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Abstract: The KAM theorem for analytic quasi-integrable anisochronous Hamiltonian
systems yields that the perturbation expansion (Lindstedt series) for any quasi-periodic
solution with Diophantine frequency vector converges. If one studies the Lindstedt series
by following a perturbation theory approach, one finds that convergence is ultimately
related to the presence of cancellations between contributions of the same perturbation
order. In turn, this is due to symmetries in the problem. Such symmetries are easily
visualised in action-angle coordinates, where the KAM theorem is usually formulated
by exploiting the analogy between Lindstedt series and perturbation expansions in quan-
tum field theory and, in particular, the possibility of expressing the solutions in terms of
tree graphs, which are the analogue of Feynman diagrams. If the unperturbed system is
isochronous, Moser’s modifying terms theorem ensures that an analytic quasi-periodic
solution with the same Diophantine frequency vector as the unperturbed Hamiltonian
exists for the system obtained by adding a suitable constant (counterterm) to the vector
field. Also in this case, one can follow the alternative approach of studying the pertur-
bation expansion for both the solution and the counterterm, and again convergence of
the two series is obtained as a consequence of deep cancellations between contributions
of the same order. In this paper, we revisit Moser’s theorem, by studying the pertur-
bation expansion one obtains by working in Cartesian coordinates. We investigate the
symmetries giving rise to the cancellations which makes possible the convergence of
the series. We find that the cancellation mechanism works in a completely different way
in Cartesian coordinates, and the interpretation of the underlying symmetries in terms
of tree graphs is much more subtle than in the case of action-angle coordinates.

1. Introduction

Consider an isochronous Hamiltonian system, described by the Hamiltonian H(α, A) =
ω · A + ε f (α, A), with f real analytic in T

d × A and A an open subset of R
d .
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The corresponding Hamilton equations are

α̇ = ω + ε∂A f (α, A), Ȧ = −ε∂α f (α, A). (1.1)

Let (α0(t), A0(t)) = (α0 + ωt, A0) be a solution of (1.1) for ε = 0. For ε �= 0, in gen-
eral, there is no quasi-periodic solution to (1.1) with frequency vector ω which reduces
to (α0(t), A0(t)) as ε → 0. However, one can prove that, if ε is small enough and ω
satisfies some Diophantine condition, then there is a ‘correction’ μ(ε, A0), analytic in
both ε and A0, such that the modified equations

α̇ = ω + ε∂A f (α, A) + μ(ε, A0), Ȧ = −ε∂α f (α, A) (1.2)

admit a quasi-periodic solution with frequency vector ω which reduces to (α0(t), A0(t))
as ε → 0. This is a well known result, called the modifying terms theorem, or translated
torus theorem, first proved by Moser [20]. By writing the solution as a power series in ε
(Lindstedt series), the existence of an analytic solution means that the series converges.
This is ultimately related to some deep cancellations in the series; see [1] for a review.

Equations like (1.1) naturally arise when studying the stability of an elliptic equilib-
rium point. For instance, one can think of a mechanical system near a minimum point
for the potential energy, where the Hamiltonian describing the system looks like

H(x1, . . . , xn, y1, . . . , yn) = 1

2

d∑

j=1

(
y2

j + ω2
j x2

j

)
+ εF(x1, . . . , xn, ε), (1.3)

where F is a real analytic function at least of third order in its arguments, the vector
ω = (ω1, . . . , ωd) satisfies some Diophantine condition, and the factor ε can be assumed
to be obtained after a rescaling of the original coordinates – such rescaling makes sense if
one wants to study the behaviour of the system near the origin. Indeed, the corresponding
Hamilton equations, written in action-angle variables, are of the form (1.1).

Unfortunately, the action-angle variables are singular near the equilibrium, and hence
there are problems in the region where one of the actions is much smaller than the others.
Thus, it can be worthwhile to work directly in the original Cartesian coordinates. In fact,
there has been a lot of interest for KAM theory in configuration space, that is, without
action-angle variables; see for instance [6,19,22].

1.1. Set up of the problem. In this paper we consider the ordinary differential equations

ẍ j + ω2
j x j + f j (x1, . . . , xd , ε) + η j x j = 0, j = 1, . . . , d, (1.4)

where x = (x1, . . . , xd) ∈ R
d , ε is real parameter (perturbation parameter), the func-

tion f (x, ε) = ( f1(x, ε), . . . , fd(x, ε)) is real analytic in x and ε at (x, ε) = (0, 0) and
at least quadratic in x,

f j (x, ε) =
∞∑

p=1

ε p
∑

s1,...,sd≥0
s1+···+sd=p+1

f j,s1,...,sd xs1
1 . . . x

sd
d , (1.5)

(by taking f j (x, ε) = −ε∂x j F(x, ε) one recovers the Hamilton equations corresponding
to the Hamiltonian (1.3)), η = (η1, . . . , ηd) is a vector of parameters, and the frequency
vector (or rotation vector) ω = (ω1, . . . , ωd) satisfies the Diophantine condition

|ω · ν| > γ0 |ν|−τ ∀ν ∈ Zd∗, (1.6)
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with Zd∗ = Zd\{0}, τ > d − 1 and γ0 > 0. Here and henceforth · denotes the standard
scalar product in R

d , and |ν| = |ν1| + . . . + |νd |.
In light of Moser’s theorem of the modifying terms, one expects that, by taking the

(arbitrary) unperturbed solution x0, j (t) = C j cosω j t + S j sinω j t = c j eiω j t + c∗
j e

−iω j t ,
j = 1, . . . , d, there exists a function η(ε, c), analytic both in ε and c = (c1, . . . , cd),
such that, by fixing η j = η j (ε, c), there exists a quasi-periodic solution to (1.4) with
frequency vector ω, which reduces to the unperturbed one as ε → 0. In fact, this is what
happens: the result is just a rephrasing of Moser’s modifying terms theorem, with the
advantage that it extends to the regions of phase space where the action-angle variables
cannot be defined, and hence is not surprising; see also [6]. What is less obvious is the
cancellation mechanism which is behind the convergence of the perturbation series. The
problem can be described as follows.

One can try to write again – as in action-angle variables – the solution as a power
series in ε, and study directly the convergence of the series. In general, when consid-
ering the Lindstedt series of some KAM problem, first of all one identifies the terms
of the series which are an obstruction to convergence: such terms are usually called
resonances (or self-energy clusters, by analogy to what happens in quantum field the-
ory). Crudely speaking, the series is given by the sum of infinitely many terms (finitely
many for each perturbation order), and each term looks like a product of ‘small divi-
sors’ times some harmless factors: a resonance is a particular structure in the product
which allows a dangerous accumulation of small divisors. This phenomenon is very
easily visualised when each term of the series is graphically represented as a tree graph
(tree tout court in the following), that is, a set of points and lines connecting them in
such a way that no loop arises; we refer to [10,13,15] for an introduction to the tree
formalism. Shortly, in any tree, each line 	 carries a label j	 ∈ {1, . . . , d} and a label
ν	 ∈ Zd (that one calls momentum, again inspired by the terminology of quantum field
theory) and with each such line a small divisor δ j	 (ω · ν	) is associated; here u → δ j (u)
is a smooth function, which depends on both the model under study and the coordi-
nates one is working with, for instance δ j (u) = u for (1.2), while δ j (u) = u2 − ω2

j
for (1.4). Then a resonance becomes a subgraph which is between two lines 	1 and 	2
with the same small divisors, i.e. δ j	1

(ω · ν	1) = δ j	2
(ω · ν	2). A tree with a chain of

resonances represents a term of the series containing a factor δ j (ω · ν) to a very large
power, and this produces a factorial k! to some positive power when bounding some
terms contributing to the kth order in ε of the Lindstedt series, so preventing a proof of
convergence.

However, a careful analysis of the resonances shows that there are cancellations to all
perturbation orders. This is what can be proved in the case of the standard anisochronous
KAM theorem, as first pointed out by Eliasson [8]; see also [9,10], for a proof which
more deeply exploits the similarity with the techniques of quantum field theory.

More precisely the cancellation mechanism works in the following way. Given a
tree θ and two lines 	1 and 	2 of θ with the same small divisor, consider all possible
resonances which can be inserted between 	1 and 	2. For each possible resonance one
obtains a different tree, which represents a term of the perturbation series, and each term
can be written as the product of a numerical value corresponding to the resonance times a
numerical value associated to the points and lines of θ which are outside the resonance:
this second numerical value is the same for all such trees, and hence factorises out.
When summing together the numerical values corresponding to all resonances, there are
compensations and the sum is in fact much smaller than each summand (for more details
we refer to [10,13]).
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For the isochronous case, already in action-angle variables [1], there are some kinds
of resonances which do not cancel each other. Nevertheless there are other kinds of reso-
nances for which the gain factor due to the cancellation is more than what is needed (that
is, one has a second order instead of a first order cancellation). Thus, the hope naturally
arises that one can use the extra gain factors to compensate the lack of gain factors for
the first kind of resonances, and in fact this happens. Indeed, the resonances for which
there is no cancellation cannot accumulate too much without entailing the presence of
as many resonances with the extra gain factors, in such a way that the overall num-
ber of gain factors is, in average, one per resonance (this is essentially the meaning of
Lemma 5.4 in [1]).

When working in Cartesian coordinates, one immediately meets a difficulty. If one
writes down the lowest order resonances, there is no cancellation at all. This is slightly
surprising because a cancellation is expected somewhere: if the resonances do not can-
cel each other, in principle one can construct trees containing chains of arbitrarily many
resonances, and these trees represent terms of the formal power series expansion for
which a bound proportional to some factorial seems unavoidable. However, we shall
show that there are cancellations, as soon as one has at least two resonances. So, one has
the curious phenomenon that resonances which do not cancel each other are allowed,
but they cannot accumulate too much. Moreover, the cancellation mechanism is more
involved than in other cases (including the same problem in action-angle variables). First
of all, the resonances are no longer diagonal in the momenta, that is, the lines 	1 and 	2
considered above can have different momenta ν	1 and ν	2 . Second, the cancellation does
not operate simply by collecting together all resonances to a given order and then sum-
ming the corresponding numerical values. As we mentioned, in this way no cancellation
is produced: to obtain a cancellation one has to consider all possible ways to connect
two resonances to each other. Thus, there is a cancellation only if there is a chain of at
least two resonances.

What emerges eventually is that working in Cartesian coordinates rather complicates
the analysis. On the other hand, as remarked above, it can be worthwhile to investigate
the problem in Cartesian coordinates. Moreover, the cancellations are due to remarkable
symmetries in the problem, which can be of interest on their own; in this regard we
mention the problem of the reducibility of the skew-product flows with Bryuno base
[11], where the convergence of the corresponding Lindstedt series is also due to some
cancellation mechanism and hence to some deep symmetry of the system.

In this paper we shall assume the standard Diophantine condition on the frequency
vector ω; see (1.6) below. Of course one could consider more general Diophantine con-
ditions than the standard one (for instance a Bryuno condition [5]; see also [12] for a
discussion using the Lindstedt series expansion). This would make the analysis slightly
more complicated, without shedding further light on the problem. An important feature
of the Lindstedt series method is that, from a conceptual point of view, the general strat-
egy is exactly the same independent of the kind of coordinates one uses (and independent
of the fact that the system is a discrete map or a continuous flow; see [2,10,15]). What is
really important for the analysis is the form of the unperturbed solution: the simpler such
a solution is the easier the analysis. Of course, an essential issue is that the system one
wants to study is a perturbation of one which is exactly soluble. This is certainly true in
the case of quasi-integrable Hamiltonian systems, but of course the range of applicabil-
ity is much wider, and includes also non-Hamiltonian systems; see for instance [14,16].
Moreover an assumption of this kind is more or less always implicit in whatever method
one can envisage to deal with small divisor problems of this kind; see also [6].
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In the anisochronous case, the cancellations are due to symmetry properties of the
model – essentially the symplectic character of the problem, as first pointed out by
Eliasson [8]. The cancellation mechanism for the resonances is deeply related to that
assuring the formal solubility of the equations of motions, which in turn is due to a
symmetry property as already shown by Poincaré [21]. We refer to [17] for a detailed
comparison between Eliasson’s method and the tree formalism that we are using here.
Note that, despite what is sometimes claimed in the literature, Eliasson did not study
how the resonances have to be regrouped in order to exhibit the cancellation; on the
contrary, he proved that, because of aforementioned symmetry properties, the sum of
(the leading parts of) all possible resonances must cancel out; a proof of the cancellation
through a careful regrouping of the resonances was first given by Gallavotti [9]. Subse-
quently, stressing further the analogy with quantum field theory, Bricmont et al. showed
that the cancellations can be interpreted as a consequence of suitable Ward identities
of the corresponding field theory [4] (see also [7]): the symmetry property corresponds
to the translation invariance of the field theoy. In the isochronous case, in terms of
Cartesian coordinates the cancellation mechanism works in a completely different way
with respect to action-angle coordinates. However, as we shall see, the cancellation is
still related to underlying symmetry properties: it would be interesting to relate the sym-
metry properties that we find to invariance properties of the corresponding quantum field
model, as done in [4] for the KAM theorem.

1.2. Statement of the results. Now, we give a formal statement of our results. As stressed
above, the main point of the paper is not in the results themselves, but in the method
used to prove them, in particular on the analysis of the perturbation series and of the
cancellation mechanism which is at the base of the convergence of the series.

We look for quasi-periodic solutions x(t) of (1.4) with frequency vector ω. Therefore
we expand the function x(t) by writing

x(t) =
∑

ν∈Zd

eiν·ωt xν, (1.7)

and we denote by f ν(x, ε) the νth Fourier coefficient of the function that we obtain by
Taylor-expanding f (x, ε) in powers of x and Fourier-expanding x according to (1.7).

Thus, in Fourier space (1.4) becomes
[
(ω · ν)2 − ω2

j

]
x j,ν = f j,ν(x, ε) + η j x j,ν . (1.8)

For ε = 0, η = 0, the vector x(0)(t) with components

x (0)j (t) = c j e
iω j t + c∗

j e
−iω j t , j = 1, . . . , d, (1.9)

is a solution of (1.4) for any choice of the complex constant c = (c1, . . . , cd). Here and
henceforth ∗ denotes complex conjugation.

Define e j as the vector with components δi j (Kronecker delta). Then we can split
(1.8) into two sets of equations, called respectively the bifurcation equation and the
range equation,

f j,σ e j (x, ε) + η j x j,σ e j = 0, j = 1, . . . , d, σ = ±1, (1.10a)
[
(ω · ν)2 − ω2

j

]
x j,ν = f j,ν(x, ε) + η j x j,ν, j = 1, . . . , d, ν �= ±e j .

(1.10b)
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We shall study both Eqs. (1.10) simultaneously, by showing that for all choices of the
parameters c there exist suitable counterterms η, depending analytically on ε and c, such
that (1.10) admits a quasi-periodic solution with frequency vector ω, which is analytic in
ε, c, and t . Moreover, with the choice x j,e j = c j for all j = 1, . . . , d, the counterterms
are uniquely determined.

We formulate the following result.

Theorem 1.1. Consider the system described by Eqs. (1.4) and let (1.9) be a solution
at ε = 0, η = 0. Set (c) = max{|c1|, . . . , |cd |, 1}. There exist a positive constant η0,
small enough and independent of ε, c, and a unique function η(ε, c), holomorphic in
the domain |ε|3(c) ≤ η0 and real for real ε, such that the system

ẍ j + ω2
j x j + f j (x1, . . . , xd , ε) + η j (ε, c) x j = 0, j = 1, . . . , d,

admits a solution x(t) = x(t, ε, c) of the form (1.7), holomorphic in the domain
|ε|3(c)e3|ω| |Im t | ≤ η0 and real for real ε, t , with Fourier coefficients x j,e j = c j
and x j,ν = O(ε) if ν �= ±e j for j = 1, . . . , d.

