
Università degli Studi Roma Tre
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Introduction

Life is what happens while you are making other plans.

J. Lennon

Subharmonic bifurcations have been extensively studied in the literature, and are by now

a standard topic of many classical textbooks [6, 11].

An intuitive formulation of the problem, far from being formal, is the following. Imagine

the cylinder C = {(x, y, z) ∈ R3 : x2+y2 = 1} in the euclidean tridimensional space, and let us

suppose a point moving on C along the curve γ(t) = (cos(ω(A0)(t+ t0)), sin(ω(A0)(t+ t0)), A0)

for fixed height A0 and initial time t0. Suppose the frequency to change monotonically for

varying height and let us call α0(t) = ω(A0)t the angle described by γ(t). Hence, the velocity

field on C is constant at fixed height, i.e. is given by





α̇0 = ω(A),

Ȧ = 0,
(1)

with respect to the angle and the height.

Let us call γ̃(t) = (cos(ω(A0)(t+ t0)), sin(ω(A0)(t+ t0))), i.e. the projection of γ on the x, y

plane, and let us consider the cylinder C̃ = {γ̃} × R in the extended phase space.

Suppose to cut C̃ at zero and T = T (A0) = 2π/ω(A0) height, and to merge the two

boundaries, so that we obtain a torus as depicted in Figure 2. Such an operation is known as

topological quotient of the cylinder C̃ and we shall denote the obtained torus as {γ̃}×R/T (A0)Z.
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Figure 1: Trajectories on the plane α, t for some initial data.

Figure 2: The torus {γ̃} × R/T (A0)Z.

If we alternatively consider the torus {γ̃} × R/2πZ, we notice that, for varying A0 some

curves are closed while others are torus-filling curves. More precisely, the curves such that

ω(A0) = p/q ∈ Q, i.e. those having rational slope on the α, t plane, are still closed on the torus

{γ̃} × R/2πZ.

Now, let us come back to the cylinder C and consider a small perturbation in the velocity

field (1), both in the angular and in the vertical directions, which is 2π-periodic with respect

to the angle and to the time. We shall therefore write





α̇ = ω(A) + εF (α,A, t),

Ȧ = εG(α,A, t).
(2)

Of course not all curves will still be closed: in fact, if no further hypotheses are made

on the perturbation, in general all the trajectories corresponding to the torus-filling curves in
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{γ̃} × R/2πZ will not survive under the perturbation, while some1 of those with frequency

ω(A0) = p/q ∈ Q are left. We are interested in studying whether some periodic solutions with

period T = 2πq/p, persist under the action of the perturbation. Solutions with this property

are called subharmonic solutions of order q/p.

We notice that our techniques applies also to systems of the form




α̇ = ω(A) + εF (α,A, ε, t),

Ȧ = εG(α,A, ε, t),
(3)

where the perturbation depends analytically on ε. Such a problem naturally arises, for instance,

in the study of a periodically driven or forced system, in presence of dissipation, with one degree

of freedom. In this case one has typically two parameters: the perturbation parameter ε and

the damping coefficient γ, i.e. one deals with an equation of the form

ẍ+ g(x) + γẋ = εf(x, t), x ∈ R. (4)

Hence, an interesting problem can be to study the region in the space of parameters where

subharmonic solutions can occur and to determinate the bifurcation curves which divide the

regions of existence and non-existence (see Figure 3) of these solutions; cf. for instance [2, 3,

13, 14], where Melnikov theory is applied to such situations.

As the computation for (3) are very similar to those performed for the system (2), we shall

restrict our analysis to that case.

One can formulate the problem both in the Cr Whitney topology and in the real-analytic

setting. We shall choose the latter. From a technical point of view, this is mandatory since

our techniques require for the system to be analytic. However, it is also very natural from a

physical point of view, because in pratice, in any physical application, the functions appearing

in the equations are analytic, often even polynomials, and when they are not analytic they are

not even smooth. Moreover, we notice since now that, even though we restrict our analysis

to the analytic setting, this does not mean at all that we can not deal with problems where

non-analytic phenomena arise. The very case discussed here provides a counterexample.

The problem of subharmonic bifurcations was first considered by Melnikov [20], who showed

that the existence of subharmonic solutions is related to the zeros of a suitable function, nowa-

days called the subharmonic Melnikov function. The standard Melnikov theory usually studies

the case in which the Melnikov function has a simple (i.e. first order) zero. In such a case the

problem can be reduced to an implicit function problem.

1The existence of closed orbits on C will depend on the initial datum t0.
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Figure 3: Set of existence (grey region) of subharmonic solutions in the plane ε, γ.

Nonetheless, it can happen that the subharmonic Melnikov function either vanishes identi-

cally or has a zero which is of order higher than one.

In the first case one can hopefully go to the higher orders, and if a suitable higher order

generalisation of the subharmonic Melnikov function has a first order zero, then one can proceed

very closely to the standard case, and existence of analytic subharmonic solutions is obtained.

Most of the papers in the literature consider this kind of generalisations of Melnikov’s theory;

for instance Liu and Gu [19], gave an explicit expression for the second-order Melnikov function

for the simple pendulum, and later Guo et al. [12], provided an explicit (and more general)

expression for the second-order Melnikov function, and used it to obtain the existence of a

solution for the equation of motion up to the first order in the perturbation parameter. However

the explicit construction of such a solution was not performed there. Similar computation are

performed in [31, 32], and also in [25, 30] a second order analysis is enough to settle the problem,

under the hypothesis that the second-order Melnikov function has a simple zero. An explicit

formula for the first two orders of the Melnikov function can be found in [18]. Another extension

in this direction can be found in [5], where it is showed that, in a special case, there are at

most three limit cycles bifurcating from the set of periodic orbits of the unperturbed system,

and the first three orders of the Melnikov function are explicitly computed for that case. Also

Iliev computed explicitly the first four orders of the Melnikov function in a special case [15].

Of course there are exceptions, such as [16, 28, 34, 35], dealing with analysis to arbitrarily high
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order. We remark that the papers cited above have to be considered just as examples with

respect to the plenty of studies on Melnikov’s theory.

The case in which the Melnikov function has a zero of finite order (higher than one) is more

subtle. The problem can be still reduced to an implicit function problem, but the fact that

the zeros are no longer simple prevents us from applying the implicit function theorem. Thus

other arguments must be used, based on the Weierstrass preparation theorem [4, 6] and on

the theory of the Puiseux series [1, 4, 6, 23]. However a systematic analysis is missing in the

literature. Furthermore, in general, these arguments are not constructive: if on the one hand

they allow us to prove (in certain cases) the existence of at least one subharmonic solution,

on the other hand the problem of how many such solutions really exist and how they can be

explicitly constructed has not been discussed in full generality.

The main difficulty for a constructive approach is that the solution of the implicit function

equation has to be looked for by successive approximations. At each step of iteration, in order

to find the correction to the approximate solution found at the previous one, one has to solve a

new implicit function equation, which, in principle, still admits multiple roots. So, as far as the

roots of the equations are not simple, one can not give an algorithm to produce systematically

the corrections at the subsequent steps.

A careful discussion of a problem of the same kind can be found in [1], where the problem

of bifurcations from multiple limit cycles is considered; cf. also [21, 22] where the problem is

further investigated. There, under the hypothesis that a simple real zero is obtained at the first

iteration step, it is proved that the bifurcating solutions can be expanded as fractional series

(Puiseux series) of the perturbation parameter. The method to compute the coefficients of the

series is based on the use of Newton’s polygon [1, 4, 6], and allows one to go to arbitrarily high

orders. However, the convergence of the series, and hence of the algorithm, relies on abstract

arguments of algebraic and geometric theory.

To the best of our knowledge, the case of subharmonic bifurcations was not discussed in

the literature. Of course, in principle one can think to adapt the same strategy as in [1] for

the bifurcations of limit cycles. But still, there are issues which have not been discussed there:

principally the explicit bound for the radius of convergence, and the case in which at the first

iteration step one still has multiple roots. Moreover, we have a double aim. We are interested

in results which are both general - not generic - and constructive. This means that we are

interested in problems such as the following: which are the weaker conditions to impose on the

perturbation, for a given integrable system and a given periodic solution, in order to prove the

existence of subharmonic solutions? Of course the ideal result would be to have no restriction
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at all. At the same time, we are also interested in the explicit construction of such solutions,

within any prefixed accuracy.

The problem of subharmonic solutions in the case of multiple zeros of the Melnikov functions

has been considered in [33], where the following theorem is stated (without giving the proof)

for Cr smooth systems: if the subharmonic Melnikov function has a zero of odd order n ≤ r,

then there is at least one subharmonic solution. In any case the analyticity properties of the

solutions are not discussed. In particular, the subharmonic solution is found as a function

of two parameters - the perturbation parameter and the initial phase of the solution to be

continued -, but the relation between the two parameters is not discussed. We point out that,

in the analytic setting, it is exactly this relation which produces (as we shall see later) the lack

of analyticity in the perturbation parameter. Furthermore, in [33] the case of zeros of even

order is not considered: as we shall see, in that case the existence of subharmonic solutions can

not be proved in general, but it can be obtained under extra assumptions.

Now we give a more detailed account of our results.

As said above, we shall consider systems which can be viewed as perturbations of integrable

systems, with the perturbation which depends periodically in time. We shall use coordinates

(α,A) such that, in the absence of the perturbation, A is fixed to a constant value, while α

rotates on the circle: hence all motions are periodic. As usual [11] we assume that, for A

varying in a finite interval, the periods change monotonically. More formal definitions will be

given in Section 1.1.

Given an unperturbed periodic orbit t → (α0(t), A0), we define the subharmonic Melnikov

function M(t0) as the average over a period of the function G(α0(t), A0, t+t0). By construction

M(t0) is periodic in t0. With the terminology introduced before, ε is the perturbation parameter

and t0 is the initial phase. The following scenario arises.

• If M(t0) has no zero, then there is no subharmonic solution, that is no periodic solution

which continues the unperturbed one at ε 6= 0.

• Otherwise, if M(t0) has zeros, the following two cases are possible: either M(t0) has a

zero of finite order n or M(t0) vanishes with all its derivatives. In the second case, because

of analyticity, the function M(t0) is identically zero.

• IfM(t0) has a simple zero (i.e. n = 1), then the usual Melnikov’s theory applies. In partic-

ular there exists at least one subharmonic solution, and it is analytic in the perturbation

parameter ε.
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• If M(t0) has a zero of order n, then in general no result can be given about the existence

of subharmonic solutions. However one can introduce an infinite sequence of polynomial

equations, which are defined iteratively: if the first equation admits a real non-zero root

and all the following equations admit a real root, then a subharmonic solution exists, and

it is a function analytic in suitable fractional power of ε; more precisely it is analytic in

η = ε1/p, for some p ≤ n!. If at some step the root is simple, an algorithm can be given

in order to construct recursively all the coefficients of the series.

• If we further assume that the order n of the zero is odd, then we have that all equations

of the sequence satisfy the request made above on the roots, so that we can conclude that

in such a case at least a subharmonic solution exists. Again, in order to really construct

the solution, by providing an explicit recursive algorithm, we need that at a certain level

of the iteration scheme a simple root appears.

• Moreover, we have at most n periodic solutions bifurcating from the unperturbed one

with initial phase t0. Of course, to count all subharmonic solutions we have also to sum

over all the zeros of the subharmonic Melnikov function.

• Finally, if M(t0) vanishes identically as a function of t0, the solution t → (α(t), A(t)) is

defined up to first order - as it is easy to check - and does not depend on the choice of t0,

so that one can expand the function G(α(t), A(t), t+ t0) up to first order: we call M1(t0)

its average over a period of the unperturbed solution. In particular if also M1(t0) vanishes

identically, then one can push the perturbation theory up to second order - as also the

second order of the solution does not depend on t0 - and, after expanding the function

G(α(t), A(t), t + t0) up to second order, one defines M2(t0) as its average over a period,

and so on. If at a finite step k of such an iteration the k-th order Melnikov function

has a zero of finite order nk,one can repeat the analysis performed above for M(t0), and

no further difficulties arise. Otherwise, if all the subharmonic Melnikov functions vanish

identically in t0, then one has a subharmonic solution for any t0 small enough.

The methods we shall use to prove the results above will be of two different types. We

shall rely on standard general techniques, based on the Weierstrass preparation theorem, in

order to show that under suitable assumptions the solutions exist and to prove in this case

the convergence of the series. Moreover, we shall use a combination of the (so called) Newton-

Puiseux algorithm and the diagrammatic techniques based on the tree formalism [7, 8, 9, 10] in

order to provide a recursive algorithm, when possible. Notice that in such a case the convergence
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of the Puiseux series follows by explicit construction of the coefficients, and an explicit bound of

the radius of convergence is obtained through the estimates of the coefficients - on the contrary

there is no way to provide quantitative bounds with the aforementioned abstract arguments.

These results extend those in [10], where a special case was considered.

This thesis is organised in two parts

The first part (Chapter 1 and Chapter 2) is devoted to construct explicitly the (convergent)

Puiseux series, and to provide an explicit bound for the radius of convergence, under some

simplifying hypotheses. More precisely, in Section 1.1 we state the result (Theorem 1.4) about

the existence of subharmonic solutions under the Hypothesis 2 and 3 namely, the Melnikov

function has a n-th order zero and at the first iteration step one has a simple root for the

polynomials above. The construction of a formal solution is performed in Section 1.2 while the

convergence is proved in Section 2.3, using the diagrammatic techniques introduced in Section

2.1. Section 2.2 is devoted to prove that the formal solutions are analytic functions of two

variables: the perturbation parameter and the initial phase.

The second part is devoted to generalise Theorem 1.4. In Section 3.1 we describe the

Newton-Puiseux algorithm and we use it to prove Theorem 3.3 where Hypothesis 3 of Theorem

1.4 is substituted by the weaker Hypothesis 4, i.e. a simple zero for the polynomials equation is

found at a finite step of iteration. In Section 3.2 we study the case in which there is no simple

root at any iteration step. We shall see that in such a case the solution cannot be explicitly

constructed. Finally, in Section 3.3 we consider the higher order Melnikov theory; in particular,

we shall see how this situation can be led back to the previous one.
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Notations:

• Given a differentiable function of several arguments F = F (x1, . . . , xn), we shall denote

by ∂m
xk

the m-th derivative with respect to the k-th argument i.e. for m ≥ 1

∂m
xk
F :=

∂mF

∂xmk
,

while m = 0 has to be interpreted as ∂0
xk
F = F .

