS formula for Poincaré polynomials can be expressed as

Jw=1)

R k
PMPLP))@) = Y HHH a——

(K, k2)(P1,Py) i=1j=1 w ki Jiw WJ[W]qWJ

(Md(kl,k2)(N))(q)-

Claim follows from

P(My(ijy(N))(a) = NP (wi(kh), w(k?).  (1.2)



Grazie!
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