The proof is organised as follows. After introducing the small divisors and proving
some simple preliminary properties in Sect. 2, we develop in Sect. 3 a graphical repre-
sentation for the power series of the counterterms and the solution (tree expansion). In
particular we perform a multiscale analysis which allows us to single out the contribu-
tions (self-energy clusters) which give problems when trying to bound the coefficients of
the series. In Sect. 4 we show that, as far as such contributions are neglected, there is no
difficulty in obtaining power-like estimates on the coefficients: these estimates, which are
generalisations of the Siegel-Bryuno bounds holding for anisochronous systems [9,10],
would imply the convergence of the series and hence analyticity. In Sect. 5 we discuss
how to deal with the self-energy clusters: in particular we single out the leading part of
their contributions (localised values), which are proved in Sect. 6 to satisfy some deep
symmetry properties. Finally, in Sect. 7 we show how the symmetry properties can be
exploited in order to obtain cancellations involving the localised parts, in such a way
that the remaining contributions can still be bounded in a summable way. This will yield
the convergence of the full series and hence the analyticity of both the solution and the
counterterms.

Note that the system dealt with in Theorem 1.1 can be non-Hamiltonian. On the other
hand the most general case for a Hamiltonian system near a stable equilibrium allows
for Hamiltonians of the form

H(x1, . . . , xn, y1, . . . , yn) = 1

2

d∑

j=1

(
y2

j + ω2
j x2

j

)
+ εF(x1, . . . , xn, y1, . . . , yn, ε),

(1.11)

which lead to the equations
{

ẋ j = y j + ε∂yi F(x, y, ε),
ẏ j = −ω2

j x j − ε∂xi F(x, y, ε).
(1.12)

Also in this case one can consider the modified equations
{

ẋ j = y j + ε∂yi F(x, y, ε),
ẏ j = −ω2

j x j − ε∂xi F(x, y, ε) + η j x j ,
(1.13)
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which are not of the form considered in Theorem 1.1. However, a result in the same
spirit as Theorem 1.1 still holds.

Theorem 1.2. Consider the system described by Eqs. (1.13) and let (x(0)(t), y(0)(t))
be a solution at ε = 0, η = 0, with x(0)(t) given by (1.9) and y(0)(t) = ẋ(0)(t). Set
(c) = max{|c1|, . . . , |cd |, 1}. Then there exist a positive constant η0, small enough
and independent of ε, c, and a unique function η(ε, c), holomorphic in the domain
|ε|3(c) ≤ η0 and real for real ε, such that the system

{
ẋ j = y j + ε∂yi F(x, y, ε),
ẏ j = −ω2

j x j − ε∂xi F(x, y, ε) + η j (ε, c) x j

admits a solution (x(t, ε, c), y(t, ε, c)), holomorphic in the domain |ε|3(c)e3|ω| |Im t | ≤
η0 and real for real ε, t , with Fourier coefficients x j,e j = y j,e j /iω j = c j and x j,ν =
y j,ν = O(ε) if ν �= ±e j for j = 1, . . . , d.

The proof follows the same lines as that of Theorem 1.1, and it is discussed in Appen-
dices A and B. Finally in Appendix C we briefly sketch an alternative approach based
on the resummation of the perturbation series.

2. Preliminary Results

We shall denote by N the set of (strictly) positive integers, and set Z+ = N ∪ {0}. For
any j = 1, . . . , d and ν ∈ Zd define the small divisors

δ j (ω · ν) := min{∣∣ω · ν − ω j
∣∣ ,
∣∣ω · ν + ω j

∣∣} = |ω · (ν − σ(ν, j) e j )|, (2.1)

where σ(ν, j) is the minimizer. Note that the Diophantine condition (1.6) implies that

δ j (ω · ν) ≥ γ |ν|−τ ∀ j = 1, . . . , d, ∀ν �= 0, σ (ν, j) e j , (2.2a)

δ j (ω · ν) + δ j ′(ω · ν′) ≥ γ |ν − ν′|−τ ∀ j, j ′=1, . . . , d,

∀ν �=ν′, ν−ν′ �=σ(ν, j) e j −σ(ν′, j ′) e j ′, (2.2b)

for a suitable positive γ > 0. We can (and shall) assume that γ is sufficiently smaller
than γ0, and hence than δ(0) = min{|ω1|, . . . , |ωd |} and ω := min{||ωi | − |ω j || : 1 ≤
i < j ≤ d}.
Lemma 2.1. Given ν, ν′ ∈ Zd , with ν �= ν′, and δ j (ω · ν) = δ j ′(ω · ν′) for some
j, j ′ ∈ {1, . . . , d}, then either |ν − ν′| ≥ |ν| + |ν′| − 2 or |ν − ν′| = 2.

Proof. One has δ j (ω · ν) = |ω · ν − σω j | and δ j ′(ω · ν′) = |ω · ν′ − σ ′ω j ′ |, with
σ = σ(ν, j) and σ ′ = σ(ν′, j ′). Set ν̄ = ν − σ e j and ν̄′ = ν′ − σ ′e j ′ . By the Diophan-
tine condition (1.6) one can have δ j (ω · ν) = δ j ′(ω · ν′), and hence |ω · ν̄| = |ω · ν̄′|, if
and only if ν̄ = ±ν̄′.

If ν̄ = −ν̄′ then for σ = −σ ′ one has |ν − ν′| = |ν| + |ν′|, while for σ = σ ′ one
obtains |ν − ν′| ≥ |ν| + |ν′| − 2. If ν̄ = ν̄′ and j = j ′ one has νi = ν′

i for all i �= j and
ν j − σ = ν′

j − σ ′, and hence |ν j − ν′
j | = 2. If ν̄ = ν̄′ and j �= j ′ then νi = ν′

i for all
i �= j, j ′, while ν j − σ = ν′

j and ν j ′ = ν′
j ′ − σ ′, and hence |ν j − ν′

j | = |ν j ′ − ν′
j ′ | = 1.

�
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Lemma 2.2. Let ν, ν′ ∈ Zd be such that ν �= ν′ and, for some n ∈ Z+, j, j ′ ∈
{1, . . . , d}, both δ j (ω · ν) ≤ 2−nγ and δ j ′(ω · ν′) ≤ 2−nγ hold. Then either |ν − ν′| >
2(n−2)/τ or |ν − ν′| = 2 and δ j (ω · ν) = δ j ′(ω · ν′).

Proof. Write δ j (ω ·ν) = |ω ·ν−σω j | and δ j ′(ω ·ν′) = |ω ·ν′−σ ′ω j ′ |, with σ = σ(ν, j)
and σ ′ = σ(ν′, j ′), and set ν̄ = ν − σ e j and ν̄′ = ν′ − σ ′e j ′ as above.

If ν̄ �= ν̄′, by the Diophantine condition (2.2b), one has

γ
∣∣ν̄ − ν̄′∣∣−τ <

∣∣ω · (ν̄ − ν̄′)
∣∣ ≤ |ω · ν̄| +

∣∣ω · ν̄′∣∣ < 2−(n−1)γ,

which implies |ν̄ − ν̄′| > 2(n−1)/τ , and hence we have |ν − ν′| > 2(n−2)/τ in such a
case.

If ν̄ = ν̄′ then, as in Lemma 2.1, one has |ν − ν′| = 2 and δ j (ω · ν) = δ j ′(ω · ν′).
�

Remark 2.3. Note that |ν − ν′| ≤ 2 and δ j (ω · ν) = δ j ′(ω · ν′) if and only if ν − ν′ =
σ(ν, j)e j − σ(ν′, j ′)e j ′ .

Lemma 2.4. Let ν1, . . . , ν p ∈ Zd and j1, . . . , jp ∈ {1, . . . , d}, with p ≥ 2, be such that
|νi − νi−1| ≤ 2 and δ ji (ω · νi ) = δ j1(ω · ν1) ≤ γ for i = 2, . . . , p. Then |ν1 − ν p| ≤ 2.

Proof. Set σi = σ(νi , ji ) and ν̄i = νi − σi e ji for i = 1, . . . , p. For all i = 2, . . . , p,
the assumption δ ji (ω · νi ) = δ ji−1(ω · νi−1) implies ν̄i = ±ν̄i−1, which in turn yields
ν̄i = ν̄i−1, since |νi − νi−1| ≤ 2. In particular ν̄1 = ν̄ p, and hence |ν1 − ν p| ≤ 2. �

3. Multiscale Analysis and Diagrammatic Rules

As we are looking for x(t, ε, c) and η(ε, c) analytic in ε, we formally write

x j,ν =
∞∑

k=0

εk x (k)j,ν, η j =
∞∑

k=1

εkη
(k)
j . (3.1)

It is not difficult to see that using (3.1) in (1.10) one can recursively compute (at least
formally) the coefficients x (k)j,ν , η(k)j to all orders. Here we introduce a graphical represen-

tation for each contribution to x (k)j,ν , η(k)j , which will allow us to study the convergence
of the series.

3.1. Trees. A graph is a set of points and lines connecting them. A tree θ is a graph with
no cycle, such that all the lines are oriented toward a unique point (root) which has only
one incident line (root line). All the points in a tree except the root are called nodes.
The orientation of the lines in a tree induces a partial ordering relation (�) between the
nodes and the lines: we can imagine that each line carries an arrow pointing toward the
root; see Fig. 1. Given two nodes v and w, we shall write w ≺ v every time v is along
the path (of lines) which connects w to the root.

We call E(θ) the set of end nodes in θ , that is, the nodes which have no entering line,
and V (θ) the set of internal nodes in θ , that is, the set of nodes which have at least one
entering line. Set N (θ) = E(θ) � V (θ). For all v ∈ N (θ) denote by sv the number of
lines entering the node v.
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Fig. 1. An unlabelled tree: the arrows on the lines all point toward the root, according to the tree partial
ordering

Remark 3.1. One has
∑
v∈V (θ) sv = |N (θ)| − 1.

We denote by L(θ) the set of lines in θ . We call an internal line a line exiting an
internal node and an end line a line exiting an end node. Since a line 	 ∈ L(θ) is uniquely
identified with the node v which it leaves, we may write 	 = 	v . We write 	w ≺ 	v if
w ≺ v; we say that a node w precedes a line 	, and write w ≺ 	, if 	w � 	.

Notation 3.2.

(1) If 	 and 	′ are two comparable lines, i.e., 	′ ≺ 	, we denote by P(	, 	′) the (unique)
path of lines connecting 	′ to 	, the lines 	 and 	′ being excluded.

(2) Each internal line 	 ∈ L(θ) can be seen as the root line of the tree θ	 whose nodes
and lines are those of θ which precede 	, that is, N (θ	) = {v′ ∈ N (θ) : v′ ≺ 	} and
L(θ	) = {	′ ∈ L(θ) : 	′ � 	}.

3.2. Tree labels. With each end node v ∈ E(θ) we associate a mode label νv ∈ Zd , a
component label jv ∈ {1, . . . , d}, and a sign label σv ∈ {±}; see Fig. 2. We call Eσj (θ)
the set of end nodes v ∈ E(θ) such that jv = j and σv = σ .

With each internal node v ∈ V (θ) we associate a component label jv ∈ {1, . . . , d},
and an order label kv ∈ Z+. Set V0(θ) = {v ∈ V (θ) : kv = 0} and N0(θ) = E(θ) �
V0(θ). We also associate a sign label σv ∈ {±} with each v ∈ V0(θ). The internal nodes
v with kv ≥ 1 will be drawn as black bullets, while the end nodes and the internal nodes
with kv = 0 will be drawn as white bullets and white squares, respectively; see Fig. 2.

With each line 	 we associate a momentum label ν	 ∈ Zd , a component label j	 ∈
{1, . . . , d}, a sign label σ	 ∈ {±}, and scale label n	 ∈ Z+ ∪ {−1}; see Fig. 3.

Denote by sv, j the number of lines 	 with component label j	 = j entering the node
v, and with rv, j,σ the number of end lines with component label j and sign label σ
which enter the node v. Of course sv = sv,1 + · · · + sv,d and sv, j ≥ rv, j,+ + rv, j,− for all
j = 1, . . . , d.
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(b)(a) (c)

Fig. 2. Nodes and labels associated with the nodes: (a) end node v with sv = 0, jv ∈ {1, . . . , d},
σv ∈ {±}, and νv = σve jv (cf. Sect. 3.3); (b) internal node v with sv ≥ 2, jv ∈ {1, . . . , d}, and
kv = sv − 1 (cf. Sect. 3.3); (c) internal node v with sv = 2, jv ∈ {1, . . . , d} kv = 0, σv ∈ {±}
(cf. Sect. 3.3)

Fig. 3. Labels associated with a line. One has σ	 = σ(ν	, j	) (cf. Sect. 3.3) Moreover if 	 = 	v then j	 = jv ;
if v ∈ V0(θ) one has also σ	 = σv ; if ν	 = σ	e j	 then n	 = −1, otherwise n	 ≥ 0 (cf. Sect. 3.3)

Finally call

k(θ) :=
∑

v∈V (θ)

kv

the order of the tree θ .
In the following we shall call trees tout court the trees with labels, and we shall use

the term unlabelled trees for the trees without labels.

3.3. Constraints on the tree labels.

Constraint 3.3. We have the following constraints on the labels of the nodes (see Fig. 2):

(1) if v ∈ V (θ) one has sv ≥ 2;
(2) if v ∈ E(θ) one has νv = σve jv ;
(3) if v ∈ V (θ) then kv = sv − 1, except for sv = 2, where both kv = 1 and kv = 0 are

allowed.

Constraint 3.4. The following constraints will be imposed on the labels of the lines:

(1) j	 = jv , ν	 = νv , and σ	 = σv if 	 exits v ∈ E(θ);
(2) j	 = jv if 	 exits v ∈ V (θ);
(3) if 	 is an internal line then σ	 = σ(ν	, j	), i.e., δ j	 (ω · ν	) = |ω · ν − σ	ω j	 | (see

(2.1) for notations);
(4) if v ∈ V0(θ) then (see Fig. 4)

1. sv = 2;
2. both lines 	1 and 	2 entering v are internal and have σ	1 = σ	2 = σv and

j	1 = j	2 = jv;
3. either ν	1 = σve jv and ν	2 �= σve jv or ν	1 �= σve jv and ν	2 = σve jv ;
4. σ	v = σv;

(5) if 	 is an internal line and ν	 = σ	e j	 , then 	 enters a node v ∈ V0(θ);
(6) n	 ≥ 0 if ν	 �= σ	e j	 and n	 = −1 otherwise.
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Fig. 4. If there is an internal node v with kv = 0 then sv = 2 and the following constraints are imposed on
the other labels: σ	v = σ	1 = σ	2 = σv ; j	v = j	1 = j	2 = jv ; either ν	1 = σve jv and ν	2 �= σve jv (as in
the figure) or ν	2 = σve jv and ν	1 �= σve jv . (The scale labels are not shown)

(a) (b)

Fig. 5. Conservation law: (a) v with kv = sv − 1 ≥ 1, so that ν	 = ν	1 + . . . + ν	sv
, (b) v with sv = 2 and

kv = 0. (The scale labels are not shown)

Notation 3.5. Given a tree θ , call 	0 its root line and consider the internal lines 	1,

. . . , 	p ∈ L(θ) on scale −1 (if any) such that one has n	 ≥ 0 for all 	 ∈ P(	0, 	i ),
i = 1, . . . , p; we shall say that 	1, . . . , 	p are the lines on scale −1 which are closest
to the root of θ . For each such line 	i , call θi = θ	i . Then we call pruned tree θ̆ the
subgraph with set of nodes and set of lines

N (θ̆) = N (θ)\
p⋃

i=1

N (θi ), L(θ̆) = L(θ)\
p⋃

i=1

L(θi ),

respectively.

By construction, θ̆ is a tree, except that, with respect to the constraints listed above,
one has sv = 1 whenever kv = 0; moreover one has ν	 �= σ	e j	 (and hence n	 ≥ 0) for
all internal lines 	 ∈ L(θ̆) except possibly the root line.

Constraint 3.6. The modes of the end nodes and the momenta of the lines are related as
follows: if 	 = 	v one has the conservation law

ν	 =
∑

w∈E(θ)
w�v

νw −
∑

w∈V0(θ)
w�v

σwe jw =
∑

w∈E(θ̆)
w�v

νw.