• Given any T -periodic function H we denote by 〈H〉 its mean over a period i.e.

〈H〉 :=
1

T

∫ T

0
dτH(τ).

• The ring of the formal power series in n variables with coefficients in a field K is denoted

by K[[x1, . . . , xn]].

• The ring of convergent power series in n variables with coefficients in a field K is denoted

by K{x1, . . . , xn}.

• The ring of polynomials in n variables with coefficients in an integral domain D is

D[x1, . . . , xn].

• Given two polynomials P1, P2 ∈ D[x1, . . . , xn], we denote the sum between P1, P2 where

every common term is counted only once, by P1 ⊕ P2. If P1, P2 have no common terms,

we have simply P1 ⊕ P2 = P1 + P2.

• Given a finite set S we denote with |S| the number of its elements.

• We set Z+ = N ∪ {0}.
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1. Set up and Formal solution

In the first part of this chapter we state a result on the existence, under suitable conditions

on the perturbation, of subharmonic solutions, while in the second part we prove the existence

of such a solution as a formal fractional series.

1.1 Statement of the result

Let us consider the dynamical system




α̇ = ω(A) + εF (α,A, t),

Ȧ = εG(α,A, t),
(1.1)

where (α,A) ∈ M := T×W , with W ⊂ R an open set, the map A 7→ ω(A) real analytic in A,

and the functions F, G depend analytically on their arguments and are 2π-periodic in α and t.

Finally ε is a real parameter.

For ε = 0 one has the trivial solution (ω(A0)t + α0, A0) with α0, A0 fixed as initial data.

If we define α0(t) = ω(A0)t and A0(t) = A0 in the extended phase-space M × R the solution

(α0(t), A0(t), t + t0) describes an invariant torus uniquely determined by A0. The parameter

t0 is called initial phase and it fixes the initial datum α0 on the torus. Hence the motion

in the extended phase space is quasiperiodic, and it is periodic if ω(A0) is commensurate

with 1. In the latter case, i.e. if ω(A0) is rational, we say that the torus is resonant. In

general, if no further hypotheses are made on the perturbation, all the non-resonant tori are

destroyed. Most of resonant tori disappear too, but a finite number of periodic orbits lying on

the unperturbed torus can survive under perturbation. The persisting trajectories are called

subharmonic solutions.

Let us denote T0(A) = 2π/ω(A) the period of the trajectory on an unperturbed torus and

define ω′(A) := dω(A)/dA. The value A0 is fixed once and for all in such a way that

ω(A0) =
p

q
∈ Q, (1.2)

1



Set up and Formal solution

where p, q ∈ Z are relatively prime integers, and we call T = T (A0) = 2πq the period of the

trajectories in the extended phase space and say that the corresponding subharmonic solution

has order q/p.

Furthermore we make the following assumption on the resonant torus with “energy” A0.

Hypothesis 1. One has ω′(A0) 6= 0.

We define the subharmonic Melnikov function of order q/p as

M(t0) =
1

T

∫ T

0
dtG(α0(t), A0, t+ t0), (1.3)

and we point out that M(t0) is 2π-periodic.

Hypothesis 2. There exist t0 ∈ [0, 2π) and n ∈ N such that t0 is a zero of order n for the

subharmonic Melnikov function, that is

dk

dtk0
M(t0) = 0 ∀ 0 ≤ k ≤ n− 1, D = D(t0) :=

dn

dtn0
M(t0) 6= 0. (1.4)

In the following t0 is fixed once and for all in such a way that it satisfies Hypothesis 2.

It is more convenient to write the system in the form





α̇ = ω(A) + εF (α,A, t + t0),

Ȧ = εG(α,A, t + t0),
(1.5)

so we can set equal to zero the initial angle of the unperturbed solution.

If we set U(t) = Ũ(A(t)) = ω(A(t)) − ω(A0)− ω′(A0)(A(t) −A0), and

Φ(t) = Φ̃(α(t), A(t), t + t0) = εF (α(t), A(t), t + t0) + U(t),

Γ(t) = Γ̃(α(t), A(t), t + t0) = εG(α(t), A(t), t + t0),
(1.6)

and denote by

W (t) =

(
1 ω′(A0)t

0 1

)
(1.7)

the Wronskian matrix for the unperturbed linearised system, then the solution of the system

(1.5) can be written as

(
α(t)

A(t)

)
= W (t)

(
α(0)

A(0)

)
+W (t)

∫ t

0
dτ W−1(τ)

(
Φ(τ)

Γ(τ)

)
, (1.8)

2



1.1 Statement of the result

or, more explicitly,





α(t) = α(0) + tω′(A0)A(0) +

∫ t

0
dτ Φ(τ) + ω′(A0)

∫ t

0
dτ

∫ τ

0
dτ ′ Γ(τ ′)

A(t) = A(0) +

∫ t

0
dτ Γ(τ).

(1.9)

In order to have a periodic solution of period T we need 〈Γ〉 = 0; in this case we fix also

ω′(A0)A(0) + 〈Φ〉+ ω′(A0)〈G〉 = 0, G(t) =

∫ t

0
dτ (Γ(τ)− 〈Γ〉), (1.10)

so that the corresponding solution turns out to be periodic.

Hence we consider the system





α(t) = α(0) +

∫ t

0
dτ (Φ(τ)− 〈Φ〉) + ω′(A0)

∫ t

0
dτ (G(t)− 〈G〉)

A(t) = A(0) + G(t)

〈Γ〉 = 0

(1.11)

where A(0) is determined according to (1.10) and it is well-defined as ω′(A0) 6= 0 by Hypothesis

1, while α(0) is considered as a free parameter. Our aim is to study whether it is possible to

fix α(0) as a function of the perturbation parameter ε in such a way that the latter equation

in (1.11) is satisfied.

We start by removing the condition 〈Γ〉 = 0 in (1.11), i.e. by considering the system





α(t) = α(0) +

∫ t

0
dτ (Φ(τ)− 〈Φ〉) + ω′(A0)

∫ t

0
dτ (G(t)− 〈G〉)

A(t) = A(0) + G(t)

(1.12)

As we are looking for periodic solutions of period T = 2πq, i.e. of frequency ω = 1/q, it is

more convenient to work in Fourier space and write

α(t) = α0(t) + β(t), β(t) =
∑

ν∈Z

eiωνtβν ,

A(t) = A0(t) +B(t), B(t) =
∑

ν∈Z

eiωνtBν .
(1.13)

Hence we expand

G(α,A, t + t0) =
∑

σ,σ′∈Z

eiσα+iσ′(t+t0)Gσ,σ′(A), Gσ,σ′(A, t0) := eiσ
′t0Gσ,σ′(A) (1.14)

3



Set up and Formal solution

with an analogous expression for F (α,A, t + t0), and we obtain

Φ(t) =
∑

ν∈Z

eiωνtΦν , Γ(t) =
∑

ν∈Z

eiωνtΓν , (1.15)

where we have defined

Γν = ε
∑

m≥0

∑

r+s=m
r,s∈Z+

∑

pσ0+qσ′

0+ν1+...+νm=ν

1

r!s!
(iσ0)

r∂s
AGσ0,σ′

0
(A0, t0)βν1 . . . βνrBνr+1 . . . Bνm,

Φν = ε
∑

m≥0

∑

r+s=m
r,s∈Z+

∑

pσ0+qσ′

0+ν1+...+νm=ν

1

r!s!
(iσ0)

r∂s
AFσ0,σ′

0
(A0, t0)βν1 . . . βνrBνr+1 . . . Bνm

+
∑

s≥2

∑

ν1+...+νs=ν

1

s!
∂s
Aω(A0)Bν1 . . . Bνs .

(1.16)

Then (1.12) becomes 



(iων)2βν = (iων)Φν + ω′(A0)Γν ,

(iων)Bν = Γν

(1.17)

for ν 6= 0, provided one has




β0 = α(0)−
∑

ν∈Z
ν 6=0

Φν

iων
− ω′(A0)

∑

ν∈Z
ν 6=0

Γν

(iων)2

ω′(A0)B0 +Φ0 = 0,

(1.18)

for ν = 0; similarly (1.11) can be written in the same form, with the constraint Γ0 = 0. Remark

that β0 can be used as a free parameter instead of α(0). This means that, in Fourier space,

(1.12) becomes 



βν =
Φν

iων
+ ω′(A0)

Γν

(iων)2
, ν 6= 0

Bν =
Γν

iων
, ν 6= 0

B0 = −
Φ0

ω′(A0)
,

(1.19)

with each Fourier coefficient depending on the free parameter β0.

We can consider a solution (α(t), A(t)) of (1.12) which can be formally expanded in Taylor

series in ε and β0 as

α(t) = α(t; ε, β0) = α0(t) + β0 +
∑

k≥1
j≥0

εkβj
0

∑

ν∈Z
ν 6=0

eiωνtβ
(k,j)
ν

A(t) = A(t; ε, β0) = A0 +
∑

k≥1
j≥0

εkβj
0

∑

ν∈Z

eiωνtB
(k,j)
ν .

(1.20)
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1.1 Statement of the result

Also the functions Γ(t) = εG(α(t), A(t), t + t0) and Φ(t) = Φ̃(α(t), A(t), t + t0) can be

formally expressed in power series of ε and β0, and one has

Γ(t) = Γ(t; ε, β0) =
∑

k≥1
j≥0

εkβj
0 Γ

(k,j)
(t) =

∑

k≥1
j≥0

εkβj
0

∑

ν∈Z

eiωνtΓ
(k,j)
ν , (1.21)

where each term Γ
(k,j)
ν depends on the Taylor coefficients of (1.20) of order strictly less than k,

with an analogous expression holding for Φ(t). For instance one has

Γ
(k,j)
ν =

∑

r′≥0
s≥0

∑

r+j0=r′

∑

pσ0+qσ′

0+ν1+...+νr+s=ν

(iσ0)
r′

r′!

∂s
A

s!
Gσ0,σ′

0
(A0, t0)

×
∑

k1+...+kr+s=k−1
j1+...+jr+s=j−j0

ki≥1, ji≥0

β
(k1,j1)
ν1 · · · β

(kr ,jr)
νr B

(kr+1,jr+1)
νr+1

· · ·B
(kr+s,jr+s)
νr+s

.
(1.22)

Remark that by definition one has
〈
Γ
(k,j)

〉
= Γ

(k,j)
0 and

〈
Φ
(k,j)

〉
= Φ

(k,j)
0 .

Hence one can formally write, for all k ≥ 1 and j ≥ 0




β
(k,j)
ν =

Φ
(k,j)
ν

iων
+ ω′(A0)

Γ
(k,j)
ν

(iων)2
, ν 6= 0

B
(k,j)
ν =

Γ
(k,j)
ν

iων
, ν 6= 0

B
(k,j)
0 = −

Φ
(k,j)
0

ω′(A0)
.

(1.23)

For instance for k = 1 and j = 0 one has

β
(1,0)
ν =

1

iων

∑

pσ0+qσ′

0=ν

Fσ0,σ′

0
(A0, t0) +

ω′(A0)

(iων)2

∑

pσ0+qσ′

0=ν

Gσ0,σ′

0
(A0, t0),

B
(1,0)
ν =

1

iων

∑

pσ0+qσ′

0=ν

Gσ0,σ′

0
(A0, t0),

(1.24)

for ν 6= 0, and

B
(1,0)
0 = −

1

ω′(A0)

∑

pσ0+qσ′

0=0

Fσ0,σ′

0
(A0, t0), (1.25)

for ν = 0.

We also introduce the coefficients

β
(k)
ν (β0) =

∑

j≥0

βj
0 β

(k,j)
ν , B

(k)
ν (β0) =

∑

j≥0

βj
0 B

(k,j)
ν ,

Γ
(k)
ν (β0) =

∑

j≥0

βj
0 Γ

(k,j)
ν , Φ

(k)
ν (β0) =

∑

j≥0

βj
0 Φ

(k,j)
ν ,

(1.26)
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Set up and Formal solution

and remark that Γ
(k)
ν (0) = Γ

(k,0)
ν , and so on.

Lemma 1.1. With the before introduced notations, if Γ
(k)
0 (0) = 0 for all k ∈ N, then the formal

solution

α(t; ε, 0) = α0(t) +
∑

k≥1

εkβ
(k,0)

(t)

A(t; ε, 0) = A0 +
∑

k≥1

εkB
(k,0)

(t)
(1.27)

that is the formal solution (1.20) of (1.12) for β0 = 0, is also a formal solution of (1.11).

Proof. The proof is a direct check. In fact if Γ
(k)
0 (0) = 0 for all k ∈ N, then

〈
Γ
〉
=
∑

k≥1
j≥1

εkβj
0 Γ

(k,j)
0 (1.28)

and it is equal to zero for β0 = 0. Hence one obtain that (1.27) is also solution of (1.11).

There is unfortunately no reason for the hypothesis Γ
(k)
0 (0) = 0 to hold true for all k ∈ N;

in general there will exist k0 ∈ N such that Γ
(k)
0 (0) = 0 for k = 0, . . . , k0, while Γ

(k0+1)
0 (0) 6= 0.

Here and henceforth we deal with this case.

Note that by (1.21) one can define

F(ε, β0) :=
∑

k,j≥0

εkβj
0Fk,j, Fk,j = Γ

(k+1,j)
0 , (1.29)

so that

εF(ε, β0) =
〈
Γ( · ; ε, β0)

〉
. (1.30)

Our aim is to find β0 = β0(ε) such that F(ε, β0(ε)) ≡ 0. For such β0 the formal solution

(1.20) of (1.12) is also a formal solution of (1.11).

Note that F(ε, β0) is β0-general of order n, i.e. F0,j = 0 for j = 0, . . . , n− 1 while F0,n 6= 0.

This can be easily shown using the tree formalism introduced in Chapter 2. In fact for all j,

F0,j = Γ
(1,j)
0 is associated with a tree with 1 node and j leaves (see the Remark 2.4). Hence

one has

j!Γ
(1,j)
0 =

〈
∂j
αG(α0(·), A0, ·+ t0)

〉
= (−ω(A0))

−j d
jM

dtj0
(t0), (1.31)

where the second equality is provided by Lemma 3.9 on [10]. Then F(ε, β0) is β0-general of

order n by Hypothesis 2.
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1.1 Statement of the result

Given a formal power series F(ε, β0) ∈ R[[ε, β0]] as in (1.29), we shall call carrier of F the

set

∆(F) = {(k, j) ∈ N× N : Fk,j 6= 0}. (1.32)

For all v ∈ ∆(F) let us consider the positive quadrant Av := {v} + (R+)
2 moved up to v,

and define

A :=
⋃

v∈∆(F)

Av. (1.33)

Let C be the convex hull of A. The boundary ∂C consists of a compact polygonal path P

and two half lines R1 and R2, as displayed in Figure 1.1.

n

j

R1

R2

k
k0

P

Figure 1.1: Newton polygon formed by four segments

The polygonal path P is called the Newton polygon of F .

