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Abstract

We study the ordinary differential equation εẍ+ ẋ+ εg(x) = εf(ωt), where g and f
are real-analytic functions, with f quasi-periodic in t with frequency vector ω. If c0 ∈ R
is such that g(c0) equals the average of f and g′(c0) 6= 0, under very mild assumptions
on ω there exists a quasi-periodic solution close to c0 with frequency vector ω. We
show that such a solution depends analytically on ε in a domain of the complex plane
tangent more than quadratically to the imaginary axis at the origin.

1 Introduction

Consider the ordinary differential equation in R

εẍ+ ẋ+ ε g(x) = ε f(ωt), (1.1)

where ε ∈ R is small and ω ∈ Rd, with d ∈ N, is assumed (without loss of generality) to
have rationally independent components, i.e. ω · ν 6= 0 ∀ν ∈ Zd∗ := Zd \ {0}. For ε > 0 the
equation describes a one-dimensional system with mechanical force g, subject to a quasi-
periodic forcing term f with frequency vector ω and in the presence of strong dissipation.
We refer to [6] for some physical background. A quasi-periodic solution to (1.1) with the
same frequency vector ω as the forcing term will be called a response solution.

Hypothesis 1. The functions g : R→ R and f : Td → R are real-analytic. There is c0 ∈ R
such that g(c0) = f0, where f0 is the average of f on Td, and a := g′(c0) 6= 0.

In other words we assume that c0 is a simple zero of the function g(x)− f0. Denote by
Σξ := {ψ = (ψ1, . . . , ψd) ∈ (C/2πZ)d : |Imψk| ≤ ξ for k = 1, . . . , d}, with ξ > 0, the strip
where f is analytic. By the analyticity assumptions one can write

f(ψ) =
∑
ν∈Zd

eiν·ψfν , g(x) =
∞∑
p=0

ap (x− c0)p ,

where

|fν | ≤ Φ e−ξ|ν|, ap :=
1

p!

dpg

dxp
(c0), |ap| ≤ Γ ρ p,
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for suitable constants Φ, Γ and ρ. Set N(f) = N if f is a trigonometric polynomial of
degree N and N(f) =∞ otherwise, and define

βn(ω) := min
{
|ω · ν| : 0 < |ν| ≤ 2n, |ν| ≤ N(f)

}
, εn(ω) :=

1

2n
log

1

βn(ω)
,

αn(ω) := min
{
|ω · ν| : 0 < |ν| ≤ 2n

}
, B(ω) :=

∞∑
n=0

1

2n
log

1

αn(ω)
.

Hypothesis 2. lim
n→∞

εn(ω) = 0.

In particular no assumption at all is required on ω if f is a trigonometric polynomial,
since βn(ω) is eventually constant in that case. For fixed f a weaker f -dependent assump-
tion could be required; see Section 4.

Before stating our results we need some more notations. We define the sets CR :=
{ε ∈ C : |Re ε−1| > (2R)−1} and ΩR,B := {ε ∈ C : |Re ε| ≥ B (Im ε)2 and 0 < |ε| < 2R}.
CR consists of two disks with radius R and centers (R, 0) and (−R, 0), while ΩR,B is the
intersection of the disk of center (0, 0) and radius 2R with two parabolas with vertex at the
origin: all such sets are tangent at the origin to the imaginary axis. Note that the smaller
B, the more flattened are the parabolas. If 2RB < 1 one has CR ⊂ ΩR,B.

The following has been proved in [1].

Theorem 1.1. Assume Hypotheses 1 and 2 for the system (1.1) and denote by Σξ the strip
of analyticity of f . Then there exist ε0 > 0 and B0 > 0 such that for all B > B0 there is
a response solution x(t) = c0 + u(ωt, ε) to (1.1), with u(ψ, ε) = O(ε) analytic in ψ ∈ Σξ′

and ε ∈ Ωε0,B, for some ξ′ < ξ.