Note that by Constraint 3.6 one has ν	 = νv if v ∈ E(θ), and ν	 = ν	1 + · · · + ν	sv
if

v ∈ V (θ), kv ≥ 1, and 	1, . . . , 	sv are the lines entering v; see Fig. 5. Moreover for any
line 	 ∈ L(θ) one has |ν	| ≤ |E(θ̆)|.
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Remark 3.7. In the following we shall repeatedly consider the operation of changing
the sign label of the nodes. Of course this change produces the change of other labels,
consistently with the constraints mentioned above: for instance, if we change the label
σv of an end node v into −σv , then also νv is changed into −νv; if we change the sign
labels of all the end nodes, then also the momenta of all the lines are changed, according
to the conservation law (Constraint 3.6); and so on.

Two unlabelled trees are called equivalent if they can be transformed into each other
by continuously deforming the lines in such a way that they do not cross each other. We
shall call equivalent two trees if the same happens in such a way that all labels match.

Notation 3.8. We denote by Tk
j,ν the set of inequivalent trees of order k with tree compo-

nent j and tree momentum ν, that is, such that the component label and the momentum
of the root line are j and ν, respectively. Finally for n ≥ −1 define Tk

j,ν(n) the set of

trees θ ∈ Tk
j,ν such that n	 ≤ n for all 	 ∈ L(θ).

Remark 3.9. For θ ∈ Tk
j,ν , by writing ν = (ν1, . . . , νd), one has νi = |E+

i (θ̆)|−|E−
i (θ̆)|

for i = 1, . . . , d. In particular for ν = σ e j , one has |Eσj (θ̆)| = |E−σ
j (θ̆)| + 1 ≥ 1, and

|Eσj ′(θ̆)| = |E−σ
j ′ (θ̆)| for all j ′ �= j .

Lemma 3.10. The number of unlabelled trees θ with N nodes is bounded by 4N . If
k(θ) = k then |E(θ)| ≤ E0k and |V (θ)| ≤ V0k, for suitable positive constants E0
and V0.

Proof. The bound |V (θ)| ≤ |E(θ)| − 1 is easily proved by induction using that sv ≥
2 for all v ∈ V (θ). So it is enough to bound |E(θ)|. The definition of order and
Remark 3.1 yield |E(θ)| = 1 + k(θ) + |V0(θ)|, and the bound |V0(θ)| ≤ 2k(θ) − 1
immediately follows by induction on the order of the tree, simply using that sv ≥ 2 for
v ∈ V (θ). Thus, the assertions are proved with E0 = V0 = 3. �

3.4. Tree expansion. Now we shall see how to associate with each tree θ ∈ Tk
j,ν a

contribution to the coefficients x (k)j,ν and η(k)j of the power series in (3.1).

For all j = 1, . . . , d set c+
j = c j and c−

j = c∗
j . We associate with each end node

v ∈ E(θ) a node factor

Fv := cσvjv , (3.2)

and with each internal node v ∈ V (θ) a node factor

Fv :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sv,1! . . . sv,d !
sv! f jv,sv,1,...,sv,d , kv ≥ 1,

− 1

2cσvjv
, kv = 0,

(3.3)

where the coefficients f j,s1,...,sd are defined in (1.5).
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Fig. 6. The functions ψ and �n

Let ψ be a non-decreasing C∞ function defined in R+, such that (see Fig. 6)

ψ(u) =
{

1, for u ≥ 7γ /8,
0, for u ≤ 5γ /8, (3.4)

and setχ(u) := 1−ψ(u). For all n ∈ Z+ defineχn(u) := χ(2nu) andψn(u) := ψ(2nu),
and set (see Fig. 6)

�n(u) = χn−1(u) ψn(u), (3.5)

where χ−1(u) = 1. Note that χn−1(u)χn(u) = χn(u), and hence {�n(u)}n∈Z+ is a
partition of unity.

We associate with each line 	 a propagator G	 := G[n	]
j	
(ω · ν	), where

G[n]
j (u) :=

⎧
⎪⎨

⎪⎩

�n(δ j (u))

u2 − ω2
j

, n ≥ 0,

1, n = −1.
(3.6)

Remark 3.11. The number of scale labels which can be associated with a line 	 in such
a way that G	 �= 0 is at most 2. In particular, given a line 	 with momentum ν	 = ν and
scale n	 = n, such that �n(δ j	 (ω · ν)) �= 0, then (see Fig. 6)

2−(n+1)γ ≤ 5

8
2−nγ ≤ δ j	 (ω · ν) ≤ 7

8
2−(n−1)γ ≤ 2−(n−1)γ, (3.7)

and if �n(δ j	 (ω · ν))�n+1(δ j	 (ω · ν)) �= 0, then

5

8
2−nγ ≤ δ j	 (ω · ν) ≤ 7

8
2−nγ. (3.8)

We define

V (θ) :=
⎛

⎝
∏

	∈L(θ)

G	

⎞

⎠

⎛

⎝
∏

v∈N (θ)

Fv

⎞

⎠ , (3.9)

and call V (θ) the value of the tree θ .

Remark 3.12. The number of trees θ ∈ Tk
j,ν with V (θ) �= 0 is bounded proportionally

to Ck , for some positive constant C . This immediately follows from Lemma 3.10 and the
observation that the number of trees obtained from a given unlabelled tree by assigning
the labels to the nodes and the lines is also bounded by a constant to the power k (use
Remark 3.11 to bound the number of allowed scale labels).
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Remark 3.13. In any tree θ there is at least one end node with node factor cσj for each
internal node v with kv = 0, σv = σ and jv = j (this is easily proved by induction on
the order of the pruned tree): the node factors −1/2cσj do not introduce any singularity at
cσj = 0. Therefore for any tree θ the corresponding value V (θ) is well defined because
both propagators and node factors are finite quantities. Remark 3.12 implies that also

∑

θ∈Tk
j,ν

V (θ)

is well defined for all k ∈ N, all j ∈ {1, . . . , d}, and all ν ∈ Zd .

Lemma 3.14. For all k ∈ N, all j = 1, . . . , d, and any θ ∈ Tk
j,σ e j

, there exists θ ′ ∈
Tk

j,−σ e j
such that c−σ

j V (θ) = cσj V (θ ′). The tree θ ′ is obtained from θ by changing the
sign labels of all the nodes v ∈ N0(θ).

Proof. The proof is by induction on the order of the tree. For any tree θ ∈ Tk
j,e j

consider

the tree θ ′ ∈ Tk
j,−e j

obtained from θ by replacing all the labels σv of all nodes v ∈ N0(θ)

with −σv , so that the mode labels νv are replaced with −νv and the momenta ν	 with −ν	
(see Remark 3.7). Call 	1, . . . , 	p the lines on scale −1 (if any) closest to the root of θ ,
and for i = 1, . . . , p denote by vi the node 	i enters and θi = θ	i (recall (2) in Notation
3.2). As an effect of the change of the sign labels, each tree θi is replaced with a tree
θ ′

i such that c−σ
jvi

V (θi ) = cσjvi
V (θ ′

i ), by the inductive hypothesis. Thus, for each node

vi the quantity Fvi V (θi ) is not changed. Moreover, neither the propagators of the lines
	 ∈ L(θ̆) nor the node factors corresponding to the internal nodes v ∈ V (θ̆)with kv �= 0
change, while the node factors cσvjv of the nodes v ∈ E(θ̆) are changed into c−σv

jv
. On the

other hand one has |E+
i (θ̆)| = |E−

i (θ̆)| for all i �= j , whereas |E+
j (θ̆)| = |E−

j (θ̆)| + 1

and |E+
j (θ̆

′)| + 1 = |E−
j (θ̆

′)|. Therefore one obtains c−σ
j V (θ) = cσj V (θ ′), and the

assertion follows. �
For k ∈ N, j ∈ {1, . . . , d}, and σ ∈ {±}, define

η
(k)
j,σ = − 1

cσj

∑

θ∈Tk
j,σ e j

V (θ).

Lemma 3.15. For all k ∈ N and all j = 1, . . . , d one has η(k)j,+ = η
(k)
j,−.

Proof. Lemma 3.14 implies

c−
j

∑

θ∈Tk
j,e j

V (θ) = c+
j

∑

θ∈Tk
j,−e j

V (θ)

for all k ∈ N and all j = 1, . . . , d, so that the assertion follows from the definition
of η(k)j,σ . �
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Lemma 3.16. Equations (1.10) formally hold, i.e., they hold to all perturbation orders,
provided that for all k ∈ N and j = 1, . . . , d we set formally

x j,ν =
∞∑

k=1

εk x (k)j,ν , x (k)j,ν =
∑

θ∈Tk
j,ν

V (θ) ∀ν ∈ Zd\{±e j } , x (k)j,±e j
= 0 , (3.10)

η j =
∞∑

k=1

εkη
(k)
j , η

(k)
j = − 1

c j

∑

θ∈Tk
j,e j

V (θ). (3.11)

Proof. The proof is a direct check. �
Remark 3.17. In η(k)j , defined as (3.11), there is no singularity in c j = 0 because V (θ̆)

contains at least one factor c+
j = c j by Remark 3.9.

In the light of Lemma 3.16 one can wonder why the definition of the propagators for
ν	 �= σ	e j	 is so involved; as a matter of fact one could define

G	 = 1

(ω · ν	)2 − ω2
j

.

However, since
∑

n≥0�n(u) ≡ 1, the two definitions are equivalent. We use the defi-
nition (3.6) so that we can immediately identify the factors O(2n) which could prevent
the convergence of the power series (3.1). In what follows we shall make this idea more
precise.

3.5. Clusters. A cluster T on scale n is a maximal set of nodes and lines connecting
them such that all the lines have scales n′ ≤ n and there is at least one line with scale
n; see Fig. 7. The lines entering the cluster T and the line coming out from it (unique if
existing at all) are called the external lines of the cluster T . We call V (T ), E(T ), and
L(T ) the set of internal nodes, of end nodes, and of lines of T , respectively; note that
the external lines of T do not belong to L(T ). Define also Eσj (T ) as the set of end nodes
v ∈ E(T ) such that σv = σ and jv = j . By setting

k(T ) :=
∑

v∈V (T )

kv,

we say that the cluster T has order k if k(T ) = k.

3.6. Self-energy clusters. We call self-energy cluster any cluster T such that (see Fig. 8)

(1) T has only one entering line and one exiting line,
(2) one has n	 ≤ min{n	T , n	′T } − 2 for any 	 ∈ L(T ),
(3) one has |ν	T − ν	′T | ≤ 2 and δ j	T

(ω · ν	T ) = δ j	′T
(ω · ν	′T ).

Notation 3.18. For any self-energy cluster T we denote by 	T and 	′T the exiting and the
entering line of T respectively. We call PT the path of lines 	 ∈ L(T ) connecting 	′T to
	T , i.e., PT = P(	T , 	

′
T ) (recall (1) in Notation 3.2), and set nT = min{n	T , n	′T }.
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(a) (b)

Fig. 7. Example of tree and the corresponding clusters: once the scale labels have been assigned to the lines
of the tree as in (a), one obtains the cluster structure depicted in (b)

Fig. 8. Example of self-energy cluster: consider the cluster T on scale 3 in Fig. 7, and suppose that the mode
labels of the end nodes are such that |ν1 + ν2 + ν3 + ν4 + ν5 + ν6| ≤ 2 and δ j	T

(ω · ν	T ) = δ j
	′T
(ω · ν	′T ).

Then T is a self-energy cluster with external lines 	′T (entering line) and 	T (exiting line). The path PT is
such that PT = {	}

Remark 3.19. Notice that, by Remark 2.3, for any self-energy cluster the label ν	T is
uniquely fixed by the labels j	T , σ	T , j	′T , σ	′T , ν	′T . In particular, for fixed ν and j such
that δ j (ω · ν) ≤ γ , there are only 2d − 1 momenta ν′ �= ν such that |ν′ − ν| ≤ 2 and
δ j ′(ω · ν′) = δ j (ω · ν) for some j ′ and σ ′, depending on ν′. All the other ν′′ with small
divisor equal to δ j (ω · ν) are far away from ν, according to Lemma 2.1.

We say that a line 	 is a resonant line if it is both the exiting line of a self-energy
cluster and the entering line of another self-energy cluster, that is, 	 is resonant if there
exist two self-energy clusters T1 and T2 such that 	 = 	′T1

= 	T2 ; see Fig. 9.

Remark 3.20. The notion of self-energy cluster was first introduced by Eliasson, in the
context of the KAM theorem, in [8], where it was called resonance. We prefer the term
self-energy cluster to stress further the analogy with quantum field theory.

The notion of equivalence given for trees can be extended in the obvious way to
self-energy clusters.



KAM Theory in Configuration Space and Cancellations in the Lindstedt Series

Fig. 9. Example of resonant line: 	 is resonant if both T1 and T2 are self-energy clusters

Fig. 10. A self-energy cluster in Ek
j,σ, j,σ (ω · ν, n); T contains at least one line on scale ≤ n and n such that

min{n′, n′′} ≥ n + 2

Notation 3.21. We denote by Rk
j,σ, j ′,σ ′(ω · ν′, n) the set of inequivalent self-energy

clusters T on scale ≤ n of order k, such that ν	′T = ν′, j	T = j , σ	T = σ , j	′T = j ′

and σ	′T = σ ′. By definition of cluster for T ∈ Rk
j,σ, j ′,σ ′(ω · ν′, n) one must have

n ≤ nT − 2. For j = j ′ and σ = σ ′ define also Ek
j,σ, j,σ (ω · ν′, n) the set of self-

energy clusters T ∈ Rk
j,σ, j,σ (ω · ν′, n) such that (1) 	′T enters the same node v which

	T exits and (2) kv = 0. We call vT such a special node and set R
k
j,σ, j,σ (ω · ν′, n)=

Rk
j,σ, j,σ (ω · ν′, n)\Ek

j,σ, j,σ (ω · ν′, n); see Fig. 10.

Notation 3.22. For any T ∈ Ek
j,σ, j,σ (ω · ν′, n) we call θT the tree which has as root line

the line 	 ∈ L(T ) entering vT (one can imagine to obtain θT from T by ‘removing’ the
node vT ); see Fig. 11. Note that θT ∈ Tk

j,σ e j
(n).

Notation 3.23. Consider a self-energy cluster T such that n	 �= −1 for all lines 	 ∈ PT .
If T ∈ Ek

j,σ, j,σ (ω · ν′, n) for some k, j, σ, ν ′, n then we define the pruned self-energy

cluster T̆ as the subgraph with N (T̆ ) = {vT } ∪ N (θ̆T ) and L(T̆ ) = L(θ̆T ). For all
other self-energy clusters T , call 	1, . . . , 	p ∈ L(T ) the internal lines on scale −1 (if
any) which are closest to the exiting line of T , that is, such that n	 ≥ 0 for all lines
	 ∈ P(	T , 	i ), i = 1, . . . , p. For each line 	i set θi = θ	i . Then the pruned self-energy
cluster T̆ is the subgraph with set of nodes and set of lines

N (T̆ ) = N (T )\
p⋃

i=1

N (θi ), L(T̆ ) = L(T )\
p⋃

i=1

L(θi ),

respectively.
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Fig. 11. An example of self-energy cluster T ∈ Ek
j,σ, j,σ (ω · ν, n) and the corresponding tree θT . (Only the

mode labels of the end nodes are shown in T and θT .)

Remark 3.24. For T ∈ Rk
j,σ, j ′,σ ′(ω · ν′, n) such that n	 ≥ 0 for all 	 ∈ PT , one has

|E+
i (T̆ )| = |E−

i (T̆ )| for all i �= j, j ′. If j �= j ′ then |E−σ ′
j ′ (T̆ )| = |Eσ ′

j ′ (T̆ )| + 1

and |Eσj (T̆ )| = |E−σ
j (T̆ )| + 1; if j = j ′, σ = σ ′ and T ∈ R

k
j,σ, j,σ (ω · ν′, n) then

|Eσj (T̆ )| = |E−σ
j (T̆ )|, while if j = j ′ and σ = −σ ′ then |Eσj (T̆ )| = |E−σ

j (T̆ )| + 2.