Notice that if the Newton polygon is a single point (see Figure 1.2) or, more generally, if

Fk,0 = 0 for all k ≥ 0 then there exists  ≥ 1 such that F(ε, β0) = β
0 · G(ε, β0) with G(ε, 0) 6= 0

hence β0 ≡ 0 is a solution of equation F(ε, 0) = 0, that is the conclusion of Lemma 1.1.

Otherwise, i.e. in the case we are dealing with, there is at least a point of ∆(F) on each

axis, then the Newton polygon P is formed by N ≥ 1 segments P1, . . . ,PN and we write

P = P1 ∪ . . . ∪ PN . For all i = 1, . . . , N let −1/µi ∈ Q be the slope of the segment Pi, so one

can partition F according to the weights given by µi:

F(ε, β0) = F̃i(ε, β0) + Gi(ε, β0) =
∑

k+jµi=ri

Fk,jε
kβj

0 +
∑

k+jµi>ri

Fk,jε
kβj

0, (1.34)
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Set up and Formal solution

k

j

R2

R1

Figure 1.2: Newton polygon formed by a single point

where ri is the intercept on the k-axis of the continuation of Pi (see Figure 1.3).

n

j

R1

R2

k
k0

Pi

ri

ri
µi

Figure 1.3: The intersections on the axes of the continuation of a segment Pi.

We notice that we can associate with the whole Newton polygon a polynomial of degree

n in β0, F̃(ε, β0) = F̃1(ε, β0) ⊕ . . . ⊕ F̃N (ε, β0), which is the lowest order of F . Notice that

for each j there is either one summand with k = kj = ri − jµi for some i = 1, . . . , N , or no

8



1.1 Statement of the result

summands at all.

Hence the first approximate solutions of F(ε, β0) = 0 are the solutions of the quasi-

homogeneous equations

F̃i(ε, β0) =
∑

kpi+jhi=si

Fk,jε
kβj

0 = 0, i = 1, . . . , N, (1.35)

where hi/pi = µi, with hi, pi relatively prime integers, and si = piri. Each formal solution

β′
0 = β′

0(ε) of F̃(ε, β0) = 0 can be expressed in Puiseux series, i.e. it is of the form

β′
0 = β′

0(ε) =
∑

h≥hi

ch(σε)
h/pi , σ := sign (ε), (1.36)

(see for instance [4, 17, 23, 24]).

For all i = 1, . . . , N we associate with F̃i a polynomial Pi = Pi(c) in such a way that

F̃i(ε, c(σε)
µi ) = (σε)ri

∑

kpi+jhi=si

Qk,jc
j = (σε)riPi(c), σ = sign (ε), (1.37)

where Qk,j = Fk,jσ
k.

Remark that Pi(c) is a polynomial of degree di := max{j : k + jµi = ri} then it has di

complex roots counting multiplicity. More precisely one has the following result.

Lemma 1.2. With the notation introduced before, let Πi be the projection of the segment Pi

on the j-axis and let ℓi = ℓ(Πi) be the length of Πi. Then Pi(c) has ℓi complex non-zero roots

counting multiplicity.

Proof. Let m,n be respectively the maximum and the minimum among the exponents of the

variable β0 in F̃i. Then ℓi = m−n as one can easily verify. Hence Pi is a polynomial of degree

m and minimum power n. Therefore we can write Pi(c) = cnP̃ (c) where P̃ has degree ℓi and

P̃ (0) 6= 0. Fundamental theorem of algebra guarantees that P̃ (c) = 0 has ℓi complex solutions

counting multiplicity, which are all the non-zero roots of Pi.

Hypothesis 3. There exists a segment Pi of P associated with a quasi-homogeneous polynomial

Fi(ε, β0) such that the polynomial Pi(c) has a simple root c∗ ∈ R.

Remark 1.3. If k0 = 1, then F̃(ε, β0) = Dβn
0 + F1,0ε: this situation, which is depicted in

Figure 1.4, is explicitly considered in [10]. In this case we have P (c) = σDcn + Fk0,0, so that

the root c∗ = (−σFk0,0/D)1/n is simple. Moreover, if n is odd, the polynomial admits the real

root β0 = −(εFk0,0/D)1/n for all values of ε, while for even n a restriction on the sign of ε must

be imposed.

9



Set up and Formal solution

j

k
1

n

Figure 1.4: The Newton polygon for the case considered in [10].

Let Pi = Pi(c) be the polynomial of Hypothesis 3. We introduce the auxiliary parameter

η := (σε)1/pi , with σ = sign (ε), and set

β0 = β0(η) =
∑

k≥hi

ηkβ
[k]
0 , β

[h]
0 = c∗, (1.38)

with c∗ the real solution of Pi(c) = 0 considered above. Then we shall look for a solution of

(1.11) of the form

α(t) = α0(t) + β0 + β̃(t), β̃(t) =
∑

k≥1

ηkβ̃[k](t),

A(t) = A+B(t), B(t) =
∑

k≥1

ηkB[k](t),
(1.39)

where β̃(t) and A(t) are T -periodic functions (and β̃(t) has zero average). We shall see that it

is possible to choose the coefficients β
[k]
0 in (1.38) in such a way that this can be achieved.

More precisely we shall prove the following result.

Theorem 1.4. Consider a periodic solution with frequency ω = p/q for the system (1.1).

Assume that Hypotheses 1, 2 and 3 are satisfied. Then there exists ε0 > 0 such that for |ε| < ε0

the system (1.1) has at least one subharmonic solution of order q/p. Such a solution admits a

convergent Puiseux series in ε.

10



1.2 Formal solubility of the equations of motion

To prove Theorem 1.4 we shall give a recursive formula to compute the coefficients of the

series (1.38) and (1.39) order by order, and this can be achieved if we assume Hypothesis 3.

Remark that, as generically the roots of a polynomial are simple (see Appendix A for details),

generically we can apply Theorem 1.4 to obtain as many subharmonic solutions as real non-zero

roots for the polynomials Pi. Notice that generically, also the zeros of the Melnikov function

are simple. The here considered case is thus non-generic too.

We shall see in Chapter 3 how to extend Theorem 1.4 to cases where Hypothesis 3 is not

assumed.

1.2 Formal solubility of the equations of motion

Call P (c) the polynomial Pi(c) of Hypothesis 3 (i.e. from now on we drop the label i to

lighten the notation) and recall that it is of the form

P (c) =
∑

kp+jh=s

Qk,jc
j (1.40)

with k, j ≥ 0.

Remark 1.5. There are at least two pairs (k1, j1) and (k2, j2) with k1 6= k2 and j1 6= j2,

satisfying the condition kp + jh = s and if (for instance) k1 = 0 then j1 = n while if j1 = 0

then k1 = k0 ≥ 1; in particular s ≥ max{p, h}.

Recall that we are looking for a solution (α(t), A(t)), with α(t) = α0(t) + β0 + β̃(t) and

A(t) = A0 +B(t), where

β0 =
∑

k≥1

ηkβ
[k]
0 , β̃(t) =

∑

k≥1

ηkβ̃[k](t), B(t) =
∑

k≥1

ηkB[k](t). (1.41)

In this section we shall show that it is possible to fix β
[k]
0 such that there exist two formal

power series β̃(t) and B(t) as in (1.41), whose coefficients are T -periodic functions, i.e.

β̃[k](t) =
∑

ν∈Z
ν 6=0

eiνωtβ̃[k]
ν , B[k](t) =

∑

ν∈Z

eiνωtB[k]
ν . (1.42)
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Set up and Formal solution

with ω = 2π/T and solve (1.11) order by order. In other words we want to solve





β̃[k]
ν =

Φ
[k]
ν

iων
+ ω′(A0)

Γ
[k]
ν

(iων)2
, ν 6= 0,

B[k]
ν =

Γ
[k]
ν

iων
, ν 6= 0,

B
[k]
0 = −

Φ
[k]
0

ω′(A0)
,

Γ
[k]
0 = 0,

(1.43)

where Γ
[k]
ν and Φ

[k]
ν are recursively defined as

Γ[k]
ν =

∑

m≥0

∑

r+s=m

∑

pσ0+qσ′

0+ν1+...+νm=ν
k1+...+km=k−p

(iσ0)
r

r!

∂s
A

s!
Gσ0,σ′

0
(A0, t0)β

[k1]
ν1 · · · β[kr ]

νr B[kr+1]
νr+1

· · ·B[km]
νm ,

Φ[k]
ν =

∑

m≥0

∑

r+s=m

∑

pσ0+qσ′

0+ν1+...+νm=ν
k1+...+km=k−p

(iσ0)
r

r!

∂s
A

s!
Fσ0,σ′

0
(A0, t0)β

[k1]
ν1 · · · β[kr]

νr B[kr+1]
νr+1

· · ·B[km]
νm ,

+
∑

s≥2

∑

ν1+...+νs=ν
k1+...+ks=k

∂s
A

s!
ω(A0)B

[k1]
ν1 . . . B[ks]

νs ,

(1.44)

where β
[k]
ν = β̃

[k]
ν for ν 6= 0 and we have used (1.14) and the analogous expression for Γ.

We say that the integral equations (1.11), and hence the equations (1.43), are satisfied up

to order k if there exists a choice of the parameters β
[1]
0 , . . . β

[k]
0 which make the relations (1.43)

to be satisfied for all k = 1, . . . , k.

Lemma 1.6. The equations (1.43) are satisfied up to order k = p − 1 with β̃
[k]
ν and B

[k]
ν

identically zero for all k = 1, . . . , p− 1 and for any choice of the constants β
[1]
0 , . . . β

[p−1]
0 .

Proof. One has ε = σηp, so that Φ
[k]
ν = Γ

[k]
ν = 0 for all k < p and all ν ∈ Z, indipendently of

the values of the constants β
[1]
0 , . . . β

[p−1]
0 . Moreover, one has β̃

[k]
ν = B

[k]
ν = 0 for all k < p.

Lemma 1.7. The equations (1.43) are satisfied up to order k = p, for any choice of the

constants β
[1]
0 , . . . β

[p−1]
0 .

Proof. One has Γ[p] = G(α0(t), A0, t+ t0) and Φ[p] = F (α0(t), A0, t+ t0), so that

Γ[p]
ν =

∑

pσ0+qσ′

0=ν

Gσ0,σ′

0
(A0), Φ[p]

ν =
∑

pσ0+qσ′

0=ν

Fσ0,σ′

0
(A0). (1.45)
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1.2 Formal solubility of the equations of motion

Thus, β̃
[p]
ν and B

[p]
ν can be obtained from (1.43). Finally Γ

[p]
0 = M(t0) by definition, and

one has M(t0) = 0 by Hypothesis 2. Hence also the last equation of (1.43) is satisfied.

Lemma 1.8. The equations (1.43) are satisfied up to order k = p + s − 1 provided β
[k′]
0 = 0

for all k′ ≤ h− 1.

Proof. If β
[k′]
0 = 0 for all k′ ≤ h − 1 one has Γ

[k′]
0 = 0 for p < k′ < p + s. Moreover, Φ

[k′]
ν and

Γ
[k′]
ν are well-defined for such values of k′. Hence (1.43) can be solved up to order k = p+ s−1,

indipendently of the values of the constants β
[k′]
0 for k′ ≥ h.

Lemma 1.9. The equations (1.43) are satisfied up to order k = p+ s provided β
[h]
0 = c∗, with

c∗ the simple real root of P (c) in (1.40).

Proof. One has Γ
[p+s]
0 = ηpP (β

[h]
0 ), so that Γ

[p+s]
0 = 0 for β

[h]
0 = c∗.

Lemma 1.10. The equations (1.43) are satisfied up to any order k = p+ s+κ, κ ≥ 1 provided

the constants β
[h+κ′]
0 are suitably fixed up to order κ′ = κ.

Proof. By substituting (1.38) and ε = σηp in Γ0(ε, β0) we obtain

Γ0(ση
p, β0(η)) = σηp

∑

M≥s

∑

s1≥0
j≥0

s1p+jh=M

Fs1,jσ
s1ηM

∑

n≥0

ηn
∑

m1+...+mj=n
mi≥0

β
[h+m1]
0 . . . β

[h+mj ]
0 . (1.46)

Call Qs1,j = Fs1,jσ
s1 . For any κ ≥ 1 one has

σΓ
[p+s+κ]
0 =

κ∑

n=0

∑

s1≥0
j≥0

s1p+jh=s+n

Qs1,j

∑

m1+...+mj=κ−n
mi≥0

β
[h+m1]
0 . . . β

[h+mj ]
0 , (1.47)

so that one can write the last equation of (1.43) as

∑

s1≥0
j≥0

s1p+jh=s

jQs1,j

(
β
[h]
0

)j−1
β
[h+κ]
0 +

∑

s1≥0
j≥0

s1p+jh=s

Qs1,j

∑

m1+...+mj=κ
0≤mi≤κ−1

β
[h+m1]
0 . . . β

[h+mj ]
0

+
κ∑

n=1

∑

s1≥0
j≥0

s1p+jh=s+n

Qs1,j

∑

m1+...+mj=κ−n
mi≥0

β
[h+m1]
0 . . . β

[h+mj ]
0 = 0.

(1.48)

Recall that by Hypothesis 3

∑

s1≥0
j≥0

s1p+jh=s

jQs1,j

(
β
[h]
0

)j−1
=

dP

dc

(
β
[h]
0

)
=: C 6= 0, (1.49)
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Set up and Formal solution

so that we can use (1.48) to express β
[h+κ]
0 in terms of the coefficients β

[h+κ′]
0 of lower orders

κ′ < κ. Thus we can conclude that the equations (1.43) are satisfied up to order k provided

the coefficients β
[h+κ′]
0 are fixed as

β
[h+κ′]
0 = −

1

C
G̃[κ′](β

[h]
0 , . . . , β

[h+κ′−1]
0 ), (1.50)

for all 1 ≤ κ′ ≤ κ and

G̃[κ′](β
[h]
0 , . . . , β

[h+κ′−1]
0 ) =

∑

s1≥0
j≥0

s1p+jh=s

Qs1,j

∑

m1+...+mj=κ′

0≤mi≤κ′−1

β
[h+m1]
0 . . . β

[h+mj ]
0

+

κ′∑

n=1

∑

s1≥0
j≥0

s1p+jh=s+n

Qs1,j

∑

m1+...+mj=κ′−n
mi≥0

β
[h+m1]
0 . . . β

[h+mj ]
0 .

