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Abstract We consider a class of quasi-integrable Hamiltonian systems obtained by adding
to a non-convex Hamiltonian function of an integrable system a perturbation depending
only on the angle variables. We focus on a resonant maximal torus of the unperturbed sys-
tem, foliated into a family of lower-dimensional tori of codimension 1, invariant under a
quasi-periodic flow with rotation vector satisfying some mild Diophantine condition. We
show that at least one lower-dimensional torus with that rotation vector always exists also
for the perturbed system. The proof is based on multiscale analysis and resummation proce-
dures of divergent series. A crucial role is played by suitable symmetries and cancellations,
ultimately due to the Hamiltonian structure of the system.

Keywords Quasi-periodic motions · Renormalisation group · Multiscale analysis · Trees ·
Small divisors · Lower dimensional tori · KAM theory

1 Introduction

Consider the Hamiltonian dynamical system described, in action-angle variables, by the
Hamiltonian function

H(α, β,A,B) = −1

2
A · A + 1

2
B2 + εf (α, β), (1.1)
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where (α, β) ∈ T
d × T, (A,B) ∈ R

d × R, f : T
d+1 → R is real-analytic, ε ∈ R is a small

parameter (the perturbation parameter) and · is the standard scalar product in R
d . The cor-

responding Hamilton equations can be written as closed equations for the angle variables
(α, β), {

α̈ = ε∂αf (α, β),

β̈ = −ε∂βf (α, β).
(1.2)

For ε = 0 all the solutions of (1.2) are trivially of the form (α(t), β(t)) = (α0 −A0t, β0 +
B0t) where (α0, β0) and (A0,B0) are the initial phases and actions, respectively. Fix the
initial actions as (A0,B0) = (−ω,0) with ω ∈ R

d such that ω · ν �= 0 for all ν ∈ Z
d∗ :=

Z
d \ {0}. Then the solutions of the unperturbed system lie on a (d +1)-dimensional invariant

torus foliated into d-dimensional invariant tori parametrised by β0.
For ε �= 0 we say that the system has an invariant d-dimensional torus with frequency ω

if there is an invariant manifold for (1.2) where the motion is conjugated to a rotation with
frequency vector ω on T

d , more precisely if there exists β0 ∈ T and two analytic functions
αε : T

d → T
d and βε : T

d → T such that α0(ψ) = 0 and β0(ψ) = 0, the submanifold M of
the form α = ψ + αε(ψ) and β = β0 + βε(ψ) is invariant for (1.2) and the flow on M is
given by ψ → ψ + ωt .

For ω ∈ R
d define the Bryuno function as [1, 2]

B(ω) :=
∑
m≥0

1

2m
log

1

αm(ω)
, αm(ω) := inf

ν∈Z
d

0<|ν|≤2m

|ω · ν|.

We shall prove the following result.

Theorem 1.1 For any ω ∈ R
d such that B(ω) < ∞, there exists ε0 > 0 such that for any

|ε| < ε0 the system (1.2) admits at least one invariant d-dimensional torus with frequency ω.

Remark 1.2 It will turn out from the proof that it may happen that the system admits a
whole (d + 1)-dimensional torus foliated into d-dimensional invariant tori. In such a highly
non-generic case, the solution is analytic in both the initial data and in the perturbation
parameter.

Theorem 1.1 can be seen as a particular case of the result announced in [6], where the
problem of existence of d-dimensional tori is considered for Hamiltonian systems with
(d + 1)-degrees of freedom described by Hamiltonian functions H(α, β, I ) = H0(I ) +
εH1(α, β, I ), where I = (A,B) ∈ D1, with D1 a neighbourhood of zero in R

d+1, and the
functions H0,H1 are real-analytic in all their arguments and 2π -periodic in α, β and (mod-
ulo a canonical transformation) satisfy the following conditions:

1. ∂AH0(0,0) = ω, with ω such that |ω · ν| ≥ c |ν|−τ for c > 0, τ > d − 1 and all ν ∈ Z
d∗ ;

2. det ∂2
I H0(0) �= 0 and ∂2

BH0(0) = 1;
3. the function H0(A,B) − ω · A has a saddle point of signature 1 in zero, that is

η · S0η < |t0 · η|2 ∀η ∈ R
d \ {0},

where S0 := ∂2
AH0(0) and t0 := ∂A∂BH0(0).

Indeed the Hamiltonian function (1.1) satisfies the conditions above, with S0 = −1 and
t0 = 0 (in fact the Bryuno condition B(ω) < ∞ is weaker than the standard Diophantine
condition in item 1 above). Our method should apply to the more general case considered
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in [6]: we prefer to focus on a particular class of systems, to avoid technical complications
and put emphasis on the method, rather than the result itself—already stated in [6]. We
shall show that the result can be credited to the existence of remarkable symmetries of
suitable quantities, the so-called self-energies, that will be introduced in the proof. In turn
such symmetries are related to the Hamiltonian form of the equations of motion.

The construction envisaged below, as well as the method of [6], does not allow us to
obtain the existence of invariant d-dimensional tori in the case of convex H0(I ) treated by
Cheng [3]. At the end we shall try to briefly illustrate where problems arise when dealing
with convex Hamiltonians. In particular we shall see that the aforementioned symmetries
are not sufficient in that case, and other cancellation mechanisms should be looked for.

2 The Formal Expansion

Fix ω ∈ R
d such that B(ω) < ∞. We look for a quasi-periodic solution to (1.2) of the form

(α(t), β(t)) = (α0 + ωt + a(t), β0 + b(t)), with

a(t) =
∑
ν∈Z

d∗

eiν·ωtaν, b(t) =
∑
ν∈Z

d∗

eiν·ωt bν, (2.1)

and (a(t), b(t)) → (0,0) as ε → 0, so that in the Fourier space (1.2) becomes

(ω · ν)2aν = −[
ε∂αf (α, β)

]
ν
, ν �= 0, (2.2a)

(ω · ν)2bν = [
ε∂βf (α, β)

]
ν
, ν �= 0, (2.2b)[

ε∂αf (α, β)
]

0 = 0, (2.2c)[
ε∂βf (α, β)

]
0 = 0, (2.2d)

where

[
∂αf (α, β)

]
ν
=

∑
p≥0
q≥0

∑
ν0+···+νp+q=ν

ν0∈Z
d

νi∈Z
d∗ ,i=1,...,p+q

1

p!q! (iν0)
p+1∂

q

βfν0(α0, β0)

p∏
i=1

aνi

p+q∏
j=p+1

bνj
,

[
∂βf (α, β)

]
ν
=

∑
p≥0
q≥0

∑
ν0+···+νp+q=ν

ν0∈Z
d

νi∈Z
d∗ ,i=1,...,p+q

1

p!q! (iν0)
p∂

q+1
β fν0(α0, β0)

p∏
i=1

aνi

p+q∏
j=p+1

bνj
,

(2.3)

and fν(α0, β0) = eiν·α0 f̂ν(β0), where we denoted

f (α, β) =
∑
ν∈Zd

f̂ν(β)eiν·α.

Throughout the paper, the sums and the products over the empty set have to be considered
as 0 and 1, respectively. Equations (2.2a) and (2.2b) are called the range equations, while
(2.2c) and (2.2d) are called the bifurcation equations.

We start by writing formally

α(t) = α(t; ε,α0, β0) = α0 + ωt +
∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωta(k)
ν (α0, β0), (2.4a)

β(t) = β(t; ε,α0, β0) = β0 +
∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωt b(k)
ν (α0, β0). (2.4b)



Lower-Dimensional Invariant Tori for Perturbations 159

If we define recursively for k ≥ 1 and ν �= 0

a(k)
ν = − 1

(ω · ν)2

[
∂αf (α, β)

](k−1)

ν
, b(k)

ν = 1

(ω · ν)2

[
∂βf (α, β)

](k−1)

ν
,

with [∂αf (α, β)](0)
ν = iν fν(α0, β0), [∂βf (α, β)](0)

ν = ∂βfν(α0, β0) and, for k ≥ 1,
[
∂αf (α, β)

](k)

ν

=
∑
p≥0
q≥0

∑
ν0+···+νp+q=ν

ν0∈Z
d

νi∈Z
d∗ ,i=1,...,p+q

1

p!q! (iν0)
p+1∂

q

βfν0(α0, β0)
∑

k1+···+kp+q=k

ki≥1

p∏
i=1

a(ki )
νi

p+q∏
j=p+1

b
(kj )
νj

,

[
∂βf (α, β)

](k)

ν

=
∑
p≥0
q≥0

∑
ν0+···+νs+r=ν

ν0∈Z
d

νi∈Z
d∗ ,i=1,...,p+q

1

p!q! (iν0)
p∂

q+1
β fν0(α0, β0)

∑
k1+···+kp+q=k

ki≥1

p∏
i=1

a(ki )
νi

p+q∏
j=p+1

b
(kj )
νj

,

then the series (2.4a)–(2.4b) turn out to be a formal solution of the range equations for any
values of the parameters α0 and β0.

Unfortunately in general we are not able to prove the convergence of the series (2.4a)–
(2.4b) and moreover we also have to solve the bifurcation equations. As we shall see the two
problems are somehow related.

3 Conditions of Convergence for the Formal Expansion

In this section we shall see how to represent graphically the formal solutions (2.4a)–(2.4b).
We shall see that under suitable (quite non-generic) hypotheses the two series converge.
However, in general, a resummation is needed to give the series a meaning: this will be
discussed in Sect. 4.

3.1 Diagrammatic Rules

Our aim is to represent the formal series as a “sum over trees”, so first of all we need some
definitions. (We closely follow [4, 5], with obvious adaptations.)

A graph is a set of points and lines connecting them. A rooted tree θ is a graph with no
cycle, such that all the lines are oriented toward a single point (root) which has only one
incident line 	θ (root line); we will omit the adjective “rooted” in the following. All the
points in a tree except the root are called nodes. The orientation of the lines in a tree induces
a partial ordering relation (
) between the nodes and the lines: we can imagine that each
line carries an arrow pointing toward the root. Given two nodes v and w, we shall write
w ≺ v every time v is along the path (of lines) which connects w to the root.