Finally, for any T ∈ Ek
j,σ, j,σ (ω · ν′, n) one has |Eσj (T̆ )| = |E−σ

j (T̆ )| + 1 ≥ 1.

We shall define

V (T,ω · ν	′T ) :=
⎛

⎝
∏

	∈L(T )

G	

⎞

⎠

⎛

⎝
∏

v∈N (T )

Fv

⎞

⎠ , (3.12)

where V (T,ω · ν	′T ) will be called the value of the self-energy cluster T .
The value V (T,ω · ν	′T ) depends on ω · ν	′T through the propagators of the lines

	 ∈ PT .

Remark 3.25. The value of a self-energy cluster T ∈ Ek
j,σ, j,σ (u, n) does not depend on

u so that we shall write

V (T, u) = V (T ) = − 1

2cσj
V (θT ).

We define also for future convenience

M (k)
j,σ, j ′,σ ′(ω · ν′, n) :=

∑

T ∈Rk
j,σ, j ′,σ ′ (ω·ν′,n)

V (T,ω · ν′). (3.13)

Note that M (k)
j,σ, j,σ (ω · ν′, n) = M̃ (k)

j,σ, j,σ (n) + M
(k)
j,σ, j,σ (ω · ν′, n), where M̃ (k)

j,σ, j,σ (n)

and M
(k)
j,σ, j,σ (ω · ν′, n) are defined as in (3.13) but for the sum restricted to the set

Ek
j,σ, j,σ (ω · ν′, n) and R

k
j,σ, j,σ (ω · ν′, n) respectively.

Remark 3.26. Both the quantities M (k)
j,σ, j ′,σ ′(ω · ν′, n) and the coefficients x (k)j,ν and η(k)j

are well defined to all orders because the number of terms which one sums over is finite
(by the same argument in Remark 3.12). At least formally, we can define

M j,σ, j ′,σ ′(ω · ν′) =
∞∑

k=1

εk
∑

n≥−1

M (k)
j,σ, j ′,σ ′(ω · ν′, n).
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We define the depth D(T ) of a self-energy cluster T recursively as follows: we set
D(T ) = 1 if there is no self-energy cluster containing T , and set D(T ) = D(T ′) + 1
if T is contained inside a self-energy cluster T ′ and no other self-energy clusters inside
T ′ (if any) contain T . We denote by SD(θ) the set of self-energy clusters of depth D in
θ , and by SD(θ, T ) the set of self-energy clusters of depth D in θ contained inside T .

Notation 3.27. Call θ̊ = θ\S1(θ) the subgraph of θ formed by the set of nodes and lines
of θ which are outside the set S1(θ) (the external lines of the self-energy clusters T ∈
S1(θ) being included in θ̊), and, analogously, for T ∈ SD(θ) call T̊ = T \SD+1(θ, T )
the subgraph of T formed by the set of nodes and lines of T which are outside the set
SD+1(θ, T ). We denote by V (T̊ ), E(T̊ ), and L(T̊ ) the set of internal nodes, of end
nodes, and of lines of T̊ , and by k(T̊ ) the order of T̊ , that is, the sum of the labels kv of
all the internal nodes v ∈ V (T̊ ).

Lemma 3.28. Given a line 	 ∈ L(θ), if T is the self-energy cluster with largest depth
containing 	 (if any), 	 ∈ PT and there is no line 	′ ∈ PT preceding 	 with n	′ = −1,
one can write ν	 = ν0

	 + ν	′T . Then one has |ν0
	| ≤ E1k(T̊ ), for a suitable positive

constant E1, if k(T̊ ) ≥ 1, and |ν0
	| ≤ 2 if k(T̊ ) = 0.

Proof. We first prove that for any tree θ , if we denote by 	0 its root line, one has

|ν	0 | ≤
{

E1k(θ̊)− 2, if 	0 does not exit a self-energy cluster,
E1k(θ̊), if 	0 exits a self-energy cluster,

(3.14)

for a suitable constant E1 ≥ 4. The proof is by induction on the order of the tree θ . If
k(θ) = 1 (and hence θ̊ = θ ) then the only internal line of θ is 	0 and |ν	0 | ≤ 2, so that
the assertion trivially holds provided E1 ≥ 4. If k(θ) > 1 let v0 be the node which 	0
exits. If v0 is not contained inside a self-energy cluster let 	1, . . . , 	m , m ≥ 0, be the
internal lines entering v0 and θi = θ	i for all i = 1, . . . ,m. Finally let 	m+1, . . . , 	m+m′
be the end-lines entering v0. By definition we have k(θ̊) = kv0 + k(θ̊1) + · · · + k(θ̊m). If
kv0 > 0, we have ν	0 = ν	1 + · · · + ν	m+m′ . This implies in turn

|ν	0 | ≤ |ν	1 | + · · · + |ν	m | + m′ ≤ E1

(
k(θ̊1) + · · · + k(θ̊m)

)
+ m′

≤ E1(k(θ̊)− m − m′ + 1) + m′.
The assertion follows for E1 ≥ 4 by the inductive hypothesis (the worst possible case
is m = 0, m′ = 2).

If kv0 = 0 then sv = 2 and m′ = 0. Moreover one of the lines, say 	1, is on scale
n = −1 while for the other line one has ν	0 = ν	2 . Once more the bound follows from
the inductive hypothesis since |ν	2 | ≤ E1k(θ̊2) ≤ E1(k(θ̊)− 1).

Finally, if v0 is contained inside a self-energy cluster, then 	0 exits a self-energy clus-
ter T1. There will be p self-energy clusters T1, . . . , Tp, p ≥ 1, such that the exiting line of
Ti is the entering line of Ti−1, for i = 2, . . . , p, while the entering line 	′ of Tp does not
exit any self-energy cluster. By Lemma 2.4, one has |ν	0 − ν	′ | ≤ 2 and k(θ̊) = k(θ̊	′).
Then, by the inductive hypothesis, one finds |ν	0 | ≤ 2 + E1k(θ̊	′)− 2 = E1k(θ̊).

Now for 	 and T as in the statement we prove, by induction on the order of the
self-energy cluster, the bound

|ν0
	| ≤

{
E1k(T̊	)− 2, if k(T̊	) ≥ 1,
2 if k(T̊	) = 0,

(3.15)
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Fig. 12. The self-energy cluster T considered in the proof of Lemma 3.28, with m = 2, m′ = 3, and a chain
of p self-energy clusters between 	 and 	v (one has p ≥ 0, and 	 = 	v if p = 0)

where T̊	 is the set of nodes and lines of T̊ which precede 	. The bound is trivially
satisfied when k(T̊	) = 0. Otherwise let v be the node in V (T̊ ) between 	 and 	′T which
is closest to 	. If kv = 0 the bound follows trivially by using the bound (3.14). If kv ≥ 1,
call 	1, . . . , 	m , m ≥ 0, the internal lines entering v which are not along the path PT ,
and 	m+1, . . . , 	m+m′ the end lines entering v; one has m + m′ ≥ 1. There is a further
line 	0 ∈ PT entering v such that ν	0 = ν0

	0
+ ν	′T ; see Fig. 12. Using also Lemma 2.4

one has |ν0
	| ≤ 2 + |ν0

	0
| + |ν	1 | + · · · + |ν	m | + m′. As n	0 ≤ n	′T − 2 one has k(T̊	0) ≥ 1

and hence, by (3.14) and the inductive hypothesis, one has

|ν0
	| ≤ 2 +

(
E1k(T̊	0)− 2

)
+ E1

(
k(θ̊1) + · · · + k(θ̊m)

)
+ m′,

where θi = θ	i for all i = 1, . . . ,m. Thus, since k(T̊	0)+k(θ̊1)+ · · ·+k(θ̊m)+(m +m′) =
k(T̊	) and m + m′ ≥ 1, one finds

|ν0
	| ≤ E1

(
k(T̊	)− m − m′) + m′ ≤ E2k(T̊	)− 2,

provided E1 ≥ 4. Therefore, the assertion follows with, say, E1 = 4. �

Notation 3.29. Given a tree θ and a line 	 ∈ L(θ), call 	 = 	(θ) the subgraph
formed by the set of nodes and lines which do not precede 	; see Fig. 13. Let us call
̊	 the set of nodes and lines of 	 which are outside any self-energy cluster contained
inside 	.

Lemma 3.30. Given a tree θ let 	0 and 	 be the root line and an arbitrary internal
line preceding 	0. If k(̊	) ≥ 1 one has |ν	0 − ν	| ≤ E2k(̊	), for a suitable positive
constant E2.
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Fig. 13. The set 	 = 	(θ) and the subtree θ	 determined by the line 	 ∈ L(θ). If 	 is the root line then
	 = ∅

Proof. We prove by induction on the order of 	 the bound

|ν	0 − ν	| ≤
{

E2k(̊	)− 2, if 	0 does not exit a self-energy cluster,
E2k(̊	), if 	0 exits a self-energy cluster.

(3.16)

We mimic the proof of (3.14) in Lemma 3.28. The case k(̊	) = 1 is trivial provided E2 ≥
3, so let us consider k(̊	) > 1 and call v0 the node which 	0 exits. If v0 is not contained
inside a self-energy cluster and kv0 ≥ 1 then ν	0 = ν	1 + · · · + ν	m+m′ , where 	1, . . . , 	m
are the internal lines entering v0, with (say) 	m ∈ P(	0, 	) ∪ {	}, and 	m+1, . . . , 	m+m′
are the end lines entering v0. Hence k(̊	) = kv0 + k(θ̊1) + · · · + k(θ̊m−1) + k(̊m),
where θi = θ	i and m = 	(θ	m ) (	m = ∅ if 	m = 	). Thus, the assertion follows by
(3.14) and the inductive hypothesis. If v0 is not contained inside a self-energy cluster
and kv0 = 0 then two lines 	1 and 	2 enter v0, and one of them, say 	1, is such that
|ν	1 | = 1. If 	 = 	2 the result is trivial. If 	2 ∈ P(	0, 	) the bound follows once more
from the inductive hypothesis. If 	 = 	1 one has

|ν	0 − ν	| ≤ |ν	0 | + 1 ≤ E1k(θ̊2) + 1 ≤ E2k(̊	)− 2,

where θ2 = θ	2 , provided E2 ≥ E1 + 3, if E1 is the constant defined in Lemma 3.28. If
	1 ∈ P(	0, 	) denote by 	′1 the line on scale −1 along the path {	1} ∪ P(	1, 	) which
is closest to 	. Again call θ2 = θ	2 and J1 the subgraph formed by the set of nodes and
lines preceding 	′1 (with 	′1 included) but not 	; define also θ1 as the tree obtained from
J1 by (1) reverting the arrows of all lines along {	′1, 	} ∪ P(	′1, 	), (2) replacing 	′1 with
an end line carrying the same sign and component labels as 	′1, and (3) replacing all the
labels σv , v ∈ N0(J1) with −σv . One has, by using also (3.14),

|ν	0 − ν	| ≤ |ν	0 | + |ν	| ≤ E1k(θ̊1) + E1k(θ̊2) ≤ E2k(̊	)− 2,

provided E2 ≥ E1 + 2 so that the bound follows once more. Finally, if v0 is contained
inside a self-energy cluster, then 	0 exits a self-energy cluster T1. There will be p self-
energy clusters T1, . . . , Tp, p ≥ 1, such that the exiting line of Ti is the entering line of
Ti−1, for i = 2, . . . , p, while the entering line 	′ of Tp does not exit any self-energy clus-
ter. By Lemma 2.4, one has |ν	0 −ν	′ | ≤ 2 and k(̊	) = k(̊′), where′ = 	(θ	′). Then,
the inductive hypothesis yields |ν	0 −ν	| ≤ 2 + |ν	′ −ν	| ≤ 2 + E2k(̊′)−2 = E2k(̊).
Therefore the assertion follows with, say, E2 = E1 + 3 (and hence E2 = 7 if E1 = 4).

�
Remark 3.31. Lemma 3.28 will be used in Sect. 5 to control the change of the momenta
as an effect of the regularisation procedure (to be defined). Furthermore, both Lemmas
3.28 and 3.30 will be used in Sect. 7 to show that the resonant lines which are not
regularised cannot accumulate too much.
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4. Dimensional Bounds

In this section we discuss how to prove that the series (3.10) and (3.11) converge if
the resonant lines are excluded. We shall see in the following sections how to take into
account the presence of the resonant lines.

Call Nn(θ) the number of non-resonant lines 	 ∈ L(θ) such that n	 ≥ n, and Nn(T )
the number of non-resonant lines 	 ∈ L(T ) such that n	 ≥ n.

The analyticity assumption on f yields that one has

|Fv| ≤ �sv+kv ∀v ∈ V (θ)\V0(θ), (4.1)

for a suitable positive constant �.

Lemma 4.1. Assume that 2−(n	+2)γ ≤ δ j	 (ω · ν	) ≤ 2−(n	−2)γ for all trees θ and all
lines 	 ∈ L(θ). Then there exists a positive constant c such that for any tree θ one has
Nn(θ) ≤ c 2−n/τ k(θ).

Proof. We prove that Nn(θ) ≤ max{0, c 2−n/τ k(θ)− 2} by induction on the order of θ .

1. First of all note that for a tree θ to have a line 	 on scale n	 ≥ n one needs k(θ) ≥
kn = E−1

0 2(n−2)/τ , as it follows from the Diophantine condition (2.2a) and Lemma
3.10. Hence the bound is trivially true for k < kn .

2. For k(θ) ≥ kn , let 	0 be the root line of θ and set ν = ν	0 and j = j	0 . If n	0 < n
the assertion follows from the inductive hypothesis. If n	0 ≥ n, call 	1, . . . , 	m the
lines with scale ≥ n − 1 which are closest to 	0 (that is, such that n	 ≤ n − 2 for all
p = 1, . . . ,m and all lines 	 ∈ P(	0, 	p)). The case m = 0 is trivial. If m ≥ 2 the
bound follows once more from the inductive hypothesis.

3. If m = 1, then 	1 is the only entering line of a cluster T . Set ν′ = ν	1 , j ′ = j	1 and
n′ = n	1 . By hypothesis one has δ j (ω · ν) ≤ 2−(n−2)γ and δ j ′(ω · ν′) ≤ 2−(n−3)γ ,
so that, by Lemma 2.2, either |ν − ν′| > 2(n−5)/τ or |ν − ν′| ≤ 2 and δ j (ω · ν) =
δ j ′(ω · ν′). In the first case, since

ν − ν′ =
∑

w∈E(T )

νw −
∑

w∈V (T )
kw=0

σwe jw =
∑

w∈E(T̆ )

νw,

the same argument used to prove Lemma 3.10 yields |ν − ν′| ≤ |E(T )| ≤ E0k(T ),
and hence k(T ) ≥ E−1

0 2(n−5)/τ . Thus, if θ1 = θ	1 , one has k(θ) = k(T ) + k(θ1), so
that

Nn(θ) = 1 + Nn(θ1) ≤ c 2−n/τ k(θ1)− 1 ≤ c 2−n/τ k(θ)− c 2−n/τ k(T )− 1

≤ c 2−n/τ k(θ)− 2,

provided c ≥ E025/τ .
4. If instead |ν − ν′| ≤ 2 and δ j (ω · ν) = δ j ′(ω · ν′), then the only way for T not to

be a self-energy cluster is that n	1 = n	0 − 1 = n − 1 and there is at least a line
	 ∈ T with n	 = n − 2. But then δ j (ω · ν) �= δ j	 (ω · ν	) so that |ν − ν	| > 2(n−6)/τ

and we can reason as in the previous case provided c ≥ E026/τ . Otherwise T is a
self-energy cluster and 	1 can be either resonant or not-resonant. Call 	′1, . . . , 	′m′
the lines with scale ≥ n − 1 which are closest to 	1. Once more the cases m′ = 0
and m′ ≥ 2 are trivial.
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5. If m′ = 1, then 	′1 is the only entering line of a cluster T ′. If θ ′
1 = θ	′1 , then

Nn(θ) = 1 + Nn(θ
′
1) if 	1 is resonant and Nn(θ) ≤ 2 + Nn(θ

′
1) if 	1 is non-reso-

nant. Consider first the case of 	1 being non-resonant. Set ν′′ = ν	′1 , j ′′ = j	′1 and

n′′ = n	′1 . By reasoning as before we find that one has either |ν′ − ν′′| > 2(n−5)/τ

or |ν′ − ν′′| ≤ 2 and δ j ′(ω · ν′) = δ j ′′(ω · ν′′). If |ν′ − ν′′| > 2(n−5)/τ then
k(T ′) ≥ E−1

0 2(n−5)/τ ; thus, by using that k(θ) = k(T ) + k(T ′) + k(θ ′
1), we obtain

Nn(θ) ≤ 2 + Nn(θ
′
1) ≤ c 2−n/τ k(θ)− c 2−n/τ k(T )− c 2−n/τ k(T ′)

≤ c 2−n/τ k(θ)− c 2−n/τ k(T ′) ≤ c 2−n/τ k(θ)− 2,

provided c ≥ 2E025/τ .
6. Otherwise one has |ν−ν′| ≤ 2, |ν′−ν′′| ≤ 2, and δ j (ω·ν) = δ j ′(ω·ν′) = δ j ′′(ω·ν′′).

