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Abstract

We prove the existence of almost-periodic solutions for quasi-linear perturbations of the
Airy equation. This is the first result about the existence of this type of solutions for a quasi-
linear PDE. The solutions turn out to be analytic in time and space. To prove our result
we use a Craig-Wayne approach combined with a KAM reducibility scheme and pseudo-
differential calculus on T∞.
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1 Introduction

In this paper we study response solutions for almost-periodically forced quasilinear PDEs close
to an elliptic fixed point.

The problem of response solutions for PDEs has been widely studied in many contexts,
starting from the papers [24, 25], where the Author considers a periodically forced PDE with
dissipation. In the presence of dissipation, of course there is no small divisors problem. However
as soon as the dissipation is removed, small divisors appear even in the easiest possible case of
a periodic forcing when the spacial variable is one dimensional.

The first results of this type in absence of dissipation were obtained by means of a KAM
approach [16, 17, 18, 28, 22, 19]. However, a more functional approach, via a combination of
a Ljapunov-Schmidt reduction and a Newton scheme, in the spirit of [24, 25], was proposed by
Craig-Wayne [14], and then generalized in many ways by Bourgain; see for instance [5, 6, 7] to
mention a few. All the results mentioned above concern semi-linear PDEs and the forcing is
quasi-periodic.

In more recent times, the Craig-Wayne-Bourgain approach has been fruitfully used and
generalized in order to cover quasi-linear and fully nonlinear PDEs, again in the quasi-periodic
case; see for instance [1, 15, 12, 2].

Regarding the almost-periodic case, most of the classical results are obtained via a KAM-
like approach; see for instance [10, 23, 9]. A notable exception is [8], where the Craig-Wayne-
Bourgain method is used. More recently there have been results such as [26, 27, 20], which use
a KAM approach. We mention also [29, 11, 3, 4] which however are tailored for an autonomous
PDE.

All the aforementioned results, concern semi-linear PDEs, with no derivative in the nonlin-
earity. Moreover they require a very strong analyticity condition on the forcing term. Indeed
the difficulty of proving the existence of almost-periodic response solution is strongly related to
the regularity of the forcing, since one can see an almost periodic function as the limit of quasi-
periodic ones with an increasing number of frequencies. If such limit is reached sufficiently fast,
the most direct strategy would be to iteratively find approximate quasi-periodic response solu-
tions and then take the limit. This is the overall strategy of [23] and [26, 27, 20]. However this
procedure works if one considers a sufficiently regular forcing term and a bounded nonlinearity,
but becomes very delicate in the case of unbounded nonlinearities.

In the present paper we study the existence of almost-periodic response solutions, for a
quasi-linear PDE on T. To the best of our knowledge this is the first result of this type.
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Specifically we consider a quasi-linear Airy equation

∂tu+ ∂xxxu+Q(u, ux, uxx, uxxx) + f(t, x) = 0, x ∈ T := (R/(2πZ)) (1.1)

where Q is a Hamiltonian, quadratic nonlinearity and f is an analytic forcing term with zero
average w.r.t. x. We assume f to be “almost-periodic” with frequency ω ∈ `∞, in the sense of
Definition 1.1.

We mention that in the context of reducibility of linear PDEs a problem of this kind has
been solved in [21]. Our aim is to provide a link between the linear techniques of [21] and the
nonlinear Craig-Wayne-Bourgain method. Note that such a link is nontrivial, and requires a
delicate handling; see below.

The overall setting we use is the one of [1]. However their strategy is taylored for Sobolev
regularity; the quasi-periodic analytic case has been covered in [13]. Unfortunately the ideas of
[13] cannot be directly applied in the almost-periodic case. Roughly, it is well known that the
regularity and the small-divisor problem conflict. Thus, in the almost-periodic case one expect
this issue to be even more dramatic. Specifically, we were not able to define a “Sobolev” norm
for almost-periodic functions, satisfying the interpolation estimates needed in the Nash-Moser
scheme; this is why we cannot use the theorem of [13].

Let us now present our main result in a more detailed way.

First of all we note that (1.1) is an Hamiltonian PDE whose Hamiltonian is given by

H(u) :=
1

2

∫
T

u2
xdx−

1

6

∫
T

G(u, ux) dx−
∫
T

F (t, x)udx, f(t, x) = ∂xF (t, x) (1.2)

where G(u, ux) is a cubic Hamiltonian density of the form

G(u, ux) := c3u
3
x + c2uu

2
x + c1u

2ux + c0u
3, c0, . . . , c3 ∈ R (1.3)

and the symplectic structure is given by J = ∂x. The Hamiltonian nonlinearity Q(u, . . . , uxxx)
is therefore given by

Q(u, ux, uxx, uxxx) = ∂xx(∂uxG(u, ux))− ∂x(∂uG(u, ux)) (1.4)

and the Hamilton equations are
∂tu = ∂x∇uH(u) .

We look for an almost-periodic solution to (1.1) with frequency ω in the sense below.

For η > 0, define the set of infinite integer vectors with finite support as

Z∞∗ :=
{
` ∈ ZN : |`|η :=

∑
i∈N

iη|`i| <∞
}
. (1.5)

Note that `i 6= 0 only for finitely many indices i ∈ N. In particular Z∞∗ does not depend on η.
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Definition 1.1. Given ω ∈ [1, 2]N with rationally independent components1 and a Banach space
(X, | · |X), we say that F (t) : R → X is almost-periodic in time with frequency ω and analytic
in the strip σ > 0 if we may write it in totally convergent Fourier series

F (t) =
∑
`∈Z∞∗

F (`)ei`·ωt such that F (`) ∈ X , ∀` ∈ Z∞∗

and |F |σ :=
∑
`∈Z∞∗

|F (`)|Xeσ|`|η <∞.

We shall be particularly interested in almost-periodic functions where X = H0(Tσ)

H0(Tσ) :=
{
u =

∑
j∈Z\{0}

uje
ijx , uj = ū−j ∈ C : |u|H(Tσ) :=

∑
j∈Z\{0}

|uj |eσ|j| <∞
}

is the space of analytic, real on real functions Ts → C with zero-average, where Ts := {ϕ ∈ C :
Re(ϕ) ∈ T, |Im(ϕ)| ≤ s} is the thickened torus. We recall that a function u : Ts → C is real on
real if for any x ∈ T, u(x) ∈ R.

Of course we need some kind of Diophantine condition on ω. We give the following, taken
from [9, 21].

Definition 1.2. Given γ ∈ (0, 1), we denote by Dγ the set of Diophantine frequencies

Dγ :=

{
ω ∈ [1, 2]N : |ω · `| > γ

∏
i∈N

1

(1 + |`i|2i2)
, ∀` ∈ Z∞∗ \ {0}

}
. (1.6)

We are now ready to state our main result.

Theorem 1.3 (Main Theorem). Fix γ. Assume that f in (1.1) is almost-periodic in time and
analytic in a strip S (both in time and space). Fix s < S. If f has an appropriately small norm
depending on S − s, namely

|f|S :=
∑
`∈Z∞∗

|f(`)|H0(TS)e
S|`|η ≤ ε(S − s)� 1, ε(0) = 0, (1.7)

then there is a Cantor-like set O(∞) ⊆ Dγ with positive Lebesgue measure, and for all ω ∈ O(∞)

a solution to (1.1) which is almost-periodic in time with frequency ω and analytic in a strip s
(both in time and space).

Remark 1.4. Of course the same result holds verbatim if we replace the quadratic polynomial
Q by a polinomial of arbitrary degree. We could also assume that the coefficients cj appearing in
(1.4) depend on x and ωt. In that case Theorem 1.3 holds provided we further require a condition
of the type supj |∂2

xcj |S ≤ C. Actually one could also take Q to be an analytic function with
a zero of order two. However this leads to a number of long and non particularly enlightening
calculations.

1We say that ω has rationally independent components if for anyN > 0 and any k ∈ ZN one has
∑N
i=1 ωiki 6= 0.
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To prove Theorem 1.3 we proceed as follows. First of all we regard (1.1) as a functional Im-
plicit Function Problem on some appropriate space of functions defined on an infinite dimensional
torus; see Definition 2.1 below. Then in Section 3 we prove an iterative “Nash-Moser-KAM”
scheme to produce the solution of such Implicit Function Problem. It is well known that an
iterative rapidly converging scheme heavily relies on a careful control on the invertibility of the
linearized operator at any approximate solution. Of course, in the case of a quasi-linear PDE this
amounts to study an unbounded non-constant coefficients operator. To deal with this problem,
at each step we introduce a change of variables Tn which diagonalizes the highest order terms
of the linearized operator. An interesting feature is that Tn preserves the PDE structure. As in
[13] and differently from the classical papers, at each step we apply the change of variables Tn
to the whole nonlinear operator. This is not a merely technical issue. Indeed, the norms we use
are strongly coordinate-depending, and the change of variable Tn that we need to apply are not
close-to-identity, in the sense that Tn − Id is not a bounded operator small in size.

In Section 4 we show how to construct the change of variables Tn satisfying the properties
above. Then in order to prove the invertibility of the linearized operator after the change of
variables Tn is applied, one needs to perform a reducibility scheme: this is done in Section 5.
For a more detailed description of the technical aspects see Remark 3.2.

Acknowledgements. Riccardo Montalto is supported by INDAM-GNFM.

2 Functional setting

As it is habitual in the theory of quasi-periodic functions we shall study almost periodic functions
in the context of analytic functions on an infinite dimensional torus. To this purpose, for η, s > 0,
we define the thickened infinite dimensional torus T∞s as

ϕ = (ϕi)i∈N , ϕi ∈ C : Re(ϕi) ∈ T , |Im(ϕi)| ≤ s〈i〉η .

Given a Banach space (X, | · |X) we consider the space F of pointwise absolutely convergent
formal Fourier series T∞s → X

u(ϕ) =
∑
`∈Z∞∗

u(`)ei`·ϕ , u(`) ∈ X (2.1)

and define the analytic functions as follows.