We denote by N(θ) and L(θ) the sets of nodes and lines in θ , respectively. Since a line
	 ∈ L(θ) is uniquely identified by the node v which it leaves, we may write 	 = 	v . We
write 	w ≺ 	v if w ≺ v, and w ≺ 	 = 	v if w 
 v; if 	 and 	′ are two comparable lines, i.e.
	′ ≺ 	, we denote by P(	, 	′) the (unique) path of lines connecting 	′ to 	, with 	 and 	′ not
included (in particular P(	, 	′) = ∅ if 	′ enters the node 	 exits).

With each node v ∈ N(θ) we associate a mode label νv ∈ Z
d and a component label

hv ∈ {α1, . . . , αd, β}, and we denote by sv the number of lines entering v. With each line
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	 = 	v we associate a component label h	v = hv and a momentum ν	 ∈ Z
d∗ , except for the

root line which can have either zero momentum or not, i.e. ν	θ
∈ Z

d . For any node v ∈ N(θ)

we denote by pj,v, qv the number of lines entering v with component αj and β , respectively,
and set pv = p1,v + · · · + pd,v ; of course sv = pv + qv . Finally, we associate with each line
	 also a scale label such that n	 = −1 if ν	 = 0, while n	 ∈ Z+ if ν	 �= 0 (so far there is no
relation between non-zero momenta and scale labels: a constraint will appear shortly). Note
that one can have n	 = −1 only if 	 is the root line of θ . We force the following conservation
law

ν	 =
∑

w∈N(θ)
w≺	

νw. (3.1)

We shall call trees tout court the trees with labels, and we shall use the term unlabelled
tree for the trees without labels. We shall say that two trees are equivalent if they can be
transformed into each other by continuously deforming the lines in such a way that these do
not cross each other and also labels match. This provides an equivalence relation on the set
of the trees. From now on we shall call trees such equivalence classes.

Given a tree θ we call order of θ the number k(θ) = |N(θ)| = |L(θ)| (for any finite set S

we denote by |S| its cardinality), total momentum of θ the momentum associated with 	θ and
total component of θ the component associated with 	θ . We shall denote by Θk,ν,h the set of
trees with order k, total momentum ν and total component h. A subset T ⊂ θ is a subgraph
of θ if it is formed by set of nodes N(T ) ⊆ N(θ) and lines L(T ) ⊆ L(θ) connecting them
(possibly including the root line: in such a case we say that the root is included in T ) in
such a way that N(T ) ∪ L(T ) is connected. If T is a subgraph of θ we call order of T the
number k(T ) = |N(T )|. We say that a line enters T if it connects a node v /∈ N(T ) to a node
w ∈ N(T ), and we say that a line exits T if it connects a node v ∈ N(T ) to a node w /∈ N(T )

or to the root (which is not included in T in this case). Of course, if a line 	 enters or exits
T , then 	 /∈ L(T ). If T is a subgraph of θ with only one entering line 	′ and one exiting line
	, we set PT := P(	, 	′).

A cluster T on scale n is a maximal subgraph of a tree θ such that all the lines have
scales n′ ≤ n and there is at least a line with scale n. The lines entering the cluster T and the
line coming out from it (unique if existing at all) are called the external lines of T .

A self-energy cluster is a cluster T such that (i) T has only one entering line 	′
T

and one exiting line 	T , (ii) ν	 �= ν	′
T

for all 	 ∈ PT , (iii) one has ν	T
= ν	′

T
and hence∑

v∈N(T ) νv = 0.
We shall say that a self-energy cluster is on scale −1, if N(T ) = {v}, with of course

νv = 0 (so that PT = ∅).

Remark 3.1 Given a self-energy cluster T , the momenta of the lines in PT depend on ν	′
T

because of the conservation law (3.1). More precisely, for all 	 ∈ PT one has ν	 = ν0
	 + ν	′

T

with ν0
	 = ∑

w∈N(T ),w≺	 νw , while all the other labels in T do not depend on ν	′
T

.

We say that two self-energy clusters T1, T2 have the same structure if setting ν	′
T1

=
ν	′

T2
= 0 one has T1 = T2. Of course this provides an equivalence relation on the set of all

self-energy clusters. From now on we shall call self-energy clusters tout court such equiva-
lence classes and we shall denote by Sk

n,u,e the set of self-energy clusters with order k, scale
n and such that h	′

T
= e and h	T

= u, with e,u ∈ {α1, . . . , αd, β}.
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Given any tree θ ∈ Θk,ν,h we associate with each node v ∈ N(θ) a node factor

Fv :=
{− 1

pv !qv ! (iνv)
pv+1∂

qv

β fνv (α0, β0), hv = αj , j = 1, . . . , d,

1
pv !qv ! (iνv)

pv ∂
qv+1
β fνv (α0, β0), hv = β

(3.2)

which is a tensor of rank sv + 1. We associate with each line 	 ∈ L(θ) a propagator de-
fined as follows. Let us introduce the sequences {mn,pn}n≥0, with m0 = 0 and, for all n ≥ 0,
mn+1 = mn + pn + 1, where pn := max{q ∈ Z+ : αmn(ω) < 2αmn+q(ω)}. Then the subse-
quence {αmn(ω)}n≥0 of {αm(ω)}m≥0 is decreasing. Let χ : R → R be a C∞ even function,
non-increasing for x ≥ 0, such that

χ(x) =
{

1, |x| ≤ 1/2,

0, |x| ≥ 1.
(3.3)

Set χ−1(x) = 1 and χn(x) = χ(8x/αmn(ω)) for n ≥ 0. Set also ψ(x) = 1 − χ(x), ψn(x) =
ψ(8x/αmn(ω)), and Ψn(x) = χn−1(x)ψn(x), for n ≥ 0; see Fig. 3.5 in [5]. Then we associate
with each line a propagator

G	 :=
{

Ψn	
(ω·ν	)

(ω·ν	)
2 , n	 ≥ 0,

1, n	 = −1.
(3.4)

Given any subgraph S of any tree θ we define the value of S as

V (S) =
( ∏

v∈N(S)

Fv

)( ∏
	∈L(S)

G	

)
. (3.5)

Set Θk,ν,α := Θk,ν,α1 ×· · ·×Θk,ν,αd
and for any θ = (θ1, . . . , θd) ∈ Θk,ν,α define VVV (θ) :=

(V (θ1), . . . ,V (θd)), so that one has

a(k)
ν =

∑
θ∈Θk,ν,α

VVV (θ), b(k)
ν =

∑
θ∈Θk,ν,β

V (θ), ν �= 0, (3.6a)

[−∂αf (α, β)
](k)

0 =
∑

θ∈Θk+1,0α

VVV (θ),
[
∂βf (α, β)

](k)

0 =
∑

θ∈Θk+1,0,β

V (θ), (3.6b)

as is easy to check. In particular the quantities in (3.6a)–(3.6b) are well defined for any
(fixed) k ≥ 1 (see Appendix H in [4]).

Remark 3.2 Given a subgraph S of any tree θ such that V (S) �= 0, for any line 	 ∈ L(S)

(except possibly the root line of θ ) one has Ψn	
(ω · ν	) �= 0, so that

αmn	
(ω)

16
≤ |ω · ν	| ≤

αmn	−1(ω)

8
<

αmn	−1+pn	−1(ω)

4
= αmn	

−1(ω)

4
,

where αm−1(ω) has to be interpreted as +∞, and hence, by definition of αm(ω), one has
|ν	| > 2mn	

−1. Moreover, by definition of {αmn(ω)}n≥0, the number of scales which can be
associated with a line 	 in such way that the propagator does not vanish is at most 2.

3.2 Dimensional Bounds

For any subgraph S of any tree θ call Nn(S) the number of lines on scale ≥ n in S, and set

K(S) :=
∑

v∈N(S)

|νv|. (3.7)
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We shall say that a line 	 is resonant if it exits a self-energy cluster, otherwise 	 is non-
resonant. For any line 	 ∈ θ define the minimum scale of 	 as

ζ	 := min
{
n ∈ Z+ : Ψn(ω · ν	) �= 0

}
.

Given any subgraph S of any tree θ , we denote by N•
n(S) the number of non-resonant lines

	 ∈ L(S) such that ζ	 ≥ n. By definition, if V (S) �= 0, for each line 	 ∈ L(S) either n	 = ζ	

or n	 = ζ	 + 1. We have the following results.

Lemma 3.3 For all h ∈ {α1, . . . , αd, β}, ν ∈ Z
d , k ≥ 1 and for any θ ∈ Θk,ν,h with V (θ) �=

0, one has N•
n(θ) ≤ 2−(mn−2)K(θ) for all n ≥ 0.

Lemma 3.4 For all e,u ∈ {α1, . . . , αd, β}, n ≥ 0, k ≥ 1 and for any T ∈ Sk
n,u,e with

V (T ) �= 0, one has K(T ) > 2mn−1 and N•
p(T ) ≤ 2−(mp−2)K(T ) for all 0 ≤ p ≤ n.

The proofs of the two results above can be easily adapted from the proofs of Lemmas 6.4
and 6.5 in [5], respectively (and the same notations have been used), notwithstanding the
different definition of resonant lines and the fact that here the lines different from the root
line can have only scale ≥ 0.

Lemma 3.5 For any tree θ ∈ Θk,ν,h and any self-energy cluster T ∈ Sk
n,u,e denote by

LNR(θ) and LNR(T ) the sets of non-resonant lines in θ and T , respectively, and set

VNR(θ) :=
( ∏

v∈N(θ)

Fv

)( ∏
	∈LNR(θ)

G	

)
, VNR(T ) :=

( ∏
v∈N(T )

Fv

)( ∏
	∈LNR(T )

G	

)
.

Then ∣∣VNR(θ)
∣∣ ≤ Ck

1 e−ξ |ν|/2,
∣∣VNR(T )

∣∣ ≤ Ck
2 e−ξK(T )/2, (3.8)

for some positive constants C1 and C2.

Proof We prove only the first bound in (3.8) since the proof of the second one proceeds in
the same way, with T playing the role of θ . For any n0 ≥ 0 one has

∏
	∈LNR(θ)

|G	| ≤
(

16

αmn0
(ω)

)2k ∏
n≥n0+1

(
16

αmn(ω)

)2N•
n(θ)

≤ D(n0)
2k exp

(
ξ(n0)K(θ)

)
,

with

D(n0) = 16

αmn0
(ω)

, ξ(n0) = 8
∑

n≥n0+1

1

2mn
log

16

αmn(ω)
.