Since we are assuming 	1 to be non-resonant then, T ′ is not a self-energy cluster.
But then there is at least a line 	′ ∈ T with n	′ = n − 2 and we can reason as in
item 4.

7. So we are left with the case in which 	1 is resonant and hence T ′ is a self-energy
cluster. Let 	′1 be the entering line of T ′. Once more 	′1 is either resonant or non-
resonant. If it is non-resonant we repeat the same argument as done before for 	1.
If it is resonant, we iterate the construction, and so on. Therefore we proceed until
either we find a non-resonant line on scale ≥ n, for which we can reason as before,
or we reach a tree θ ′ of order so small that it cannot contain any line on scale ≥ n
(i.e., k(θ ′) < kn).

8. Therefore the assertion follows with, say, c = 2E026/τ . �
Remark 4.2. One can wonder why in Lemma 4.1 did we assume 2−(n	+2)γ ≤ δ j	 (ω ·
ν	) ≤ 2−(n	−2)γ when Remark 3.11 assures the stronger condition 2−(n	+1)γ ≤ δ j	 (ω ·
ν	) ≤ 2−(n	−1)γ . The reason is that later on we shall need to slightly change the momenta
of the lines, in such a way that the scales in general no longer satisfy the condition (3.7)
noted in Remark 3.11. However the condition assumed for proving Lemma 4.1 will still
be satisfied.

For any tree θ we call LR(θ) and LNR(θ) the sets of resonant lines and of non-resonant
lines respectively, in L(θ). Then we can write

V (θ) =
⎛

⎝
∏

	∈LR(θ)

G	

⎞

⎠V NR(θ), V NR(θ) :=
⎛

⎝
∏

	∈LNR(θ)

G	

⎞

⎠

⎛

⎝
∏

v∈N (θ)

Fv

⎞

⎠ , (4.2)

where each propagator G	 can be bounded as C02n	 , for some constant C0.

Lemma 4.3. For all trees θ with k(θ) = k one has | V NR(θ)| ≤ Ck3k(c), where
(c) := max{|c1|, . . . , |cd |, 1} and C is a suitable positive constant.

Proof. One has

|V NR(θ)| ≤ Ck
0

3k(c)�k

⎛

⎝
∏

	∈L N R(θ)

2n	

⎞

⎠ ≤ Ck
0

3k(c)�k
∞∏

n=0

2nNn(θ)

≤ Ck
0

3k(c)�k exp

(
c log 2 k

∞∑

n=1

2−n/τn

)
.

The last sum converges: this is enough to prove the lemma. �
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Fig. 14. A chain of self-energy clusters

So far the only bound that we have on the propagators of the resonant lines is |G	| ≤
1/ω j	δ j	 (ω · ν	) ≤ C02n	 . What we need is to obtain a gain factor proportional to 2−n	

for each resonant line 	 with n	 ≥ 1.

Lemma 4.4. Given θ such that V (θ) �= 0, let 	 ∈ L(θ) be a resonant line and let T be
the self-energy cluster of largest depth containing 	 (if any). Then there is at least one
non-resonant line in T on scale ≥ n	 − 1.

Proof. Set n = n	. There are in general p ≥ 2 self-energy clusters T1, . . . , Tp, con-
tained inside T , connected by resonant lines 	1, . . . , 	p−1, and 	 is one of such lines,
while the entering line 	p of Tp and the exiting line 	0 of T1 are non-resonant. Moreover
δ(ω · ν	i ) = δ(ω · ν	) for all i = 0, . . . , p, so that all the lines 	0, . . . , 	p have scales
either n, n − 1 or n, n + 1, by Remark 3.11. In any case the lines 	0, 	p must be in T by
definition of the self-energy cluster. �

5. Renormalisation

Now we shall see how to deal with the resonant lines. In principle, one can have trees
containing chains of arbitrarily many self-energy clusters (see Fig. 14), and this produces
an accumulation of small divisors, and hence a bound proportional to k! to some positive
power for the corresponding values.

Let K0 be such that E1 K0 = 2−8/τ . For T ∈ Rk
j,σ, j ′,σ ′(u, n), define the localisation

operator L by setting

L V (T, u) :=

⎧
⎪⎨

⎪⎩

V (T, σ ′ω j ′), k(T̊ ) ≤ K02nT /τ , n	 ≥ 0 ∀	 ∈ PT ,

0, otherwise,
(5.1)

which will be called the localised value of the self-energy cluster T . Define also R :=
1 − L , by setting, for T ∈ Rk

j,σ, j ′,σ ′(u, n),

R V (T, u)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
u − σ ′ω j ′

)∫ 1

0
dt ∂u V (T, σ ′ω j ′ + t (u−σ ′ω j ′)), k(T̊ ) ≤ K02nT /τ , n	 ≥ 0 ∀	 ∈ PT ,

V (T, u), otherwise,

(5.2)

so that

L M (k)
j,σ, j ′,σ ′(u, n) =

∑

T ∈Rk
j,σ, j ′,σ ′ (u,n)

LV (T, u), (5.3a)

RM (k)
j,σ, j ′,σ ′(u, n) =

∑

T ∈Rk
j,σ, j ′,σ ′ (u,n)

R V (T, u). (5.3b)

We shall call R the regularisation operator and R V (T, u) the regularised value of T .
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Remark 5.1. If T ∈ Ek
j,σ, j,σ (u, n) the localisation operator acts as

L V (T ) =

⎧
⎪⎨

⎪⎩

V (T ), k(T̊ ) ≤ K02nT /τ ,

0, k(T̊ ) > K02nT /τ .

Remark 5.2. If in a self-energy cluster T there is a line 	 ∈ PT such that ν	 = σ	e j	
(and hence n	 = −1) then L V (T ′, u) = 0 for all self-energy clusters containing T
such that 	 ∈ PT ′ .

Recall the definition of the sets SD(θ) and SD(θ, T ) after Remark 3.26. For any
tree θ we can write its value as

V (θ) =
⎛

⎝
∏

T ∈S1(θ)

V (T,ω · ν	′T )

⎞

⎠

⎛

⎝
∏

	∈L(θ\S1(θ))

G	

⎞

⎠

⎛

⎝
∏

v∈N (θ\S1(θ))

Fv

⎞

⎠ , (5.4)

and, recursively, for any self-energy cluster T of depth D we have

V (T,ω · ν	′T ) =
⎛

⎝
∏

T ′∈SD+1(θ,T )

V (T ′,ω · ν	′
T ′ )

⎞

⎠

⎛

⎝
∏

	∈L(T \SD+1(θ,T ))

G	

⎞

⎠

×
⎛

⎝
∏

v∈N (T \SD+1(θ,T ))

Fv

⎞

⎠ . (5.5)

Then we modify the diagrammatic rules given in Sect. 3 by assigning a further label
OT ∈ {R,L }, which will be called the operator label, to each self-energy cluster T .
Then, by writing V (θ) according to (5.4) and (5.5), one replaces V (T,ω · ν	′T ) with
L V (T,ω · ν	′T ) if OT = L and with R V (T,ω · ν	′T ) if OT = R. When considering

the regularised value of a self-energy cluster T ∈ Rk
j,σ, j ′,σ ′(u, n) with k(T̊ ) ≤ K02nT /τ

and n	 ≥ 0 for all 	 ∈ PT , then we have also an interpolation parameter t to consider:
we shall denote it by tT to keep trace of the self-energy cluster which it is associated
with. We set tT = 1 for a regularised self-energy cluster T with either k(T̊ ) > K02nT /τ

or PT containing at least one line 	 with n	 = −1.
We call renormalised trees the trees θ carrying the further labels OT , associated

with the self-energy clusters T of θ . As an effect of the localisation and regularisation
operators the arguments of the propagators of some lines are changed.

Remark 5.3. For any self-energy cluster T the localised value L V (T, u) does not
depend on the operator labels of the self-energy clusters containing T .

Given a self-energy cluster T ∈ Rk
j,σ, j ′,σ ′(u, n) such that no line along PT is on scale

−1, let 	 be a line such that (1) 	 ∈ PT , and (2) T is the self-energy cluster with largest
depth containing 	. If one has OT = R, then the quantity ω · ν	 is changed according
to the operator labels of all the self-energy clusters T ′ such that (1) T ′ contains T , (2)
no line along PT ′ has scale −1, and (3) 	 ∈ PT ′ . Call Tp ⊂ Tp−1 ⊂ · · · ⊂ T1 such
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self-energy clusters, with Tp = T . If OTi = R for all i = 1, . . . , p, then ω · ν	 is
replaced with

ω · ν	(t	) = ω · ν0
	 + σ	pω jp + tp

(
ω · ν0

	p
+ σ	p−1ω jp−1 − σ	pω jp

)

+
p−1∑

i=2

tp . . . ti
(
ω · ν0

	i
+ σ	i−1ω ji−1 − σ	iω ji

)

+ tp . . . t1
(
ω · ν	1 − σ	1ω j1

)
, (5.6)

where we have set t	 = (t1, . . . , tp), 	′Ti
= 	i and tTi = ti for simplicity.

Otherwise let Tq be the self-energy cluster of highest depth, among T1, . . . , Tp−1,
with OTq = L (so that OTi = R for i ≥ q + 1). In that case, instead of (5.6), one has

ω · ν	(t	) = ω · ν0
	 + σ	pω jp + tp

(
ω · ν0

	p
+ σ	p−1ω jp−1 − σ	pω jp

)

+
p−1∑

i=q+1

tp . . . ti
(
ω · ν0

	i
+ σ	i−1ω ji−1 − σ	iω ji

)
, (5.7)

with the same notations used in (5.6).
If OTp = L , since ω · ν	 is replaced with ω · ν0

	 + σ	′Tω j	′T
for 	 ∈ PT , we can write

ω · ν0
	 +σ	′Tω j	′T

as in (5.6) by setting tp = 0. More generally, if we set tT = 0 whenever

OT = L , we see that we can always claim that, under the action of the localisation and
regularisation operators, the momentum ν	 of any line 	 ∈ PT is changed to ν	(t	), in
such a way that ω · ν	(t	) is given by (5.6).

Lemma 5.4. Given θ such that V (θ) �= 0, for all 	 ∈ L(θ) one has 4 δ j	 (ω · ν	) ≤
5 δ j	 (ω · ν	(t	)) ≤ 6 δ j	 (ω · ν	).

Proof. The proof is by induction on the depth of the self-energy cluster.

1. Consider first the case that 	 ∈ PT , with OT = L . Set n = n	′T , ν′ = ν	′T , σ ′ = σ	′T ,
and j ′ = j	′T . Then ω · ν′ is replaced with σ ′ω j ′ , and, as a consequence, ω · ν	 is

replaced with ω · ν	(t	) = ω · ν0
	 + σ ′ω j ′ . Define ñ	 such that

2−(ñ	+1)γ ≤ δ j	 (ω · ν0
	 + σ ′ω j ′) ≤ 2−(ñ	−1)γ, (5.8)

where δ j	 (ω · ν0
	 + σ ′ω j ′) = |ω · ν0

	 + σ ′ω j ′ − σ	ω j	 | ≥ γ |ν0
	|−τ by the Diophantine

condition (2.2b). Therefore 2ñ	−1 ≤ |ν0
	|τ ≤ (E1k(T̊ ))τ ≤ (E1 K0)

τ2n = 2n−8,
and hence ñ	 ≤ n − 7. Since |ω · ν′ −σ ′ω j ′ | ≤ 2−n+2γ by the inductive hypothesis,
one has

δ j	 (ω · ν	) =
∣∣∣ω · ν0

	 + ω · ν′ − σ	ω j	

∣∣∣

≥
∣∣∣ω · ν0

	 + σ ′ω j ′ − σ	ω j	

∣∣∣− ∣∣ω · ν′ − σ ′ω j ′
∣∣ ≥ 15

16
δ j	 (ω · ν0

	 + σ ′ω j ′),

because δ j	 (ω · ν0
	 + σ ′ω j ′) ≥ 2−(ñ	+1)γ ≥ 2−n+6γ ≥ 24 |ω · ν′ − σ ′ω j ′ |. In the

same way one can bound δ j	 (ω · ν	) ≤ |ω · ν0
	 + σ ′ω j ′ − σ	ω j	 | + |ω · ν′ − σ ′ω j ′ |,

so that we conclude that
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16
δ j	 (ω · ν0

	 + σ ′ω j ′) ≤ δ j	 (ω · ν	) ≤ 17

16
δ j	 (ω · ν0

	 + σ ′ω j ′). (5.9)

This yields the assertion.
2. Consider now the case that OT = R. In that case ω · ν	(t	) is given by (5.6). Define

ñ	 as in (5.8), with σ ′ = σ	p and j ′ = j	p . We want to prove that

7

8
δ j	 (ω · ν0

	 + σ ′ω j ′) ≤ δ j	 (ω · ν	(t	)) ≤ 9

8
δ j	 (ω · ν0

	 + σ ′ω j ′) (5.10)

for all t	 = (t1, . . . , tp), with ti ∈ [0, 1] for i = 1, . . . , p. This immediately implies
the assertion because, by using also (5.9), we obtain

14

17
δ j	 (ω · ν	) ≤ 7

8
δ j	 (ω · ν0

	 + σ ′ω j ′) ≤ δ j	 (ω · ν	(t	))

≤ 9

8
δ j	 (ω · ν0

	 + σ ′ω j ′) ≤ 18

15
δ j	 (ω · ν	),

and hence 4δ j	 (ω · ν	) ≤ 5δ j	 (ω · ν	(t	)) ≤ 6δ j	 (ω · ν	).

By the inductive hypothesis and the discussion of the case 1, in (5.8) we have
∣∣∣ω · ν0

	i
+ σ	i−1ω ji−1 − σ	iω ji

∣∣∣ ≤ 2−ni +2γ, i = 1, . . . , p,

where ni = n	i . Moreover one has ni ≥ ni+1 for i = 1, . . . , p − 1, so that we obtain

δ j	 (ω · ν	(t	)) ≥ δ j	 (ω · ν0
	 + σ ′ω j ′)−

p∑

i=1

2−ni +2γ ≥ δ j	 (ω · ν0
	 + σ ′ω j ′)− 2−n+3γ.

Since δ j	 (ω · ν0
	 + σ ′ω j ′) ≥ 2−(ñ	+1)γ and ñ	 ≤ n − 7, one finds δ j	 (ω · ν	(t	)) ≥

(1 − 2−3)δ j	 (ω · ν0
	 + σ ′ω j ′). In the same way one has δ j	 (ω · ν	(t	)) ≤ (1 + 2−3)δ j	 (ω ·

ν0
	 + σ ′ω j ′), so that (5.10) follows. �

Remark 5.5. Given a renormalised tree θ , with V (θ) �= 0, if a line 	 ∈ L(θ) has scale
n	 then �n	 (δ j	 (ω · ν	)(t	)) �= 0, and hence, by Lemma 5.4, one has 2−(n	+2)γ ≤
δ j	 (ω · ν	) ≤ 2−(n	−2)γ . Therefore, Lemma 4.1 still holds for the renormalised trees
without any changes in the proof (see also Remark 4.2).