(1.51)

We can summarise the results above into the following statement.

Proposition 1.11. The equations (1.43) are satisfied to any order k provided the constants

β
[k]
0 are suitably fixed. In particular β̃

[k]
ν = B

[k]
ν = B

[k]
0 = 0 for k < p and β

[k]
0 = 0 for k < h.

Proposition 1.11 shows that a formal power series which solves (1.11) can be constructed

for each simple root of each polynomial Pi. The convergence of such series will be studied in

Chapter 2 and this will imply the existence of subharmonic solutions for the system.
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2. Trees and convergence of formal power series

In this chapter we introduce a graphical representation for the formal power series of the

solution, and we use it prove the convergence of the series.

2.1 Labeled trees and diagrammatic rules

We shall start with some basic notation.

A connected graph G is a set of points v (vertices) and lines ℓ connecting all of them. A

graph is said to be planar if it can be drawn in a plane without graph lines crossing. A tree

θ is a planar graph such that for each pair of vertices there exists a unique path connecting

them, i.e. a planar graph with no loops.

Given a tree θ we shall introduce a partial order in such a way that all the lines are

consistently oriented towards a unique special vertex v0. One can imagine that each line

carries an arrow pointing towards the vertex v0: the arrow will be thought of as superimposed

on the line itself (see Figure 2.1).

v0

Figure 2.1: An oriented tree

If a line ℓ connects two vertices v1, v2 and is oriented from v2 to v1, we say that v2 ≺ v1

and we shall write ℓv2 = ℓ. We shall say that ℓ exits from v2 and enters v1. We add an extra

oriented line, exiting v0, called root line. The end-point of the root line (which is not considered
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Trees and convergence of formal power series

as a vertex) will be called root ; such a tree will be called a rooted tree. More generally we write

v2 ≺ v1 when v1 is on the path of lines connecting v2 to the root: hence the orientation of the

lines is opposite to the partial ordering relation ≺.

We denote with V (θ) and L(θ) the set of vertices and lines in θ respectively, and with |V (θ)|

and |L(θ)| the number of vertices and lines respectively. Remark that one has |V (θ)| = |L(θ)|.

We shall say that two rooted trees are equivalent if they can be transformed into each other

by continuously deforming the lines in the plane in such a way that these do not cross each

other. This provides an equivalence relation on the set of trees as one can easily check. From

now on, we will refer to equivalence class of trees simply by using the word tree.

Lemma 2.1. The number of trees such that |V (θ)| = |L(θ)| = k is bounded by 4k.

Proof. Let θ be a tree with k vertices. Starting from the root we “move” along the tree as

follows:

• Arriving at a bifurcation, we choose the left way.

• If there is no entering line, we go back.

• When walking in the opposite way with respect to the orientation we place a label 1, and

a label 0 otherwise.

• Coming back to the root, we interrupt the process.

Note that in such a way, we can associate with each tree a sequence of labels 1, 0 (see Figure

2.2). Hence we obtain a sequence of 2k labels: k of which are 1 and k are 0. Then the number

of the trees with k nodes is bounded by the number of all the possible sequences of 2k values

{1, 0}, which is 22k = 4k.

We can consider two kinds of vertices: nodes and leaves. The leaves can only be end-points,

i.e. points with no lines entering them, while the nodes can be either end-points or not (see

Figure 2.3). We shall not consider the tree consisting of only one leaf and the line exiting from

it, i.e. a tree must have at least the node from which the root line exits.

We shall denote with N(θ) and E(θ) the set of nodes and leaves respectively. Here and

henceforth we shall denote with v and e the nodes and the leaves respectively.

Remark that V (θ) = N(θ)∐E(θ).

A labeled tree is a rooted tree together with a label function defined on L(θ) and V (θ).

16



2.1 Labeled trees and diagrammatic rules

1

1

1
0

1
1

0
1

0
0

0

1
1

0
1 1

0
1

0

0

0

0

Figure 2.2: A tree with k = 11. The sequence of labels is

(1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0).

Figure 2.3: A tree with leaves. White bullets represent the

leaves, while black bullets represent the nodes.

It is possible to extend the notion of equivalence also to labeled trees, simply by considering

equivalent two labeled trees if they can be transformed into each other in such a way that also

the labels match. As before, we shall refer to such equivalence classes simply as labeled trees.
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Trees and convergence of formal power series

With each line ℓ = ℓv, we associate three labels (hℓ, δℓ, νℓ), with hℓ ∈ {α,A}, δℓ ∈ {1, 2}

and νℓ ∈ Z, with the constraint that νℓ 6= 0 for hℓ = α and δℓ = 1 for hℓ = A. With each

line ℓ = ℓe we associate hℓ = α, δℓ = 1 and νℓ = 0. We shall say that hℓ, δℓ and νℓ are the

component label, the degree label and the momentum of the line ℓ, respectively.

Given a node v, we call rv the number of the lines entering v carrying a component label

h = α and sv the number of the lines entering v with component label h = A. We also

introduce a badge label bv ∈ {0, 1} with the constraint that bv = 1 for hℓv = α and δℓv = 2, and

for hℓv = A and νℓv 6= 0, and two mode labels σv, σ
′
v ∈ Z. We call global mode label the sum

νv = pσv+ qσ′
v, (2.1)

where q, p are defined in (1.2), with the constraint that νv = 0 when bv = 0.

For all ℓ = ℓv, we set also the following conservation law

νℓ = νℓv =
∑

w∈N(θ)
w�v

νw, (2.2)

i.e. the momentum of the line exiting from v is the sum of the momenta of the lines entering

v plus the global mode of the node v itself.

Given a labeled tree θ, where labels are defined as above, we associate with each line ℓ

exiting from a node, a propagator

gℓ =





ω′(A0)
δℓ−1

(iωνℓ)δℓ
, hℓ = α,A, νℓ 6= 0,

−
1

ω′(A0)
, hℓ = A, νℓ = 0,

(2.3)

while for each line ℓ exiting from a leaf, we set gℓ = 1.

Moreover, we associate with each node v a node factor

Nv =





(iσv)
rv∂sv

A

rv!sv!
Fσv ,σ′

v
(A0, t0), hℓv = α, δℓv = 1, bv = 1, νℓv 6= 0,

∂sv
A

sv!
ω(A0), hℓv = α, δℓv = 1, bv = 0, νℓv 6= 0,

(iσv)
rv∂sv

A

rv!sv!
Gσv ,σ′

v
(A0, t0), hℓv = α, δℓv = 2, bv = 1, νℓv 6= 0,

(iσv)
rv∂sv

A

rv!sv!
Gσv ,σ′

v
(A0, t0), hℓv = A, δℓv = 1, bv = 1, νℓv 6= 0,

(iσv)
rv∂sv

A

rv!sv!
Fσv ,σ′

v
(A0, t0), hℓv = A, δℓv = 1, bv = 1, νℓv = 0,

∂sv
A

sv!
ω(A0), hℓv = A, δℓv = 1, bv = 0, νℓv = 0,

(2.4)
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2.1 Labeled trees and diagrammatic rules

with the constraint that when bv = 0 one has rv = 0 and sv ≥ 2, and with each leaf e a leaf

factor Ne = β0.

Given a labeled tree θ with propagators and node and leaf factors associated as above, we

define the value of θ the number

Val(θ) =


 ∏

ℓ∈L(θ)

gℓ




 ∏

v∈N(θ)

Nv


 . (2.5)

Remark that Val(θ) is a well-defined quantity because all the propagators and node factors

are bounded quantities.

For each line ℓ exiting from a node v we set bℓ = bv, while for each line ℓ exiting from a leaf

we set bℓ = 0. Given a labeled tree θ, we call order of θ the number

k(θ) = |{ℓ ∈ L(θ) : bℓ = 1}|; (2.6)

the momentum ν(θ) of the root line will be the total momentum, and the component label h(θ)

associated to the root line will be the total component label. Moreover, we set j(θ) = |E(θ)|.

Define Tk,ν,h,j the set of all the trees θ with order k(θ) = k, total momentum ν(θ) = ν, total

component label h(θ) = h and j(θ) = j leaves.

Lemma 2.2. For any tree θ labeled as before, one has |L(θ)| = |V (θ)| ≤ 2k(θ) + j(θ)− 1.

Proof. We prove the bound |N(θ)| ≤ 2k(θ)− 1 by induction on k.

For k = 1 the bound is trivially satisfied, as a direct check shows: in particular, a tree θ

with k(θ) = 1 has exactly one node and j(θ) leaves. In fact if θ has a line ℓ = ℓv with bℓ = 0,

then v has sv ≥ 2 lines with component label h = A entering it. Hence there are at least two

lines exiting from a node with bv = 1.

Assume now that the bound holds for all k′ < k, and let us show that then it holds also

for k. Let ℓ0 be the root line of θ and v0 the node from which the root line exits. Call r and s

the number of lines entering v0 with component labels α and A respectively, and denote with

θ1, . . . , θr+s the subtrees which have those lines as root lines. Then

|N(θ)| = 1 +

r+s∑

m=1

|N(θm)|. (2.7)

If ℓ0 has badge label bℓ0 = 1 we have

|N(θ)| ≤ 1 + 2(k − 1)− (r + s) ≤ 2k − 1, (2.8)
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Trees and convergence of formal power series

by the inductive hypothesis and by the fact that k(θ1) + . . .+ k(θr+s) = k− 1. If ℓ0 has badge

label bℓ0 = 0 we have

|N(θ)| ≤ 1 + 2k − (r + s) ≤ 2k − 1, (2.9)

by the inductive hypothesis, by the fact that k(θ1)+ . . .+ k(θr+s) = k, and the constraint that

s ≥ 2. Therefore the assertion is proved.

2.2 Convergence of the formal power series

Our aim is to represent graphically the coefficients β
(k,j)
ν and B

(k,j)
ν in (1.20). By collecting

together all the definitions given in Section 2.1, one obtains the following result.

Lemma 2.3. The Fourier coefficients β
(k,j)
ν , ν 6= 0, and B

(k,j)
ν can be written in terms of trees

as

β
(k,j)
ν =

∑

θ∈Tk,ν,α,j

Val(θ), ν 6= 0,

B
(k,j)
ν =

∑

θ∈Tk,ν,A,j

Val(θ), ν ∈ Z,
(2.10)

for all k ≥ 1, j ≥ 0.

Proof. First we consider trees without leaves, i.e. the coefficients β
(k,0)
ν , ν 6= 0, and B

(k,0)
ν . For

k = 1 just compare (1.24) and (1.25) with the definition of trees in that case. Now let us

suppose that the assertion holds for all k < k. Let us write fα = β, fA = B and represent

the coefficients f
(k,0)
ν,h with the graph element in Figure 2.4, as a line with label ν and h = α,A

respectively, exiting from a ball with label (k, 0).

= + 

=

β
(k,0)
ν

B
(k,0)
ν

αα

ν

νν 21

1

(k, 0)

(k, 0)(k, 0)

A

Figure 2.4: Graph element.
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2.2 Convergence of the formal power series

Then we can represent each equation of (1.23) graphically as in Figure 2.5. Simply represent

each factor f
(ki,0)
νi,hi

in the r.h.s. as a graph element according to Figure 2.4. The lines of all such

graph elements enter the same node v0.

Σ=

*

1

1
hh

A

A

α

α

δδ νν

(k, 0)

v0

ν0

δ1

δr

(k1, 0)

(kr, 0)

(kr+1, 0)

(km, 0)

ν1

νr

νr+1

νm

Figure 2.5: Graphical representation for the recursive equations.

The root line ℓ0 of such trees will carry a component label h = α,A for f = β,B respectively,

and a momentum label ν.

Hence, by inductive hypothesis, one obtains

f
(k,0)
ν,h =

∗∑
gℓ0Nv0f

(k1,0)
ν1,h1

. . . f
(km,0)
νm,hm

=
∗∑

gℓ0Nv0


 ∑

θ∈Tκ1,ν1,h1,0

Val(θ)


 . . .


 ∑

θ∈Tκm,νm,hm,0

Val(θ)




=
∑

θ∈T
k,ν,h,0

Val(θ).

(2.11)

where m = r0+s0, and we write
∑∗ for the sum over all the labels admitted by the constraints,

so that the assertion is proved for all k and for j = 0.

Now we consider k as fixed and we prove the statement by induction on j. The case j = 0

has already been discussed. Finally we assume that the assertion holds for j = j′ and show
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Trees and convergence of formal power series

that then it holds for j′+1. Notice that a tree θ ∈ Tk,ν,h,j′+1, for both h = α,A can be obtained

by considering a suitable tree θ0 ∈ Tk,ν,h,j′ attaching an extra leaf to a node of θ0 and applying

an extra derivative ∂α to the node factor associated to that node. If one considers all the trees

that can be obtained in such a way from the same θ0 and sums together all those contributions,

one finds a quantity proportional to ∂αVal(θ0). Then if we sum over all possible choices of θ0,

we reconstruct β
(k,j′+1)
ν for h = α and B

(k,j′+1)
ν for h = A. Hence the assertion follows.

Remark 2.4. The representation given in Lemma 2.3 is very helpful to prove the convergence

of the formal power series in (1.20) as we shall see later. We now point out the fact that also

Γ0 can be represented in terms of sum of trees with leaves. In fact if we consider the recursive

equation (1.22) for ν = 0 we immediately notice that we can repeat the construction above,

simply by defining Tk,0,Γ,j as the set of the trees contributing to Γ
(k,j)
0 , and setting gℓ0 = 1,

hℓ0 = Γ, dℓ0 = 1 and

Nv0 =
(iσv0)

rv0∂
sv0
A

rv0 !sv0 !
Gσv0 ,σ

′

v0
(A0, t0), (2.12)

and no further difficulties arise.

Now we prove the convergence of the formal power series (1.20), for small ε and β0.