In the theorem above ε0 has to be small, while B0 must be large enough. However, for
B as close as wished to B0 one can take ε < ε0 small enough for the condition εB < 1 to
be satisfied, so as to obtain that Cε/2 is contained inside the analyticity domain. In this
respect Theorem 1.1 extends previous results in the literature [6, 7], where analyticity in a
pair of disks was obtained under stronger conditions on ω, such as the standard Diophantine
condition

|ω · ν| > γ

|ν|τ
∀ν ∈ Zd∗, (1.2)

or the Bryuno condition B(ω) < ∞ If either d = 1 or d = 2 and ω satisfies the standard
Diophantine condition (1.2) with τ = 1, the response solution is Borel-summable.

In the present letter we remove in Theorem 1.1 the condition for B to be large, by
proving the following result.

Theorem 1.2. Assume Hypotheses 1 and 2 for the system (1.1) and denote by Σξ the strip
of analyticity of f . Then for all B > 0 there exists ε0 > 0 such that there is a response
solution x(t) = c0+u(ωt, ε) to (1.1), with u(ψ, ε) = O(ε) analytic in ψ ∈ Σξ′ and ε ∈ Ωε0,B,
for some ξ′ < ξ. The dependence of ε0 on B is of the form ε0 = ε1B

α, for some α > 0 and
ε1 independent of B.

In Section 2 we introduce the main technical tools: we show that we can represent the
solutions as a formal power series with coefficients that can be represented graphically in
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terms of trees; then in Section 3, by relying on the tree representation, we provide bounds
on the coefficients which assure the convergence of the series. We anticipate that the series
expansion is not a power series: indeed, the solution is not expected to be analytic in a
neighbourhood of the origin; see [6, 7, 1] for further comments.

The proof of the theorem given in Section 3 yields the value α = 8: such a value is
non-optimal and could be improved by a more careful analysis. Thanks to Theorem 1.2 we
can estimate the domain of analyticity by the union of the domains Ωε0,B, with ε0 = ε1B

α,
by letting B varying in (0, 1]. This provides a domain that near the origin has boundary of

the form |Re ε| ≈ ε−β1 |Im ε|2+β, where β = 1/α.

As mentioned above, both Theorems 1.1 and 1.2 can be proved under a slightly weaker
condition on ω, which, however, depends on the width of the strip of analyticity of f .
Hypothesis 2, on the contrary, is independent of f . More comments are in Section 4.

2 Tree representation

We can rewrite (1.1) as

εẍ+ ẋ+ ε a (x− c0) + µε

∞∑
p=2

ap(x− c0)p = µε
∑
ν∈Zd

∗

eiν·ψfν , (2.1)

where a := a1 and µ = 1. However, we can consider µ as a free parameter and study (2.1)
for ε ∈ C and µ ∈ R. Then we look for a quasi-periodic solution to (2.1) of the form

x(t, ε, µ) = c0 + u(ωt, ε, µ), u(ψ, ε, µ) =
∞∑
k=1

∑
ν∈Zd

µkeiν·ψu
(k)
ν (ε). (2.2)

By inserting (2.2) into (2.1) we obtain a recursive definition for the coefficients u
(k)
ν (ε),

which admits a natural graphical representation in terms of trees. The discussion below
is self-contained; however, the reader can be find useful, for details or pictures, to refer to
[3, 4, 5] for a general introduction to the tree formalism and to [2] for its implementation
in the same context as the present paper.

A rooted tree θ is a graph with no cycle, such that all the lines are oriented toward a
unique point (root) which has only one incident line (root line). All the points in θ except
the root are called nodes. The orientation of the lines in θ induces a partial ordering relation
(�) between the nodes. Given two nodes v and w, we shall write w ≺ v every time v is
along the path (of lines) which connects w to the root. We shall write w ≺ ` if w � v,
where v is the node which ` exits. For any node v denote by pv the number of lines entering
v: v is called and end node if pv = 0 and an internal node if pv > 0. We denote by N(θ)
the set of nodes, by E(θ) the set of end nodes, by V (θ) the set of internal nodes and by
L(θ) the set of lines; one has N(θ) = E(θ)q V (θ).