Definition 2.1. Given a Banach space (X, | · |X) and s > 0, we define the space of analytic
functions T∞s → X as the subspace

H(T∞s , X) :=
{
u(ϕ) =

∑
`∈Z∞∗

u(`)ei`·ϕ ∈ F : |u|s :=
∑
`∈Z∞∗

es|`|η |u(`)|X <∞
}
.

We denote by Hs the subspace of H(T∞s ,H0(Ts)) of the functions which are real on real.
Moreover, we denote by H(T∞s × Ts), the space of analytic functions T∞s × Ts → C which
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are real on real. The space Hs can be identified with the subspace of zero-average functions of
H(T∞s ×Ts). Indeed if u ∈ Hs, then

u =
∑
`∈Z∞∗

u(`, x)ei`·ϕ =
∑

(`,j)∈Z∞∗ ×Z\{0}

uj(`)e
i`·ϕ+ijx,

with uj(`) = u−j(−`)

For any u ∈ H(T∞s ×Ts) let us denote

(π0u)(ϕ, x) := 〈u(ϕ, ·)〉x :=
1

2π

∫
T

u(ϕ, x) dx, π⊥0 := 1− π0 . (2.2)

Throughout the algorithm we shall need to control the Lipschitz variation w.r.t. ω of func-
tions in some H(T∞s , X), which are defined for ω in some Cantor set. Thus, for O ⊂ O(0) we
introduce the following norm.

Parameter dependence. Let Y be a Banach space and γ ∈ (0, 1). If f : Ω→ Y , Ω ⊆ [1, 2]N

is a Lipschitz function we define

|f |sup
Y := sup

ω∈Ω
|f(ω)|Y , |f |lipY := sup

ω1,ω2∈Ω
ω1 6=ω2

|f(ω1)− f(ω2)|Y
|ω1 − ω2|∞

,

|f |ΩY := |f |sup
Y + γ|f |lipY .

(2.3)

If Y = Hs we simply write | · |sup
σ , | · |lipσ , | · |Ωσ . If Y is a finite dimensional space, we write | · |sup,

| · |lip, | · |Ω.

Linear operators. For any σ > 0, m ∈ R we define the class of linear operators of order m
(densely defined on L2(T)) Bσ,m as

Bσ,m :=
{
R : L2(T)→ L2(T) : ‖R‖Bσ,m <∞

}
where

‖R‖Bσ,m := sup
j′∈Z\{0}

∑
j∈Z\{0}

eσ|j−j
′||Rj

′

j |〈j
′〉−m . (2.4)

and for T ∈ H(T∞σ ,Bσ,m) we set

‖T ‖σ,m :=
∑
`∈Z∞∗

eσ|`|η‖T (`)‖Bσ,m . (2.5)

In particular we shall denote by ‖ · ‖Ωσ,m the corresponding Lipshitz norm. Moreover if m = 0

we shall drop it, and write simply ‖ · ‖σ or ‖ · ‖Ωσ .
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3 The iterative scheme

Let us rewrite (1.1) as
F0(u) = 0 (3.1)

where
F0(u) := (ω · ∂ϕ + ∂xxx)u+Q(u, ux, uxx, uxxx) + f(ϕ, x) (3.2)

where we f(t, x) = f(ωt, x) and , as custumary the unknown u is a function of (ϕ, x) ∈ T∞×T.

We introduce the (Taylor) notation

L0 := (ω · ∂ϕ + ∂xxx) = F ′0(0), f0 = F0(0) = f(ϕ, x),

Q0(u) = Q(u, ux, uxx, uxxx)
(1.4)
= ∂xx

(
3c3u

2
x + 2c2uux + c1u

2
)

− ∂x(c2u
2
x + 2c1uux + 3c0u

2)

(3.3)

so that (3.1) reads
f0 + L0u+Q0(u) = 0.

Note that Q0 is of the form

Q0(u) =
∑

0≤i≤2, 0≤j≤3
0≤i+j≤4

q
(0)
i,j (∂ixu)(∂jxu) (3.4)

with the coefficients q
(0)
i,j satisfying ∑

0≤i≤2, 0≤j≤3
0≤i+j≤4

|q(0)
i,j | ≤ C , (3.5)

where the constant C depends clearly on |c0|, . . . , |c3|. In particular, this implies that for all
u ∈ Hs one has the following.

Q1. |Q0(u)|s−σ . σ−4|u|2s

Q2. |Q′0(u)[h]|s−σ . σ−4|u|s|h|s

We now fix the constants

µ > max{1, 1

η
} ,

γ0 <
1

2
γ, γn := (1− 2−n)γn−1 , n ≥ 1

σ−1 :=
1

8
min{(S − s), 1} , σn−1 =

6σ−1

π2n2
, n ≥ 1 ,

s0 = S − σ−1 , sn = sn−1 − 6σn−1, n ≥ 1,

εn := ε0e
−χn , χ =

3

2
,

(3.6)
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where ε0 is such that

eC0σ
−µ
−1 |f |S = eC0σ

−µ
−1 |f0|S � ε0. (3.7)

Introduce
d(`) :=

∏
i∈N

(1 + |`i|5〈i〉5), ∀` ∈ Z∞∗ . (3.8)

We also set O(−1) := Dγ and

O(0) :=

{
ω ∈ Dγ : |ω · `+ j3| ≥ γ0

d(`)
, ∀` ∈ Z∞∗ , j ∈ N , (`, j) 6= (0, 0)

}
. (3.9)

Proposition 3.1. There exists τ, τ1, τ2, τ3, C, ε0 (pure numbers) such that for

ε0 ≤ στ0e−Cσ
−µ
0 ε0 , (3.10)

for all n ≥ 1 the following hold.

1. There exist a sequence of Cantor sets O(n) ⊆ O(n−1), n ≥ 1 such that

P(O(n−1) \ O(n)) .
γ0

n2
. (3.11)

2. For n ≥ 1, there exists a sequence of linear, invertible, bounded and symplectic changes of
variables defined for ω ∈ O(n−1), of the form

Tnv(ϕ, x) = (1 + ξ(n)
x )v(ϕ+ ωβ(n)(ϕ), x+ ξ(n)(ϕ, x) + p(n)(ϕ)) (3.12)

satisfying

|ξ(n)|O(n−1)

sn−1−σn−1
, |β(n)|O(n−1)

sn−1−σn−1
, |p(n)|O(n−1)

sn−1−σn−1
. σ−τ1n−1εn−1e

Cσ−µn−1 , (3.13)

for some constant C > 0.

3. For n ≥ 0, there exists a sequence of functionals Fn(u) ≡ Fn(ω, u(ω)), defined for ω ∈
O(n−1), of the form

Fn(u) = fn + Lnu+Qn(u), (3.14)

such that

(a) Ln is invertible for ω ∈ O(n) and setting

hn := −L−1
n fn, (3.15)

there exists rn = rn(ϕ) ∈ H(T∞sn−1−3σn−1
) such that

Fn(u) = rnT
−1
n Fn−1(hn−1 + Tku), n ≥ 1,

|rn − 1|O(n−1)

sn−1−3σn−1
≤ σ−τ2n−1e

Cσ−µn−1εn−1

(3.16)

8



(b) fn = fn(ϕ, x) is a given function satisfying

|fn|O
(n−1)

sn−1−2σn−1
. σ−4

n−1ε
2
n−1, n ≥ 1 (3.17)

(c) Ln is a linear operator of the form

Ln = ω · ∂ϕ + (1 +An)∂xxx +Bn(ϕ, x)∂x + Cn(ϕ, x) (3.18)

such that
1

2π

∫
T

Bn(ϕ, x)dx = bn (3.19)

and for n ≥ 1

|An −An−1|O
(n−1) ≤ σ−τ2n−1e

Cσ−µn−1εn−1,

|Bn −Bn−1|O
(n−1)

sn−1−3σn−1
. σ−τ2n−1e

Cσ−µn−1εn−1

|Cn − Cn−1|O
(n−1)

sn−1−3σn−1
. σ−τ2n−1e

Cσ−µn−1εn−1 .

(3.20)

(d) Qn is of the form

Qn(u) =
∑

0≤i≤2, 0≤j≤3
0≤i+j≤4

q
(n)
i,j (ϕ, x)(∂ixu)(∂jxu) (3.21)

with the coefficients q
(n)
i,j (ϕ, x) satisfying (3.5) for n = 0, while for n ≥ 1

∑
0≤i≤2, 0≤j≤3

0≤i+j≤4

|q(n)
i,j |
O(n−1)

sn−1−3σn−1
≤ C

n∑
l=1

2−l ,

|q(n)
i,j − q

(n−1)
i,j |O(n−1)

sn−1−3σn−1
. σ−τ3n−1e

Cσ−µn−1εn−1 .

(3.22)

4. Finally one has

|hn|O
(n)

sn ≤ εn (3.23)

Moreover, setting

O(∞) :=
⋂
n≥0

O(n), (3.24)

and

un = h0 +

n∑
j=1

T1 ◦ . . . ◦ Tjhj . (3.25)

then
u∞ := lim

n→∞
un

is well defined for ω ∈ O(∞), belongs to Hs, and solves F (u∞) = 0. Finally the O(∞) has positive
measure; precisely

P(O(∞)) = 1−O(γ0) . (3.26)
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From Proposition 3.1 our main result Theorem 1.3 follows immediately by noting that (3.7)
and (3.10) follow from (1.7) for an appropriate choice ε(S − s).

Remark 3.2. Let us spend few words on the strategy of the algorithm. At each step we apply
an affine change of variables translating the approximate solution to zero; the translation is not
particularly relevant and we perform it only to simplify the notation. On the other hand the
linear change of variables is crucial.

In (3.14) we denote by fn the “constant term”, by Ln is the “linearized” term and by Qn the
“quadratic” part. In this way the approximate solution at the n-th step is hn = −L−1

n fn.

In a classical KAM algorithm, in order to invert Ln one typically applies a linear change of
variables that diagonalizes Ln; this, together with the translation by hn is the affine change of
variables mentioned above, at least in the classical KAM scheme.