Then, since B(ω) < ∞, one can choose n0 such that ξ(n0) ≤ ξ/2, so that, since∏
v∈N(θ)

|Fv| ≤ Ck
0 e−ξK(θ),

for some positive constant C0, the bound follows. �

If T is a self-energy cluster, we can (and shall) write V (T ) = VT (ω ·ν	′
T
) and VNR(T ) =

VT ,NR(ω · ν	′
T
) to stress the dependence on ν	′

T
—see Remark 3.1.
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Remark 3.6 Since the proofs of Lemmas 3.3 and 3.4 work under the weaker condition

αmn	
(ω)

32
< |ω · ν	| <

αmn	−1(ω)

4

one can show that also ∂
j
x VT ,NR(τx) admits the same bound as VT ,NR(x) in (3.8) for j =

0,1,2 and τ ∈ [0,1], possibly with a different constant C2.

What emerges from Lemma 3.5 is that, if we could ignore the resonant lines, the con-
vergence of the series (2.4a)–(2.4b) would immediately follow (for ε small enough). On the
contrary, the presence of resonant lines may be a real obstruction for the convergence. Sup-
pose indeed that a resonant line 	 exits a self-energy cluster T on scale n � n	. If n ≥ 0,
then T must contain at least one line 	′ on scale n such that 2|ω · ν0

	′ | ≥ |ω · ν	′ | ≥ |ω · ν0
	′ |/2

since n � n	 (recall the definition of ν0
	′ in Remark 3.1) and hence |ν0

	′ | ≥ 2mn−1 (reason
as in Remark 3.2 to bound |ν0

	′ | in terms of the scale n	). Therefore we can extract a factor
e−ξ2mn/8 from the product of the node factors of the nodes in T : however this is not enough
to control the propagator G	 for which we only have the bound 28/αmn	

(ω)2. Also the case
n = −1 gives the same problem. Moreover in principle a tree can contain a “chain” of self-
energy clusters and hence of resonant lines, which implies accumulation of small divisors.
Therefore one would need a “gain factor” proportional to (ω · ν	)

2 for each resonant line 	

for the power series (2.4a)–(2.4b) to converge.

3.3 Symmetries

For all k ≥ 1 define the self-energies

M(k)
u,e(x, n) :=

∑
T ∈Sk

n,u,e

VT (x), M(k)
u,e(x, n) :=

n∑
p=−1

M(k)
u,e(x,p),

M(k)
u,e(x) := lim

n→∞ M(k)
u,e(x, n).

(3.9)

Here we shall exhibit the existence of suitable symmetries for the self-energy clusters, i.e.
some remarkable identities between the quantities M(k)

u,e(x, n) and M(k)
u,e(x) introduced in

(3.9). In turn such symmetries will allow us to obtain a gain factor proportional to (ω · ν	)
2

for “some” resonant line 	: under suitable assumptions (which we shall exploit later on) this
will imply the convergence of the power series (2.4a)–(2.4b).

Lemma 3.7 For all k ≥ 1 one has

M(k)
αi ,αj

(0) = ∂α0,j

[−∂αi
f (α, β)

](k)

0 , M(k)
αi ,β

(0) = ∂β0

[−∂αi
f (α, β)

](k)

0 ,

M(k)
β,αj

(0) = ∂α0,j

[
∂βf (α, β)

](k)

0 , M(k)
β,β(0) = ∂β0

[
∂βf (α, β)

](k)

0 .

Proof First of all let us write, for e0 = α0,1, . . . , α0,d , β0 and u = α1, . . . , αd, β ,

∂e0

( ∑
θ∈Θk,0,u

V (θ)

)
=

∑
θ∈Θk,0,u

∑
v∈N(θ)

∂e0 Fv

( ∏
v′∈N(θ)\{v}

Fv′

)( ∏
	∈L(θ)

G	

)
, (3.10)

where we have used the fact that V (θ) depends on α0, β0 only through the node factors.
Each summand in the r.h.s. of (3.10) differs from V (θ) because a further derivative (with
respect to α0,j or β0) acts on the node factor of a node v ∈ N(θ). This can be graphically
represented as the same tree θ , but with a further line 	′ entering the node v; such a line
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carries 0-momentum and has component e = α1, . . . , αd, β for e0 = α0,1, . . . , α0,d , β0, re-
spectively, and hence it is a contribution to M(k)

u,e(0). On the other hand it is easy to realise
that each contribution to M(k)

u,e(0) is of the form above. Therefore the assertion follows. �

Lemma 3.8 For all k ≥ 1 one has

M(k)
αi ,αj

(x, n) = M(k)
αj ,αi

(−x,n) = (
M(k)

αj ,αi
(x, n)

)∗
, i, j = 1, . . . , d, (3.11a)

M(k)
β,β(x, n) = M(k)

β,β(−x,n) = (
M(k)

β,β(x, n)
)∗

, (3.11b)

M(k)
αi ,β

(x, n) = −M(k)
β,αi

(−x,n) = −(
M(k)

β,αi
(x, n)

)∗
, i = 1, . . . , d, (3.11c)

where ∗ denotes complex conjugation.

Proof Let us start from (3.11a)—in fact (3.11b) can be obtained reasoning in the same
way. Given any T ∈ Sk

n,αi ,αj
let T ′ ∈ Sk

n,αj ,αi
be obtained from T by considering 	T , 	′

T

as entering and exiting lines, respectively, and reversing the orientation of the lines in PT .
Denote by N(PT ) the set of nodes in N(T ) connected by the lines in PT . The node factors
of the nodes in N(T ) \ N(PT ) and the propagators of the lines outside PT do not change.
Given v ∈ N(PT ) let 	v, 	

′
v ∈ PT ∪ {	T , 	′

T } be the lines exiting and entering v, respectively.
If h	v = h	′

v
= β or h	v , h	′

v
∈ {α1, . . . , αd} then Fv does not change when considering v as

a node in T ′. If h	v = β while h	′
v
∈ {α1, . . . , αd} or vice versa, the node factor Fv changes

its sign when considering v as a node in T ′. Since both h	T
, h	′

T
∈ {α1, . . . , αd}, then the

number of nodes in N(PT ) whose node factor changes sign must be even, so that the overall
product of such node factors does not change. Finally if 	 ∈ PT one has ν	 = ν0

	 + ν	′
T

when

considering it as a line in L(T ), while ν	 = −ν0
	 + ν	′

T ′ when considering it as a line in
PT ′ , so that, computing at ν	′

T ′ = −ν	′
T

, the propagators are equal since they are even in

their arguments. This proves the first equality in (3.11a). Now let T ′′ ∈ Sk
n,αj ,αi

be obtained
from T ′ by replacing the mode labels νv of the nodes in N(T ) with −νv . The node factors
are changed into their complex conjugated, while (reasoning as before), when computing at
ν	′

T ′′ = −ν	′
T

, the propagators (which are real) do not change.

To prove (3.11c) we reason as above, the only difference being that, for T ∈ Sk
n,αj ,β , the

number of nodes in N(PT ) which change sing when considering them as nodes in T ′ is odd,
and hence the overall product of the node factors change its sign. �

Remark 3.9 From Lemma 3.8 it follows that for all k ≥ 1 and all n ≥ 0 one has

∂x M(k)
β,β(0, n) = 0,

∂x M(k)
αi ,β

(0, n) = −(
∂x M(k)

β,αi
(0, n)

)∗
, i = 1, . . . , d.

(3.12)

Lemma 3.10 For all k ≥ 1 one has ∂x M(k)
αi ,αj

(0, n) = 0 for i, j = 1, . . . , d .

Proof Given a cluster T ∈ Sk
n,αi ,αj

, with i, j = 1, . . . , d , contributing to M(k)
αi ,αj

(0, n)

through (3.9), set

∂xVT (0) :=
∑
	∈PT

( ∏
v∈N(T )

Fv

)(
∂x G	

∏
	′∈L(T )\{	}

G	′

)
, (3.13)



Lower-Dimensional Invariant Tori for Perturbations 165

where the propagators have to be computed at ω · ν	′
T

= 0 and

∂x G	 := Ψ ′
n	

(ω · ν0
	)

(ω · ν0
	)

2
− 2Ψn	

(ω · ν0
	)

(ω · ν0
	)

3
,

where Ψ ′
n denotes the derivative of Ψn with respect to its argument. Clearly ∂xVT (0) is a

contribution to ∂x M(k)
αi ,αj

(0, n).
Now, the line 	 divides L(T ) in two disjoint sets of nodes N1 and N2 such that 	T exits

a node of N1 and 	′
T enters a node in N2. In other words if 	 exits a node v one has N2 =

{w ∈ N(T ) : w 
 v} and N1 = N(T ) \ N2. Set

ν1 =
∑
v∈N1

νv; ν2 =
∑
v∈N2

νv.

Since T is a self-energy cluster one has ν1 + ν2 = 0. Then consider the family F1(T ) of
self-energy clusters obtained from T by detaching the exiting line 	T and reattaching it to
all nodes w ∈ N1, and by detaching the entering line 	′

T , then reattaching it to all nodes
w ∈ N2. Consider also a second family F2(T ) of self-energy clusters obtained from T by
detaching the exiting line 	T then reattaching it to all nodes w ∈ N2 and by detaching the
entering line 	′

T then reattaching it to all nodes w ∈ N1.
It can happen that, detaching 	T from a node w1 ∈ N1 and reattaching it to a node w2 ∈

N(T ), some node factors change their sign because some lines change their direction (see
the proof of Lemma 3.8). But, since h	T

= αi and h	′
T

= αj , the number of changes of sign is
even, so that the overall product of the node factors does not change its sign. The shift of the
lines 	T and 	′

T also changes the combinatorial factors of some node factors. However, if we
group together all the self-energy clusters in F1(T ) with the two lines 	T and 	′

T attached to
the same nodes v ∈ N1 and w ∈ N2, respectively, we see that the corresponding values differ
from each other because of a factor −νvνw . Reasoning in the same way we find that there are
no changes of sign in the product of the node factors also in the construction of the family
F2(T ). Moreover, for those lines that change their direction after such shift operation, the
momentum ν	 is replaced by −ν	 but no changes are produced in the propagators since they
are even, except for the differentiated propagator which can change sign: the sign changes
for the self-energy clusters in F1(T ), while it remains the same for those in F2(T ). Then by
summing over all possible clusters in F1(T ) we obtain −ν1ν2 times a common factor, while
summing over all possible clusters in F2(T ) we obtain ν1ν2 times the same common factor,
so that the overall sum gives zero. �

Lemma 3.11 For all k ≥ 1 one has
[−∂αf (α, β)

](k)

0 = 0 (3.14a)

M(k)
αi ,h

(0) = 0, i = 1, . . . , d, h = α1, . . . , αd, β (3.14b)

Proof We first prove (3.14a). Given θ ∈ Θk,0,αj
, denote by F(θ) the set of all possible θ ′ ∈

Θk,0,αj
which can be obtained from θ by detaching the root line 	θ and reattaching it to

each node v ∈ N(θ). The values of such trees differ from each other because of a factor iνv ,
where v is the node which the root line is attached to (again, as in the proof of Lemmas 3.8
and 3.10, there is an even number of nodes whose node factor changes sign, and hence the
overall product does not changes). But then, since

∑
v∈N(θ) νv = 0, the sum over all such

contributions is zero. Moreover this holds identically in α0, β0, therefore by Lemma 3.7 also
(3.14b) follows. �
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Remark 3.12 Identity (3.14a) is formally equal to (2.2c): therefore we proved that (2.2c)
formally holds. So, besides the convergence of the series, we are left with (2.2d) to be
solved.