We associate with each end node v ∈ E(θ) a mode label νv ∈ Zd∗ and with each internal
node an degree label dv ∈ {0, 1}. With each line ` ∈ L(θ) we associate a momentum
ν` ∈ Zd. We impose the following constraints on the labels:

1. ν` =
∑

w∈E`(θ)
νw, where E`(θ) := {w ∈ E(θ) : w ≺ `};
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2. pv ≥ 2 ∀v ∈ V (θ);

3. if dv = 0 then the line ` exiting v has ν` = 0.

We shall write V (θ) = V0(θ) q V1(θ), where V0(θ) := {v ∈ V (θ) : dv = 0}. For any
discrete set A we denote by |A| its cardinality. Define the degree and the order of θ as
d(θ) := |E(θ)|+ |V1(θ)| and k(θ) := |N(θ)|, respectively.

We call equivalent two labelled rooted trees which can be transformed into each other
by continuously deforming the lines in such a way that they do not cross each other. In the
following we shall consider only inequivalent labelled rooted trees, and we shall call them
call trees tout court, for simplicity.

We associate with each node v ∈ N(θ) a node factor Fv and with each line ` ∈ L(θ) a
propagator G`, such that

Fv :=

{
−εdv apv , v ∈ V (θ),

ε fνv , v ∈ E(θ),
G` :=

{
1/D(ε,ω · ν`), ν` 6= 0,

1/a, ν` = 0,

where D(ε, s) := −εs2 + is+ ε a. Then, by defining

V (θ, ε) :=

( ∏
v∈N(θ)

Fv

)( ∏
`∈L(θ)

G`

)
(2.3)

one has
u
(k)
ν (ε) =

∑
θ∈Tk,ν

V (θ, ε), ν ∈ Zd (2.4)

where Tk,ν is the set of trees of order k and momentum ν associated with the root line.

Note that u
(1)
0 = 0 and u

(2)
ν = 0 for all ν ∈ Zd.

3 Proof of Theorem 1.2

We shall prove Theorem 1.2 in the case in which N(f) = ∞. The case of trigonometric
polynomials is in fact easier and can be dealt with as shown in [2].

Lemma 3.1. Set c0 = min{1/8, B/18, B/8|a|, |a|/8, |a|B/4,
√
|a|/2}. There exists ε1 > 0

such that one has |D(ε, s)| ≥ c0 max{min{1, s2}, |ε|2} for all s ∈ R and all ε ∈ ΩB,ε1.

Proof. Write ε = x + iy, with |x| ≥ By2 and x small enough. By symmetry it is enough
to study y ≥ 0. One has |D(ε, s)|2 = (s + ya − ys2)2 + x2(a − s2)2. If y = 0 the bound is
straightforward. If y > 0 denote by s1 and s2 the two roots of s + ya − ys2 = 0: one has
s1 = −ay + O(y2) and s2 = 1/y + ay + O(y2). Let ε1 be so small that |s1 + ay| ≤ |a|y/2,
|s2−1/y| ≤ 1/6y and 18|a|y2 ≤ 1 for |ε| ≤ ε1. The following inequalities are easily checked:
(1) if |s| < 2|a|y, then |x| |a − s2| ≥ |ax|/2 ≥ |a|By2/2 ≥ Bs2/8|a|; (2) if |s − s2| < 1/2y,
then |x| |a − s2| ≥ |x|s2/2 ≥ |x|/18y2 ≥ B/18; (3) if |s| ≥ 2|a|y and |s − s2| ≥ 1/2y, then
(3.1) |s + ya − ys2| ≥ y|s − s1| |s − s2| ≥ |a|y/4, (3.2) |s + ya − ys2| ≥ |s − s1|/2 ≥ |s|/8,
(3.3) if either a < 0 or a > 0 and |a− s2| > |a|/2 one has |x| |a− s2| > |ax|/2, while if a > 0
and |a− s2| ≤ |a|/2 one has |s+ ya− ys2| ≥ |s| − y|a− s2| ≥

√
a/2. By collecting together

all the bounds the assertion follows.
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Lemma 3.2. For any tree θ one has |E(θ)| ≥ |V (θ)|+ 1 and hence 2|E(θ)| ≥ k(θ) + 1.