Unfortunately, in the case of unbounded nonlinearities this cannot be done. Indeed in order
to diagonalize Ln in the unbounded case, one needs it to be a pseudo-differential operator. On
the other hand, after the diagonalization is performed, one loses the pseudo-differential structure
for the subsequent step. Thus we chose the operators Tn in (3.12) in such a way that we preserve
the PDE structure and at the same time we diagonalize the highest order terms.

In the [1]-like algorithm the Authors do not apply any change of variables, but they use
the reducibility of Ln only in order to deduce the estimates. However such a procedure works
only in Sobolev class. Indeed in the analytic case, at each iterative step one needs to lose some
analyticity, due to the small divisors. Since we are studying almost-periodic solutions, we need
the analytic setting to deal with the small divisors. As usual, the problem is that the loss of the
analyticity is related to the size of the perturbation; in the present case, at each step Ln is a
diagonal term plus a perturbation O(ε0) with the same ε0 for all n.

A more refined approach is to consider Ln as a small variation of Ln−1; however the problem
is that such small variation is unbounded. As a consequence, the operators Tn are not “close-to-
identity”. However, since Fn is a differential operator, then the effect of applying Tn is simply a
slight modification of the coefficients; see (3.20) and (3.22). Hence there is a strong motivation
for applying the operators Tn. In principle we could have also diagonalized the terms up to order
−k for any k ≥ 0; however the latter change of variables are close to the identity and they
introduce pseudo-differential terms.

3.1 The zero-th step

Item 1., 2. are trivial for n = 0 while item 3.(b), (c), (d) amount to the definition of F0, see
(3.2),(3.3),(3.4). Regarding item 3.(a) the invertibility of L0 follows from the definition of O(0).
Indeed, consider the equation

L0h0 = −f0 (3.27)

with
〈f0(ϕ, ·)〉x = 0

we have the following result.
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Lemma 3.3 (Homological equation). Let s > 0, 0 < σ < 1, f0 ∈ Hs+σ, ω ∈ O(0) (see (1.6)).
Then there exists a unique solution h0 ∈ Hs of (3.27) . Moreover one has

|h0|O
(0)

s . γ−1exp
( τ

σ
1
η

ln
( τ
σ

))
|f |s+σ .

for some constant τ = τ(η) > 0.

Remark 3.4. Note that from Lemma 3.3 above it follows that there is C0 such that a solution
h0 of (3.27) actually satisfies

|h0|O
(0)

s . eC0σ
−µ |f |s+σ . (3.28)

where we recall that by (3.6), µ > max{1, 1
η}. Of course the constant C0 is correlated with the

correction to the exponent 1
η .

From Lemma 3.3 and (3.27) it follows that h0 is analytic in a strip s0 (where S = s0 + σ−1

is the analyticity of f , to be chosen). Moreover, by Lemma 3.3 the size of h0 is

|h0|O
(0)

s0 ∼ eC0σ
−µ
−1 |f0|S (3.29)

proving item 4. for |f0|S small enough, which is true by (3.7).

3.2 The n+ 1-th step

Assume now that we iterated the procedure above up to n ≥ 0 times. This means that we
arrived at a quadratic equation

Fn(u) = 0, Fn(u) = fn + Lnu+Qn(u). (3.30)

Defined on O(n−1) (recall that O(−1) = Dγ).

By the inductive hypothesis (3.22) we deduce that for all 0 < s− σ < sn−1− 3σn−1 one has

|Qn(u)|O(n−1)

s−σ . σ−4(|u|O(n−1)

s )2 (3.31a)

|Q′n(u)[h]|O(n−1)

s−σ . σ−4|u|O(n−1)

s |h|O(n−1)

s (3.31b)

Moreover, again by the inductive hypothesis, we can invert Ln and define hn by (3.15). Now
we set

Fn+1(v) = rn+1T
−1
n+1Fn(hn + Tn+1v) (3.32)

where

Tn+1v(ϕ, x) = (1 + ξ(n+1)
x )v(ϕ+ ωβ(n+1)(ϕ), x+ ξ(n+1)(ϕ, x) + p(n+1)(ϕ)) (3.33)

and rn+1 are to be chosen in order to ensure that Ln+1 := F ′n+1(0) has the form (3.18) with
n n+ 1.
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Of course by Taylor expansion we can identify

fn+1 = rn+1T
−1
n+1(fn + Ln(hn) +Qn(hn)) = rn+1T

−1
n+1Qn(hn) ,

Ln+1 = rn+1T
−1
n+1(Ln +Q′n(hn))Tn+1

Qn+1(v) = rn+1(T−1
n+1(Qn(hn + Tn+1v)−Qn(hn)−Q′n(hn)Tn+1v))

= rn+1T
−1
n+1Qn(Tn+1v) .

(3.34)

Remark 3.5. Note that the last equality in (3.34) follows from the fact that the nonlinearity Q
in (1.1) is quadratic. In the general case, the last term is controlled by the second derivative,
and thus one has to assume a bound of the type (3.31) for Q′′.

In section 4 we prove the following

Proposition 3.6. Assuming that

εn ≤ στ1+1
n e−Cσ

−µ
n (3.35)

for some C > 0, there exist ξ(n+1), β(n+1), p(n+1) and rn+1 ∈ H(T∞sn−σn × Tsn−σn), defined for

all ω ∈ O(n) and satisfying

|ξ(n+1)|O(n)

sn−σn , |β
(n+1)|O(n)

sn−σn , |p
(n+1)|O(n)

sn−σn , |rn+1 − 1|O(n)

sn−σn . σ
−τ1
n εne

Cσ−µn (3.36)

such that (3.33) is well defined and symplectic as well as its inverse, and moreover

rn+1T
−1
n+1(Ln +Q′n(hn))Tn+1 = ω · ∂ϕ + (1 +An+1)∂xxx +Bn+1(ϕ, x)∂x + Cn+1(ϕ, x) (3.37)

and (3.19) and (3.20) hold with n n+ 1.

The assumption (3.35) follows from (3.10), provided that we choose the constants τ, C and
ε0 appropriately.

We now prove (3.21) and (3.22) for n n+ 1, namely the following result.

Lemma 3.7. One has

Qn+1(v) = rn+1T
−1
n+1Qn(Tn+1v) = rn+1

∑
0≤i≤2, 0≤j≤3

0≤i+j≤4

q
(n+1)
i,j (ϕ, x)(∂ixv)(∂jxv) (3.38)

with the coefficients q
(n+1)
i,j (ϕ, x) satisfying

∑
0≤i≤2, 0≤j≤3

0≤i+j≤4

|q(n+1)
i,j |O(n)

sn−3σn ≤ C
n+1∑
l=1

2−l ,

|q(n+1)
i,j − q(n)

i,j |
O(n)

sn−3σn . σ
−τ3
n eCσ

−µ
n εn .

(3.39)
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Proof. By construction

Qn+1(u) = rn+1

∑
0≤i≤2, 0≤j≤3

0≤i+j≤4

T−1
n+1[q

(n)
i,j (ϕ, x)(∂ixTn+1v)(∂jxTn+1v)]. (3.40)

Now we first note that

∂x(Tn+1v) = ξ(n+1)
xx v(θ, y) + (1 + ξx)2vy(θ, y)

where
(θ, y) = (ϕ+ ωβ(n+1)(ϕ), x+ ξ(n+1)(ϕ, x) + p(n+1)(ϕ)).

Hence the terms ∂ixTn+1v are of the form

∂ixTn+1v = ∂iyv(θ, y) +

i∑
l=0

gl,i(ϕ, x)∂lyv(θ, y), |gl,i|O
(n)

sn−2σn . σ
−(i+2)
n |ξ(n+1)|O(n)

sn−σn (3.41)

Inserting (3.41) into (3.40) we get

q
(n+1)
l,m = rn+1

T−1
n+1q

(n)
l,m +

4∑
j=0

T−1
n+1(q

(n)
l,j gm,j) +

4∑
i=0

T−1
n+1(q

(n)
i,mgl,i)

+
∑

0≤i≤2, 0≤j≤3
0≤i+j≤4

T−1
n+1(q

(n)
i,j gl,igm,j)


(3.42)

so that
q

(n+1)
i,j = T−1

n+1(q
(n)
i,j +O(ξn+1)), |T−1

n+1O(ξn+1)|O(n)

sn−3σn . σ
−τ3
n εne

Cσµn . (3.43)

In order to obtain the bound (3.43) we used the first line of (3.22) to control the sums appearing
in (3.42).

Finally , since
T−1
n+1(q)− q := (1 + ξ̃(n+1)

x )q(ϕ, x)− q(θ, y)

the bound follows.

Now, by (3.31a) and (3.34) fn+1 = fn+1(ϕ, x) satisfies

|fn+1|O
(n)

sn−2σn . σ
−4
n ε2

n. (3.44)

In Section 5 we prove the existence of a Cantor set O(n+1) where item 3.(a) of the iterative
lemma holds with n n+ 1.
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Proposition 3.8. Assume that

2nσ−τn eCσ
−µ
n εn � 1 , (3.45)

with τ ≥ τ2. Setting λ
(n+1)
3 := 1 +An+1, there exist Lipschitz functions

Ω(n+1)(j) = λ
(n+1)
3 j3 + λ

(n+1)
1 j + r

(n+1)
j (3.46)

satisfying

|λ(n+1)
1 − λ(n)

1 |
O(n)

, sup
j∈Z\{0}

|r(n+1)
j − r(n)

j |
O(n)
. σ−τn εne

Cσ−µn (3.47)

such that setting

E(n+1) :=
{
ω ∈ O(n) : |ω · `+ Ω(n+1)(j)− Ω(n+1)(h)| ≥ 2γn+1|j3 − h3|

d(`)
, ∀(`, h, j) 6= (0, h, h)

}
(3.48)

for ω ∈ E(n+1) there exists an invertible and bounded linear operator M (n+1)

‖M (n+1) − Id‖E(n+1)

sn−5σn ≤ σ
−τ
0 eCσ

−µ
0 ε0 (3.49)

such that

(M (n+1))−1Ln+1M
(n+1) = Dn+1 = diag

(
ω · `+ Ω(n+1)(j)

)
(`,j)∈Z∞∗ ×Z\{0}

(3.50)

The assumption (3.45) follows from (3.10), provided that we choose the constants τ, C and
ε0 appropriately.