Remark 5.6. Another important consequence of Lemma 5.4 (and of Inequality (3.8) in
Remark 3.11) is that the number of scale labels which can be associated with each line
of a renormalised tree is still at most 2.

6. Symmetries and Identities

Now we shall prove some symmetry properties on the localized value of the self-energy
clusters.

Lemma 6.1. If T ∈ Ek
j,σ, j,σ (u, n) is such that T̆ does not contain any end node v with

Fv = c−σ
j then there exists T ′ ∈ R

k
j,σ, j,σ (u, n) such that −2L V (T ) = L V (T ′, u).
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Fig. 15. The self-energy cluster T , the tree θT , and the self-energy cluster T ′ in the proof of Lemma 6.1

Fig. 16. The sets F1(T ) = {T1, T2} and F2(T ) = {T3} corresponding to the self-energy cluster T in Fig. 11

Proof. If T ∈ Ek
j,σ, j,σ (u, n) one has |Eσj (T̆ )| = |E−σ

j (T̆ )|+1 (see Remark 3.24), so that

if |E−σ
j (T̆ )| = 0, then also |Eσj (T̆ )| = 1. This means that jv �= j for all v ∈ E(T̆ )\{v0},

if Eσj (T̆ ) = {v0}. Consider the self-energy cluster T ′ ∈ R
k
j,σ, j,σ (u, n) obtained from θT

by replacing the line exiting v0 with an entering line carrying a momentum ν such that
ω · ν = u and nT ′ = nT ; see Fig. 15. With the exception of v0, the nodes of θT have the
same node factors as T ′; in particular they have the same combinatorial factors. If we
compute the propagators G	 of 	 ∈ L(T ′), by setting u = σω j , then they are the same
as the corresponding propagators of θT . Finally, as nT ′ = nT , one has L V (T ) = 0
if and only if also L V (T ′, u) = 0. Thus, by recalling also Remark 3.25, one finds
−2L V (T ) = L V (T ′, u). �

For T ∈ Ek
j,σ, j,σ (u, n) let us call F1(T ) the set of all inequivalent self-energy clusters

T ′ ∈ R
k
j,σ, j,σ (u, n) obtained from θT by replacing a line exiting an end node v ∈ Eσj (θ̆T )

with an entering line carrying a momentum ν such that ω ·ν = u and with nT ′ = nT . Call
also F2(T ) the set of all inequivalent self-energy clusters T ′ ∈ Rk

j,σ, j,−σ (u′, n), with

u′ = u − 2σω j , obtained from θT by replacing a line exiting an end node v ∈ E−σ
j (θ̆T )

(if any) with an entering line carrying a momentum ν′ such that ω · ν′ = u′ and with
nT ′ = nT ; see Fig. 16.

Lemma 6.2. For all T ∈ Ek
j,σ, j,σ (u, n) one has

⎛

⎝2cσj L V (T ) + cσj
∑

T ′∈F1(T )

L V (T ′, u)

⎞

⎠ = c−σ
j

∑

T ′∈F2(T )

L V (T ′, u′),

where u′ = u − 2σω j and the right hand side is meant as zero if F2(T ) = ∅.

Proof. The case k(T ) > K02nT /τ is trivial so that we consider only the case k(T ) ≤
K02nT /τ . By construction any T ∈ Ek

j,σ, j,σ (u, n) is such that T̆ contains at least an end
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node v such that Fv = cσj , hence |Eσj (T̆ )| ≥ 1. By Lemma 6.1 either |E−σ
j (T̆ )| ≥ 1

or there exists T ′ ∈ R
k
j,σ, j,σ (u, n) such that 2L V (T ) + L V (T ′, u) = 0. Hence the

assertion is proved if E−σ
j (T̆ ) = ∅.

So, let us consider the case |E−σ
j (T̆ )| ≥ 1. First of all note that there is a 1-to-1

correspondence between the lines of θT and the lines and external lines, respectively,
of both T ′ ∈ F1(T ) and T ′ ∈ F2(T ); the same holds for the internal nodes. Moreover
the propagators both of any T ′ ∈ F1(T ) and of any T ′ ∈ F2(T ) are equal to the corre-
sponding propagators of T when setting u = σω j and u′ = −σω j , respectively. Also
the node factors of the internal nodes of all self-energy clusters T ′ ∈ F1(T ) ∪ F2(T )
are the same as those of T . For T ′ ∈ F1(T ) one has |E+

i (T̆
′)| = |E−

i (T̆
′)| for all

i = 1, . . . , d, whereas for T ′′ ∈ F2(T ) one has |E+
i (T̆

′′)| = |E−
i (T̆

′′)| for all i �= j and
|Eσj (T̆ ′′)| = |E−σ

j (T̆ ′′)| + 2; thus, one has
⎛

⎝
∏

v∈E(T̆ )

cσvjv

⎞

⎠ = cσj

⎛

⎝
∏

v∈E(T̆ ′)

cσvjv

⎞

⎠ = c−σ
j

⎛

⎝
∏

v∈E(T̆ ′′)

cσvjv

⎞

⎠

for all T ′ ∈ F1(T ) and all T ′′ ∈ F2(T ).
Therefore, if we write

−2cσj L V (T ) = V (θT ) = A (T )

⎛

⎝
∏

v∈E(T̆ )

cσvjv

⎞

⎠ , (6.1)

where A (T ) depends only on T , then one finds

∑

T ′∈F1(T )

L V (T ′, u) = A (T )
1

cσj

⎛

⎝
∏

v∈E(T̆ )

cσvjv

⎞

⎠
∑

v∈V (T̆ )

rv, j,σ ,

with the same factor A (T ) as in (6.1). Analogously one has

∑

T ′∈F2(T )

L V (T ′, u′) = A (T )
1

c−σ
j

⎛

⎝
∏

v∈E(T̆ )

cσvjv

⎞

⎠
∑

v∈V (T̆ )

rv, j,−σ ,

again with the same factor A (T ) as in (6.1), so one can write
⎛

⎝−2cσj V (T ) + cσj
∑

T ′∈F1(T )

L V (T ′, u)

⎞

⎠− c−σ
j

∑

T ′∈F2(T )

L V (T ′, u′)

= B(T )

⎛

⎝−1 +
∑

v∈V (T̆ )

(
rv, j,σ − rv, j,−σ

)
⎞

⎠ , (6.2)

where

B(T ) = A (T )

⎛

⎝
∏

v∈E(T̆ )

cσvjv

⎞

⎠ .
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Fig. 17. A self-energy cluster T and the corresponding sets G1(T ) = {T, T1}, G2(T ) = {T2, T3}, and
G3(T ) = {T4, T5}

On the other hand one has
∑

v∈V (T̆ )

rv, j,σ = |Eσj (T̆ )|,

so that the term in the last parentheses of (6.2) gives −1 + |Eσj (T̆ )| − |E−σ
j (T̆ )| = 0.

Therefore the assertion is proved. �
For T ∈ Rk

j,σ, j ′,σ ′(u, n) with j �= j ′ and n	 ≥ 0 for all 	 ∈ PT , call G1(T ) the set of

self-energy clusters T ′ ∈ Rk
j,σ, j ′,σ ′(u, n) obtained from T by exchanging the entering

line 	′T with a line exiting an end node v ∈ Eσ
′

j ′ (T̆ ) (if any). Call also G2(T ) the set of

self-energy clusters T ′ ∈ Rk
j,σ, j ′,−σ ′(u′, n), with u′ = u−2σω j , obtained from T by (1)

replacing the momentum of 	′T with a momentum ν′ such that ω · ν′ = u′, (2) changing

the sign label of an end node v ∈ E−σ ′
j ′ (T̆ ) into σ ′, and (3) exchanging the lines 	′T and

	v . Finally call G3(T ) the set of self-energy clusters T ′ ∈ Rk
j,−σ, j ′,σ ′(u, n), obtained

from T by (1) replacing the entering line 	′T with a line exiting a new end node v0 with
σv0 = σ ′ and νv0 = σ ′e j ′ , (2) replacing all the labels σv of the nodes v ∈ N0(T )∪ {v0}
with −σv and (3) replacing a line exiting an end node v ∈ Eσ

′
j ′ (T̆ ), with the entering

line 	′T ; see Fig. 17. Again we force nT ′ = nT for all T ′ ∈ G1(T ) ∪ G2(T ) ∪ G3(T ).

Lemma 6.3. For all T ∈ Rk
j,σ, j ′,σ ′(u, n), with j �= j ′ and n	 ≥ 0 for all 	 ∈ PT , one

has

cσ
′

j ′
∑

T ′∈G1(T )

L V (T ′, u) = c−σ ′
j ′

∑

T ′∈G2(T )

L V (T ′, u′),

c−σ
j cσ

′
j ′
∑

T ′∈G1(T )

L V (T ′, u) = cσj c−σ ′
j ′

∑

T ′∈G3(T )

L V (T ′, u).
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Proof. Again we consider only the case k(T̊ ) ≤ K02nT /τ . For fixed T ∈ Rk
j,σ, j ′,σ ′(u, n),

with j �= j ′, let θ ∈ Tk
j,σ e j

(n) be the tree obtained from T by replacing the entering

line 	′T with a line exiting a new end node v0 with σv0 = σ ′ and νv0 = σ ′e j ′ . Note that
in particular one has |Eσj ′(θ̆)| = |E−σ

j ′ (θ̆)|. Any T ′ ∈ G1(T ) can be obtained from θ by

replacing a line exiting an end node v ∈ Eσ
′

j ′ (θ̆) with an entering line 	′T ′ , with the same
labels as 	′T , so that

cσ
′

j ′
∑

T ′∈G1(T )

L V (T ′, u) = |Eσ ′
j ′ (θ̆)| V (θ).

On the other hand, any T ′ ∈ G2(T ) can be obtained from θ by replacing a line exiting an
end node v ∈ E−σ ′

j ′ (θ̆) with an entering line 	′T ′ , with labels ν′ − 2σ ′e j ′ , j ′, −σ ′, hence

c−σ ′
j ′

∑

T ′∈G2(T )

L V (T ′, u) = |E−σ ′
j ′ (θ̆)| V (θ),

so that the first equality is proved.
Now, let θ ′ ∈ Tk

j,−σ e j
(n) be the tree obtained from θ by replacing all the labels σv of

the nodes v ∈ N0(θ) with −σv . Any T ′ ∈ G3(T ) can be obtained from θ ′ by replacing a
line exiting an end node v ∈ Eσ

′
j ′ (θ̆

′) with an entering line 	′T ′ , carrying the same labels
as 	′T . Hence, by Lemma 3.14,

c−σ
j cσ

′
j ′
∑

T ′∈G1(T )

L V (T ′, u) = c−σ
j |Eσ ′

j ′ (θ̆)| V (θ) = cσj |E−σ ′
j ′ (θ̆ ′)| V (θ ′)

= cσj c−σ ′
j ′

∑

T ′∈G3(T )

L V (T ′, u),

which yields the second identity, and hence completes the proof. �
Lemma 6.4. For all k ∈ Z+, all j, j ′ = 1, . . . , d, and all σ, σ ′ ∈ {±}, one has

(i) η(k) = η(k)(|c1|2, . . . , |cd |2), i.e., η(k) depends on c only through the quantities
|c1|2, . . . , |cd |2;

(ii) L M (k)
j,σ, j ′,σ ′(u, n) = c−σ

j cσ
′

j ′ M (k)
j, j ′(n), where M (k)

j, j ′(n) does not depend on the

indices σ, σ ′.

Proof. One works on the single trees contributing to L M (k)
j,σ, j ′,σ ′(u, n). Then the proof

follows from Lemma 3.14 and the results above. �
Remark 6.5. Note that Lemma 6.4 could be reformulated as

L M (k)
j,σ, j ′,σ ′(u, n) = ∂cσ

′
j ′

cσj L M̃ (k)
j,σ, j,σ (n),

with M̃ (k)
j,σ, j,σ (n) defined after (3.13). We omit the proof of the identity, since it will not

be used.
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7. Cancellations and Bounds

We have seen in Sect. 4 that, as far as resonant lines are not considered, no problems
arise in obtaining ‘good bounds’, i.e., bounds on the tree values of order k proportional
to some constant to the power k (see Lemma 4.3). For the same bound to hold for all
tree values we need a gain factor proportional to 2−n	 for each resonant line 	 on scale
n	 ≥ 1.

Let us consider a tree θ , and write its value as in (5.4). Let 	 be a resonant line. Then
	 exits a self-energy cluster T2 and enters a self-energy cluster T1; see Fig. 9. By con-
struction T1 ∈ R

k1
j1,σ1, j ′1,σ ′

1
(ω · ν	′T1

, n1) and T2 ∈ R
k2
j2,σ2, j ′2,σ ′

2
(ω · ν	′T2

, n2), for suitable

values of the labels, with the constraint j1 = j ′2 = j	 and σ1 = σ ′
2 = σ	.

If OT1 = OT2 = L , we consider also all trees obtained from θ by replacing T1 and
T2 with other clusters T ′

1 ∈ R
k1
j1,σ1, j ′1,σ ′

1
(ω · ν	′T1

, n1) and T ′
2 ∈ R

k2
j2,σ2, j ′2,σ ′

2
(ω · ν	′T2

, n2),

respectively, with OT ′
1

= OT ′
2

= L . In this way

L V (T1,ω · ν	′T1
)G[n	]

j	
(ω · ν	)L V (T2,ω · ν	T2

)

is replaced with

L M (k1)
j1,σ1, j	,σ	

(ω · ν	′T1
, n1)G[n	]

j	
(ω · ν	)L M (k2)

j	,σ	, j ′2,σ ′
2
(ω · ν	′T2

, n2). (7.1)

Then consider also all trees in which the factor (7.1) is replaced with

L M (k1)
j1,σ1, j	,−σ	(ω · ν	′T1

, n1)G[n	]
j	
(ω · ν′

	)L M (k2)

j	,−σ	, j ′2,σ2
(ω · ν	′T2

, n2), (7.2)

with ν′
	 such that ω · ν	 − σ	ω j	 = ω · ν′

	 + σ	ω j	 ; see Fig. 18. Because of Lemmas 6.2
and 6.3 the sum of the two contributions (7.1) and (7.2) gives

L M (k1)
j1,σ1, j	,σ	

(ω · ν	′T1
, n1)

(
G[n	]

j	
(ω · ν	) + G[n	]

j	
(ω · ν′

	)
)

L M (k2)

j	,σ	, j ′2,σ ′
2
(ω · ν	′T2

, n2),

where

G[n	]
j	
(ω · ν	) + G[n	]

j	
(ω · ν′

	) = �n	 (δ j	 (ω · ν	))

(ω · ν	 − σ	ω j	 )

(
1

ω · ν	 + σ	ω j	
+

1

ω · ν′
	 − σ	ω j	

)

= 2�n	 (δ j	 (ω · ν	))

(ω · ν	 + σ	ω j	 )(ω · ν′
	 − σ	ω j	 )

, (7.3)

and hence |G[n	]
j	
(ω · ν	)+ G[n	]

j	
(ω · ν′

	)| ≤ 2ω−2
j	

. This provides the gain factor O(2−n	 )

we were looking for, with respect to the original bound C02n	 on the propagator G	.

If OT1 = R then if k(T̊1) > K02nT1/τ we can extract a factor Ck(T̊1) from V (T1,ω ·
ν	′T1

) (C is the constant appearing in Lemma 4.3), and, after writing Ck(T̊1) = C2k(T̊1)

C−k(T̊1), use that C−k(T̊1) ≤ C−K02
nT1

/τ ≤ const.2−nT1 in order to obtain a gain factor
O(2−n	 ).