Proof. By induction on the order k(θ).

For v ∈ V1(θ) define E(θ, v) := {w ∈ E(θ) : the line exiting w enters v} and set rv :=
|E(θ, v)|, sv := pv − rv, µv :=

∑
w∈E(θ,v) νw and µv := |µv|. Define V2(θ) := {v ∈ V (θ) :

sv = 0} and V3(θ) := {v ∈ V (θ) : rv = sv = 1}. For v ∈ V2(θ) call `v the line exiting v, and
for v ∈ V3(θ) call `v the line exiting v and `′v the line entering v which does not exits an end
node. Define V 2(θ) := {v ∈ V2(θ) : ν`v 6= 0} and V 3(θ) := {v ∈ V3(θ) : ν`v 6= 0 and ν`′v 6=
0}, and set V 1(θ) = V 2(θ)q V 3(θ). By construction one has V 1(θ) ⊂ V1(θ).
Lemma 3.3. There exists C0 > 0 such that C0|ω · ν| ≥ e−ξ|ν|/16 ∀ν ∈ Zd∗.

Proof. It follows from Hypothesis 2 by using that βn(ω) = αn(ω) if N(f) =∞.

Lemma 3.4. One has C0|ω·ν`v | ≥ e−ξµv/16 for v ∈ V 2(θ) and 2C0 max{|ω·ν`v |, |ω·ν`′v |} ≥
e−ξµv/16 for v ∈ V 3(θ).

Proof. For v ∈ V 2(θ) one has ν`v = µv, so that one can use Lemma 3.3. For v ∈ V 3(θ) one
proceeds by contradiction. Suppose that the assertion is false: this would imply

e−ξµv/16 > C0|ω · ν`v |+ C0|ω · ν`′v | ≥ C0|ω · (ν`v − ν`′v)| = C0|ω · µv| ≥ e−ξµv/16,

where we have used that E(θ, v) contains only one node w and hence µv = νw 6= 0.

Define L1(θ, v) := {`v} for v ∈ V 2(θ) and L1(θ, v) := {` ∈ {`v, `′v} : 2C0|ω · ν`| ≥
e−ξµv/16} for v ∈ V 3(θ). Lemma 3.4 yields L1(θ, v) 6= ∅ for all v ∈ V 1(θ). Set also L1(θ) :=
{` ∈ L(θ) : ∃v ∈ V 1(θ) such that ` ∈ L1(θ, v)}, Lint(θ) := {` ∈ L(θ) : ` exits a node v ∈
V1(θ)} and L0(θ) := Lint(θ) \ L1(θ).

Lemma 3.5. For any tree θ one has 4 |L0(θ)| ≤ 3|E(θ)| − 4.

Proof. By induction on V (θ). If |V (θ)| = 1 then either V (θ) = V0(θ) or V (θ) = V 2(θ) and
hence |L0(θ)| = 0, so that the bound holds. If |V (θ)| ≥ 2 the root line `0 of θ exits a node
v0 ∈ V (θ) with sv0 + rv0 ≥ 2 and sv0 ≥ 1. Call θ1, . . . , θsv0 the trees whose respective root
lines `1, . . . , `sv0 enter v0: one has |E(θ)| = |E(θ1)|+ . . .+ |E(θsv0 )|+rv0 . If `0 /∈ L0(θ) then
|L0(θ)| = |L0(θ1)|+ . . .+ |L0(θsv0 )| and the bound follows from the inductive hypothesis.