Remark 3.9. Note that in the context of [13] Proposition 3.8 is much simpler to prove, because
in order to diagonalize the linearized operator one uses tame estimates coming from the Sobolev
regularity on the boundary of the domain. Then the smallness conditions are much simpler to
handle. Here we have to strongly rely on the fact that Ln+1 is a “small” unbounded perturbation
of Ln in order to show that the operators M (n) and M (n+1) are close to each other. This is a
very delicate issue; see Lemma 5.2 and Section 5.3, which are probably the more technical parts
of this paper.

Lemma 3.10 (Homological equation). Set

U (n+1) :=

{
ω ∈ O(n) : |ω · `+ Ω(n+1)(j)| ≥ γn+1

|j|3

d(`)
, ∀(`, j) 6= (0, 0)

}
(3.51)

For ω ∈ O(n+1) := U (n+1) ∩ E(n+1) one has

hn+1 := −L−1
n+1fn+1 ∈ Hsn+1 (3.52)

and one has

|hn+1|O
(n+1)

sn+1
. exp

(
τσ
− 1
η

n ln
( τ
σn

))
|fn+1|O

(n)

sn+1+σn .
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Proof. The result follows simply by using the definition of O(n+1) and applying Lemma A.7.

Of course from Lemma 3.10 it follows that,

|hn+1|O
(n+1)

sn+1
. σ−4

n eCσ
−µ
n ε2

n (3.53)

Now we want to show inductively that

σ−4
n eCσ

−µ
n ε2

n ≤ ε0e
−χn+1, χ =

3

2
(3.54)

for ε0 small enough.

By the definition of εn in (3.6), (3.54) is equivalent to

ε0 . σ
4
0n
−8eχ

n(2−χ)−C′nµ (3.55)

Since the r.h.s. of (3.55) admits a positive minimum, we can regard it as a smallness condition
on ε0, which is precisely (3.10).

We now prove (3.11) with n  n + 1. We only prove the bound for the set E(n) \ E(n+1).
The other one can be proved by similar arguments (it is actually even easier). Let us start by
writing

E(n) \ E(n+1) =
⋃

(`,j,j′)6=(0,j,j)

R(`, j, j′) ,

R(`, j, j′) :=
{
ω ∈ E(n) : |ω · `+ Ω(n+1)(j)− Ω(n+1)(j′)| < 2γn+1|j3 − j′3|

d(`)

}
,

∀(`, j, j′) ∈ Z∞∗ × (Z \ {0})× (Z \ {0}), (`, j, j′) 6= (0, j, j) .

(3.56)

Lemma 3.11. Denote |`|1 as in (1.5) with η  1. For any (`, j, j′) 6= (0, j, j) such that |`|1 ≤ n2,
one has that R(`, j, j′) = ∅.

Proof. Let (`, j, j′) ∈ Z∞∗ × (Z \ {0})× (Z \ {0}), (`, j, j′) 6= (0, j, j), |`|1 ≤ n2. If j = j′, clearly
` 6= 0 and R(`, 0, 0) = ∅ because ω ∈ Dγ with γ > 2γn+1; recall (3.6). Hence we are left to
analyze the case j 6= j′.

By (3.47), for any j, j′ ∈ Z \ {0}, j 6= j′∣∣∣(Ω(n+1)(j)− Ω(n+1)(j′)
)
−
(

Ω(n)(j)− Ω(n)(j′)
)∣∣∣.σ−τn εne

Cσ−µn |j3 − j′3| . (3.57)
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Therefore, for any ω ∈ E(n)

|ω · `+ Ω(n+1)(j)− Ω(n+1)(j′)| ≥ |ω · `+ Ω(n)(j)− Ω(n)(j′)|

−
∣∣∣(Ω(n+1)(j)− Ω(n+1)(j′)

)
−
(

Ω(n)(j)− Ω(n)(j′)
)∣∣∣

≥ 2γn|j3 − j′3|
d(`)

− Cσ−τn εne
Cσ−µn |j3 − j′3|

≥ 2γn+1|j3 − j′3|
d(`)

(3.58)
where in the last inequality we used (3.6) and the fact that, by (A.4) one has

σ−τn εne
Cσ−µn d(`) ≤ σ−τn εne

Cσ−µn (1 + n2)C(1)n ≤ γ02−n .

The estimate (3.58) clearly implies that R(`, j, j′) = ∅ for |`|1 ≤ n2.

Lemma 3.12. Let R(`, j, j′) 6= ∅. Then ` 6= 0, |j3 − j′3| . ‖`‖1 and P
(
R(`, j, j′)

)
. γn+1

d(`)

Proof. The proof is identical to the one for Lemma 6.2 in [21], simply replacing j2 with j3.

By (3.56) and collecting Lemmata 3.11, 3.12, one obtains that

P
(
E(n) \ E(n+1)

)
.

∑
|`|1≥n2

|j|,|j′|≤C‖`‖1

γn+1

d(`)
. γn+1

∑
|`|1≥n2

‖`‖21
d(`)

. γn+1n
−2
∑
`∈Z∞∗

|`|31
d(`)

. γn+1n
−2.

(3.59)
where in the last inequality we used Lemma A.8. Thus (3.11) follows.

We now the convergence of the scheme. Precisely we show that the series (3.25) converges
totally in Hs . Note that

|Tiu|O
(∞)

s ≤ (1 + 2−i)|u|O(∞)

s+σi ≤ 2|u|O(∞)

s+σi . (3.60)

Thuse, using (3.60) into (3.25) we get

|un|O
(∞)

s ≤ |h0|O
(∞)

s +

n∑
j=1

2j |hj |O
(∞)

s+(σ1+...+σj)
(3.61)

Now since

s+
∞∑
n=1

σn = s+
6σ−1

π2

∑
n≥1

1

n2
= s∞ ≤ sj (3.62)

we deduce that u∞ ∈ Hs. Finally by continuity

F (u∞) = lim
n→∞

F (un) = lim
n→∞

T−1
1 T−1

2 . . . T−1
n Fn(hn) = 0.
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so the assertion follows since (recall s := s∞ −
∑

n≥1 σn and (3.62))

|T−1
1 T−1

2 . . . T−1
n Fn(hn)|O(∞)

s ≤ 2nσ−4
n ε2

n .

We finally conclude the proof of Proposition 3.1 by showing that (3.26) holds.

First of all, reasoning as in Lemma 3.12 and using Lemma A.8, we see that

P(O(0)) = 1−O(γ0)

Then
P(O(∞)) = P(O(0))−

∑
n≥0

P(O(n) \ O(n+1))

so that (3.26) follows by (3.11).

4 Proof of Proposition 3.6

In order to prove Proposition 3.6, we start by dropping the index n, i.e. we set L ≡ Ln (see
(3.18)) and Q ≡ Q′n(hn) (see (3.34)).

More generally, we consider a Hamiltonian operator of the form

L(0) = L+Q
L := ω · ∂ϕ + λ3∂

3
x + a1(ϕ, x)∂x + a0(ϕ, x) ,

Q := d3(ϕ, x)∂3
x + d2(ϕ, x)∂2

x + d1(ϕ, x)∂x + d0(ϕ, x)

(4.1)

defined for all ω ∈ Ω ⊆ Dγ and λ3, a0, a1, d0 . . . , d3 satisfy the following properties.

1. There is δ0 small enough such that

|λ3 − 1|Ω ≤ δ0 (4.2)

2. There is ρ > 0 such that ai ∈ H(T∞ρ ×Tρ) and

|ai|Ωρ ≤ δ0 , i = 0, 1 (4.3)

and moreover

λ1 :=
1

2π

∫
T

a1(ϕ, x) dx (4.4)

i.e. it does not depend on ϕ.

3. d0 . . . , d3 ∈ H(T∞ρ × Tρ) (note that by the Hamiltonian structure d2 = ∂xd3) and they
satisfy the estimate

|di|Ωρ . δ , (4.5)

for some δ � min{δ0, ρ}.
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Let us now choose ζ such that 0 < ζ � ρ and

ζ−τ
′
e2C0ζ−µδ � 1. (4.6)

for some τ ′ > 0. We shall conjugate L(0) to a new operator 1
r
L+ with r = r(ϕ) an explicit

function with
L+ = ω · ∂ϕ + λ+

3 ∂
3
x + a+

1 (ϕ, x)∂x + a+
0 (ϕ, x) (4.7)

with the coefficients satisfying
|λ+

3 − λ3|Ω . δ (4.8)

and

|a+
i − ai|

Ω
ρ−2ζ ≤ ζ−τ

′
e2C0ζ−µδ, λ1 :=

1

2π

∫
T

a1(ϕ, x) dx. (4.9)

This will allow us to conclude the proof of Proposition 3.6.

4.1 Elimination of the x-dependence from the highest order term

Consider an analytic function α(ϕ, x) (to be determined) and let

T1u(ϕ, x) := (1 + αx(ϕ, x))(Au)(ϕ, x), Au(ϕ, x) := u(ϕ, x+ α(ϕ, x)) .

We choose α(ϕ, x) and m3(ϕ) in such a way that

(λ3 + d3(ϕ, x))
(
1 + αx(ϕ, x)

)3
= m3(ϕ) , (4.10)

which implies

α(ϕ, x) := ∂−1
x

[ m3(ϕ)
1
3(

λ3 + d3(ϕ, x)
) 1

3

− 1
]
, m3(ϕ) :=

( 1

2π

∫
T

dx(
λ3 + d3(ϕ, x)

) 1
3

)−3
. (4.11)

By (4.2), (4.5) and Lemma A.5 one has

|m3 − λ3|Ωρ , |α|Ωρ . δ (4.12)

Note that for any 0 < ζ � ρ such that δζ−1 � 1, by Lemma A.1, x 7→ x + α(ϕ, x) is
invertible and the inverse is given by y 7→ y + α̃(ϕ, y) with

α̃ ∈ H(T∞ρ−ζ ×Tρ−ζ), |α̃|Ωρ−ζ , |α|Ωρ . δ . (4.13)

A direct calculations shows that

A−1u(ϕ, y) = u(ϕ, y + α̃(ϕ, y)) , T −1
1 = (1 + α̃y)A−1 (4.14)
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and the following conjugation rules hold:

T −1
1 a(ϕ, x) T1 = A−1 a(ϕ, x)A = (A−1a)(ϕ, y) ,

T −1
1 ∂xT1 =

(
1 +A−1(αx)

)
∂y + (1 + α̃y)A−1(αxx) ,

T −1
1 ω · ∂ϕT1 = ω · ∂ϕ +A−1(ω · ∂ϕα)∂y + (1 + α̃y)A−1(ω · ∂ϕαx) .