Lemma 2.5. The formal solution (1.20) of the system (1.12), given by the recursive equations

(1.23), converges for ε and β0 small enough.

Proof. First of all we remark that by Lemma 2.1 and Lemma 2.2, the number of unlabeled

trees of order k and j leaves is bounded by 42k+j × 22k+j = 82k+j . The sum over all labels

except the mode labels and the momenta is bounded again by a constant to the power k times

a constant to the power j, simply because all such labels can assume only a finite number of

values. Now by the analyticity assumption on the functions F and G, we have the bound

∣∣∣∣
(iσ0)

r

r!

∂s
A

s!
Fσ0,σ′

0
(A0, t0)

∣∣∣∣ ≤ QRrSse−κ(|σ0|+|σ′

0|),

∣∣∣∣
(iσ0)

r

r!

∂s
A

s!
Gσ0,σ′

0
(A0, t0)

∣∣∣∣ ≤ QRrSse−κ(|σ0|+|σ′

0|),

(2.13)

for suitable positive constants Q, R, S, κ, and we can imagine, without loss of generality, that

Q and S are such that |∂s
Aω(A0)/s!| ≤ QSs. This gives us a bound for the node factors. The

propagators can be bounded by

|gℓ| ≤ max

{∣∣∣∣
ω′(A0)

ω2

∣∣∣∣ ,
∣∣∣∣

1

ω′(A0)

∣∣∣∣ ,
∣∣∣∣
1

ω

∣∣∣∣ , 1
}
, (2.14)
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2.3 Diagrammatic rules for the formal power series in η

so that the product over all the lines can be bounded again by a constant to the power k times

a constant to the power j.

Thus the sum over the mode labels - which uniquely determine the momenta - can be

performed by using for each node half the exponential decay factor provided by (2.13). Then

we obtain

|β
(k,j)
ν | ≤ C1C

k
2C

j
3e

−κ|ν|/2, |B
(k,j)
ν | ≤ C1C

k
2C

j
3e

−κ|ν|/2, (2.15)

for suitable constants C1, C2 and C3. This provides the convergence of the series (1.20) for

|ε| < C−1
2 and |β0| < C−1

2 .

Remark 2.6. The bound provided is far from being optimal. For instance the number of

unlabeled trees with 3 nodes and 2 leaves is 30 while 82×3+2 = 88. However it is enough to

provide the convergence for the formal power series (1.20) and, as seen in Remark 2.4, also for

Γ
(k,j)
0 .

2.3 Diagrammatic rules for the formal power series in η

In order to give a graphical representation of the coefficients β
[k]
0 , β̃

[k]
ν and B

[k]
ν in (1.41) and

(1.42), we shall consider a different tree expansion. We shall perform an iterative construction,

similar to the one performed through the proof of Lemma 2.3, starting from equations (1.43)

for the coefficients β̃
[k]
ν , B

[k]
ν for k ≥ p, and from (1.50) for β

[k]
0 , k ≥ h.

First, for k = p we represent the coefficients β̃
[p]
ν and B

[p]
ν as a line exiting from a node,

while for k = h we represent β
[h]
0 as a line exiting from a leaf (see Figure 2.6).

=

=

=

β
[h]
0

β̃
[p]
ν

B
[p]
ν

β0

β̃β̃

[h]

[p] [p]

[p]

+

0

21

1

1

νν

νB

Figure 2.6: Graphical representation for β
[h]
0 , β̃

[p]
ν and B

[p]
ν .

Now we represent each coefficient as a graph element according to Figure 2.7, as a line

exiting from a gray bullet with order label k, with k ≥ h + 1 for the coefficients β
[k]
0 , and
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Trees and convergence of formal power series

k ≥ p + 1 for the coefficients β̃
[k]
ν and B

[k]
ν ; we associate with the line a component label

h ∈ {β0, β̃, B} and momentum νℓ ∈ Z, with the constraint that νℓ 6= 0 for hℓ = β̃, while νℓ = 0

for hℓ = β0.

=

=

=

B

β
[k]
0

β̃
[k]
ν

B
[k]
ν

β0

β̃β̃

[k][k]

[k]

[k]

+

21

1

1

0

νν

ν

Figure 2.7: Graph elements.

Hence we can represent the first three equations in (1.43) graphically, representing each

factor β
[ki]
νi and B

[ki]
νi in (1.44) as graph elements: again the lines of such graph elements enter

the same node v0, as depicted in Figure 2.8.

We associate with the root line ℓ0 = ℓv0 a degree label δℓ0 = 1, 2, with the constraint that

δℓ0 = 1 for hℓ0 = B, and we associate with v0 a badge label bv0 ∈ {0, 1} by setting bv0 = 1 for

hℓ0 = β̃ and δℓ0 = 2, and for hℓ0 = B and νℓ0 6= 0. We call also rv0 the number of the lines

entering v0 with component label h = β = β0, β̃, and sv0 the number of the lines entering v0

with component label h = B, with the constraint that if bv0 = 0 one has rv0 = 0 and sv0 ≥ 2.

Finally we associate with v0 two mode labels σv0 , σv′0 ∈ Z and the global mode label νv0 as in

(2.1), and we impose the conservation law

νℓv0 = νv0 +

rv0+sv0∑

i=1

νℓi , (2.16)

where ℓ1, . . . , ℓrv0+sv0
are the lines entering v0.

We also force the following conditions on the order labels

rv0+sv0∑

i=1

ki = k − p, bv0 = 1,

sv0∑

i=1

ki = k, bv0 = 0,

(2.17)
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2.3 Diagrammatic rules for the formal power series in η

which reflect the condition on the sums in (1.44).

Finally we associate with v = v0 a node factor

N ∗
v =





σ
(iσv)

rv∂sv
A

rv!sv!
Fσv ,σ′

v
(A0, t0), hℓv = β̃, δℓv = 1, bv = 1, νℓv 6= 0,

σ
∂sv
A

sv!
ω(A0), hℓv = β̃, δℓv = 1, bv = 0, νℓv 6= 0,

σ
(iσv)

rv∂sv
A

rv!sv!
Gσv ,σ′

v
(A0, t0), hℓv = β̃, δℓv = 2, bv = 1, νℓv 6= 0,

σ
(iσv)

rv∂sv
A

rv!sv!
Gσv ,σ′

v
(A0, t0), hℓv = B, δℓv = 1, bv = 1, νℓv 6= 0,

σ
(iσv)

rv∂sv
A

rv!sv!
Fσv ,σ′

v
(A0, t0), hℓv = B, δℓv = 1, bv = 1, νℓv = 0,

σ
∂sv
A

sv!
ω(A0), hℓv = B, δℓv = 1, bv = 0, νℓv = 0,

(2.18)

where σ = sign (ε), and with the line ℓ = ℓv a propagator

g∗ℓ =





ω′(A0)
δℓ−1

(iωνℓ)δℓ
, hℓ = β̃, B, νℓ 6= 0,

−
1

ω′(A0)
, hℓ = B, νℓ = 0,

(2.19)

so that, if we sum over all labels admitted by the constraints, we obtain the graphical repre-

sentation depicted in Figure 2.8.

= Σ
*

1

1hh
B

B

β

β

δ δ νν

[k]
v

ν0

δ1

δrv

[k1]

[krv ]

[krv+1]

[krv+sv ]

ν1

νrv

νrv+1

νrv+sv

Figure 2.8: Graphical representation of (1.43). Again we write
∑

∗

for the sum over all the labels admitted by the constraints.

The coefficients β
[k]
0 , k ≥ h + 1, have to be treated in a different way. Recall that the
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Trees and convergence of formal power series

coefficients Qs1,j in (1.51) are defined as Qs1,j = Fs1,jσ
s1 = Γ

(s1+1,j)
0 σs1 so that

Qs1,jσ
s1 =

∑

θ∈Ts1+1,0,Γ,j

Val(θ). (2.20)

Hence the summands in (1.51) can be imagined as “some” of the trees in Ts1+1,0,Γ,j where

“some” leaves are substituted by graph elements with hℓ = β0. More precisely we shall consider

only trees θ of the form depicted in Figure 2.9, with s1+1 nodes, s0 leaves and s′0 graph elements

with hℓ = β0, such that

s1p+ (s0 + s′0)h = s+ n,

s0+s′0∑

i=1

ki = s0h+

s′0∑

i=1

ki = (s0 + s′0)h+ k − h− n,
(2.21)

for a suitable 0 ≤ n ≤ k − h, with the constraint that when n = 0 one has s′0 ≥ 2. We shall

call ℓi the s′0 lines with hℓi = β0. Again such conditions express the condition on the sums in

(1.51).

01β0

s1 + 1

s0

[k1]

[ks′0 ]

nodes

leaves

Figure 2.9: A tree contributing to β
[k]
0 .

The propagators of the lines exiting from the s1+1 nodes and the node factors of the nodes

(except the root line and the node from which the root line exits) are g∗ℓ = gℓ and N ∗
v = σNv

with the only difference that the component label can assume the values β̃, B, which have the

rôle of α,A respectively. We associate with the root line a propagator

g∗ℓ0 = −
1

C
, (2.22)

where C is defined in (1.49), while the node v from which the root line exits will have a node

factor

N ∗
v =

(iσv)
rv∂sv

A

rv!sv!
Gσv ,σ′

v
(A0, t0). (2.23)
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2.3 Diagrammatic rules for the formal power series in η

s +11

s 0

s’
0

Σ
*

=

[k]

0 1[    ]k

k[      ]

β 0 0β 01 1
nodes

leaves

Figure 2.10: Graphical representation of (1.50). Again we write
∑

∗ for the

sum over all the labels admitted by the constraints.

Hence one obtain the graphical representation of Figure 2.10.

Finally we associate with each leaf e a leaf factor N ∗
e = c∗, with c∗ the simple real root of

the polynomial P (c) in (1.40), while each line exiting from a leaf will have a propagator g∗ℓ = 1.

We now iterate the graphical representation of Figure 2.8 and Figure 2.10 until only simple

nodes or leaves appear. More precisely, for all graph elements β
[ki]
νi , B

[ki]
νi in both representation

2.8 and 2.10, we repeat the constructions above, considering a subtree with ℓi as root line. We

shall call allowed trees all the trees obtained in such recursive way, and we shall denote with

Θk,ν,h the set of allowed trees with order k, total momentum ν and total component label h.

Given an allowed tree θ we denote with L(θ), N(θ) and E(θ) the set of lines, nodes and

leaves respectively, and we shall define the value of θ as

Val∗(θ) =


 ∏

ℓ∈L(θ)

g∗ℓ




 ∏

v∈N(θ)

N ∗
v




 ∏

e∈E(θ)

N ∗
e


 . (2.24)

Moreover, we denote with Λ(θ) the set of the lines (exiting from a node) in θ with component

label h = β0 and with N∗(θ) the nodes with bv = 1; then we associate with each node in N∗(θ),

with each leave and with each line in Λ(θ) a weight p, h and h− p− s respectively, and we call

order of θ the number

k(θ) = p|N∗(θ)|+ h|E(θ)| + (h− p− s)|Λ(θ)|, (2.25)

i.e. the weighted sum of nodes N∗(θ), leaves and lines Λ(θ). Notice that h − p − s < 0 as

s ≥ max{p, h} (see the Remark 1.5).

Hence we have the following result.
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Trees and convergence of formal power series

Lemma 2.7. The Fourier coefficients β
[k]
0 , β̃

[k]
ν and B

[k]
ν can be written in terms of trees as

β
[k]
0 =

∑

θ∈Θk,0,β0

Val∗(θ), k ≥ h,

β̃[k]
ν =

∑

θ∈Θ
k,ν,β̃

Val∗(θ), k ≥ p,

B[k]
ν =

∑

θ∈Θk,ν,B

Val∗(θ), k ≥ p.

(2.26)

Proof. We only have to prove that an allowed tree contributing to the Fourier coefficients β
[k]
0 ,

β̃
[k]
ν and B

[k]
ν has order k. We shall perform the proof by induction on k ≥ h for the coefficients

β
[k]
0 , and k ≥ p for β̃

[k]
ν and B

[k]
ν . Let us set fh = β̃, B. As depicted in Figure 2.6 an allowed tree

θ contributing to f
[p]
ν,h has only one node so that k(θ) = p while an allowed tree θ contributing

to β
[h]
0 has only one leaf so that k(θ) = h.

Let us suppose first that for all k′ < k, an allowed tree θ′ contributing to β
[k′]
0 has order

k(θ′) = k′. A tree θ contributing to β
[k]
0 is of the form depicted in Figure 2.9 with the conditions

(2.21) holding. By the inductive hypothesis, the order of such a tree is

k(θ) = (s1 + 1)p + s0h+

s′0∑

i=1

ki + h− p− s, (2.27)

and via the conditions in (2.21) we obtain k(θ) = k.

Let us suppose now that the inductive hypothesis holds for all trees θ′ contributing to f
[k′]
ν,h ,

k′ < k. An allowed tree θ contributing to f
[k]
ν,h is of the form depicted in Figure 2.11, where s0, s1

are the numbers of the lines exiting from a leaf and a simple node respectively and entering v0,

while s′0, s
′
1 are the graph elements entering v0 with component label β0 and f respectively.

If bv0 = 1, by the inductive hypothesis the order of such a tree is given by

k(θ) = (s1 + 1)p + s0h+

s′0+s′1∑

i=1

ki, (2.28)

and by the first condition in (2.17) we have k(θ) = k. Otherwise if bv0 = 0, we have s0+ s′0 = 0

and, by the inductive hypothesis,

k(θ) = s1p+

s′1∑

i=1

ki = k, (2.29)

via the second condition in (2.17).
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2.3 Diagrammatic rules for the formal power series in η

=

v0
s1

s0

s′0

s′1

θ

Figure 2.11: An allowed tree contributing to f
[κ]
ν,h.

We now state the analogous of Lemma 2.2.

Lemma 2.8. Let q := min{h, p} and let us define

M = 2
s

q
+ 3. (2.30)

Then for all θ ∈ Θk,ν,h one has

|L(θ)| ≤ Mk. (2.31)

As the proof is rather technical we shall perform it in Appendix B.

Now we prove the convergence of the series (1.41) for small η.

Proposition 2.9. The formal solution (1.41) of the system (1.11), given by the recursive

equations (1.43) and (1.50), converges for η small enough.

Proof. By Lemma 2.1 and Lemma 2.8, the number of unlabeled trees of order k is bounded by

4Mk, so that the sum over all labels except the mode labels and the momenta is bounded by

a constant to the power k because all such labels can assume only a finite number of values.