If `0 ∈ L0(θ) then one has |L0(θ)| = 1 + |L0(θ1)| + . . . + |L0(θsv0 )|, so that, again by
the inductive hypothesis, 4|L0(θ)| ≤ 3|E(θ)| − 3rv0 − 4 (sv0 − 1). If either rv0 + sv0 ≥ 3 or
rv0 + sv0 = 2 and sv0 = 2, the bound follows. If rv0 + sv0 = 2 and sv0 = 1, then v0 ∈ V3(θ),
so that either ν`1 = 0 or 2C0|ω · ν`1 | ≥ e−ξµv0/16, by Lemma 3.4, because `0 ∈ L0(θ) and
hence 2C0|ω · ν`0 | < e−ξµv0/16. Therefore `1 /∈ L0(θ). If v1 is the node which `1 exits, call
θ′1, . . . , θ

′
sv1

the trees whose root lines enter v1: one has |L0(θ)| = 1+|L(θ′1)|+. . .+|L0(θ
′
sv1

)|
and hence, by the inductive hypothesis, 4|L0(θ)| ≤ 3|E(θ)|−3rv0 −3rv1 −4 (sv1 −1), where
3rv0 + 3rv1 + 4sv1 − 4 ≥ 5, so that the bound follows in this case too.

Lemma 3.6. For any k ≥ 1 and ν ∈ Zd and any tree θ ∈ Tk,ν one has

|V (θ, ε)| ≤ Ak0c−k0 |ε|
1+ k+1

8

∏
v∈E(θ)

e−5ξ|νv |/8,

with A0 a positive constant depending on Φ, Γ and ρ, and c0 as in Lemma 3.1.
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Proof. One bounds (2.3) as

|V (θ, ε)| ≤ |ε|d(θ)
( ∏
v∈V (θ)

|apv |

)( ∏
v∈E(θ)

|fνv |

)( ∏
`∈L(θ)

|G`|

)
.

We deal with the propagators by using Lemma 3.1 as follows. If ` exits a node v ∈ V 2(θ),
then we have

|G`|
∏

w∈E(θ,v)

|fνw | |G`w | ≤
1

c0|ω · ν`|2
∏

w∈E(θ,v)

|fνw |
c0|ω · νw|2

≤ c−10 C2
0 (c−10 C2

0Φ)|E(θ,v)|
∏

w∈E(θ,v)

e−3ξ|νw|/4,

where `w denotes the line exiting w. For the other lines in L1(θ) we distinguish three cases:
given a node v ∈ V3(θ) and denoting by v′ the node which the line `′v exits, (1) if either
`′v /∈ L1(θ, v) or `′v ∈ L1(θ, v

′), we proceed as for the nodes v ∈ V 2(θ) with ` = `v and
obtain the same bound; (2) if L1(θ, v) = {`′v} and `′v /∈ L1(θ, v

′), we proceed as for the
nodes v ∈ V 2(θ) with ` = `′v and we obtain the same bound once more; (3) if both lines
`v, `

′
v belong to L1(θ, v) and `′v /∈ L1(θ, w), we bound∣∣G`vG`′v ∣∣ ∏

w∈E(θ,v)

|fνv | |G`w | ≤ c−20 C4
0 (c−10 C2

0Φ)|E(θ,v)|
∏

w∈E(θ,v)

e−5ξ|νw|/8.

For all the other propagators we bound (1) |G`| ≤ 1/|a| if ` exits a node v ∈ V0(θ), (2)
|G`| ≤ c−10 |ω · ν`|−2 if ` exits an end node and has not been already used in the bounds
above for the lines ` ∈ L1(θ), and (3) |G`| ≤ c−10 |ε|−2 if ` ∈ L0(θ). Then we obtain

|V (θ, ε)| ≤ |ε|d(θ)−2|L0(θ)|Γ|V (θ)|ρ|N(θ)|(c−10 C2
0 )|V1(θ)|(c−10 C2

0Φ)|E1(θ)||a|−|V0(θ)|e−5ξ|ν|/8,

where we can bound, by using Lemma 3.2 and Lemma 3.5, d(θ) − 2|L0(θ)| = |E(θ)| +
|V1(θ)|− 2|L0(θ)| ≥ |E(θ)|− |L0(θ)| ≥ 1 + |E(θ)|/4 ≥ 1 + (k(θ) + 1)/8, so that the assertion
follows.