We can summarise the results above as follows. Let us write

M(k)
u,e(x, n) = L (k)

u,e + xD(k)
u,e + x2D (k)

u,e(x) + R(k)
u,e(x, n), (3.15)

with

L (k)
u,e := M(k)

u,e(0), D(k)
u,e := ∂x M(k)

u,e(0),

D (k)
u,e(x) :=

∫ 1

0
dτ (1 − τ)∂2

x M(k)
u,e(τx),

R(k)
u,e(x, n) := M(k)

u,e(x, n) − M(k)
u,e(x).

(3.16)

Then we have

M(k)
αi ,αj

(x, n) = x2D (k)
αi ,αj

(x) + R(k)
αi ,αj

(x, n), i, j = 1, . . . , d,

M(k)
αi ,β

(x, n) = xD(k)
αi ,β

+ x2D (k)
αi ,β

(x) + R(k)
αi ,β

(x, n), i = 1, . . . , d,

M(k)
β,αi

(x, n) = −x
(

D(k)
αi ,β

)∗ + x2D (k)
β,αi

(x) + R(k)
β,αi

(x, n), i = 1, . . . , d,

M(k)
β,β(x, n) = L (k)

β,β + x2D (k)
β,β(x) + R(k)

β,β(x, n).

(3.17)

In other words, if we could ignore the “rest” R(k)
u,e(x, n), we would obtain a gain factor

proportional to x2 for the self-energies with u, e ∈ {α1, . . . , αd}, a gain proportional to x for
u = α1, . . . , αd and e = β (or vice versa) and no gain for u = e = β (but in the latter case no
factor proportional to x would appear). This suggests us that if L (k)

β,β ≡ 0 and D(k)
αi ,β

≡ 0 for
all i = 1, . . . , d and all k ≥ 1, we would obtain a gain proportional to x2 for any self-energy
(provided the “rest” is small) and this should imply the convergence of the power series.

Condition 1 For all k ≥ 1 one has L (k)
β,β ≡ 0 and D(k)

αi ,β
≡ 0 for all i = 1, . . . , d .

Lemma 3.13 Assume Condition 1. Then for all h,h′ ∈ {α1, . . . , αd, β} and for any
(α0, β0) ∈ T

d+1 one has |M(k)

h,h′(x,n)| ≤ Ckx2, for some positive constant C.

The proof of the result above essentially follows the lines of the proof of Lemma 6.6
in [4].

Remark 3.14 One can prove also that, setting D(k)
α,β = (D(k)

α1,β , . . . , D(k)
αd ,β), one has

ω · D(k)
α,β = 2i(k − 1)

[
∂βf (α, β)

](k)

0 ,

for all k ≥ 1. We shall not give the proof of the identity above since it will not be used here.

If Condition 1 is satisfied, Lemma 3.13 implies the convergence of the series (2.4a)–
(2.4b) for ε small enough: the argument is the same as after Lemma 6.6 in [4]. Moreover, by
Lemma 3.7, the assumption L (k)

β,β ≡ 0 reads [∂βf (α, β)](k)

0 ≡ const. Due to the variational

nature of the Hamilton equation, [∂βf (α, β)](k)

0 is the β0-derivative of the k-th order of
the time average of the Lagrangian γ (k) (which is analytic and periodic) computed along a
solution of the range equation (one can reason as in [5]). This implies [∂βf (α, β)](k)

0 ≡ 0,
so that also (2.2d) holds for any β0 ∈ T

d . Therefore, at least in the particular case that
Condition 1 holds, we provided a quasi-periodic solution to Eq. (1.2) as a convergent power
series in ε. Note that in such a case the initial phase β0 remains arbitrary, so that the full
(d + 1)-resonant unperturbed torus persists.
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4 Resummation of the Formal Expansion

In Sect. 3 we have seen how to deal with the “completely degenerate case” of Condition 1,
which yields infinitely many identities. If these identities do not hold we are not able to
prove the convergence of the series (2.4a)–(2.4b). Now we shall see how to deal with such a
case.

4.1 Renormalised Trees

As seen in Sect. 3.2 all the obstruction to the convergence are due to the presence of self-
energy clusters. Now we shall perform a different tree expansion with respect to the one
performed in Sect. 3.1 in order to deal with this problem.

More precisely, we modify the tree expansion envisaged in Sect. 3.1 as follows. Given
a tree θ we associate with each node v ∈ N(θ) a mode label and a component label as in
Sect. 3.1; with each line 	 ∈ L(θ) we associate a momentum label as in Sect. 3.1 and a pair
of component labels (e	, u	) ∈ {α1, . . . , αd} with the constraint that u	v = hv . We shall call e	

and u	 the e-component and the u-component of 	, respectively. We denote by pv and qv the
number of lines with e-component αj for some j = 1, . . . , d and β entering v, respectively,
and set sv = pv + qv . We still impose the conservation law (3.1). We do not change the
definition of cluster, while from now on a self-energy cluster is a cluster T with only one
entering line 	′

T and one exiting line 	T such that ν	T
= ν	′

T
, i.e. we drop the constraint (ii)

from the definition of self-energy cluster given in Sect. 3.1.
A renormalised tree is a tree in which no self-energy cluster appears. Analogously a

renormalised subgraph of a tree is a subgraph S of a tree θ such that S does not contains
any self-energy cluster.

Given a renormalised tree we call total momentum and total component the momentum
and the e-component associated with the root line. We denote by ΘR

k,ν,h the set of all renor-
malised trees with order k total momentum ν and total component h, and by Rn,u,e the set
of renormalised self-energy clusters on scale n such that u	T

= u and e	′
T

= e.
Given θ ∈ ΘR

k,ν,h we associate with each v ∈ N(θ) a node factor Fv defined as in
(3.2) and with each 	 ∈ L(θ) a propagator G	 defined as follows. First of all, given a
(d + 1) × (d + 1) matrix A with entries Ah,h′ , for h,h′ ∈ {α1, . . . , αd, β}, we denote by
Aα,α the d ×d matrix with entries (Aα,α)i,j := Aαi,αj

, for i, j = 1, . . . , d , by Aα,β the vector
with components (Aα,β)i := Aαi,β , for i = 1, . . . , d , and by Aβ,α the vector with components
(Aβ,α)j := Aβ,αj

(x), for j = 1, . . . , d ; with a slight abuse of notation we denote in the same
way both column and row vectors. Then we define recursively the propagator of the line 	

as G	 := G[n	]
e	,u	

(ω · ν	), with

G[n](x) =
( G[n]

α,α(x) G[n]
α,β(x)

G[n]
β,α(x) G[n]

β,β(x)

)
:= Ψn(x)

(
x21 − M[n−1](x)

)−1
, (4.1)

where Ψn is defined as in Sect. 3.1, 1 is the (d + 1) × (d + 1) identity matrix and

M[n−1](x) :=
n−1∑

q=−1

χq(x)M [q](x), (4.2)

with χq defined as in Sect. 3.1 and

M [n](x) =
(

M [n]
α,α(x) M

[n]
α,β(x)

M
[n]
β,α(x) M

[n]
β,β(x)

)
, with M [n]

u,e(x) :=
∑

T ∈Rn,u,e

εk(T )VT (x), n ≥ −1,

(4.3)
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and

VT (x) :=
( ∏

v∈N(T )

Fv

)( ∏
	∈L(T )

G	

)
(4.4)

is the renormalised value of T .
Set M := {M[n](x)}n≥−1. We call self-energies the matrices M[n](x).

Remark 4.1 By construction G[n](x) depends also on ε and β0, even though we are not mak-
ing explicit such a dependence; it does not depend on α0 because fν(α0, β0) = eiν·α0 f̂ν(β0)

and
∑

v∈N(T ) νv = 0 for any self-energy cluster T . The last comment applies also to the
quantities F [k](ε,β0) and G[k](ε,β0) introduced in (4.5) below.

Setting also G[−1] = 1, for any renormalised subgraph S of any θ ∈ ΘR
k,ν,h we define the

renormalised value of S as in (3.5), but with the new definition for the propagators.
Set ΘR

k,ν,α := ΘR
k,ν,α1

×· · ·×ΘR
k,ν,αd

and for any θ = (θ1, . . . , θd) ∈ ΘR
k,ν,α denote VVV (θ) :=

(V (θ1), . . . ,V (θd)). Then define (formally)

a[k]
ν (ε,α0, β0) :=

∑
θ∈ΘR

k,ν,α

VVV (θ), b[k]
ν (ε,α0, β0) :=

∑
θ∈ΘR

k,ν,β

V (θ), ν �= 0,

F [k](ε,β0) :=
∑

θ∈ΘR
k+1,0,α

VVV (θ), G[k](ε,β0) :=
∑

θ∈ΘR
k+1,0,β

V (θ).
(4.5)

Finally set (again formally)

aR(t; ε,α0, β0) :=
∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωta[k]
ν (ε,α0, β0), (4.6a)

bR(t; ε,α0, β0) :=
∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωt b[k]
ν (ε,α0, β0), (4.6b)

F R(ε,β0) :=
∑
k≥0

εkF [k](ε,β0), (4.6c)

GR(ε,β0) :=
∑
k≥0

εkG[k](ε,β0), (4.6d)

and define

αR(t; ε,α0, β0) = α0 + ωt + aR(t; ε,α0, β0),

βR(t; ε,α0, β0) = β0 + bR(t; ε,α0, β0).
(4.7)

The series (4.6a)–(4.6d) will be called resummed series, the term “resummed” coming from
the fact that if we formally expand (4.6a)–(4.6d) in powers of ε then we get (2.4a)–(2.4b),
as is easy to check.