The bound for each node factor is the same as in Lemma 2.5, while the propagators can be

bounded by

|g∗ℓ | ≤ max

{∣∣∣∣
ω′(A0)

ω2

∣∣∣∣ ,
∣∣∣∣

1

ω′(A0)

∣∣∣∣ ,
∣∣∣∣
1

ω

∣∣∣∣ ,
∣∣∣∣
1

C

∣∣∣∣ , 1
}
, (2.32)

so that the product over all the lines can be bounded again by a constant to the power k. The

product over the leaves factors is again bounded by a constant to the power k, while the sum
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Trees and convergence of formal power series

over the mode labels - which uniquely determine the momenta - can be performed by using for

each node half the exponential decay factor provided by (2.13). Thus we obtain

|β̃[k]
ν | ≤ C1C

k
2 e

−κ|ν|/2, |B[k]
ν | ≤ C1C

k
2 e

−κ|ν|/2, (2.33)

for suitable constants C1 and C2. Hence we obtain the convergence for the series (1.41), for

|η| ≤ C−1
2

The discussion above ends the proof of Theorem 1.4.
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3. Puiseux expansion for the degenerate case

In this Chapter we shall see how to extend Theorem 1.4 when Hypothesis 3 is released.

3.1 The Newton-Puiseux process

Let us come back to F(ε, β0) ∈ R{ε, β0}
1 defined in (1.29) and let us consider the Newton

polygon P(0) = P
(0)
1 ∪ . . . ∪ P

(0)
N0

of F (0) := F . Recall that F is β0-general of order n = n0.

We do not use the same notation introduced in Section 1.1: the reason of this choice will

be clearer later. As done in Section 1.1 we consider the quasi-homogeneous polynomials F̃
(0)
i

associated with the segments P
(0)
i with slope −1/µ

(0)
i , with µ

(0)
i = h

(0)
i /p

(0)
i , where h

(0)
i and

p
(0)
i are relatively prime integers for all i = 1, . . . , N0. Then we introduce the polynomials

P
(0)
i = P

(0)
i (c) in such a way that

F̃
(0)
i (ε, c(σ0ε)

µ
(0)
i ) = (σ0ε)

r
(0)
i

∑

kp
(0)
i +jh

(0)
i =s

(0)
i

Qk,jc
j = (σ0ε)

r
(0)
i P

(0)
i (c), σ0 := sign (ε), (3.1)

where Qk,j = F
(0)
k,jσ

k
0 . Recall that by Lemma 1.2, each polynomial P

(0)
i has at least a non-zero

complex root c
(0)
i .

Let ℜ0 be the set of all the non-zero real solutions of the polynomial equations P
(0)
i (c) = 0.

If ℜ0 = ∅ the system (1.1) has no subharmonic solution.

Let us suppose then, that there exists c(0) ∈ ℜ0, so that c(0)(σ0ε)
µ
(0)
i is a first approximate

solution of the implicit equation F (0)(ε, β0) = 0 for a suitable i = 1, . . . , N0. From now on we

shall drop the label i to lighten the notation. We now set c0 = c(0) and ε1 = (σ0ε)
1/p(0) , and, as

εs
(0)

1 divides F (0)(σ0ε
p(0)

1 , c0ε
h(0)

1 + y1ε
h(0)

1 ), we obtain a new power series F (1)(ε1, y1) given by

F (0)(σ0ε
p(0)

1 , c0ε
h(0)

1 + y1ε
h(0)

1 ) = εs
(0)

1 F (1)(ε1, y1), (3.2)

which is y1-general of order n1 for some n1 ≥ 1.

1See the Remark 2.6.
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Puiseux expansion for the degenerate case

Lemma 3.1. With the notations introduced before, let us write P (0)(c) = g0(c)(c− c0)
m0 with

g0(c0) 6= 0. Then n1 = m0.

Proof. This simply follows by the definitions of F (1) and P (0). In fact we have

εs
(0)

1 F (1)(ε1, y1) = εs
(0)

1


 ∑

k+µ(0)j=r(0)

Qk,j(c0 + y1)
j + ε1(. . .)


 , (3.3)

so that

F (1)(0, y1) = P (0)(c0 + y1) = g0(c0 + y1)y
m0
1 , (3.4)

and g0(c0 + y1) 6= 0 for y1 = 0. Hence F (1) is y1-general of order n1 = m0.

Remark 3.2. If Hypothesis 3 is satisfied, by Lemma 3.1 we have n1 = 1. Thus, we can apply

the Implicit Function Theorem to solve the equation F (1)(ε1, y1) = 0 and we obtain y1 = y1(ε1)

as a convergent power series, i.e. we shall obtain

y1(ε1) =
∑

k≥0

y
[k]
1 εk1 . (3.5)

This is exactly the result obtained in Sections 1.2 and 2.3, only with a different notation. We

used the tree formalism to give a bound for the convergence radius of the power series.

Now we restart the process just described: we construct the Newton polygon P(1) of

F (1). If F
(1)
k,0 = 0 for all k ≥ 0, then F (1)(ε1, 0) ≡ 0 so that we have F(ε, c0(σ0ε)

µ(0)
) ≡ 0,

i.e. c0(σ0ε)
µ(0)

is a solution of the implicit equation F(ε, β0) = 0. Otherwise we consider the

segments P
(1)
1 , . . . ,P

(1)
N1

with slopes µ
(1)
i for all i = 1, . . . , N1, and we obtain the polynomials

P
(1)
i ; we call ℜ1 the set of the real roots of the polynomials P

(1)
i . If ℜ1 = ∅, we stop the

process as there is no subharmonic solution. Otherwise we call µ(1) = h(1)/p(1) the slope of the

segment (again we omit the label i) associated with the polynomial P (1) which has a real root

c(1), so that c(1)(σ1ε1)
µ(1)

, where σ1 := sign (ε1), is an approximate solution of the equation

F (1)(ε1, y1) = 0. Again we call c1 = c(1) and we substitute ε2 = (σ1ε1)
1/p(1) and we obtain

F (1)(σ1ε
p(1)

2 , c1ε
h(1)

2 + y2ε
h(1)

2 ) = εs
(1)

2 F (2)(ε2, y2) (3.6)

which is y2-general of order n2 ≤ n1, and so on. Iterating the process we eventually obtain a
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3.1 The Newton-Puiseux process

sequence of approximate solutions

β0 = εµ
(0)
(c0 + y1),

y1 = εµ
(1)

1 (c1 + y2),

y2 = εµ
(2)

2 (c2 + y3),

...

(3.7)

so that the result is that

β0 = c0ε
µ(0)

+ c1ε
µ(0)+µ(1)/p(0) + c2ε

µ(0)+µ(1)/p(0)+µ(2)/p(0)p(1) + . . . (3.8)

is a formal expansion of β0 as a series in ascending fractional powers of ε. This iterating method

is called Newton-Puiseux process. Of course this does not occurs if we have ℜn = ∅ at a certain

step n-th, with n ≥ 0.

From now on we suppose that ℜn 6= ∅ for all n ≥ 0.

Hypothesis 4. There exists i0 ≥ 0 such that at the i0-th step of the iteration, there exists a

polynomial P (i0) = P (i0)(c) which has a simple root c∗ ∈ R.

Notice that Hypothesis 4 is a “weakened version” of Hypothesis 3, so that we can easily

obtain the following result.

Theorem 3.3. Consider a periodic solution with frequency ω = p/q for the system (1.1).

Assume that Hypotheses 1, 2 and 4 are satisfied. Then there exists ε0 > 0 such that for |ε| < ε0

the system (1.1) has at least one subharmonic solution of order q/p. Such a solution admits a

convergent Puiseux series in ε.

Proof. If we assume Hypothesis 4, we can repeat the analysis of Sections 1.2 to prove the

existence of a formal Puiseux series which solves F (i0)(εi0 , yi0) = 0. More precisely, by setting

η := |ε|1/p, where p = p(0) · . . . · p(i0), we obtain a formal solution (α(t), A(t)) for (1.1), with

α(t) = α0(t) + β0 + β̃(t) and A(t) = A0 +B(t), where

β0 =
∑

k≥h(0)

ηkβ
{k}
0 , β̃(t) =

∑

ν∈Z
ν 6=0

eiνωt
∑

k≥p

ηkβ̃{k}
ν , B(t) =

∑

ν∈Z

eiνωt
∑

k≥p

ηkB{k}
ν , (3.9)
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Puiseux expansion for the degenerate case

and the coefficients β
{k}
0 , β̃

{k}
ν and B

{k}
ν solve





β̃{k}
ν =

Φ
{k}
ν

iων
+ ω′(A0)

Γ
{k}
ν

(iων)2
, ν 6= 0,

B{k}
ν =

Γ
{k}
ν

iων
, ν 6= 0,

B
{k}
0 = −

Φ
{k}
0

ω′(A0)
,

Γ
{k}
0 = 0,

(3.10)

with the functions Γ
{k}
ν and Φ

{k}
ν recursively defined as

Γ{k}
ν =

∑

m≥0

∑

r+s=m

∑

pσ0+qσ′

0+ν1+...+νm=ν
k1+...+km=k−p

(iσ0)
r

r!

∂s
A

s!
Gσ0,σ′

0
(A0, t0)β

{k1}
ν1 · · · β{kr}

νr B{kr+1}
νr+1

· · ·B{km}
νm ,

Φ{k}
ν =

∑

m≥0

∑

r+s=m

∑

pσ0+qσ′

0+ν1+...+νm=ν
k1+...+km=k−p

(iσ0)
r

r!

∂s
A

s!
Fσ0,σ′

0
(A0, t0)β

{k1}
ν1 · · · β{kr}

νr B{kr+1}
νr+1

· · ·B{km}
νm ,

+
∑

s≥2

∑

ν1+...+νs=ν
k1+...+ks=k

∂s
A

s!
ω(A0)B

{k1}
ν1 . . . B{ks}

νs ,

(3.11)

where β
{k}
ν = β̃

{k}
ν for ν 6= 0 . We used a different notation for the Taylor coefficients to stress

that we are expanding in a different fractional power of ε.

Notice that if we set

h0 = h(0)p(1) · . . . · p(i0),

h1 = h0 + h(1)p(2) · . . . · p(i0),

h2 = h1 + h(2)p(3) · . . . · p(i0),

...

hi0 = hi0−1 + h(i0),

(3.12)

we obtain

β0 = β
{h0}
0 ηh0 + β

{h1}
0 ηh1 + . . .+ β

{hi0}
0 ηhi0 +

∑

k≥1

β
{hi0+k}
0 ηhi0+k. (3.13)

Thus, if we set β
{hj}
0 = cj , for j = 0, . . . , i0, we can formally solve the equation of motion up

to order p+ s(i0).

Finally, to solve the equation of motion up to any order k = p+ s(i0)+κ′, κ′ ≥ 1, the higher
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3.1 The Newton-Puiseux process

orders have to be recursively defined by

β
{hi0+κ′}
0 =−

1

Ci0

∑

s1≥0
j≥0

s1p+jhi0=s(i0)

Q
(i0)
s1,j

∑

m1+...+mj=κ′

0≤mi≤κ′−1

β
{hi0+m1}
0 . . . β

{hi0+mj}
0

+
κ′∑

n=1

∑

s1≥0
j≥0

s1p+jhi0=s(i0)+n

Q
(i0)
s1,j

∑

m1+...+mj=κ′−n
mi≥0

β
{hi0+m1}
0 . . . β

{hi0+mj}
0 ,

(3.14)

where Q
(i0)
s1,j

= F
(i0)
s1,j

σs1
i0
, and Ci0 := [dP (i0)/dc](ci0) 6= 0 by Hypothesis 4.

Thus we can consider a tree expansion similar to the one performed in Section 2.3, prove

the convergence (and bound the radius of convergence) of the series (3.9). More precisely, we

consider a tree θ ∈ Θk,ν,h where now p = p(0) · . . . · p(i0) and the constraints (2.21) have to be

changed as

s1p+ (s0 + s′0)hi0 = s(i0) + n,

s0+s′0∑

i=1

ki = s0hi0 +

s′0∑

i=1

ki = (s0 + s′0)hi0 + k − hi0 − n,
(3.15)

for a suitable 0 ≤ n ≤ k − hi0 , with the constraint that when n = 0 one has s′0 ≥ 2.

Now we associate with each leaf e a leaf label a = ae = 0, . . . , i0, with the constraint that if θ

contributes to β
{k}
0 for some k ≥ hi0 , than each leaf has leaf label a = i0. Again we denote with

N(θ), L(θ) and E(θ) the set of nodes, lines and leaves of θ respectively, and we denote with

Ea(θ) the set of leaves in θ with leaf label a. We point out that E(θ) = E0(θ)∐ . . . ∐Ei0(θ).

Moreover, we associate with each node v a node factors Ñv = N ∗
v and with each line ℓ a

propagator g̃ℓ = g∗ℓ , while the leaf factor will be Ñe = cae . We shall define the value of θ as

Ṽal(θ) =


 ∏

ℓ∈L(θ)

g̃ℓ




 ∏

v∈N(θ)

Ñv




 ∏

e∈E(θ)

Ñe


 . (3.16)

Finally, we denote with Λ(θ) the set of the lines (exiting from a node) in θ with component

label h = β0 and with N∗(θ) the nodes with bv = 1; then we associate with each node in N∗(θ),

with each leave in Ea(θ) and with each line in Λ(θ) a weight p, ha and hi0−p−s(i0) respectively,

and we call order of θ the number

k(θ) = p|N∗(θ)|+ (hi0 − p− s(i0))|Λ(θ)|+
i0∑

a=0

ha|Ea(θ)|, (3.17)

i.e. the weighted sum of nodes N∗(θ), leaves and lines Λ(θ).
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Puiseux expansion for the degenerate case

Hence we obtain
β
{k}
0 =

∑

θ∈Θk,0,β0

Ṽal(θ), k ≥ hi0 ,

β̃{k}
ν =

∑

θ∈Θ
k,ν,β̃

Ṽal(θ), k ≥ p,

B{k}
ν =

∑

θ∈Θk,ν,B

Ṽal(θ), k ≥ p,

(3.18)

as in Lemma 2.7, so that we can perform the bound of the radius of convergence, as in Propo-

sition 2.9, provided the bound

|L(θ)| ≤ Mk, M = 2
s(i0)

q
+ 3, q = min{hi0 , p} (3.19)

which can be proved similarly to Lemma 2.8, and no further difficulties arise.