If k(T̊1) ≤ K02nT1/τ and n	 ≥ 0 for all 	 ∈ PT , we obtain a gain factor propor-
tional to 2−n	 because of the first line of (5.2). Of course whenever one has such a case,
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Fig. 18. Graphical representation of the cancellation mechanism discussed in the text: ν′
	

= ν	 − 2σ	e j	 . If
we sum the two contributions we obtain a gain factor O(2−n	 )

then one has a derivative acting on V (T, u) – see (5.2). Therefore one needs to control
derivatives like

∂u V (T, u) =
∑

	∈PT

∂uG	

⎛

⎝
∏

	′∈L(T )\{	}
G	′

⎞

⎠

⎛

⎝
∏

v∈N (T )

Fv

⎞

⎠ , (7.4)

where

∂uG	 = ∂u�n	 (δ(ω · ν	))

(ω · ν	)2 − ω2
j	

− 2ω · ν	
�n	 (δ(ω · ν	))

((ω · ν	)2 − ω2
j	
)2
. (7.5)

The derived propagator (7.5) can be easily bounded by

|∂uG	| ≤ C122n	 , (7.6)

for some positive constant C1.
In principle, given a line 	, one could have one derivative of G	 for each self-energy

cluster containing 	. This should be a problem, because in a tree of order k, a propagator
G	 could be derived up to O(k) times, and no bound proportional to some constant to
the power k can be expected to hold to order k. In fact, it happens that no propagator has
to be derived more than once. This can be seen by reasoning as follows.

Let T be a self-energy cluster of depth D(T ) = 1. If OT = R then a gain factor
O(2−n	T ) is obtained. When writing ∂u V (T, u) according to (7.4) one obtains |PT |
terms, one for each line 	 ∈ PT . Then we can bound the derivative of G	 according to

(7.6). By collecting together the gain factor and the bound (7.6) we obtain 22n	2
−n	′T .

We can interpret such a bound by saying that, at the cost of replacing the bound 2n	 of

the propagator G	 with its square 22n	 , we have a gain factor 2
−n	′T for the self-energy

cluster T .
Suppose that 	 is contained inside other self-energy clusters besides T , say Tp ⊂

Tp−1 ⊂ · · · ⊂ T1 (hence Tp is that with largest depth, and D(Tp) = p + 1). Then, when
taking the contribution to (7.4) with the derivative ∂u acting on the propagator G	, we
consider together the labels OTi = R and OTi = L for all i = 1, . . . , p (in other words
we do not distinguish between localised and regularised values for such self-energy
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clusters), because we do not want to produce further derivatives on the propagator G	.
Of course we have obtained no gain factor corresponding to the entering lines of the
self-energy clusters T1, . . . , Tp, and all these lines can be resonant lines. So, eventually
we shall have to keep track of this.

Then we can iterate the procedure. If the self-energy cluster T does not contain any
line whose propagator is derived, we split its value into the sum of the localised value
plus the regularised value. On the contrary, if a line along the path PT of T is derived
we do not separate the localised value of T from its regularised value. Note that, if
T is contained inside a regularised self-energy cluster, then both ω · ν	 and ω · ν′

	 in
(7.1) and (7.2) must be replaced with ω · ν	(t	) and ω · ν′

	(t	), respectively, but still
ω · ν	(t	)− σ	ω j	 = ω · ν′

	(t	) + σ	ω j	 , so that the cancellation (7.3) still holds.
Let us call a ghost line a resonant line 	 such that (1) 	 is along the path PT of a

regularised self-energy cluster T and either (2a) 	 enters or exits a self-energy cluster
T ′ ⊂ T containing a line whose propagator is derived or (2b) the propagator of 	 is
derived. Then, eventually one obtains a gain 2−n	 for all resonant lines 	, except for the
ghost lines. In other words we can say that there is an overall factor proportional to

⎛

⎝
∏

	∈LR(θ)

2−n	

⎞

⎠

⎛

⎝
∏

	∈LG(θ)

2n	

⎞

⎠ , (7.7)

where LG(θ) is the set of ghost lines. Indeed, in case (2a) there is no gain corresponding
to the line 	, so that we can insert a ‘good’ factor 2−n	 provided we allow also a com-
pensating ‘bad’ factor 2n	 . In case (2b) one can reason as follows. Call (with some abuse
of notation) T1 and T2 the self-energy clusters which 	 enters and exits, respectively. If
OT1 = OT2 = L , we consider

L V (T1,ω · ν	′T1
) ∂uG[n	]

j	
(ω · ν	(t	))L V (T2,ω · ν	T2

),

and, by summing over all possible self-energy clusters as done in (7.1), we obtain

L M (k1)
j1,σ1, j	,σ	

(ω · ν	′T1
, n1) ∂uG[n	]

j	
(ω · ν	(t	))L M (k2)

j	,σ	, j ′2,σ ′
2
(ω · ν	′T2

, n2);

then we sum this contribution with

L M (k1)
j1,σ1, j	,−σ	(ω · ν	′T1

, n1) ∂uG[n	]
j	
(ω · ν′

	(t	))L M (k2)

j	,−σ	, j ′2,σ2
(ω · ν	′T2

, n2),

where ν′
	 = ν	 − 2σ	e j	 ; again we can use Lemmas 6.2 and 6.3 to obtain

L M (k1)
j1,σ1, j	,σ	

(ω · ν	′T1
, n1)

(
∂uG[n	]

j	
(ω · ν	(t	)) + ∂uG[n	]

j	
(ω · ν′

	(t	))
)

×L M (k2)

j	,σ	, j ′2,σ ′
2
(ω · ν	′T2

, n2),

where

∂uG[n	]
j	
(ω · ν	( t	)) + ∂uG[n	]

j	
(ω · ν′

	( t	))=
2∂u�n	 (δ(ω · ν	( t	)))

(ω · ν	( t	) + σ	ω j	 )(ω · ν′
	( t	)− σ	ω j	 )

− 4(ω · ν	( t	)− σ	ω j	 )�n	 (δ(ω · ν	( t	)))

(ω · ν	( t	) + σ	ω j	 )
2(ω · ν′

	( t	)− σ	ω j	 )
2 ,
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so that we have not only the gain factor 2−n	 due to the cancellation, but also a factor
2n	 because of the term ∂u�n	 (δ(ω · ν	)).

A trivial but important remark is that all the ghost lines contained inside the same
self-energy cluster have different scales: in particular there is at most one ghost line on
a given scale n. Therefore we can rely upon Lemma 4.4 and Lemma 5.4, to ensure that
for each such line there is also at least one non-resonant line on scale ≥ n − 3 (inside
the same self-energy cluster). Therefore we can bound the second product in (7.7) as

⎛

⎝
∏

	∈LG(θ)

2n	

⎞

⎠ ≤
∞∏

n=1

2nNn−3(θ),

which in turn is bounded as a constant to the power k = k(θ), as argued in the proof of
Lemma 4.3.

Finally if k(T̊1) ≤ K02nT1/τ and T1 contains at least one line 	 ∈ PT1 with n	′ = −1,
in general there are p ≥ 1 self-energy clusters T ′

p ⊂ T ′
p−1 ⊂ · · · ⊂ T ′

1 = T1 such
that 	 ∈ PT ′

i
for i = 1, . . . , p, and T ′

p is the one with largest depth containing 	. For
i = 1, . . . , p call 	i the exiting line of the self-energy cluster T ′

i and θi = θ	i . Denote
also, for i = 1, . . . , p − 1, by i = 	i+1(θi ) (recall Notation 3.29). By Lemma 3.30
one has |ν	i −ν	i+1 | ≤ E2k(̊i ) for i = 1, . . . , p −1. Moreover one has |ν	1 −σ	e j	 | ≤
E2(k(̊1) + · · · + k(̊p−1)). On the other hand one has

γ

|ν	i − ν	i+1 |τ
≤ δ ji (ω · ν	i ) + δ ji+1(ω · ν	i+1) ≤ 2

−nT ′
i+1

+2
γ ,

γ

|ν	1 − σ	e j	 |τ
≤ δ j1(ω · ν	1) ≤ 2

−nT ′
1γ ,

so that one can write

Ck(̊1)+···+k(̊p−1)) ≤ C3k(̊1)+···+k(̊p−1))2
−nT ′

1

p∏

i=2

2
−nT ′

i , (7.8)

which assures the gain factors for all self-energy clusters T ′
1, . . . , T ′

p.
To conclude the analysis, if OT1 = L but OT2 = R, one can reason in the same way

by noting that |n	′T2
− n	| ≤ 1.

Lemma 7.1. Set (c) = max{|c1|, . . . , |cd |, 1}. There exists a positive constant C such
that for k ∈ N, j ∈ {1, . . . , d} and ν ∈ Zd one has |∑θ∈Tk

j,ν
V (θ)| ≤ Ck3k(c).

Proof. Each time one has a resonant line 	, when summing together the values of all
self-energy clusters, a gain B12−n	 is obtained (either by the cancellation mechanism
described at the beginning of this section or as an effect of the regularisation operator
R). The number of trees of order k is bounded by Bk

2 for some constant B2; see Remark
3.12. The derived propagators can be bounded by (7.6). By taking into account also the
bound of Lemma 4.3, setting B3 = C0�, and bounding by Bk

4 , with

B4 = exp

(
3c log 2

∞∑

n=0

2−n/τn

)
,
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the product of the propagators (both derived and non-derived) of the non-resonant lines
times the derived propagators of the resonant lines, we obtain the assertion with C =
B1 B2 B3 B4. �
Lemma 7.2. The function (1.7), with x j,ν as in (3.10), and the counterterms η j defined
in (3.11) are analytic in ε and c, for |ε|3(c) ≤ η0 with η0 small enough and (c) =
max{|c1|, . . . , |cd |, 1}. Therefore the solution x(t, ε, c) is analytic in t, ε, c for
|ε|3(c)e3|ω| |Im t | ≤ η0, with η0 small enough.

Proof. Just collect together all the results above, in order to obtain the convergence
of the series for η0 small enough and |ε|ξ (c) ≤ η0, for some constant ξ . Moreover
x (k)j,ν = 0 for |ν| > ξk, for the same constant ξ . Lemma 3.10 gives ξ = 3. �

A. Momentum-Depending Perturbation

Here we discuss the Hamiltonian case in which the perturbation depends also on the
coordinates y1, . . . , yd , as in (1.13). As we shall see, differently from the y-independent
case, here the Hamiltonian structure of the system is fundamental.

It is more convenient to work in complex variables z, w = z∗, with z j = (y j +
iω j x j )/

√
2ω j , where the Hamilton equations are of the form

{−iż j = ω j z j + ε∂w j F(z,w, ε) + η j z j ,

iẇ j = ω jw j + ε∂z j F(z,w, ε) + η jw j ,
(A.1)

with

F(z,w, ε) =
∞∑

p=0

ε p
∑

s+
1 ,...,s

+
d ,s

−
1 ,...,s

−
d ≥0

s+
1 +···+s+

d +s−
1 +···+s−

d =p+3

as+
1 ,...,s

+
d ,s

−
1 ,...,s

−
d

z
s+
1

1 . . . z
s+
d

d w
s−
1

1 . . . w
s−
d

d . (A.2)

Note that, since the Hamiltonian (1.11) is real, one has

as+,s− = a∗
s−,s+ , s± = (s±

1 , . . . , s±
d ) ∈ Zd

+. (A.3)

Let us write

f +
j (z,w, ε) = ε∂w j F(z,w, ε), f −

j (z,w, ε) = ε∂z j F(z,w, ε)

so that

f σj (z,w, ε) =
∞∑

p=1

ε p
∑

s+,s−∈Zd
+

s+
1 +···+s+

d +s−
1 +···+s−

d =p+1

f σj,s+,s− z
s+
1

1 . . . z
s+
d

d w
s−
1

1 . . . w
s−
d

d , σ = ±,

with f +
j,s+,s− = (s−

j + 1)as+,s−+e j and f −
j,s+,s− = (s+

j + 1)as++e j ,s− , and hence

f −
j,s+,s− =

(
f +

j,s−,s+

)∗
, j = 1, . . . , d, s+, s− ∈ Zd , (A.4a)
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(s+
j2 + 1) f +

j1,s++e j2 ,s
− = (s−

j1
+ 1) f −

j2,s+,s−+e j1
, j1, j2 = 1, . . . , d, s+, s− ∈ Zd ,

(A.4b)

(s−
j2

+ 1) f +
j1,s+,s−+e j2

= (s−
j1

+ 1) f +
j2,s+,s−+e j1

, j1, j2 = 1, . . . , d, s+, s− ∈ Zd ,

(A.4c)

(s+
j2 + 1) f −

j1,s++e j2 ,s
− = (s+

j1 + 1) f −
j2,s++e j1 ,s

− , j1, j2 = 1, . . . , d, s+, s− ∈ Zd .

(A.4d)

Expanding the solution (z(t),w(t)) in Fourier series with frequency vector ω, (A.1)
gives

{
(ω · ν − ω j )z j,ν = η j z j,ν + f +

j,ν(z,w, ε),

(−ω · ν − ω j )w j,ν = η jw j,ν + f −
j,ν(z,w, ε).

(A.5)

We write the unperturbed solutions as

z(0)j (t) = c+
j eiω j t , w

(0)
j (t) = c−

j e−iω j t , j = 1, . . . , d,

with c j = c+
j ∈ C and c−

j = c∗
j . As in Sect. 1.2 we can split (A.5) into

f +
j,e j
(z,w, ε) + η j z j,e j = 0, j = 1, . . . , d, (A.6a)

f −
j,−e j

(z,w, ε) + η j w j,−e j = 0, j = 1, . . . , d, (A.6b)
[
(ω · ν)− ω j

]
z j,ν = f +

j,ν(z,w, ε) + η j z j,ν, j = 1, . . . , d, ν �= e j , (A.6c)
[−(ω · ν)− ω j

]
w j,ν = f −

j,ν(z,w, ε) + η j w j,ν, j = 1, . . . , d, ν �= −e j ,

(A.6d)

so that first of all one has to show that the same choice of η j makes both (A.6a) and
(A.6b) hold simultaneously, and that such η j is real.

We consider a tree expansion very close to the one performed in Sect. 3: we simply
drop (3) in Constraint 3.4. We denote by Tk

j,ν,σ the set of inequivalent trees of order k,
tree component j , tree momentum ν and tree sign σ that is, the sign label of the root
line is σ .

We introduce θ̆ and θ̊ as in Notation 3.5 and 3.27 respectively, and we define the
value of a tree as follows.

The node factors are defined as in (3.2) for the end nodes, while for the internal nodes
v ∈ V (θ) we define

Fv =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s+
v,1! . . . s+

v,d !s−
v,1! . . . s−

v,d !
sv! f

σ	v

jv,s+
v ,s

−
v
, kv ≥ 1,

− 1

2cσvjv
, kv = 0.

(A.7)

The propagators are defined as G	 = 1 if ν	 = σ	e j	 and

G	 = G[n	]
j	
(σ	 ω · ν	), G[n]

j (u) = �n(|u − ω j |)
u − ω j

, (A.8)

otherwise, and we define V (θ) as in (3.9).
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Finally we set z j,e j = w∗
j,−e j

= c j , and formally define

z j,ν =
∞∑

k=1

εk z(k)j,ν, z(k)j,ν =
∑

θ∈Tk
j,ν,+

V (θ), ν �= e j ,

w j,ν =
∞∑

k=1

εkw
(k)
j,ν, w

(k)
j,ν =

∑

θ∈Tk
j,ν,−

V (θ), ν �= −e j ,

(A.9)

and

η j,σ =
∞∑

k=1

εkη
(k)
j,σ , η

(k)
j,σ = − 1

cσj

∑

θ∈Tk
j,σ e j ,σ

V (θ). (A.10)

Note that Remarks 3.9, 3.13 and 3.17 still hold.

Lemma A.1. With the notations introduced above, one has η∗
j,+ = η j,− and z∗

j,ν =
w j,−ν .