For any renormalised subgraph S of any tree θ we denote by Nn(S) the number of lines
on scale ≥ n in S and define K(S) as in (3.7). Then we have the following results which are
the counterparts of Lemmas 3.3 and 3.4, respectively, for renormalised trees.

Lemma 4.2 For any h ∈ {α1, . . . , αd, β}, ν ∈ Z
d , k ≥ 1 and for any θ ∈ ΘR

k,ν,h such that
V (θ) �= 0, one has Nn(θ) ≤ 2−(mn−2)K(θ) for all n ≥ 0.

Lemma 4.3 For any e,u ∈ {α1, . . . , αd, β}, n ≥ 0 and for any T ∈ Rn,u,e such that VT (x) �=
0, one has K(T ) > 2mn−1 and Np(T ) ≤ 2−(mp−2)K(T ) for 0 ≤ p ≤ n.
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The two results above can be proved as Lemmas 4.1 and 4.2 in [4], respectively.

4.2 A Suitable Assumption: Bounds

Here we shall see that, under the assumption that the propagators G[n]
e,u(ω · ν) are bounded

proportionally to 1/|ω · ν|c for some constant c, the series (4.6a)–(4.6d) converge and solve
the range equations (2.2a) and (2.2b): the key point is that now self-energy clusters (and
hence resonant lines) are not allowed and hence a result of that kind is expected. Then, in
what follows, we shall see that the assumption is justified at least along a curve β0(ε) where
also the bifurcation equations (2.2c) and (2.2d) are satisfied.

Define ‖ · ‖ as an algebraic matrix norm (i.e. a norm which verifies ‖AB‖ ≤ ‖A‖‖B‖ for
all matrices A and B); for instance ‖ · ‖ can be the uniform norm.

Definition 4.4 We shall say that M satisfies Property 1 if there are positive constants c1 and
c2 such that ∥∥G[n](x)

∥∥ ≤ c1

|x|c2
(4.8)

for all n ≥ 0. Call S := {(ε,β0) ∈ R × T : Property 1 holds}.

Definition 4.5 We shall say that M satisfies Property 1-p if there are positive constants c1

and c2 such that ∥∥G[n](x)
∥∥ ≤ c1

|x|c2
, (4.9)

for 0 ≤ n ≤ p. Call Sp := {(ε,β0) ∈ R × T : Property 1-p holds}.

Lemma 4.6 Assume (ε,β0) ∈ Sp . Then, for 0 ≤ n ≤ p and ε small enough, the self-energies
are well defined and one has∣∣∂j

x M [n]
u,e(x)

∣∣ ≤ ε2 Kj e−Kj 2mn
, j = 0,1,2,

for some positive constants K0,K0,K1,K1,K2 and K2.

The proof is essentially the same as the proof of Lemma 4.8 in [4] and Lemma 4.3 in [5].
In particular we need a property analogous to Remark 3.6 when bounding the derivatives.

Remark 4.7 If M satisfies Property 1-p the matrices M[n](x) and G[n](x) are well defined
for all −1 ≤ n ≤ p. In particular there exists γ0 > 0 such that |G[n]

e,u(x)| ≤ γ0 αmn(ω)−c2 for
all 0 ≤ n ≤ p. If M satisfies Property 1, the same considerations apply for all n ≥ 0.

Lemma 4.8 Assume (ε,β0) ∈ Sp . Then, for 0 ≤ n ≤ p and ε small enough, one has∣∣M [n]
u,e(x) − M [n]

u,e(0) − x ∂xM
[n]
u,e(0)

∣∣ ≤ ε2 K3e−K32mn
x2

for some positive constants K3 and K3.

The proof is essentially the same as the proof of Lemma 4.6 in [5].

Lemma 4.9 Assume (ε,β0) ∈ S . Then the series (4.6a)–(4.6d), with the coefficients given
by (4.5), converge for ε small enough.
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The proof is essentially the same as the proof of Lemma 4.5 in [4] and Lemma 4.9 in [5].

Lemma 4.10 Assume (ε,β0) ∈ S . Then for ε small enough the function (4.6a) and (4.6b)
solve the range equations (2.2a) and (2.2b), respectively.

The proof is essentially the same as the proof of Lemma 4.6 in [4] and Lemma 4.10
in [5].

4.3 A Suitable Assumption: Symmetries

Here we shall prove that, under the assumptions that M satisfies Property 1-p, there are
suitable symmetries for the self-energy clusters: such symmetries are the counterpart of
those founded in Sect. 3.3 for the formal expansion. Property 1-p is assumed only because,
under such assumption, all the quantities are well defined.

Lemma 4.11 Let Bn the set of B : R → GL(n,C) such that

Bi,j (−x) = Bj,i(x), i, j = 1, . . . , n − 1, Bn,n(−x) = Bn,n(x)

Bn,i(−x) = −Bi,n(x), i = 1, . . . , n − 1.

Then if B ∈ Bn also B−1 ∈ Bn.

Proof If B ∈ Bn define the matrix A by setting

Bi,j (x) = Ai,j (x), i, j = 1, . . . , n − 1, Bn,n(x) = An,n(x),

Bn,i(x) = x An,i(x) and Bi,n(x) = x Ai,n(x), i = 1, . . . , n − 1,

so that AT (−x) = A(x). Denote also by Ci,j (x) the cofactor of the entry Ai,j (x) for i, j =
1, . . . , n. By construction Ci,j (−x) = Cj,i(x) for i, j = 1, . . . , n: then

detB(x) = (−1)n−1x2
[
An,1(x)Cn,1(x) − · · · + An,n−1(x)Cn,n−1(x)

] + An,n(x)Cn,n(x)

= x2 detA(x) + (
1 − x2

)
An,n(x)Cn,n(x),

so that detB(−x) = detB(x). By noting that

(
B−1(x)

)
j,i

= 1

detB(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2Ci,j (x) + (1 − x2)Di,j (x), i, j = 1, . . . , n − 1,

x Ci,j (x), i = n and j = 1, . . . , n − 1,

x Ci,j (x), i = 1, . . . , n − 1 and j = n,

Ci,j (x), i, j = n,

where Di,j (x) is the cofactor of Ai,j (x) seen as entry of the (n−1)×(n−1) matrix obtained
from A(x) by deleting its n-th row and n-th column, the assertion follows. �

Lemma 4.12 Assume (ε,β0) ∈ Sp . Then for all −1 ≤ n ≤ p one has

(
M[n]

α,α(x)
)T = M[n]

α,α(−x) = (
M[n]

α,α(x)
)∗

, (4.10a)

M[n]
β,β(x) = M[n]

β,β(−x) = (
M[n]

β,β(x)
)∗

, (4.10b)

M[n]
α,β(x) = −M[n]

β,α(−x) = −(
M[n]

β,α(x)
)∗

, (4.10c)

where ∗ denotes complex conjugation.
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Proof We shall proceed by induction on n. First of all note that for n = −1 (4.10a)–(4.10c)
trivially holds, since

M[−1](x) =
(

0d 0

0 ε∂2
βf0

)
, (4.11)

where 0d is the d ×d null matrix. Assume than that (4.10a)–(4.10c) hold for all −1 ≤ n′ < n

and let us start from the first equality in (4.10a). Given any T ∈ Rn,αi ,αj
let T ′ be obtained

from T by reversing the orientation of the lines along PT ∪ {	T , 	′
T }. Denote by N(PT )

the set of nodes in N(T ) connected by the lines in PT . The node factors of the nodes in
N(T ) \N(PT ) and the propagators on the lines outside PT do not change when considering
them as nodes and lines in T ′. Given v ∈ N(PT ) let 	v, 	

′
v ∈ PT ∪ {	T , 	′

T } be the lines
exiting and entering v, respectively. If u	v = e	′

v
= β or u	v , e	′

v
∈ {α1, . . . , αd} then Fv does

not change when considering v as a node in T ′. If u	v = β while e	′
v

∈ {α1, . . . , αd} or
vice versa, the node factor Fv changes its sign when considering v as a node in T ′. Now,
given 	 ∈ PT we compute the propagator associated with 	 at x	 := ω · ν	 = ω · ν0

	 + x

and we obtain G	 = Ψn	
(x	)(x

2
	1 − M[n	−1](x	))

−1
e	,u	

; when considering 	 as a line in T ′,
if we set ω · ν	′

T ′ = −x, then the momentum of 	 changes sign and hence the propagator

becomes Ψn	
(−x	)((−x	)

21 − M[n	−1](−x	))
−1
u	,e	

: thanks to the inductive hypothesis and
Lemma 4.11, if e	 = u	 = β or e	 = u	 ∈ {α1, . . . , αd} the propagator does not change when
considering 	 as a line in T ′, otherwise it changes its sign. Let h0, . . . , h2|PT |+1 be such
that h0 = u	T

, {h1, . . . , h2|PT |} is the ordered set of the components of the lines in PT and
h2|PT |+1 = e	′

T
. Note that there is a change of sign (in the node factor or in the propagator)

corresponding to each ordered pair hr,hr+1 such that either hr = αi for some i = 1, . . . , d

and hr+1 = β or vice versa. Since h0 = αi and h2|PT |+1 = αj the number of changes of sign
is even and therefore the overall product does not change. This proves the first equality in
(4.10a). The first equality in (4.10b) can be proved in the same way.

Now let T ′′ be the self-energy cluster obtained from T ′ by replacing the mode labels νv

of the nodes in N(T ′) with −νv . The node factors are changed into their complex conju-
gated and, thanks to the inductive hypothesis, when computing at ν	′

T ′′ = −ν	′
T ′ , also the

propagators are changed into their complex conjugated. Hence also the second equality in
(4.10a) is proved. Again analogous considerations lead to the second equality in (4.10b).