We notice that Theorem 1.4 is a special case of Theorem 3.3, with i0 = 0.

3.2 The degenerate case

Here we want to show that in the general case, i.e. when not even Hypothesis 4 is assumed,

it is possible to prove the convergence of (3.8). Unfortunately we shall not obtain a bound

for the convergence radius, as the proof of the convergence of (3.8) in the general case, is

non-constructive.

First we show that the denominators in the exponents in (3.8) do not increase indefinitely.

Lemma 3.4. With the notation introduced before if ni+1 = di := deg(P (i)) for some i, then

µ(i) is integer.

Proof. Without loss of generality we shall prove the result for the case i = 0. Recall that

F (1)(0, y1) =
∑

k+µ(0)j=r(0)

Qk,j(c0 + y1)
j

= P (0)(c0 + y1),

(3.20)

with r(0) = µ(0)d0. If d0 = n1, then P (0) is of the form

P (0)(c) = R0(c− c0)
n1 , R0 6= 0. (3.21)

In particular this means that Qk,n1−1 6= 0 for some integer k ≥ 0 with the constraint

k + µ(0)(n1 − 1) = µ(0)n1. Hence µ(0) = k is integer.
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3.2 The degenerate case

Lemma 3.5. With the notations introduced before, there exists i0 ≥ 0 such that µ(i) is integer

for all i ≥ i0.

Proof. The series F (i) are yi-general of order ni, and the ni and the di form a descending

sequence of natural numbers

n = n0 ≥ d0 ≥ n1 ≥ d1 ≥ . . . (3.22)

By Lemma 3.4, µ(i) fails to be integers only if di > ni+1, and this may happen only finitely

often. Hence from a certain i0 onwards all the µ(i) are integers.

By the results above, we can define p := p(0) · . . . · p(i0) such that we can write (3.8) as

β0 = β0(ε) =
∑

h≥h0

β
[h]
0 εh/p, (3.23)

where h0 = h(0)p(1) · . . . · p(i0). By construction F(ε, β0(ε)) vanishes to all orders, so that (3.23)

is a formal solution of the implicit equation F(ε, β0) = 0.

We shall say that (3.23) is a Puiseux series for the plane curve defined by F(ε, β0) = 0.

Lemma 3.6. For all i ≥ 0 we can bound p(i) ≤ ni.

Proof. Without loss of generality we prove the result for i = 0. By definition, there exist k′, j′

integers, with j′ ≤ n0, such that

h(0)

p(0)
= µ(0) =

r(0) − k′

j′
, (3.24)

and h(0), p(0) are relatively prime integers, so that p(0) ≤ j′ ≤ n0.

Remark that by Lemma 3.6 we can bound p ≤ n0 · . . . · ni0 ≤ n0! = n!.

Now we want to prove the convergence of the formal Puiseux series (3.23). Differently from

the analogous statement when Hypothesis 4 is satisfied, we shall not bound the convergence

radius for the series, but we shall use some well-known results to obtain the convergence.

Let us consider a polynomial P (x; y) ∈ C{x}[y] of the form

P (x; y) = yn + c1(x)y
n−1 + . . .+ cn(x), (3.25)

such that ci(0) = 0 for all i = 1, . . . , n; then P (x; y) is called a Weierstrass polynomial.

Recall that a power series

u(x, y) =
∑

k,j≥0

uk,jx
kyj, (3.26)
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Puiseux expansion for the degenerate case

is a unit in C{x, y} if and only if the constant coefficient u(0, 0) = u0,0 is different to zero.

We now state some results well-known in the literature, which will be helpful later.

Theorem 3.7 (Weierstrass Preparation Theorem). Let f(x, y) ∈ C{x, y} be y-general of

order n in a neighbourhood of the origin. Then there exist a Weierstrass polynomial of degree

n Pf (x; y) ∈ C{x}[y], and a unit u(x, y) ∈ C{x, y} such that

f(x, y) = u(x, y)Pf (x; y). (3.27)

Moreover Pf (x; y) and u(x, y) are uniquely determined.

Theorem 3.7 follows from Theorem 3.8 which is a kind of division with a remainder for

convergent power series.

Theorem 3.8 (Special division theorem). Let Pn(c1, . . . , cn; y) ∈ C{c1, . . . , cn}[y] be the

general polynomial of degree n, i.e.

Pn(c1, . . . , cn; y) = yn + c1y
n−1 + . . . + cn. (3.28)

Then, for all f(x, y, c1, . . . , cn) ∈ C{x, y, c1, . . . , cn} there exists q ∈ C{x, y, c1, . . . , cn} and a

polynomial r ∈ C{x, c1, . . . , cn}[y] of degree d ≤ n− 1 such that

f = qPn + r (3.29)

A complete proof of this statement is available for example in [4, 6]. Here we shall prove

how Theorem 3.7 follows from Theorem 3.8.

Proof. (Theorem 3.8 implies Theorem 3.7.) Let f ∈ C{x, y} be y-general of order n, and let

us write f in the form

f(x, y) =
∑

k,j≥0

fk,jx
kyj , (3.30)

with f0,0 = . . . = f0,n−1 = 0 while f0,n 6= 0; notice that we can regard f(x, y) as an element of

C{x, y, c1, . . . , cn}.

By Theorem 3.8, for all c1, . . . , cn, we have

f(x, y) = q(x, y, c1, . . . , cn)(y
n + c1y

n−1 + . . .+ cn) + r(x, c1, . . . , cn; y), (3.31)

where r ∈ C{x, c1, . . . , cn}[y] and q ∈ C{x, y, c1 . . . , cn}. Our aim is to replace the general

coefficients ci with suitable holomorphic functions ci(x) so that r vanishes identically. Let us

write

r(x, c; y) = a1(c, x)y
n−1 + . . . + an(c, x), c := (c1, . . . , cn), ai(c, x) ∈ C{c, x}. (3.32)
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3.2 The degenerate case

First of all we notice that

∂cjai(0, 0) =




0, i > j

−f0,n, i = j.
(3.33)

In fact if one sets ci = x = 0 in (3.31) for all i = 1, . . . , n, and compares the coefficients

order by order in y, then one obtains

ai(0, 0) = 0, and q(0, 0, 0) = f0,n. (3.34)

Differentiating both sides of (3.31) with respect to the variable cj and comparing the coefficients

order by order in y, then (3.33) follows. Hence the matrix Ai,j = ∂cjai(0, 0) is an upper

triangular matrix with determinant (−f0,n)
n 6= 0. Hence the equations ai(c, x) = 0 satisfy the

hypotheses of the Implicit Function Theorem; then there exists c(x) ∈ (C{x})n, with c(0) = 0,

such that ai(c(x), x) ≡ 0 for all i = 1, . . . , n.

Now, substituting c = c(x) in (3.31) and setting u(x, y) = q(x, y, c(x)), we obtain

f(x, y) = u(x, y)(yn + c1(x)y
n−1 + . . .+ cn(x)), (3.35)

and u(0, 0) = f0,n 6= 0. Hence Theorem 3.7 follows.

Remark 3.9. Theorem 3.7 states that a convergent power series is equal, up to units, to a

Weierstrass polynomial; in other words, since u(x, y) is nowhere vanishing in a neighbourhood

of the origin, then f(x, y) = 0 has the same solutions of the polynomial equation

yn + c1(x)y
n−1 + . . .+ cn(x) = 0. (3.36)

Let us denote with Bδ1,δ2 the polydisc Bδ1,δ2 := {(x, y) ∈ C2m : |y| < δ1, |x| < δ2}, where

| · | denotes the euclidean norm in Cm.

Theorem 3.10. Let F(x, y) ∈ C{x, y} be irreducible and y-general of order n ≥ 1. Then there

exists δ0 > 0 such that for all 0 < δ1 < δ0 there exists δ2 > 0 such that if we define

X := {(x, y) ∈ Bδ1,δ2 : F(x, y) = 0}, (3.37)

then there exists a convergent power series y(z) ∈ C{z} for which the map

π : D −→ C2, (3.38)

from the disc D := {z ∈ C : |z| < δ
1/n
2 } to C2 with π(z) = (zn, y(z)) is biholomorphic on X,

i.e. π is holomorphic, bijective on X and π−1 : X → D is holomorphic. Moreover the restriction

π : D \ {0} −→ X \ {0}, (3.39)

is biholomorphic and π−1(0) = 0.
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This result is proved for instance in [4]. Here we shall see how the convergence of the

Puiseux series (3.23) follows form Theorem 3.10.

Lemma 3.11. Let F(ε, β0) ∈ R{ε, β0} be β0-general of order n and let us suppose that ℜn 6= ∅

for all n ≥ 0. Then the series (3.23) which formally solves F(ε, β0(ε)) ≡ 0, is convergent for ε

small enough.

Proof. Let PF (ε;β0) be the Weierstrass polynomial of F in C{ε}[β0]. If F is irreducible in

C{ε, β0}, then by Theorem 3.10 we have a convergent series β0(ε
1/n) which solves the equation

F(ε, β0) = 0. Then all the following

β0

(
ε1/n

)
, β0

(
(e2πiε)1/n

)
, . . . , β0

(
(e2π(n−1)iε)1/n

)
, (3.40)

are solutions of the equation F(ε, β0) = 0. Thus we have n distinct roots of the Weierstrass

polynomial PF and they are all convergent series in C{ε1/n}. But also the series (3.23) is

a solution of the equation F(ε, β0) = 0. Then, as a polynomial of degree n has exactly n

(complex) roots counting multiplicity, (3.23) is one of the (3.40). In particular this means that

(3.23) is convergent for ε small enough.

In general, we can write

F(ε, β0) =

N∏

i=1

(Fi(ε, β0))
mi , (3.41)

for some N ≥ 1, where the Fi are the irreducible factors of F . Then the Puiseux series (3.23)

satisfies one of the equations Fi(ε, β0) = 0, and hence, by what said above, it is convergent for

ε small enough.

Remark 3.12. Notice that the proof of Lemma 3.11 is non-constructive: in fact it deals with

the problem of decomposing a series in its irreducible factors. Moreover, if n is even we can

not say a priori if ℜn 6= ∅ for all n ≥ 0, i.e. we can not say if a formal solution exists at all.

As a consequence of Lemma 3.11 we obtain the following corollary.

Theorem 3.13. Consider a periodic solution with frequency ω = p/q for the system (1.1).

Assume that Hypotheses 1 and 2 are satisfied with n odd. Then there exists ε0 > 0 such that for

|ε| < ε0 the system (1.1) has at least one subharmonic solution of order q/p. Such a solution

admits a convergent Puiseux series in ε.

Proof. If n is odd, then ℜn 6= ∅ for all n ≥ 0. This trivially follows from the fact that if n is odd,

then there exists at least a polynomial P
(0)
i of degree di, with di odd. Thus such a polynomial
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3.3 Higher order Melnikov functions

admits a real root with odd multiplicity n1, so that F (1)(ε1, y1) is y1-general of odd order n1

and so on.

Hence we can apply the Newton-Puiseux process to obtain a subharmonic solution as a

Puiseux series in ε which is convergent for ε sufficiently small by Lemma 3.11.

Remark that Theorem 3.13 extends the results of [33]. First it gives the explicit dependence

of the parameter β0 on ε. Second, it shows that it is possible to express the subharmonic solution

as a convergent fractional power series in ε, and this allow us to push perturbation theory to

arbitrarily high order. Finally a subharmonic solution can be constructed for ant non-zero real

root of each odd-degree polynomial P
(n)
i associated with each segment of P(n) to all step of

iteration.

3.3 Higher order Melnikov functions

Now we shall see how to extend the results above when the Melnikov function vanishes

identically.

We are searching for a solution of the form (α(t), A(t)) with α(t) = α0(t) + β0 + β̃(t) and

A(t) = A0 +B(t), where

β̃(t) =
∑

ν∈Z
ν 6=0

eiνωtβν(ε, β0),

B(t) =
∑

ν∈Z

eiνωtBν(ε, β0).

(3.42)

First of all, we notice that we can formally write the equations of motion as





β
(k)
ν (β0) =

Φ
(k)
ν (β0)

iων
+ ω′(A0)

Γ
(k)
ν (β0)

(iων)2
, ν 6= 0

B
(k)
ν (β0) =

Γ
(k)
ν (β0)

iων
, ν 6= 0

B
(k)
0 (β0) = −

Φ
(k)
0 (β0)

ω′(A0)
.

(3.43)

where the notations in (1.26) have been used,up to any order k, provided

Γ0(ε, β0) = 0. (3.44)

If M(t0) vanishes identically, by (1.31) we have Γ
(1,j)
0 = 0 for all j ≥ 0, that is

Γ
(1)
0 (β0) = 0, (3.45)
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Puiseux expansion for the degenerate case

for all β0, and hence Γ0(ε, β0) = ε2F (2)(ε, β0), with F (2) a suitable function analytic in ε, β0.

Thus, we can solve the equations of motion up to the first order in ε, and the parameter β0

is left undetermined. More precisely we obtain

βν = εβ
(1)
ν + εβ̃(1)

ν (ε, β0),

Bν = εB
(1)
ν + εB̃(1)

ν (ε, β0),
(3.46)

where β
(1)
ν , B

(1)
ν solve the equation of motion up to the first order in ε, while β̃

(1)
ν , B̃

(1)
ν are the

corrections to be determined.

Now, let us set

M0(t0) = M(t0), M1(t0) = Γ
(2)
0 (0, t0), (3.47)

where Γ
(k)
ν (β0, t0) = Γ

(k)
ν (β0) i.e. we are stressing the dependence of Γ

(k,j)
ν on t0. We refer to

M1(t0) as the second order subharmonic Melnikov function.

Notice that M0(t0) = Γ
(1)
0 (0, t0).

If there exist t0 ∈ [0, 2π) and n1 ∈ N such that t0 is a zero of order n1 for the second order

subharmonic Melnikov function, that is

dk

dtk0
M1(t0) = 0 ∀ 0 ≤ k ≤ n1 − 1, D = D(t0) :=

dn1

dtn10
M1(t0) 6= 0, (3.48)

then we can repeat the analysis of the previous Sections to obtain the existence of a subharmonic

solution. In fact, we have

F (2)(ε, β0) :=
∑

k,j≥0

εkβj
0F

(2)
k,j , F

(2)
k,j = Γ

(k+2,j)
0 (t0), (3.49)

where t0 has to be fixed as the zero of M1(t0), so that, as

(−ω(A0))
−j d

j

dtj0
M1(t0) = j!Γ

(2,j)
0 (t0), (3.50)

for all j, as proved in [10] with a different notation, we can construct the Newton polygon of

F (2), which is β0-general of order n1 by (3.48), to obtain β̃(1), B̃(1) and β0 as Puiseux series in

ε, provided at each step of the iteration of the Newton-Puiseux algorithm one has a real root.