Proof. By definition we only have to prove that for any θ ∈ Tk
j,ν,+ there exists θ ′ ∈

Tk
j,−ν,− such that V (θ)∗ = V (θ ′). The proof is by induction on the order of the tree.

Given θ ∈ Tk
j,ν,+, let us consider the tree θ ′ obtained from θ by replacing the labels σv

of all the nodes v ∈ N0(θ)with −σv and the labels σ	 of all the lines 	 ∈ L(θ)with −σ	.
Call 	1, . . . , 	p the lines on scale −1 (if any) closest to the root of θ , and denote by vi
the node 	i enters and by θi the tree with root line 	i . Each tree θi is then replaced with
a tree θ ′

i such that V (θi )
∗ = V (θ ′

i ) by the inductive hypothesis. Moreover, as for any
internal line in θ the momentum becomes −ν	, the propagators do not change. Finally,
for any v ∈ V (θ̆) the node factor is changed into

F ′
v =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s−
v,1! · · · s−

v,d !s+
v,1! · · · s+

v,d !
sv! f

−σ	v
jv,s−

v ,s+
v

, kv ≥ 1,

− 1

2c−σv
jv

, kv = 0.

(A.11)

Hence by (A.4a) one has V (θ)∗ = V (θ ′). �
Lemma A.2. With the notations introduced above, one has η j,+ ∈ R.

Proof. We only have to prove that for any θ ∈ Tk
j,e j ,+

there exists θ ′′ ∈ Tk
j,e j ,+

such that

c+
j V (θ)∗ = c−

j V (θ ′′).

Let v0 ∈ E+
j (θ̆) (existing by Remark 3.9) and let us consider the tree θ ′′ obtained from

θ by (1) exchanging the root line 	0 with 	v0 , (2) replacing all the labels σv of all the
nodes v ∈ N0(θ)\{v0} with −σv , and (3) replacing all the labels σ	 of all the internal
lines with −σ	, except for those in P(	v0 , 	0) which remain the same. The propagators
do not change; this is trivial for the lines outside P(	v0 , 	0), while for 	 ∈ P(	v0 , 	0) one
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can reason as follows. The line 	 divides E(θ̆)\{v0} into two disjoint sets of end nodes
E(θ̆ , p) and E(θ̆ , s) such that if 	 = 	w one has E(θ̆ , p) = {v ∈ E(θ̆)\{v0} : v ≺ w}
and E(θ̆ , s) = (E(θ̆)\{v0})\E(θ̆ , p). If

ν(p) =
∑

v∈E(θ̆ ,p)

νv, ν(s) =
∑

v∈E(θ̆ ,s)

νv,

one has ν(p) + ν(s) = 0. When considering 	 as a line in θ one has ν	 = ν(p) + e j while
in θ ′′ one has ν	 = −ν(s) + e j . Hence, as we have not changed the sign label σ	, also G	

does not change. The node factors of the internal nodes are changed into their complex
conjugates; this can be obtained as in Lemma A.1 for the internal nodes w such that
	w /∈ P(	v0 , 	0) while for the other nodes one can reason as follows.

First of all if v is such that 	v ∈ P(	v0 , 	0)∪{	v0}, there is a line 	′v ∈ P(	v0 , 	0)∪{	0}
entering v. We shall denote j	v = j1, σ	v = σ , j	′v = j2, and σ	′v = σ ′. Moreover we

call sσ
′′

i the number of lines outside P(	v0 , 	0) ∪ {	0} with component label i and sign
label σ ′′ entering v. Let us consider first the case σ = σ ′ = +. When considering v as
node of θ one has

F∗
v =

(
s+

1 ! · · · s+
d !s−

1 ! · · · s−
d !(s+

j2
+ 1)

sv! f +
j1,s++e j2 ,s

−

)∗

= s+
1 ! · · · s+

d !s−
1 ! · · · s−

d !(s+
j2

+ 1)

sv! f −
j1,s−,s++e j2

.

When considering v as node of θ ′′ one has s+
v = s− + e j1 and s−

v = s+, so that

F ′′
v = s+

1 ! · · · s+
d !s−

1 ! · · · s−
d !(s−

j1
+ 1)

sv! f +
j2,s−+e j1 ,s

+ ,

and hence by (A.4b) F∗
v = F ′′

v . Reasoning analogously one obtains F∗
v = F ′′

v also in
the cases σ = σ ′ = − and σ �= σ ′, using again (A.4b) when σ = σ ′ = −, and (A.4c)
and (A.4d) for σ = −, σ ′ = + and σ = +, σ ′ = − respectively. Hence the assertion is
proved. �

We define the self-energy clusters as in Sect. 3.6, but replacing the constraint (3)
with (3′) one has |ν	T − ν	′T | ≤ 2 and |σ	T ω · ν	T − ω j	T

| = |σ	′T ω · ν	′T − ω j	′T
|. We

introduce T̆ and T̊ as in Notation 3.23 and 3.27 respectively, and we can define V (T )
as in (3.12) and the localisation and the regularisation operators as in Sect. 5.

Note that the main difference with the y-independent case is in the role of the sign
label σ	. In fact, here the sign label of a line does not depend on its momentum and
component labels, and the small divisor is given by δ j,σ (ω · ν) = |σω · ν − ω j |.

Hence the dimensional bounds of Sect. 4 and the symmetries discussed in Sect. 6
and summarised in Lemma 6.1 can be proved word by word as in the y-independent
case, except for the second equality in Lemma 6.3 where one has to take into account
a change of signs. More precisely for T ∈ Rk

j,σ, j ′,σ ′(u, n), with j �= j ′ and n	 ≥ 0 for
all 	 ∈ PT , we define G1(T ) as in Sect. 6 and G3(T ) as in Sect. 6 but replacing also the
sign labels σ	 of the lines 	 ∈ L(T ) with −σ	.
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Lemma A.3. For all T ∈ Rk
j,σ, j ′,σ ′(u, n), with j �= j ′ and n	 ≥ 0 for all 	 ∈ PT , one

has

c−σ
j cσ

′
j ′
∑

T ′∈G1(T )

L V (T ′, u) = cσj c−σ ′
j ′

∑

T ′∈G3(T )

L V (T ′, u). (A.12)

Proof. We consider only the case k(T̊ ) ≤ K02nT /τ . For fixed T ∈ Rk
j,σ, j ′,σ ′(u, n), with

j �= j ′, let θ ∈ Tk
j,σ e j ,σ

(n) be the tree obtained from T by replacing the entering line

	′T with a line exiting a new end node v0 with σv0 = σ ′ and νv0 = σ ′e j ′ . As in the proof
of Lemma 6.3 one has

cσ
′

j ′
∑

T ′∈G1(T )

L V (T ′, u) = |Eσ ′
j ′ (θ̆)| V (θ).

Now, let θ ′ ∈ Tk
j,−σ e j ,−σ (n) be the tree obtained from θ by replacing all the labels σv of

the nodes v ∈ N0(θ)with −σv , and the labels σ	 of all the lines 	 ∈ L(θ)with −σ	. Any
T ′ ∈ G3(T ) can be obtained from θ ′ by replacing a line exiting an end node v ∈ Eσ

′
j ′ (θ̆

′)
with entering line 	′T ′ , carrying the same labels as 	T . Hence, by Lemma A.1,

c−σ
j cσ

′
j ′
∑

T ′∈G1(T )

L V (T ′, u) = c−σ
j |Eσ ′

j ′ (θ̆)| V (θ) = c−σ
j |Eσ ′

j ′ (θ̆
′)| V (θ ′)∗

= c−σ
j c−σ ′

j ′
∑

T ′∈G3(T )

(L V (T ′, u))∗.

On the other hand, exactly as in Lemma A.2 one can prove that for any T ′ ∈ G3(T )
there exists T ′′ ∈ G3(T ) such that

c−σ
j (L V (T ′, u))∗ = cσj L V (T ′′, u),

and hence the assertion follows. �
The cancellation mechanism and the bounds proved in Sect. 7 follow by the same

reasoning (in fact it is even simpler); see the next appendix for details.

B. Matrix Representation of the Cancellations

As we have discussed in Sect. 5 the only obstacle to convergence of the formal power
series of the solution is given by the accumulation of resonant lines; see Fig. 14.

The cancellation mechanism described in Sect. 7 can be expressed in matrix notation.
This is particularly helpful in the y-dependent case. For this reason, and for the fact that
the formalism introduced in Appendix A includes the y-independent case, we prefer to
work here with the variables (z,w).

We first develop a convenient notation. Given ν such thatσ(ν, 1) = + and δ1,+(ω·ν) <
γ let us group together, in an ordered set S(ν), all the ν′ such that ν′ = ν′( j, σ ) :=
ν − e1 + σ e j , σ = ±1 and j = 1, . . . , d, see Remark 3.19. By definition one has
δ1,+(ω · ν) = δ j,σ (ω · ν′( j, σ )) for all j = 1, . . . , d and σ = ±. Then we construct

a 2d × 2d localised self-energy matrix L M (k)(ω · ν, n) with entries L M (k)
j,σ, j ′,σ ′(ω ·

ν′( j ′, σ ′), n). We also define the 2d × 2d diagonal propagator matrix G [n](ω · ν) with
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entries G [n]
j,σ, j ′,σ ′(ω · ν) = δ j, j ′δσ,σ ′ G[n]

j ′ (ω · ν′( j, σ )), with G[n]
j ′ (u) defined according to

(A.8), and δa,b is the Kronecker delta.
As in Sect. 7 let us consider a chain of two self-energy clusters; see Fig. 9. By

definition its value is

L V (T1, ω · ν1)G[n	]
j	
(ω · ν	)L V (T2, ω · ν2),

with ν1 = ν	′T1
and ν2 = ν	T2

.

Notice that, if one sets also for the sake of simplicity, σ1 = σ	′T1
, j1 = j	T ′

1
, σ2 = σ	T2

,

and j2 = j	T2
, by the constraint (3′) in the definition of self-energy clusters given in

Appendix A, one has ν1 − ν	 = σ1e j1 − σ	e j	 and ν	 − ν2 = σ	e j	 − σ2e j2 ; moreover
ν1, ν	, ν2 all belong to a single set S(ν) for some ν.

As done in Sect. 7 let us sum together the values of all the possible self-energy clus-
ters T1 and T2 with fixed labels associated with the external lines, and of fixed orders k1
and k2, respectively. We obtain

L M (k1)
j1,σ1, j	,σ	

(ω · ν′( j	, σ	), nT1)G
[n	]
j	,σ	, j	,σ	

(ω · ν)L M (k2)
j	,σ	, j2,σ2

(ω · ν′( j2, σ2), nT2).

If we also sum over all possible values of the labels j	, σ	 we get

∑

σ	=±

d∑

j	=1

L M
(k1)
j1,σ1, j	,σ	

(ω · ν′( j	, σ	), nT1 )G
[n	]
j	,σ	, j	,σ	

(ω · ν)L M
(k2)
j	,σ	, j2,σ2

(ω · ν′( j2, σ2), nT2 )

=
[
L M(k1)(ω · ν, nT1 )G

[n	](ω · ν)L M(k2)(ω · ν, nT2 )
]

j1,σ1, j2,σ2
,

(i.e. the entry j1, σ1, j2, σ2 of the matrix in square brackets).
By the definition (A.8) of the propagators and by the symmetries of Lemma 6.1,

G [n](ω · ν) and L M (k)(ω · ν, n) have the form

G [n](ω · ν) = �n(|ω · ν − ω1|)
ω · ν − ω1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 0
0 −1

)
0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0

(
1 0
0 −1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1)

and

L M (k)(ω · ν, n) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M (k)
1,1(n)

(
c∗

1c1 c∗
1c∗

1

c1c1 c1c∗
1

)
· · · M (k)

1,d (n)

(
c∗

1cd c∗
1c∗

d

c1cd c1c∗
d

)

.

.

. M (k)
j, j ′ (n)

(
c∗

j c j ′ c∗
j c

∗
j ′

c j c j ′ c j c∗
j ′

)
.
.
.

M (k)
d,1(n)

(
c∗

d c1 c∗
d c∗

1

cd c1 cd c∗
1

)
· · · M (k)

d,d (n)

(
c∗

d cd c∗
d c∗

d

cd cd cd c∗
d

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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respectively. A direct computation gives
[
L M (k1)(ω · ν, nT1)G

[n	](ω · ν)L M (k2)(ω · ν, nT2)
]

j1,σ1, j2,σ2

= �n	 (|ω · ν − ω1|)
ω · ν − ω1

c−σ1
j1

cσ2
j2

d∑

j=1

M j1, j (nT1)M j, j2(nT2) |c j |2
∑

σ=±
(−1)1+σ1 = 0,

(B.2)

for all choices of the scales n	, nT1 , nT2 and of the orders k1, k2.
This proves the necessary cancellation. Note that this is an exact cancellation in terms

of the variables (z,w): all chains of localised self-energy clusters of length p ≥ 2 can
be ignored as their values sum up to zero. In the y-independent case, and in terms of the
variables x, the cancellation is only partial, and one only finds L M (k1)G[n]L M (k2) =
O(2−n), as discussed in Sect. 7.

C. Resummation of the Perturbation Series

The fact that the series obtained by systematically eliminating the self-energy clusters
converges, as seen in Sect. 4, suggests that one may follow another approach, alternative
to what we have described so far, and leading to the same result. Indeed, one can consider
a resummed expansion, where one really gets rid of the self-energy clusters at the price
of changing the propagators into new dressed propagators – again terminology is bor-
rowed from quantum field theory. This is a standard procedure, already exploited in the
case of KAM tori [10], lower-dimensional tori [10,12], skew-product systems [11], etc.
The convergence of the perturbation series reflects the fact that the dressed propagators
can be bounded proportionally to (a power of) the original ones for all values of the
perturbation parameter ε. In our case, the latter property can be seen as a consequence
of the cancellation mechanism just described. In a few words – and oversimplifying the
strategy – the dressed propagators are obtained starting from a tree expansion where
no self-energy clusters are allowed, and then ‘inserting arbitrary chains of self-energy
clusters’: this means that each propagator G [n] = G [n](ω · ν) is replaced by a dressed
propagator

[n] = G [n] + G [n]MG [n] + G [n]MG [n]MG [n] + · · · , (C.1)

where M = M(ω · ν) denotes the insertion of all possible self-energy clusters compati-
ble with the labels of the propagators of the external lines (M is the matrix with entries
M j,σ, j ′σ ′(ω · ν′( j ′, σ ′)) formally defined in Remark 3.26). Then, formally, one can sum
together all possible contributions in (C.1), so as to obtain

[n] = G [n] (1 − MG [n])−1 =
(

A−1 − B
)−1

, A := G [n], B := M. (C.2)

For sake of simplicity, let us also identify the self-energy values with their localised
parts, so as to replace in (C.1), and hence in (C.2), M with L M , if L is the localisation
operator. Then, in the notations we are using, the cancellation (B.2) reads B AB = 0,
which implies

[n] = A + AB A.
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Therefore one finds ‖[n]‖ ≤ ‖A‖ + ‖A‖2‖B‖ = O(22n). So the values of the trees
appearing in the resummed expansion can be bounded as done in Sect. 4, with the only
difference that now, instead of the propagators G	 bounded proportionally to 2n	 , one
has the dressed propagators [n	] bounded proportionally to 22n	 .

Of course, the argument above should be made more precise. First of all one should
have to take into account also the regularised values of the self-energy clusters. More-
over, the dressed propagators should be defined recursively, by starting from the lower
scales: indeed, the dressed propagator of a line on scale n is defined in terms of the values
of the self-energy clusters on scales< n, as in (C.2), and the latter in turn are defined in
terms of (dressed) propagators on scales< n, according to (3.13). As a consequence, the
cancellation mechanism becomes more involved because the propagators are no longer
of the form (B.1); in particular the symmetry properties of the self-energy values should
be proved inductively on the scale label. In conclusion, really proceeding by following
the strategy outlined above requires some work (essentially the same amount as per-
formed in this paper). We do not push forward the analysis, which in principle could be
worked out by reasoning as done in the papers quoted above.
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