Lemma 3.7. For any k ≥ 1 and ν ∈ Zd one has∣∣∣u(k)ν (ε)
∣∣∣ ≤ Ak1c−k0 e−ξ|ν|/2|ε|1+

k+1
8 ,

with A1 a positive constant C depending on Φ, Γ, ξ and ρ, and c0 as in Lemma 3.1.

Proof. The coefficients u
(k)
ν are given by (2.4). Each value V (θ, ε) is bounded through

Lemma 3.6. The sum over the Fourier labels is performed by using a factor e−ξ|νv |/8 for
each end node v ∈ E(θ). The sum over the other labels is easily bounded by a constant to
the power k.

Lemma 3.7 implies that for ε small enough the series (2.2) converges uniformly to a
function analytic in ψ ∈ Σξ′ , with ξ′ < ξ/2. Moreover such a function is analytic in
ε ∈ Ωε0,B, provided A8

1ε0/c
8
0 is small enough. This completes the proof of Theorem 1.2.
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4 Comments on the assumption on the rotation vector

In [1], for f analytic in Σξ, the existence of a response solution as in Theorem 1.1 is proved
under the weaker condition that for some C > 0 and η < ξ,

|ω · ν|−1 ≤ Ceη|ν|/N ∀ν ∈ Zd∗, (4.1)

with N = 2. Indeed, Theorem 3 in [1] assumes the existence of an approximate solution of
order N ≥ 2 for the response solution to be proved to exist and an approximate solution
of order N exists if the condition (4.1) is satisfied. Of course, the condition (4.1) is really
needed not for all ν ∈ Zd∗, but only eventually. Similarly, one could still impose the condition
on ω in terms of the quantity εn(ω) introduced in Section 1, by requiring that εn(ω)→ η/4
with η < ξ. However, a condition that is optimal for fixed f is better expressed without
introducing εn(ω), as the latter introduces a spurious dependence on the arbitrary scale 2.
We also note that, in all cases, the closer η is to ξ, the smaller the domain of analyticity
of the solution u(ψ, ε) in both ψ and ε. In particular, if we look for solutions which are
analytic in Σξ′ for any ξ′ < ξ/2, we need η < ξ/4.

In the same way, if we only require for the solution to be C∞ in ε, as in [2], we can
allow εn(ω) → η/2, with η < ξ, or |ω · ν|−1 ≤ Ceη|ν| for some C > 0 and η < ξ and all
|ν| large enough. To obtain analyticity in the domain Ωε0,B, with ε0 = ε1B

1+1/8, as in
Theorem 1.2, the condition |ω · ν|−1 ≤ Ceη|ν|/6 for some C > 0 and η < ξ, eventually in
ν, would be enough. This would give C0|ω · ν| ≥ e−ξ

′′|ν|, with ξ′′ < ξ/6, in Lemma 3.3,
but it is easy to realise that the analysis, from that Lemma on, could be adapted so as to
obtain analyticity in a strip Σξ′ , with ξ′ > 0. Again, in such a case, when η tends to ξ, the
domains of analyticity shrink to zero, that is both ε0 and ξ′ vanish. If we want that the
width of the strip of analyticity in ψ of the solution be ξ/2, we need a stronger condition,
such as that required in Lemma 3.3, that is |ω ·ν|−1 ≤ Ceη|ν|/16 for some C > 0 and η < ξ,
eventually in ν.

We also mention that, if we allowed for the solutions to be less regular in ψ, say only
finitely differentiable, an even weaker condition could be assumed on ω. For instance, in
order to obtain solutions C∞ in ε, we could require

|ω · ν|−1 ≤ Ceη|ν|/N |ν|−p ∀ν ∈ Z, (4.2)

with N = 1, η = ξ and p large enough; we refer to [2] for details. Analogous considerations
hold for solutions analytic in ε and finitely differentiable in ψ.

However, we preferred to assume Hypothesis 2 because, even though the assumption is
not optimal for fixed f , nevertheless it has the advantage to be f -independent and imply
all the conditions on η considered so far. Of course, it is a challenging problem whether
the existence of response solutions can be proved without any assumption on ω, like in the
case of forcing terms which are trigonometric polynomials.
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