Otherwise, ifM1(t0) vanishes identically, we have Γ
(2)
0 (β0) = 0 for all β0, so that we can solve

the equations of motion up to the second order in ε and the parameter β0 is still undetermined.

Hence we set M2(t0) = Γ
(3)
0 (0, t0) and so on.
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3.3 Higher order Melnikov functions

In general if Mk′(t0) ≡ 0, for all k′ = 0, . . . , κ − 1, we have Γ0(ε, β0) = εk
′

F (k′)(ε, β0), so

that we can solve the equations of motion up to the κ-th order in ε, and obtain

βν = εβ
(1)
ν + . . .+ εκβ

(κ)
ν + εκβ̃(k)

ν (ε, β0),

Bν = εB
(1)
ν + . . .+ εκB

(κ)
ν + εκB̃(k)

ν (ε, β0),
(3.51)

where β
(k′)
ν , B

(k′)
ν , k′ = 0, . . . , κ − 1 solve the equation of motion up to the κ-th order in ε,

while β̃
(κ)
ν , B̃

(κ)
ν are the correction to be determined.

Hence we can weaken Hypotheses 2 and 4 as follows.

Hypothesis 5. There exists κ ≥ 0 such that for all k′ = 0, . . . , κ − 1, Mk′(t0) vanishes

identically, and there exist t0 ∈ [0, 2π) and n ∈ N such that t0 is a zero of order n for the κ-th

order subharmonic Melnikov function, that is

dj

dtj0
Mκ(t0) = 0 ∀ 0 ≤ j ≤ n− 1, D = D(t0) :=

dn

dtn0
Mκ(t0) 6= 0. (3.52)

Hypothesis 6. There exists i0 ≥ 0 such that at the i0-th step of the iteration of the Newton-

Puiseux algorithm for F (κ), there exists a polynomial P (i0) = P (i0)(c) which has a simple root

c∗ ∈ R.

Thus we have the following result.

Theorem 3.14. Consider a periodic solution with frequency ω = p/q for the system (1.1), and

assume that Hypotheses 1, 5 and 6 are satisfied. Then there exists ε0 > 0 such that for |ε| < ε0

the system (1.1) has at least one subharmonic solution of order q/p. Such a solution admits a

convergent Puiseux series in ε.

The proof can be easily obtained suitably modifying the proof of Theorem 3.3.

Now, call ℜ
(κ)
n the set of real roots of the polynomials obtained at the n-th step of iteration

of the Newton-Puiseux process for F (κ). Again if n is even we can not say a priori whether a

formal solution exists at all. However, if ℜ
(κ)
n 6= ∅ for all n ≥ 0, then we obtain a convergent

Puiseux series as in Section 3.2.

Finally, as a corollary, we have the following result.

Theorem 3.15. Consider a periodic solution with frequency ω = p/q for the system (1.1).

Assume that Hypotheses 1 and 5 are satisfied with n odd. Then there exists ε0 > 0 such that for

|ε| < ε0 the system (1.1) has at least one subharmonic solution of order q/p. Such a solution

admits a convergent Puiseux series in ε.

Again the proof is a suitable modification of the proof of Theorem 3.13.
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A. On Hypothesis 3

Here we want to show that Hypothesis 3 holds for “almost all” polynomials. First we make

this assertion precise.

A subset A of a topological space X is called residual if it is the intersection of a countable

number of subsets of X, each of which is open and dense. If all the residual subsets of X are

themselves dense in X, then X is called a Baire space. Given a Baire space X, a property is

said to be generic on X if it holds on a subset of X containing a residual set.

Notice that, as Rn is a complete metric space, by the Baire Category Theorem (see for

instance [26]), it is a Baire space.

Hence we want to show that Hypothesis 3 is generic on the space of the coefficients of the

polynomials.

More precisely, we shall show that given a polynomial of the form

P (a, c) =
n∑

i=0

an−ic
i, n ≥ 1, a := (a0, . . . , an), (A.1)

the set of parameters (a0, . . . , an) ∈ Rn+1 for which P (a, c) has multiples roots, is a proper

Zariski-closed1 subset of Rn+1.

Notice that a polynomial P = P (a, c) has a multiple root c∗ if and only if also the derivative

∂P/∂c vanishes at c∗.

Recall that, given two polynomials

P1(c) =
n∑

i=0

an−ic
i,

P2(c) =

m∑

i=0

bm−ic
i,

(A.2)

with n,m ≥ 1, the Sylvester matrix of P1, P2 is an n +m square matrix where the columns 1

to m are formed by “shifted sequences” of the coefficients of P1, while the columns m + 1 to

1See for instance [27].
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On Hypothesis 3

m+ n are formed by “shifted sequences” of the coefficients of P2, i.e.

Syl(P1, P2) :=




a0 0 . . . 0 b0 0 . . . 0

a1 a0 . . . 0 b1 b0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . an−1 0 0 . . . bm−1

0 0 . . . an 0 0 . . . bm




, (A.3)

and the resultant R(P1, P2) of P1, P2 is defined as the determinant of the Sylvester matrix.

Lemma A.1. Let c1,1, . . . , c1,n and c2,1, . . . , c2,m be the complex roots of P1, P2 respectively.

Then

R(P1, P2) = am0 bn0

n∏

i=1

m∏

j=1

(c1,i − c2,j). (A.4)

A complete proof is performed for instance in [29].

In particular, Lemma A.1 implies that two polynomials have a common root if and only if

R(P1, P2) = 0.

Recall also that given a polynomial P = P (c), the discriminant D(P ) of P is the resultant

of P and its first derivative with respect to c, i.e. D(P ) := R(P,P ′), where P ′ := dP/dc.

Thus, a polynomial P = P (a, c) of the form (A.1) has a multiple root if and only if its

discriminant is equal to zero.

Now let us consider the set

V := {a = (a0, . . . , an) ∈ Rn+1 : P (a, c) has a multiple root }. (A.5)

Notice that the discriminant of P (a, c) is a polynomial in the parameters a = (a0, . . . , an)

i.e. DP (a) = D(P ) ∈ R[a0, . . . , an], hence we can write

V = {a = (a0, . . . , an) ∈ Rn+1 : DP (a) = 0}. (A.6)

Such a set is, by definition, a proper Zariski-closed subset of Rn+1.

As the complement of a proper Zariski-closed subset of Rn+1 is open and dense also in the

Euclidean topology, then Hypothesis 3 is generic.
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B. Proof of Lemma 2.8

First we shall prove by induction on k that for all θ ∈ Θk,0,β0 one has

|L(θ)| ≤ M(k − h)−

(
1 +

s

q

)
, (B.1)

for all k ≥ h + 1. In fact for k = h the bound (2.31) is trivially satisfied as L(θ) = 1. Recall

that, by Lemma 2.7, for all k ≥ h, each tree in Θk,0,β0 contributes to β
[k]
0 .

For k = h+ 1 one has

β
[h+1]
0 = −

1

C

∑

s1p+jh=s+1

Qs1,j(c
∗)j , (B.2)

so that any tree θ contributing to β
[h+1]
0 has s1+1 nodes and j leaves, hence |L(θ)| = s1+1+ j.

Notice that the set Σ1 = {(x, y) ∈ R2
+ : xp + yh = s + 1} is a segment (see Figure B.1) with

the same slope of the segment P of the Newton polygon, associated with the polynomial P (c)

in (1.40).

k

j

s+1
h

s
h

s+1
p

s
p

P

Figure B.1: The segment Σ1 parallel to P .
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Proof of Lemma 2.8

Hence one has

|L(θ)| = 1 + s1 + j ≤ 1 +
s+ 1

q
. (B.3)

Moreover for k = h+1 the r.h.s. in (B.1) is equal to 2+ s/q, so that the bound (B.1) holds,

because one has q ≥ 1. Assume now that the bound (B.1) holds for all k′ < k and let us show

that then it holds also for k.

We call M0 = Mh+ 1 + s/q, so that the inductive hypothesis can be written as

|L(θ′)| ≤ Mk(θ′)−M0, (B.4)

for all θ′ ∈ Θk′,0,β0, k
′ < k.

Recall that a tree contributing to β
[k]
0 is of the form depicted in Figure 2.9 with the con-

straints (2.21) holding. Hence, by the inductive hypothesis, we have

|L(θ)| ≤ 1 + s1 + s0 − s′0M0 +M

s′0∑

i=1

k(θi). (B.5)

Let us set m := k − h ≥ 1. Hence, via the conditions (2.21) we can write (B.5) as

|L(θ)| ≤ 1 + s1 + s0 − s′0M0 +M(s+m− s1p− s0h). (B.6)

Hence we shall prove that

1 + s1 + s0 − s′0M0 +M(s+m− s1p− s0h) ≤ mM − 1−
s

q
, (B.7)

or, in other words

(s1p+ (s0 + s′0)h)M + s′0

(
1 +

s

q

)
≥ sM + s0 + s1 +

s

q
+ 2, (B.8)

for all s0, s
′
0, s1 ≥ 0 admitted by conditions (2.21).

First of all for s′0 = 0 by the first condition in (2.21) we have s1p + s0h = s +m ≥ s + 1.

Moreover (s1 + s0)q ≤ s1p+ s0h = s+m, hence

s1 + s0 ≤
s+m

q
, (B.9)

so that one can bound (B.8) as

mM ≥ 2
s

q
+ 2 +

m

q
, (B.10)

and, by substituting (2.30) one has

m

(
2
s

q
+ 3

)
≥ 2

s

q
+ 2 +

m

q
, (B.11)
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Proof of Lemma 2.8

that is satisfied for all m ≥ 1.

For s′0 = 1 the first conditions (2.21) can be written as s1p+ (s0 + 1)h = s+m ≥ s+ 1, so

that

s1 + s0 ≤
s− h+m

q
. (B.12)

Hence we can bound (B.8) as

mM ≥
s+m− h

q
, (B.13)

and again (B.13) is satisfied for all m ≥ 1.

Finally for s′0 ≥ 2 the first condition in (2.21) can be written s1p+ (s0 + s′0)h ≥ s, so that

s1 + s0 < s1 + s0 + s′0 ≤
s
q
, and we can bound (B.8) as

sM + s′0

(
s

q
+ 1

)
≥ sM + 2

s

q
+ 2, (B.14)

that is satisfied as we are assuming s′0 ≥ 2.

Notice that by (2.21) this exhausts the discussion over all the choices of s0, s
′
0, s1.

Let us show now that

|L(θ)| ≤ Mk − 1, (B.15)

for all θ ∈ Θk,ν,f , f = β̃, B, k ≥ p.

Again recall that a tree θ ∈ Θk,ν,f contributes to f
[k]
ν with f = β̃, B, so that the bound

(B.15) is trivially satisfied for k = p because one has |L(θ)| = 1.

Let us suppose now that the bound holds for all k′ < k; again we shall prove that then it

holds also for k.

Recall that a tree contributing to f
[k]
ν is of the form depicted in Figure 2.11, where s0, s1

are the numbers of the lines exiting from a leaf and a simple node respectively and entering

v0, while s
′
0, s

′
1 are the graph elements entering v0 with component label β0 and f respectively.

Hence, by the inductive hypothesis and by the bound (B.1), we have

|L(θ)| ≤ 1 + s0 + s1 − s′0M0 − s′1 +M

s′0+s′1∑

i=1

k(θi). (B.16)

Let us supposte first bv0 = 1, and set m = k− p ≥ 1; thus, via the first condition in (2.17),

we shall prove the bound

1 + s0 + s1 +M(m− s0h− s1p)− s′0M0 − s′1 ≤ Mk − 1, (B.17)

or, in other words,

s0(Mh− 1) + s1(Mp− 1) +Mp+ s′0M0 + s′1 ≥ 2, (B.18)
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and this is obviously satisfied as Mh,Mp ≥ 3.

Finally if bv0 = 0 we have

s′1∑

i=1

k(θi) = k − s1p,

s0 + s′0 = 0, s1 + s′1 ≥ 2,

(B.19)

so that we shall prove the bound

1 + s1 +M(k − s1p)− s′1 ≤ Mk − 1, (B.20)

or, in other words

s1(Mp− 1) + s′1 ≥ 2, (B.21)

and again this is obviously satisfied as s1 + s′1 ≥ 2 and Mp > 1.
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La matematica è come una piramide rovesciata:

si regge sulla punta

che deve essere ben salda,

e per poter costruire un piano

è necessario farlo in tutte le direzioni,

altrimenti la piramide perde l’equilibrio.

E. Sernesi

54



Ringraziamenti

Eccomi qua, alla fine di un percorso. Fa un po’ strano a dirlo, a pensarci... Mi guardo
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mia solita “ansia da pagina bianca”... però le voglio trovare - le parole - anche se non so bene

che cosa ne uscirà.
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chiacchierate, il sostegno che mi ha dato ogni volta che stavo per crollare, la disponibilità che

ha avuto nei miei confronti, le risate nei momenti bui... Grazie.

Ringrazio Michela Procesi: per le lunghe ore passate a studiare assieme l’anno scorso, per

le risate, per Fatou e cappa e cappacappa di Vitali, per avermi fatto far pace con l’analisi una
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seriamente su di lui: ti ringrazio, per il “Marcello/Marco” che sei stato e per il “Luca” che sei

diventato, per avermi sopportata ogni volta (sempre più spesso) che parlavo di matematica, per

essermi stato vicino in ogni momento di questi ultimi mesi, perché continui ad accarezzarmi

l’orecchio, per come esci dalla porta e rientri dalla finestra, per la caccia e la pesca, per il

sughetto della sera e il cornetto al mattino, per il protomartire e Cecchini, perché ho bisogno
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della tua presenza per capire meglio la mia essenza...

Ringrazio la mia sorellina piccina, alta “due metri e venti”; Càli, il bene che ti voglio non si

può raccontare a parole, e sapere che c’eri mi ha fatto superare ostacoli che da sola non avrei
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Giorgia, mia prima studentessa e nuova collega co-tutrice! L’algebra ha avuto la meglio,
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