To prove (4.10c) one can reason in the same way, the only difference being that for
T ∈ Rn,αi ,β the number of changes of sign of the propagators of the lines in PT and of
the node factors of the nodes in N(PT ) is odd. This implies the change of sing in the first
equality in (4.10c). �

Lemma 4.13 Assume (ε,β0) ∈ Sp . Then one has for −1 ≤ n ≤ p

M[n]
α,α(x) = O

(
ε2x2

)
, (4.12a)

M[n]
β,α(x) = O

(
ε2x

)
, (4.12b)

M[n]
α,β(x) = O

(
ε2x

)
, (4.12c)

M[n]
β,β(x) = M[n]

β,β(0) + O
(
ε2x2

)
, (4.12d)

where M[n]
β,β(0) = O(ε).

Proof Let us start from the proof of (4.12a). First of all we shall show that∑
T ∈Rn,u,e

VT (0) = 0 where (u, e) ∈ {α1, . . . , αd}2. Given a self-energy cluster T ∈ Rn,αi ,αj
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for i, j = 1, . . . , d consider all the self-energy cluster which can be obtained from T by de-
taching the entering line 	′

T and reattaching it to each node v ∈ N(T ). After such operation
VT (0) changes by a factor (iνv) if v is the node which the entering line is attached to, while
the other node factors and propagators do not change (the combinatorial factors can be dis-
cussed as along the proof of Lemma 3.10). The sum of all clusters values is zero because∑

v∈N(T ) νv = 0. This implies M[n]
α,α(0) = 0d (see the beginning of the proof of Lemma 4.12

for notation).
Now let us write ∂xVT (0) as in (3.13), where again the propagators have to be computed

at ω · ν	′
T

= 0, but now

∂x G	 := d

dx
G[n	]

e	,u	

(
ω · ν0

	 + x
)∣∣∣∣

x=0

.

The line 	 divides L(T ) in two disjoint set of nodes N1 and N2 such that 	T exits a node in N1

and 	′
T enters a node in N2. In other words N2 = {w ∈ N(T ) : w ≺ 	} and N1 = N(T ) \ N2.

Set

ν1 =
∑
v∈N1

νv; ν2 =
∑
v∈N2

νv. (4.13)

Since T is a self-energy cluster one has ν1 + ν2 = 0. Now consider the family F1(T ) of
self-energy cluster obtained from T by detaching the exiting line 	T and reattaching it to
all nodes w ∈ N1, and by detaching the entering line 	′

T and reattaching it to all nodes
w ∈ N2. Consider also the family F2(T ) obtained from T by detaching the exiting line 	T

and reattaching it to all nodes w ∈ N2, and by detaching the entering line 	′
T then reat-

taching it to all nodes w ∈ N1. One can note that the product of the node factors of a
cluster T ′ ∈ F1(T ) differs from that of T only because of an extra factor −νvνw , where
v ∈ N1 is the node which 	T is attached to and w ∈ N2 is the node which 	′

T enters (again
we are considering together all self-energy clusters with the entering and exiting lines at-
tached to the same nodes, respectively). Indeed, detaching 	T from a node w1 ∈ N1 and
then reattaching it to w2 ∈ N1, some node factors of the nodes in N(P(w1,w2)) (we are
denoting by P(w1,w2) the path connecting w1,w2 and by N(P(w1,w2)) the set of nodes
connected by lines in P(w1,w2)) can change their sign since some lines can change their
direction (see Lemma 4.12). Of course if the components of a line 	 ∈ P(w1,w2) are
inverted, the corresponding propagator G	 = Ψn	

(x	)(x
2
	1 − M[n	−1](x	))

−1
e	,u	

is replaced
by Ψn	

(−x	)((−x	)
21 − M[n	−1](−x	))

−1
u	,e	

; thanks to Lemma 4.12, if e	 = u	 = β or
e	 = u	 ∈ {α1, . . . , αd} the propagator does not change when considering 	 as a line in T ′,
otherwise it changes its sign. But since one has u	T

, e	′
T

∈ {α1, . . . , αd}, then the number of
changes of sign (both in the node factors or in the propagators along P(w1,w2)) is even, so
that the overall product does not change sign.

Reasoning as above, we can conclude that the value of a cluster T ′′ ∈ F2(T ) differs from
that of T only because of a factor −νvνw , where v ∈ N1 is the node which 	′

T enters and
w ∈ N2 is the node which 	T exits.

No other changes are produced, except for the differentiated propagator which can
change sign: the sign changes for the clusters in F1(T ) while it remains the same for those
in F2(T ). Then by summing over all possible clusters in F1(T ) we obtain −ν1ν2 times a
common factor, while by summing over all possible clusters in F2(T ) we obtain ν1ν2 times
the same common factor, so that the overall sum gives zero. Hence (4.12a) is proved.

Now pass to (4.12b). Given a cluster T ∈ Rn,u,e with e ∈ {α1, . . . , αd} and u = β consider
all the self-energy clusters which can be obtained from T by detaching the entering line 	′

T
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(note that e	T
= e) and reattaching it to all the nodes v ∈ N(T ). Note that again some mo-

menta can change sign, but the corresponding propagators does not change (again reasoning
as done for the proof of Lemma 4.12 above). Hence we obtain a common factor times iνv ,
where v is the node which the exiting line is attached to, so that

∑
T VT (0) = 0.

To prove (4.12c) one simply notes that it follows from (4.12b) and (4.10c).
Finally, given a cluster T ∈ Rn,β,β , consider a contribution to ∂xVT (0) in which a line 	 is

differentiated (see (3.13)). The line 	 divides N(T ) into two disjoint sets of nodes N1 and N2

such that 	T exits a node v1 ∈ N1 and 	′
T enters a node v2 ∈ N2 i.e. N2 = {w ∈ N(T ) : w ≺ 	}

and N1 = N(T )\N2. Again, with the same notations as in (4.13), one has ν1 +ν2 = 0. Then
consider the cluster obtained by detaching the exiting line 	T from v1 and reattaching it to
the node v2, and, at the same time, by detaching the entering line 	′

T from v2 and reattaching
to the node v1: note that this new cluster again belongs to Rn,β,β . Due to this operation,
the directions of the line along the path connecting v1 to v2 are reversed, so that for such
lines the momentum ν	 is replaced with −ν	 but the product of the propagators times the
node factors does not change. This means that no overall change is produced, except for
the differentiated propagator which changes its sign. By summing over the two considered
clusters we obtain zero because of the change of sign of the differentiated propagator. Hence
the assertion follows. �

Remark 4.14 Lemma 4.13 is the counterpart of (3.17) for the renormalised self-energies.

Set Θ
R,n
k,ν,h = {θ ∈ ΘR

k,ν,h : n	 ≤ n for all 	 ∈ L(θ)} and define

F R,n(ε,β0) :=
∑
k≥0

εk
∑

θ∈Θ
R,n
k+1,0,α

VVV (θ),

GR,n(ε,β0) :=
∑
k≥0

εk
∑

θ∈Θ
R,n
k+1,0,β

V (θ).
(4.14)

Lemma 4.15 Assume (ε,β0) ∈ Sp . Then one has ε∂β0G
R,n(ε,β0) = M[n]

β,β(0) +
O(ε2e−C2mn+1

), for some positive constant C, for all n ≤ p.

The proof of the result above essentially follows the lines of the proof of Lemma 4.12
in [4] and Lemma 4.8 in [5]. In particular it does not depend on the Hamiltonian structure
of the equations of motion.

Remark 4.16 From Lemma 4.15 it follows that, if (ε,β0) ∈ S , one can define

M[∞](x) := lim
n→∞ M[n](x), GR(ε,β0) := lim

n→∞GR,n(ε,β0),

with GR,n(ε,β0) := (F R,n(ε,β0),G
R,n(ε,β0)) and one has

M[∞]
β,β (0) = ε∂β0G

R(ε,β0). (4.15)

Note that (4.15) is pretty much the same equality provided by Lemma 4.8 in [4], adapted to
the present case.

4.4 A Suitable Assumption: Bifurcation Equations

Here we shall see how to solve the bifurcation equations (2.2c) and (2.2d) under the assump-
tion that Property 1 is satisfied; again Property 1 assures that all quantities are well defined.
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We shall see that (2.2c) is automatically satisfied, while (2.2d) requires for β0 to be properly
chosen as a function of ε.

Lemma 4.17 For any (ε,β0) ∈ S one has F R(ε,β0) = 0.

Proof Consider a tree θ ∈ ΘR
k,0,αi

(that is a contribution to F
[k−1]
i (ε, β)) with root line

	θ such that u	θ
= αi (of course e	θ

= αi ), so that the propagator of the root line is 1.
Now consider all trees θ ′ obtained θ by detaching the root line 	θ and reattaching it to
all nodes v ∈ N(θ). By detaching 	θ from v ∈ N(θ) and reattaching it to another node
w ∈ N(θ), the lines 	 ∈ P(v,w) (we are using the same notation as in the proof of
Lemma 4.13) change their direction. In this case, given a node v1 ∈ N(P(v,w))\{v,w},
call 	v1 , 	

′
v1

∈ P(v,w) the lines exiting and entering v1 respectively. The node factor Fv1

does not change its sign if u	v1
= e	′

v1
= β or u	v1

, e	v2
∈ {α1, . . . , αd} when considering v1

as a node in θ ′, otherwise the sign of Fv1 changes. The node factor Fv does not change its
sign only if e	v ∈ {α1, . . . , αd}, while the node factor Fw does not change its sign only if
u	w ∈ {α1, . . . , αd}. Moreover, given a line 	 ∈ P(v,w), thanks to Lemma 4.12 the corre-
sponding propagator does not change its sign when one considers 	 as a line of θ ′ only if
e	 = u	 = β or e	, u	 ∈ {α1, . . . , αd}. Since one has u	θ

= αi then the number of changes
of sign, of both the propagators and of the node factors, is even, so that the overall product
does not change. But in this case, the value of θ ′ differs from the value of θ by a factor iνv ,
if v is the node which the root line is attached to. The sum of all such values is zero because∑

v∈N(θ) νv = 0.
Let us now consider a tree θ ∈ ΘR

k,0,αi
with u	θ

= αj with j �= i or u	θ
= β . In this case

the value of the tree is zero because the propagator of the root line is (1)e	θ
,u	θ

= 0. Of course
we can reason in the same way for any i = 1, . . . , d , therefore the assertion follows. �

Now consider the equation

GR(ε,β0) = 0. (4.16)

One cannot reason as in Lemma 4.17 above, because in principle there can be nonzero
terms since the first order: in such a case, we have to consider (4.16) as an implicit function
problem and fix β0 = β0(ε) in a suitable way.