(4.15)

Clearly one can get similar conjugation formulae for higher order derivatives, having expres-
sion similar to (3.41). In conclusion

L(1) := T −1
1 (L+Q)T1

= ω · ∂ϕ +A−1
[
(λ3 + q3)(1 + αx)3

]
∂3
y + b2(ϕ, y)∂2

y + b1(ϕ, y)∂y + b0(ϕ, y)

= ω · ∂ϕ +m3(ϕ)∂3
x + b1(ϕ, x)∂x + b0(ϕ, x)

(4.16)

for some (explicitly computable) coefficients bi, where in the last equality we used (4.10) and
the fact that T1 is symplectic, so that b2(ϕ, x) = 2∂xm3(ϕ) = 0.

Furthermore, the estimates (4.2), (4.3), (4.12), (4.13), Corollary A.2 and Lemmata A.3, A.4
imply that for 0 < ζ � ρ

|bi|Ωρ−2ζ . δ0, |bi − ai|Ωρ−2ζ . ζ
−τδ, for some τ > 0 . (4.17)

4.2 Elimination of the ϕ-dependence from the highest order term

We now consider a quasi periodic reparametrization of time of the form

T2u(ϕ, x) := u(ϕ+ ωβ(ϕ), x) (4.18)

where β : T∞ρ−ζ → R is an analytic function to be determined. Precisely we choose λ+
3 ∈ R and

β(ϕ) in such a way that

λ+
3

(
1 + ω · ∂ϕβ(ϕ)

)
= m3(ϕ) , (4.19)

obtaining thus

λ+
3 :=

∫
T∞

m3(ϕ) dϕ, β(ϕ) := (ω · ∂ϕ)−1
[m3

λ+
3

− 1
]

(4.20)

where we recall the definition A.3. By the estimates (4.12) and by Lemma 3.3, one obtains that
for 0 < ζ � ρ

|λ+
3 − λ3|Ω . δ, |β|Ωρ−ζ . eC0ζ

−µ
δ . (4.21)

By Lemma A.1 and (4.6) we see that ϕ 7→ ϕ + ωβ(ϕ) is invertible and the inverse is given by
ϑ 7→ ϑ+ ωβ̃(ϑ) with

β̃ ∈ H(T∞ρ−2ζ), |β̃|Ωρ−2ζ . e
C0ζ−µδ . (4.22)

The inverse of the operator T2 is then given by

T −1
2 u(ϑ, x) = u(ϑ+ ωβ̃(ϑ), x) . (4.23)
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so that

T −1
2 L

(1)T2 = T −1
2

(
1 + ω · ∂ϕβ

)
ω · ∂ϑ + T −1

2 (m3)∂3
x + T −1

2 (b1)∂x + T −1
2 (b0)

=:
1

r
L(2)

(4.24)

where
L(2) := ω · ∂ϑ + λ+

3 ∂
3
x + c1(ϑ, x)∂x + c0(ϑ, x) ,

r :=
1

T −1
2

(
1 + ω · ∂ϕβ

) (4.19)
=

λ+
3

T −1
2 (m3)

,

ci := rT −1
2 (bi), i = 1, 0 .

(4.25)

Therefore by the estimates (4.12), (4.21), (4.22) and by applying Corollary A.2, Lemma A.5,
and (4.6), one gets

|r− 1|Ωρ−ζ . δ

|ci − ai|Ωρ−ζ . ζ−τeC0ζ
−µ
δ, i = 0, 1 .

(4.26)

4.3 Time dependent traslation of the space variable

Let p : T∞ρ−2ζ → R be an analytic function to be determined and let

T3u(ϕ, x) := u(ϕ, x+ p(ϕ)), with inverse T −1
3 u(ϕ, y) = u(ϕ, y − p(ϕ)) . (4.27)

Computing explicitly

L(3) := T −1
3 L

(2)T3 = ω · ∂ϕ + λ+
3 ∂

3
x + a+

1 (ϕ, x)∂x + a+
0 (ϕ, x) ,

a+
1 := ω · ∂ϕp+ T −1

3 (c1) , a+
0 := T −1

3 (c0) ,
(4.28)

and by (4.4) one has

1

2π

∫
T

T −1
3 (c1)(ϕ, y) dy =

1

2π

∫
T

c1(ϕ, x) dx

=
1

2π

∫
T

a1(ϕ, x) dx+
1

2π

∫
T

(c1 − a1)(ϕ, x) dx

= λ1 +
1

2π

∫
T

(c1 − a1)(ϕ, x) dx .

(4.29)

We want to choose p(ϕ) in such a way that the x-average of d1 is constant. To this purpose
we define

p(ϕ) := (ω · ∂ϕ)−1
[
〈(c1 − a1)〉ϕ,x −

1

2π

∫
T

(c1 − a1)(ϕ, x) dx
]

(4.30)

where for any a : T∞σ ×Tσ → C, 〈a〉ϕ,x is defined by

〈a〉ϕ,x :=
1

(2π)

∫
T

∫
T∞

a(ϕ, x) dϕ dx
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(recall the definition A.3). By (4.26) and Lemma 3.3 one gets

|p|Ωρ−2ζ . ζ
−τe2C0ζ−µδ

(4.6)
� ζ . (4.31)

Moreover

λ+
1 :=

1

2π

∫
T

d1(ϕ, x) dx = λ1 + 〈(c1 − a1)〉ϕ,x . (4.32)

Finally using (4.26), (A.2) (with Φα = T −1
3 ), (4.31), one gets

|a+
i − ai|

Ω
ρ−2ζ . ζ

−τ ′e2C0ζ−µδ , (4.33)

for some τ ′ > 0.

4.4 Conclusion of the proof

We start by noting that T := T3 ◦ T2 ◦ T1 has the form (3.33) with p(n+1) = p, β(n+1) = β and
ξ(n+1)(ϕ, x) = α(ϕ + ωβ(ϕ), x + p(ϕ)). Hence, setting r := rn+1, ρ := sn − σn, δ := σ−4

n εn,
δ0 := 2ε0 and ζ := σn we denote

1 +An+1 = λ+
3 , , Bn+1(ϕ, x) := a+

1 (ϕ, x), Cn+1 = a+
0 (ϕ, x),

and thus Proposition 3.6 follows.

5 Proof of Proposition 3.8

In order to prove Proposition 3.8, we start by considering a linear Hamiltonian operator defined
for ω ∈ O ⊆ Dγ of the form

L = L(λ3, a1, a0) := ω · ∂ϕ + λ3∂
3
x + a1(ϕ, x)∂x + a0(ϕ, x) . (5.1)

We want to show that, for any choice of the coefficients λ3, a1, a0 satisfying some hypotheses
(see below), it is possible to reduce L to constant coefficients. Moreover we want to show that
such reduction is “Lipshitz” w.r.t. the parameters λ3, a1, a0, in a sense that will be clarified
below.

Regarding the coefficients, we need to require that

ai :=
m∑
k=0

a
(k)
i , |a(k)

i |
O
ρk
. δk, ∀k = 0, . . . ,m , i = 0, 1,

|λ3 − 1|O . δ0 ,

λ1 ≡ λ1(a1) =

m∑
k=0

λ
(k)
1 , λ

(k)
1 :=

1

2π

∫
T

a
(k)
1 (ϕ, x) dx = const .

(5.2)
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for some 0 < . . . < ρm < . . . < ρ0 and 0 < . . . � δm � . . . � δ0 � 1 so that there is a third
sequence ζi such that 0 < ζi < ρi and∑

i≥0

ζ−τi eCζ
−µ
i δi . δ0 , (5.3)

for some τ, C > 0.

5.1 Reduction of the first order term

We consider an operator L of the form (5.1) satisfying the hypotheses above. We start by
showing that it is possible to reduce it to constant coefficients up to a bounded reminder, and
that such reduction is “Lipshitz” w.r.t. the parameters λ3, a1, a0.

Lemma 5.1. There exists a symplectic invertible operator M = exp(G), with G ≡ G(λ3, a1) and
an operator R0 ≡ R0(λ3, a1, a0) satisfying

G =
m∑
i=0

G(i) , ‖G(i)‖Oρi,−1 . δi ,

R0 =
m∑
i=0

R(i)
0 , ‖R(i)

0 ‖
O
ρi−ζi . ζ

−τ
i eCζ

−µ
i δi

(5.4)

for some C, τ � 1, such that

L0 :=M−1LM = ω · ∂ϕ + λ3∂
3
x + λ1∂x +R0 . (5.5)

Proof. We look for G of the form
G = π⊥0 g(ϕ, x)∂−1

x

and we choose the function g(ϕ, x) where g = g(λ3, a1) in order to solve

3λ3∂xg(ϕ, x) + a1(ϕ, x) = λ1 . (5.6)

By (5.2), one obtains that

g :=
1

3λ3
∂−1
x

[
λ1 − a1

]
(5.7)

and therefore

g =

m∑
i=0

gi , gi :=
1

3λ3
∂−1
x

[
λ

(i)
1 − a

(i)
1

]
,

|gi|Oρi . δi, i = 0, . . . ,m .