Lemma 4.18 Assume that there exists ε̄ > 0 such that S = [−ε̄, ε̄] × T. Then there exist at
least two values β0 = β0(ε) such that (4.16) is satisfied for ε small enough.

Proof Thanks to the variational nature of the Hamilton equations, the function GR is the
β0-derivative of the average of the Lagrangian γ computed along the solution of the range
equations (see the comments at the end of Sect. 3). Under the assumption that Property 1
holds for all β0 ∈ T, γ is C∞ for any β0 ∈ T and hence it has at least two critical points. �

If Property 1 does not hold for all β0 ∈ T—or simply if this is not known—, we have to
reason in a different way. First of all, let us formally expand GR in power series in ε, by
writing GR(β0) = ∑

k≥0 εkGR(k)(β0). Note that GR(k)(β0) equals [∂βf (α, β)](k)

0 and hence
can be written as a sum over non-renormalised trees as in (3.6b).

If one has GR(k)(α0, β0) ≡ 0 for all k ≥ 0, then (4.16) is formally satisfied. Otherwise
the following condition makes sense.

Condition 2 Either GR(0)(β0) is not identically vanishing or there exists k0 ∈ N such that
GR(k)(β0) ≡ 0 for 0 ≤ k < k0, while GR(k0)(β0) is not identically vanishing.
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Remark 4.19 We know that GR(k0) is the derivative with respect to β0 of the time average of
the k0-th order Lagrangian γ (k0) computed along the formal solution. Since γ (k0) is analytic
and periodic in β0, and it is not identically constant, then it admits at least one maximum
and one minimum. In particular, for σ = ±, there exist β∗

0,σ ∈ T and nσ ∈ N, with nσ odd,
such that (σ1)k0+1∂

nσ
β0

GR(k0)(β∗
0,σ ) < 0.

Remark 4.20 Under Condition 2 we can write

GR(ε,β0) = εk0
(
GR(k0)(β0) + GR(>k0)(ε, β0)

)
,

where k0 ≥ 0 and GR(>k0)(ε, β0) = O(ε); hence we can solve the equation of motion up to
order k0 without fixing the parameter β0.

With the notations in (3.16), the condition that GR(ε,β0) identically vanishes to all or-
ders is equivalent to the condition that L (k)

β,β ≡ 0 for all k ≥ 1 (see comments at the end
of Sect. 3). Therefore the only condition left when neither Condition 1 nor Condition 2 are
satisfied is the following.

Condition 3 One has L (k)
β,β ≡ 0 for all k ≥ 1 and there exists i = 1, . . . , d and k1 ∈ N such

that D(k)
αi ,β

≡ 0 for k < k1 while D(k1)

αi ,β
does not vanishes identically.

Remark 4.21 If we take the formal expansion of the functions F R(ε,β0), GR(ε,β0) and
M[∞]

u,e (0), u, e ∈ {α1, . . . , αd, β}, we obtain the tree expansions of Sect. 3, where the self-
energy clusters are allowed. Then, as we have seen in Lemma 3.5, the identity (4.15) holds
to any perturbation order. If we assume Condition 2 we obtain

k0−1∑
k=1

εk
[

M[∞]
β,β (0)

](k) ≡ 0 �⇒
∣∣∣∣∣
k0−1∑
k=1

εk
[

M[n]
β,β(0)

](k)

∣∣∣∣∣ ≤ ε2A1 e−A22mn
, (4.17)

for some positive constants A1 (depending on k0) and A2. If Condition 3 is satisfied, then
(4.17) is satisfied for any (finite) k0, so that M[∞]

β,β (0) → 0 faster than any power as ε → 0;

moreover in such a case [∂x M[∞]
α,β (0)](k) ≡ 0 for all k = 1, . . . , k1 − 1 and

∣∣∣∣∣
k1−1∑
k=1

εk
[
∂x M[n]

α,β(0)
](k)

∣∣∣∣∣ ≤ ε2B1 e−B22mn
, (4.18)

for some positive constants B1 (depending on k1) and B2.

Assume Condition 2 and fix σ ∈ {±1}. Suppose for the time being S to be an open set
containing (0, β∗

0,σ ). Then, by reasoning as for Lemma 4.15 of [4], one can show that (i)
there exists a neighbourhood U of ε = 0 such that the implicit function equation (4.16)
admits in S a solution β0 = β0,σ (ε), with ε ∈ U and β0,σ (0) = β∗

0,σ ; (ii) for sign ε = σ1
one has ε∂β0G

R(ε,β0,σ (ε)) ≤ 0. Then for ε ∈ U , with sign ε = σ1, and β0 = β0,σ (ε), the
functions αR , βR in (4.7) are well defined and one has

F R(ε,β0) = [−∂αf
(
αR(t; ε,α0, β0), β

R(t; ε,α0, β0)
)]

0,

GR(ε,β0) = [
∂βf

(
αR(t; ε,α0, β0), β

R(t; ε,α0, β0)
)]

0,

and hence by Lemma 4.10 the functions αR(t; ε,α0, β0,σ (ε)) and βR(t; ε,α0, β0,σ (ε)) solve
the equation of motion (1.2). However, the argument above is not sufficient to prove the
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existence of a quasi-periodic solution with frequency ω, because we have assumed—without
proving—that Property 1 is satisfied on a non-empty open set. In Sect. 4.5 we shall show
that, thanks to the symmetry property of Lemma 4.13 and the identity of Lemma 4.15,
Property 1 is satisfied along a suitable curve β0 = β0(ε) such that GR(ε,β0(ε)) = 0 and
β0(ε) is continuous for ε �= 0. More precisely, we shall proceed by induction as follows.
Under Condition 3, assuming that Property 1-n holds for all n < p will imply, thanks to the
bounds and symmetry properties seen in the previous sections, that also Property 1-p holds.
The discussion of Condition 2 is more delicate: we shall need to introduce some auxiliary
quantities for which an analogous result is obtained and then show that this yields the same
result for the self-energies.

4.5 Convergence of the Resummed Series

First of all we recall that if we formally expand the resummed series, we obtain the same
formal expansion as in Sect. 3. In particular, either Condition 1 is satisfied—and hence we
can reason as in Sect. 3—or at least one among L (k)

β,β and D(k)
αi ,β

for i = 1, . . . , d is not
identically vanishing. Let us start from the case in which Condition 3 holds.

Lemma 4.22 Assume Condition 3. Then M satisfies Property 1 for all β0 ∈ T and ε small
enough.

Proof We shall prove that M satisfies Property 1-p for all p ≥ 0, by induction on p. Prop-
erty 1-0 is trivially satisfied for ε small enough. Indeed the matrix M[−1](x) defined in
(4.11) is the null matrix, so that G[0](x) = 1Ψ0(x)/x2, and hence ‖G[0](x)‖ ≤ c0/x

2(d+1), for
some constant c0 > 0. Assume that M satisfies Property 1-p. By Lemmas 4.8 and 4.13

M[p](x) =
(

0d 0

0 M[p]
β,β(0)

)
+ x

( 0d ∂x M[p]
α,β(0)

∂x M[p]
β,α(0) 0

)
+ O

(
ε2x2

)
.

We have to bound from below the determinant of the matrix x21 − M[p](x): we have

det
(
x21 − M[p](x)

) = x2d
(
x2 − (

M[p]
β,β(0) − ∣∣∂x M[p]

α,β(0)
∣∣2) + O

(
ε2x2

))
, (4.19)

so that we have to show that

M[p]
β,β(0) ≤ x2

2
+ ∣∣∂x M[p]

α,β(0)
∣∣2

, with x2 ≥ αmp+1(ω)2

28
.

Since

∣∣∂x M[p]
α,β(0)

∣∣ ≤
∣∣∣∣∣

k1∑
k=1

εk
[
∂x M[p]

α,β(0)
](k)

∣∣∣∣∣ + O
(
εk1+1

) ≤ ε2B1e−B22mp + O
(
εk1+1

)
,

and (use Remark 4.21 with k0 = 2k1 + 2)

∣∣M[p]
β,β(0)

∣∣ ≤
∣∣∣∣∣
2k1+2∑
k=1

εk
[

M[p]
β,β(0)

](k)

∣∣∣∣∣ + O
(
ε2k1+3

) ≤ ε2A1 e−A22mp + O
(
ε2k1+3

)
,

the assertion follows by the condition B(ω) < ∞. �

By Lemma 4.22 we can apply Lemma 4.18 and deduce, in the case of Condition 3, the
existence of at least two d-dimensional invariant tori. Therefore we are left with Condition 2.
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First of all, for all n ≥ 0, we define the C∞ non-decreasing functions ξn such that

ξn(x) :=
{

1, x ≤ αmn+1(ω)2/212,

0, x ≥ αmn+1(ω)2/211,
(4.20)

and set ξ−1(x) = 1. Define recursively, for all n ≥ 0, the regularised propagators

G[n]
(x) := Ψn(x)

(
x21 − M[n−1]

(x)ξn−1(Δn−1)
)−1

with M[−1]
(x) = M[−1](x) as given by (4.11) and, for all n ≥ 0,

M[n]
(x) := M[n−1]

(x) + χn(x)M
[n]

(x),

where we have set for all u, e ∈ {α1, . . . , αd, β},
M

[n]
u,e(x) :=

∑
T ∈Rn,u,e

εk(T )V T (x),

with

V T (x) :=
( ∏

v∈N(T )

Fv

)( ∏
	∈L(T )

G [n	]
e	,u	

(ω · ν	)

)

and

Δn−1 = Δn−1(ε,β0) := M[n−1]
β,β (0; ε,β0) −

k0−1∑
k=0

εk
[

M[n−1]
β,β (0; ε,β0)

](k)
.

Set also M := {M[n]
(x)}n≥−1 and Mξ := {M[n]

(x)ξn(Δn−1)}n≥−1.

Lemma 4.23 Mξ
satisfies Property 1 for ε small enough and any β0 ∈ T.

Proof We shall prove that Mξ
satisfies Property 1-p for all p ≥ 0, by induction on p.

Property 1-0 is trivially satisfied for ε small enough. Indeed the matrix M[−1]
(x) is self-

adjoint, so that also G[0]
(x) is self-adjoint and we can estimate its eigenvalues and conclude

‖G [0]
(x)‖ ≤ c̄0/x

2(d+1), for some c̄0 > 0. Assume then that Mξ
satisfies Property 1-p. Then

we can repeat almost word by word the proof of Lemmas 4.8 and 4.13, as done in [4, 5] so
as to obtain

M[p]
(x) =

(
0d 0

0 M[p]
β,β(0)

)
+ x

(
0d ∂x M[p]

α,β(0)

∂x M[p]
β,α(0) 0

)
+ O

(
ε2x2

)
. (4.21)

We have to bound from below the determinant of the matrix x21 − M[p]
(x)ξp(Δp). From

(4.21) it is easy to check that such determinant is

x2d
(
x2 − (

M[p]
β,β(0) − ∣∣∂x M[p]

α,β(0)
∣∣2)

ξp(Δp) + O
(
ε2x2

))
. (4.22)

Thanks to the definition of the functions ξp , since

k0−1∑
k=0

εk
[

M[p]
β,β(0)

](k) =
k0−1∑
k=0

εk
[

M[p]
β,β(0)

](k)

by Remark 4.21, one has

x2 − (
M[p]

β,β(0) − ∣∣∂x M[p]
α,β(0)

∣∣2)
ξp(Δp) ≥ x2 − (

M[p]
β,β(0)

)
ξp(Δp) ≥ x2

2
.
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Then ‖G [p+1]
(x)‖ ≤ c̄1/x

2(d+1), for some positive constant c̄1, that is Property 1-(p + 1)

with c2 = 2(d + 1) in Definition 4.4. �

Set

a[k]
ν (ε;α0, β0) :=

∑
θ∈ΘR

k,ν,α

VVV (θ), b
[k]
ν (ε;α0, β0) :=

∑
θ∈ΘR

k,ν,β

V (θ), ν �= 0, (4.23)

where, for θ = (θ1, . . . , θd) ∈ ΘR
k,ν,α we denoted VVV (θ) := (V (θ1), . . . ,V (θd)), and define

a(t; ε,α0, β0) =
∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωta[k]
ν , b(t; ε,α0, β0) =

∑
k≥1

εk
∑
ν∈Z

d∗

eiν·ωt b
[k]
ν ,

G(ε,β0) :=
∑
k≥0

εkG
(k)

(ε,β0) :=
∑
k≥0

εk
∑

θ∈ΘR
k+1,0,β

V (θ).
(4.24)

A result analogous to Lemma 4.9 holds and can be proved in the same way (see [4, 5]), so we
conclude that the series (4.24) converge. However, because of the presence of the functions
ξn, in principle no equivalent of Lemma 4.10 applies in this case. In other words, in general
the functions (4.24) are no longer solutions of the equations of motions, unless ξn(Δn) ≡ 1.
Therefore we would like to show that, for any ε small enough, it is possible to fix suitably
β0 = β0(ε) in such a way that ξn(Δn) be identically one.

Lemma 4.24 One has [G(ε,β0)](k) = [GR(ε,β0)](k) for all k = 0, . . . , k0.

Proof Set Θ
R(n)
k,ν,β := {θ ∈ Θ

R,n
k,ν,β : ∃	 ∈ L(θ) such that n	 = n} and write

G(ε,β0) =
∑
k≥0

εk
∑
n≥0

∑
θ∈Θ

R(n)
k+1,0,β

V (θ).

Note that if θ ∈ Θ
R(n)

k,0,β one has
∏

v∈N(θ) |Fv| ≤ Ek
1e−E22mn , for some constants E1,E2. More-

over one can write formally

G[n	]
(x) = Ψn	

(x)
1

x2

(
1 +

∑
m≥1

(
1

x2
M[n	−1]

(x)ξn	−1(Δn	−1)

)m)
,

and ξn	−1(Δn	−1) = 1 + ξ ′
n	−1(Δ

∗)Δn	−1 for some Δ∗, where Δn	−1 = O(εk0) and

∣∣ξ ′
n	−1(Δ

∗)
∣∣ ≤ E3

αmn	
(ω)2

≤ E3

αmn(ω)2
,

for some positive constant E3 independent of n. Hence the assertion follows. �

Define

M[∞]
(x) := lim

n→∞ M[n]
(x), (4.25)

and note that, by Lemma 4.23, the limit in (4.25) is well defined, and it is C∞ in both ε

and β0.
For σ = ± let us introduce the C∞ functions R(ε,β0) such that M[∞]

β,β (0) = ε∂β0R(ε,β0).
Note that R(ε,β0) = εk0Γ (ε,β0), with Γ (ε,β0) = GR(k0)(β0) + O(ε), so that Γ (0, β∗

0,σ ) =
0 and ∂

nσ
β0

Γσ (0, β∗
0,σ ) �= 0, with β∗

0,σ and nσ defined in Remark 4.19. For any of such function
consider the implicit function equation

R(ε,β0) = 0. (4.26)
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Lemma 4.25 Assume Condition 2. There exist a neighbourhood U of ε = 0 and, for ε ∈ U ,
a solution β0 = β0(ε) to the implicit function equation (4.26), such that

lim
ε→0σ

β0(ε) = β∗
0,σ , σ = ±, ε∂β0R(ε,β0(ε)) ≤ 0.

Moreover β0(ε) is continuous in U for k0 odd and in U \ {0} for k0 even.

Proof By construction, all the functions Γ (ε,β0) are smooth for β0 ∈ T and ε small
enough. Then there exist two half-neighbourhoods Vσ,− and Vσ,+ of β0 = β∗

0,σ such that
Γ (0, β0) > 0 for β0 ∈ Vσ,+ and Γ (0, β0) < 0 for β0 ∈ Vσ,−. By continuity, there exist a
neighbourhood Uσ = (−ε̄σ , ε̄σ ) and a continuous curve β0,σ (ε) such that β0,σ (0) = β∗

0,σ

and Γ (ε,β0,σ (ε)) ≡ 0 for ε ∈ Uσ . Moreover if ∂
nσ
β0

GR(k0)(β∗
0,σ ) > 0, then Vσ,+ and Vσ,− are

of the form (β∗
0,σ , vσ,+) and (vσ,−, β∗

0,σ ), respectively, and therefore ∂β0Γ (ε,β0,σ (ε)) ≥ 0
for all ε ∈ Uσ . If on the contrary ∂

nσ
β0

GR(k0)(β∗
0,σ ) < 0, one has Vσ,+ = (v+, β∗

0,σ ) and
Vσ,− = (β∗

0,σ , v−), and then ∂β0Γ (ε,β0,σ (ε)) ≤ 0 for all ε ∈ Uσ .
If k0 is odd, then β∗

0,+ = β∗
0,− and hence one can take β0(ε) = β0,+(ε) = β0,−(ε) in such

a way that it is a continuous function of ε ∈ U+ = U−. If k0 is even, then one has β0(ε) =
β0,+(ε) for ε > 0 and β0(ε) = β0,−(ε) for ε < 0, so that β0(ε) has a discontinuity at ε = 0. �

Lemma 4.26 Assume Condition 2. Let U and β0(ε) be the neighbourhood and the solution
referred to in Lemma 4.25, respectively. Then whenever ε ∈ U and β0 = β0(ε), one has
ξn(Δn) ≡ 1 for all n ≥ 0.

Proof By Lemma 4.25, for ε ∈ U and β0 = β0(ε), one has M[∞]
β,β (0) = ε∂β0R(ε,β0(ε)).

Hence, since the matrices M
[n]

(x) satisfy bounds analogous to those in Lemma 4.6, possibly
renaming the constants, one has for β = β0(ε)

M[n]
β,β(0) −

k0−1∑
k=1

εk
[

M[n]
β,β(0)

](k) ≤ M[n]
β,β(0) − M[∞]

β,β (0) + ε2 A1e−A22mn+1

≤
∑

p≥n+1

∣∣M [p]
β,β(0)

∣∣ + ε2A1e−A22mn+1

≤ 2K0ε
2e−K02mn+1 + ε2A1e−A22mn+1

≤ α2
mn+1

(ω)

213
,

so the assertion follows by the definition of ξn. �

The following result concludes the proof of the existence of an invariant d-dimensional
torus under Condition 2.

Lemma 4.27 Assume Condition 2 and let β0(ε) be as in Lemma 4.25. One can choose the
function R(ε,β0) such that R(ε,β0(ε)) = GR(ε,β0(ε)) ≡ 0, where

GR(
ε,β0(ε)

) := lim
n→∞GR,n

(
ε,β0(ε)

)

and the functions GR,n are defined in (4.14). In particular (α(t, ε), β(t, ε)) = (α0 +
ωt, β0(ε)) + (aR(t; ε,α0, β0(ε)), b

R(t; ε,α0, β0(ε))) defined in (4.7) solves the equation
of motion (1.2).
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Proof It follows from the results above. Indeed, for any primitive R there is a curve β0(ε)

along which M = M = Mξ
(hence M satisfies Property 1) and R(ε;β0(ε)) ≡ 0. By

Lemma 4.15 and the fact that M satisfies Property 1, also GR is among the primitives
of M[∞]

β,β and hence the assertion follows. �

Remark 4.28 If one considers a convex unperturbed Hamiltonian, e.g. with a plus sign in-
stead of the minus sign in (1.1), one can try to proceed in the same way. Some parts of the
construction simplify: for instance, the self-energies M(k)(x, n) turn out to be self-adjoint
and (M(k)(x, n))T = M(k)(−x,n). On the other hand, when dealing with Conditions 2
and 3, one has to bound from below determinants which have the form (4.22) or (4.19),
respectively, with the major difference that a sign plus appears in front of the squared term;
for instance (4.19) becomes

x2d
(
x2 − (

M[p]
β,β(0) + ∣∣∂x M[p]

α,β(0)
∣∣2) + O

(
ε2x2

))
.

Then information on the sign of M[p]
β,β(0) is not enough to control the corrections to x2 and

hence no lower bound follows for the determinant. Therefore in order to recover Cheng’s
result further cancellations seem to be necessary. In turn this means that one should expect
other symmetries to hold for the self-energies.

Acknowledgements We are indebted to Pavel Plotnikov for useful discussions.
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