(5.8)

Of course we can also write the operator G := π⊥0 g(ϕ, x)∂−1
x =

∑m
i=0 Gi where Gi :=

π⊥0 gi(ϕ, x)∂−1
x and one has

‖Gi‖Oρi,−1 . δi, i = 0, . . . ,m . (5.9)
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Again by (5.2), defining P := a1∂x +a0, one has that P =
∑m

i=0 Pi, where Pi := a
(i)
1 ∂x +a

(i)
0

satisfies
‖Pi‖Oρi,1 . δi. (5.10)

Therefore
L0 =M−1LM = e−Gω · ∂ϕeG + λ3e

−G∂3
xe
G + e−GPeG

= ω · ∂ϕ + λ3∂
3
x +

(
3λ3gx + a1

)
∂x +R0

(5.6)
= ω · ∂ϕ + λ3∂

3
x + λ1∂x +R0

(5.11)

where

R0 :=
(
e−Gω · ∂ϕeG − ω · ∂ϕ

)
+ λ3

(
e−G∂3

xe
G − ∂3

x − 3gx∂x

)
+
(
e−GPeG − P

)
+ a0 . (5.12)

Then (5.3), (5.9), (5.10) guarantee that the hypotheses of Lemmata A.10-A.11 are verified.
Hence, we apply Lemma A.10-(ii) to expand the operator e−GPeG − P, Lemma A.11-(ii) to
expand e−G∂3

xe
G − ∂3

x − 3gx∂x and Lemma A.11-(iii) to expand e−Gω · ∂ϕeG − ω · ∂ϕ. The
expansion of the multiplication operator a0 is already provided by (5.2). Hence, one obtains
that there exist C, τ � 1 such that (5.4) is satisfied.

We now consider a “small modification” of the operator L in the following sense. We consider
an operator

L+ = L(λ+
3 , a

+
1 , a

+
0 ) := ω · ∂ϕ + λ+

3 ∂
3
x + a+

1 (ϕ, x)∂x + a+
0 (ϕ, x) (5.13)

with
1

2π

∫
T

a+
1 (ϕ, x) dx =: λ+

1 = const, |a+
i − ai|ρm+1 , |λ+

3 − λ3| . δm+1 . (5.14)

Of course we can apply Lemma 5.1 and conjugate L+ to

L+
0 := ω · ∂ϕ + λ+

3 ∂
3
x + λ+

1 ∂x +R+
0 (5.15)

with R+
0 a bounded operator. We want to show that L+

0 is “close” to L0, namely the following
result.

Lemma 5.2. One has

|λ+
1 −λ1| . δm+1 , ‖R+

0 −R0‖ρm+1−ζm+1 . ζ
−τ
m+1e

Cζ−µm+1δm+1 . (5.16)

Proof. The first bound follows trivially from (5.14). Regarding the second bound one can reason
as follows. As in Lemma 5.1, er can define G+ := π⊥0 g

+(ϕ, x)∂−1
x with

g+ :=
1

3λ+
3

∂−1
x

[
λ+

1 − a
+
1

]
(5.17)

so that
‖G+ − G‖ρm+1,−1 . δm+1 . (5.18)
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Defining P+ := a+
1 ∂x + a+

0 and recalling that P := a1∂x + a0, by (5.14), one gets

‖P+ − P‖ρm+1,1 . δm+1 . (5.19)

The estimate on R+
0 − R0 follows by applying Lemmata A.13, A.14, and by the estimates

(5.14), (5.19), (5.18).

5.2 Reducibility

We now consider an operator L0 of the form

L0 ≡ L0(λ1, λ3,P0) := ω · ∂ϕ +D0 + P0 (5.20)

with P0 a bounded operator and

D0 ≡ D0(λ1, λ3) := i diagj∈Z\{0}Ω0(j) , Ω0(j) := −λ3j
3 + λ1j, j ∈ Z \ {0} , (5.21)

and we show that, under some smallness conditions specified below it is possible to reduce it to
constant coefficients, and that the reduction is “Lipschitz” w.r.t. the parameters λ1, λ3,P0.

In order to do so, we introduce three sequences 0 < . . . < ρm < . . . < ρ0, 0 < . . . � δm �
. . .� δ0 and 1� N0 � N1 � · · · and we assume that setting ∆i = ρi − ρi+1 one has∑

i≥0

∆−τi eC∆−µi δi . δ0 , (5.22)

e−Nk∆kδk + eC∆−µk δ2
k � 2−kδk+1 , (5.23)

δk � (1 +Nk)
−CN

1
1+η
k (5.24)

and
|λ3 − 1|O, |λ1|O ≤ δ0,

P0 :=

m∑
i=0

P(i)
0 , ‖P(i)

0 ‖
O
ρi ≤ δi, i = 0, . . . ,m ,

(5.25)

for some τ, C > 0.

We have the following result.

Lemma 5.3. Fix γ ∈ [γ0/2, 2γ0]. For k = 0, . . . ,m there is a sequence of sets Ek ⊆ Ek−1 and a
sequence of symplectic maps Φk defined for ω ∈ Ek+1 such that setting L0 as in (5.20) and for
k ≥ 1,

Lk := Φ−1
k−1Lk−1Φk−1, (5.26)

one has the following.
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1. Lk is of the form
Lk := ω · ∂ϕ +Dk + Pk (5.27)

where

• The operator Dk is of the form

Dk := diagj∈Z\{0}Ωk(j), Ωk(j) = Ω0(j) + rk(j) (5.28)

with r0(j) = 0 and for k ≥ 1, rk(j) is defined for ω ∈ E0 = O and satisfies

sup
j∈Z\{0}

|rk(j)− rk−1(j)|O ≤ δk−1

k−1∑
i=1

2−i . (5.29)

• The operator Pk is such that

for 0 ≤ k ≤ m, Pk =

m∑
i=k

P(i)
k , ‖P(i)

k ‖
Ek
ρi ≤ δi

k∑
j=1

2−j , ∀i = k, . . . ,m . (5.30)

2. One has Φk−1 := exp(Ψk−1), such that

‖Ψk−1‖Ekρk . e
C∆−µk−1‖P(k−1)

k−1 ‖
Ek−1
ρk−1 . e

C∆−µk−1δk−1 (5.31)

3. The sets Ek are defined as

Ek :=
{
ω ∈ Ek−1 : |ω · `+ Ωk−1(j)− Ωk−1(j′)| ≥ γ|j3 − j′3|

d(`)
,

∀(`, j, j′) 6= (0, j, j), |`|η ≤ Nk−1

}
.

(5.32)

Proof. The statement is trivial for k = 0 so we assume it to hold up to k < m and let us prove
it for k + 1. For any Φk := exp(Ψk) one has

Lk+1 = Φ−1
k LkΦk = ω · ∂ϕ +Dk + ω · ∂ϕΨk + [Dk,Ψk] + ΠNkP

(k)
k + Pk+1 (5.33)

where the operator Pk+1 is defined by

Pk+1 := Π⊥NkP
(k)
k +

∑
p≥2

AdpΨk(ω · ∂ϕ +Dk)
p!

+
m∑

i=k+1

e−ΨkP(i)
k eΨk +

∑
p≥1

AdpΨk(P(k)
k )

p!
. (5.34)

Then we choose Ψk in such a way that

ω · ∂ϕΨk + [Dk,Ψk] + ΠNkP
(k)
k = Zk ,

Zk := diagj∈Z\{0}(P
(k)
k )jj(0) ,

(5.35)
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namely for ω ∈ Ek+1 we set

(Ψk)
j′

j (`) :=


(P(k)

k )j
′

j (`)

i
(
ω · `+ Ωk(j)− Ωk(j′)

) , ∀(`, j, j′) 6= (0, j, j), |`|η ≤ Nk ,

0 otherwise.

(5.36)

Therefore,

|(Ψk)
j′

j (`)| . d(`)|(P(k)
k )j

′

j (`)| , ∀ω ∈ Ek+1 . (5.37)

and by applying Lemma A.6, using the induction estimate (5.30), one obtains

‖Ψk‖
Ek+1

ρk−ζ . e
Cζ−µ‖P(k)

k ‖
Ek
ρk

(5.30)

. eCζ
−µ
δk , (5.38)

for any ζ < ρk.

We now define the diagonal part Dk+1.

For any j ∈ Z\{0} and any ω ∈ Ek one has |(P(k)
k )jj(0)| . ‖P(k)

k ‖
Ek
ρk

(5.30)

≤ δk. The Hamiltonian

structure guarantees that P(k)
k (0)jj is purely imaginary and by the Kiszbraun Theorem there

exists a Lipschitz extension ω ∈ O → izk(j) (with zk(j) real) of this function satisfying the
bound |zk(j)|O . δk. Then, we define

Dk+1 := diagj∈Z\{0}Ωk+1(j) ,

Ωk+1(j) := Ωk(j) + zk(j) = Ω0(j) + rk+1(j), ∀j ∈ Z \ {0} ,
rk+1(j) := rk(j) + zk(j)

(5.39)

and one has

|rk+1(j)− rk(j)|O = |zk(j)|O ≤ ‖P
(k)
k ‖

Ek
ρk

(5.30)

≤ δk

k∑
j=1

2−j (5.40)

which is the estimate (5.29) at the step k + 1.

We now estimate the remainder Pk+1 in (5.34). Using (5.35) we see that

Pk+1 = Π⊥NkP
(k)
k +

∑
p≥2

Adp−1
Ψk

(Zk −ΠNkP
(k)
k )

p!
+

m∑
i=k+1

e−ΨkP(i)
k eΨk +

∑
p≥1

AdpΨk(P(k)
k )

p!
. (5.41)

Denote

Pk+1 =

m∑
i=k+1

P(i)
k+1 where

P(k+1)
k+1 := Π⊥NkP

(k)
k +

∑
p≥2

Adp−1
Ψk

(Zk −ΠNkP
(k)
k )

p!
+ e−ΨkP(k+1)

k eΨk +
∑
p≥1

AdpΨk(P(k)
k )

p!
,

P(i)
k+1 := e−ΨkP(i)

k eΨk , i = k + 2, . . . ,m .

(5.42)
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Estimate of P(i)
k+1, i = k + 2, . . . ,m. By the induction estimate, one has

‖e−ΨkP(i)
k eΨk‖Ek+1

ρi ≤ ‖P(i)
k ‖
Ek
ρi + ‖P(i)

k − e
−ΨkP(i)

k eΨk‖Ek+1
ρi

. δi

k∑
j=1

2−j + ‖Ψk‖
Ek+1
ρi ‖P

(i)
k ‖
Ek+1
ρi

(5.23)

. δi

k+1∑
j=1

2−j .
(5.43)

Estimate of P(k+1)
k+1 . We estimate separately the four terms in the definition of P(k+1)

k+1 in
(5.42). By Lemma A.9-(ii), one has

‖Π⊥NkP
(k)
k ‖

Ek
ρk+1
. e−Nk∆k‖P(k)

k ‖
Ek
ρk
. e−Nk∆kδk . (5.44)

By applying (A.7) and the estimate of Lemma A.9-(iii), one obtains

∥∥∥∑
p≥2

Adp−1
Ψk

(Zk −ΠNkP
(k)
k )

p!

∥∥∥Ek+1

ρk+1

≤
∑
p≥2

Cp−1

p!
(‖Ψk‖

Ek+1
ρk+1)p−1‖P(k)

k ‖
Ek
ρk

.‖Ψk‖
Ek+1
ρk+1‖P

(k)
k ‖

Ek
ρk
. eC∆−µk δ2

k

(5.45)

and similarly ∥∥∥∑
m≥1

AdmΨk(P(k)
k )

m!

∥∥∥Ek+1

ρk+1

. eC∆−µk δ2
k . (5.46)

In conclusion we obtained

‖P(k+1)
k+1 ‖

Ek+1
ρk+1 ≤ C ′e−Nk∆kδk + C ′eC∆−µk δ2

k + δk+1

k∑
j=1

2−j (5.47)

where C ′ is an appropriate constant and the last summand is a bound for the term

e−ΨkP(k+1)
k eΨk , which can be obtained reasoning as in (5.43). Thus we obtain

‖P(k+1)
k+1 ‖

Ek+1
ρk+1 ≤ δk+1

k+1∑
j=1

2−j (5.48)

provided

C ′e−Nk∆kδk + C ′eC∆−µk δ2
k + δk+1

k∑
j=1

2−j ≤ δk+1

k+1∑
j=1

2−j ,

which is of course follows from (5.23).

Now that we reduced L0 to the form Lm = ω · ∂ϕ + Dm + Pm we can apply a “standard”
KAM scheme to complete the diagonalization. This is a super-exponentially convergent iterative
scheme based on iterating the following KAM step.
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Lemma 5.4 (The (m+ 1)-th step). Following the notation of Lemma 5.3 we define

Em+1 :=
{
ω ∈ Em : |ω · `+ Ωm(j)− Ωm(j′)| ≥ γ|j3 − j′3|

d(`)
, ∀(`, j, j′) 6= (0, j, j), |`|η ≤ Nm

}
and fix any ζ such that

e−Nmζδm + eCζ
−µ
δ2
m � δm+1 (5.49)

Then there exists a change of variables Φm := exp(Ψm), such that

‖Ψm‖Em+1

ρm−ζ . e
Cζ−µδm (5.50)

which conjugates Lm to the operator

Lm+1 = ω · ∂ϕ +Dm+1 + Pm+1 .

The operator Dm+1 is of the form (5.28) and satisfies (5.29), with k  m + 1, while the
operator Pm+1 is such that

‖Pm+1‖Em+1

ρm−ζ ≤ δm+1 . (5.51)

Proof. We reason similarly to Lemma 5.3 i.e. we fix Ψm in such a way that

ω · ∂ϕΨm + [Dm,Ψm] + ΠNmPm = Zm ,
Zm := diagj∈Z\{0}(Pm)jj(0) ,

(5.52)

so that we obtains
‖Ψm‖Em+1

ρm−ζ . e
Cζ−µ‖Pm‖Emρm . e

Cζ−µδm , (5.53)

for any ζ < ρm.

Now, for any j ∈ Z \ {0} and any ω ∈ Em one has |(Pm)jj(0)| . ‖Pm‖Emρm≤2δm. The Hamilto-

nian structure guarantees that Pm(0)jj is purely imaginary and by the Kiszbraun Theorem there
exists a Lipschitz extension ω ∈ O → izm(j) (with zm(j) real) of this function satisfying the
bound |zm(j)|O . δm. Then, we define

Dm+1 := diagj∈Z\{0}Ωm+1(j) ,

Ωm+1(j) := Ωm(j) + zm(j) = Ω0(j) + rm+1(j), ∀j ∈ Z \ {0} ,
rm+1(j) := rm(j) + zm(j)

(5.54)

and (5.29), with k  m+ 1.

In order to obtain the bound 5.51 we start by recalling that

Pm+1 := Π⊥NmPm +
∑
p≥2

Adp−1
Ψm

(Zm −ΠNmPm)

p!
+
∑
p≥1

AdpΨm(Pm)

p!
, (5.55)

so that reasoning as in (5.47) we obtain

‖Pm+1‖Em+1

ρm−ζ ≤ C
′e−Nmζδm + C ′eCζ

−µ
δ2
m (5.56)
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and by (5.49) the assertion follows.

We now iterate the step of Lemma 5.4, using at each step a smaller loss of analyticity, namely
at the p-th step we take ζp with ∑

p≥m+1

ζp = ζ,

so that we obtain the following standard reducibility result; for a complete proof see [21].

Proposition 5.5. For any j ∈ Z \ {0}, the sequence Ωk(j) = Ω0(j) + rk(j), k ≥ 1 provided
in Lemmata 5.3, 5.4, and defined for any ω ∈ O converges to Ω∞(j) = Ω0(j) + r∞(j) with
|r∞(j)− rk(j)|O . δk. Defining the Cantor set

E∞ :=
{
ω ∈ O : |ω · `+ Ω∞(j)− Ω∞(j′)| ≥ 2γ|j3 − j′3|

d(`)
, ∀(`, j, j′) 6= (0, j, j)

}
(5.57)

and
L∞ := ω · ∂ϕ +D∞, D∞ := i diagj∈Z\{0}Ω∞(j) , (5.58)

one has E∞ ⊆ ∩k≥0Ek.

Defining also

Φ̃k := Φ0 ◦ . . . ◦ Φk with inverse Φ̃−1
k = Φ−1

k ◦ . . . ◦ Φ−1
0 , (5.59)

the sequence Φ̃k converges for any ω ∈ E∞ to a symplectic, invertible map Φ∞ w.r.t. the norm
‖ · ‖E∞ρm−2ζ and ‖Φ±1

∞ − Id‖E∞ρm−2ζ . δ0. Moreover for any ω ∈ E∞, one has that Φ−1
∞ L0Φ∞ = L∞.

5.3 Variations

We now consider an operator

L+
0 ≡ L0(λ+

1 , λ
+
3 ,P

+
0 ) = ω · ∂ϕ +D+

0 + P+
0 ,

D+
0 := λ+

3 ∂
3
x + λ+

1 ∂x = i diagj∈Z\{0}Ω
+
0 (j) ,

Ω+
0 (j) := −λ+

3 j
3 + λ+

1 j, j ∈ Z \ {0} .
(5.60)

such that
|λ+

1 − λ1|O
+
, |λ+

3 − λ3|O
+
, ‖P+

0 − P0‖O
+

ρm+1
≤ δm+1 (5.61)

where L, λ1, λ3, P0 are given in (5.21) and O+ ⊆ O. In other words, L+
0 is a small variation of

L0 in (5.20) with also m m+ 1.

Of course we can apply Proposition 5.5 to L+
0 ; our aim is to compare the “final frequencies”

of L+
∞ with those of L∞.

To this aim, we first apply Lemma 5.3 with L0  L+
0 and γ  γ+ < γ. In this way we

obtain a sequence of sets E+
k ⊆ E

+
k−1 and a sequence of symplectic maps Φ+

k defined for ω ∈ E+
k+1

such that setting L+
0 as in (5.60) and

Lk := Φ−1
k−1Lk−1Φk−1, (5.62)
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one has
L+
k := ω · ∂ϕ +D+

k + P+
k , k ≤ m+ 1, (5.63)

where
D+
k := diagj∈Z\{0}Ω

+
k (j), Ω+

k (j) = Ω+
0 (j) + r+

k (j) (5.64)

The sets E+
k are defined as E+

0 := O+ and for k ≥ 1

E+
k :=

{
ω ∈E+

k−1 : |ω · `+ Ω+
k−1(j)− Ω+

k−1(j′)| ≥ γ+|j3 − j′3|
d(`)

,

∀(`, j, j′) 6= (0, j, j), |`η| ≤ Nk−1

}
.

(5.65)

Moreover one has Φ+
k−1 := exp(Ψ+

k−1), with

‖Ψ+
k−1‖

E+k
ρk . e

C∆−µk−1δk−1. (5.66)

The following lemma holds.

Lemma 5.6. For all k = 1, . . . ,m+ 1 one has

‖P+
k − Pk‖

Ek∩E+k
ρk ≤ δm+1, (5.67a)

|r+
k (j)− rk(j)|O∩O

+ ≤ δm+1 (5.67b)

and

‖Ψ+
k−1 −Ψk−1‖

Ek∩E+k
ρk . δm+1, (5.68)

Proof. We procede differently for k = 1, . . . ,m and k = m+ 1.

For the first case we argue by induction. Assume the statement to hold up to some k < m.
We want to prove

‖Ψ+
k −Ψk‖

Ek+1∩E+k+1
ρk+1 ≤ δm+1 . (5.69)

By Lemma 5.3, one has for ω ∈ E+
k+1

(Ψ+
k )j

′

j (`) :=


((P+

k )
(k)

)j
′

j (`)

i
(
ω · `+ Ω+

k (j)− Ω+
k (j′)

) , ∀(`, j, j′) 6= (0, j, j), |`|η ≤ Nk ,

0 otherwise,

(5.70)

and direct calculation shows that for ω ∈ Ek+1 ∩ E+
k+1, one has∣∣(Ω+

k (j)− Ω+
k (j′))− (Ωk(j)− Ωk(j

′))
∣∣ ≤ δm+1|j3 − j′3| (5.71)

and hence

|(Ψ+
k )j

′

j (`)− (Ψk)
j′

j (`)|Ek+1∩E+k+1 . δm+1d(`)3|(P(k)
k )j

′

j (`)|Ek+1∩E+k+1

+ d(`)2|(P(k)
k )j

′

j (`)− ((P+
k )(k))j

′

j (`)|Ek+1∩E+k+1 .
(5.72)
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Therefore, reasoning as in (5.37)–(5.38), one uses Lemma A.6, the smallness condition (5.23)
and the induction estimate (5.67a) so that (5.69) follows.

Now, from the definition of rk+1 in (5.39) it follows

|r+
k+1(j)− rk+1(j)|Ek+1∩E+k+1 ≤ δm+1, (5.73)

and by Kiszbraun Theorem applied to r+
k+1(j)− rk+1(j), (5.67b) holds.

The estimate of P+
k+1 − Pk+1 follows by explicit computation the difference by using the

expressions provided in (5.41), using the induction estimates (5.30), (5.67a), the estimate (5.69)
and by applying Lemma A.12.

For k = m + 1 the proof can be repeated word by word, the only difference being that Ψm

is defined in (5.52) while Ψ+
m is defined in (5.36) with k = m.

5.4 Conclusion of the proof

To conclude the proof of Proposition 3.8 we star by noting that, setting O appearing in (5.2) as
O(n) appearing in (3.11), the operator Ln+1 appearing in (3.18) with of course n n+ 1 is of
the form (5.1) with

λ3 = 1 +An+1 ,

a
(k)
1 (ϕ, x) = Bk+1(ϕ, x)−Bk(ϕ, x) ,

a
(k)
0 (ϕ, x) = Ck+1(ϕ, x)− Ck(ϕ, x) .

Moreover from (3.20) we have

δk = σ−τ2k eCσ
−µ
k εk, ρk = sk − 3σk

where sk, σk and εk are defined in (3.6), so that Ln+1 satisfies (5.2) with m = n. Thus, fixing

ζk = σk, 2ζ = σk,

the smallness conditions (5.3) follows by definition. Hence we can apply Lemma 5.1 to Ln+1

obtaining an operator of the form (5.5). In particular the conjugating operator M satisfies

‖M− Id‖Osn−3σn . σ
−τ2
0 eCσ

−µ
0 ε0 .

We are now in the setting of Section 5.2 with

ρk = sk − 4σk, δk = σ−τ3k e2Cσ
− 1
η+

k εk

for some τ3 > 0. A direct calculation shows that the smallness conditions (5.22), (5.23), (5.24),
(5.49) are satisfied provided we choose Nk appropriately, so that we can apply Proposition 5.5.

In conclusion we obtain an operator Mn+1 = M ◦ Φ∞ (recall that M is constructed in
Lemma 5.1) satisfying (3.49), (3.50), where Ω(n+1)(j) := Ω∞(j) and E(n+1) = E∞. Note that in
particular the functions Ω(n+1)(j) turn out to be of the form (3.46).

Finally (3.47) follows from Lemmata 5.2 and 5.6 where L+ has the role of Ln+1 while L has
the role of Ln. This means that here we are taking m n− 1.
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A Technical Lemmata

We start by recalling few results proved in [21]. Of course, as already noted in [21]-Remark 2.2,
all the properties holding for H(T∞σ+ρ, `

∞) hold verbatim for H(T∞σ+ρ×Tσ+ρ, `
∞). In particular,

all the estimates below hold also for the Lipschitz norms | · |Ωσ and ‖ · ‖Ωσ . Given two Banach
spaces X, Y we denote by B(X,Y ) the space of bounded linear operators from X to Y .

Proposition A.1 (Torus diffeomorphism). Let α ∈ H(T∞σ+ρ, `
∞) be real on real. Then there

exists a constant δ ∈ (0, 1) such that if ρ−1|α|σ+ρ ≤ δ, then the map ϕ 7→ ϕ+α(ϕ) is an invertible
diffeomorphism of T∞σ (w.r.t. the `∞-topology) and its inverse is of the form ϑ 7→ ϑ + α̃(ϑ),
where α̃ ∈ H(T∞

σ+ ρ
2
, `∞) is real on real and satisfies the estimate |α̃|σ+ ρ

2
. |α|σ+ρ.

Corollary A.2. Given α ∈ H(T∞σ+ρ, `
∞) as in Proposition A.1, the operators

Φα : H(T∞σ+ρ, X)→ H(T∞σ , X), u(ϕ) 7→ u(ϕ+ α(ϕ)) , (A.1)

Φα̃ : H(T∞σ+ ρ
2
, X)→ H(T∞σ , X), u(ϑ) 7→ u(ϑ+ α̃(ϑ))

are bounded, satisfy

‖Φα‖
B
(
H(T∞σ+ρ,X),H(T∞σ ,X)

), ‖Φα̃‖
B
(
H(T∞σ+ρ,X),H(T∞σ ,X)

) ≤ 1 ,

and for any ϕ ∈ T∞σ , u ∈ H(T∞σ+ρ, X), v ∈ H(T∞
σ+ ρ

2
, X) one has

Φα̃ ◦ Φαu(ϕ) = u(ϕ) , Φα ◦ Φα̃v(ϕ) = v(ϕ) .

Moreover Φ is close to the identity in the sense that

‖Φα(u)− u‖σ . ρ−1|α|σ|u|σ+ρ . (A.2)

Given a function u ∈ H(T∞σ , X), we define its average on the infinite dimensional torus as∫
T∞

u(ϕ) dϕ := lim
N→+∞

1

(2π)N

∫
TN

u(ϕ) dϕ1 . . . dϕN . (A.3)

By Lemma 2.6 in [21], this definition is well posed and∫
T∞

u(ϕ) dϕ = u(0)

where u(0) is the zero-th Fourier coefficient of u.

Lemma A.3 (Algebra). One has |uv|σ ≤ |u|σ|v|σ for u, v ∈ H(T∞σ ×Tσ).

Lemma A.4 (Cauchy estimates). Let u ∈ H(T∞σ+ρ ×Tσ+ρ). Then |∂ku|σ .k ρ−k|u|σ+ρ.
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Lemma A.5 (Moser composition lemma). Let f : BR(0)→ C be an holomorphic function
defined in a neighbourhood of the origin BR(0) of the complex plane C. Then the composition
operator F (u) := f ◦ u is a well defined non linear map H(T∞σ × Tσ) → H(T∞σ × Tσ) and if
|u|σ ≤ r < R, one has the estimate |F (u)|σ . 1 + |u|σ. If f has a zero of order k at 0, then for
any |u|σ ≤ r < R, one gets the estimate |F (u)|σ . |u|kσ.

For any function u ∈ H(T∞σ , X), given N > 0, we define the projector ΠNu as

ΠNu(ϕ) :=
∑
|`|η≤N

u(`)ei`·ϕ and Π⊥Nu := u−ΠNu .

Lemma A.6. (i) Let ρ > 0. Then

sup
`∈Z∞∗
|`|η<∞

∏
i

(1 + 〈i〉5|`i|5)e−ρ|`|η ≤ e
τ ln

(
τ
ρ

)
ρ
− 1
η

for some constant τ = τ(η) > 0.

(ii) Let ρ > 0. Then ∑
`∈Z∞∗

e−ρ|`|η . e
τ ln

(
τ
ρ

)
ρ
− 1
η

,

for some constant τ = τ(η) > 0.

(iii) Let α > 0. For N � 1 one has

sup
`∈Z∞∗ : |`|α<N

∏
i

(1 + 〈i〉5|`i|5) ≤ (1 +N)C(α)N
1

1+α
(A.4)

for some constant C(α) > 0 such that C(α)→∞ as α→ 0.

Lemma A.7. Given u ∈ H(T∞σ , X) for X some Banach space, let g be a pointwise absolutely
convergent Formal Fourier series such that

|g(`)|X ≤
∏
i

(1 + 〈i〉5|`i|5)τ
′ |u|X ,

for some τ ′ > 0. Then for any 0 < ρ < σ, then g ∈ H(T∞σ−ρ, X) and satisfies

|g|σ−ρ ≤ e
τ ln

(
τ
ρ

)
ρ
− 1
η

|u|σ

Proof. Follows directly from Lemma A.6 and Definition 2.1.

Lemma A.8. Recalling (3.8) and the definition of |`|1 in (1.5), one has∑
`∈Z∞∗

|`|31
d(`)

<∞. (A.5)
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Proof. First of all note that for all ` ∈ Z∗∞ one has

|`|31 ≤
∏
i

(1 + 〈i〉|`i|)3,

which implies
|`|31
d(`)

.
1∏

i(1 + 〈i〉2|`i|2)
. (A.6)

Then we recall that (see [9]) ∑
`∈Z∗∞

1∏
i(1 + 〈i〉2|`i|2)

<∞

which implies (A.5).

Lemma A.9. Let N, σ, ρ > 0, m,m′ ∈ R, R ∈ H(T∞σ ,Bσ,m), Q ∈ H(T∞σ+ρ,Bσ+ρ,m′).

(i) The product operator RQ ∈ H(T∞σ ,Bσ,m+m′) with ‖RQ‖σ,m+m′ .m ρ−|m|‖R‖σ,m‖Q‖σ+ρ,m′.
If R(ω),Q(ω) depend on a parameter ω ∈ Ω ⊆ Dγ, then ‖RQ‖Ωσ,m+m′ .m
ρ−(|m|+2)‖R‖Ωσ,m‖Q‖Ωσ+ρ,m′. If m = m′ = 0, one has ‖RQ‖Ωσ . ‖R‖Ωσ ‖Q‖Ωσ .

(ii) The projected operator ‖Π⊥NR‖σ,m ≤ e−ρN‖R‖σ+ρ,m.

Given two linear operators A,B, we define for any n ≥ 0, the operator AdnA(B) as

Ad0
A(B) := B, Adn+1

A (B) := [AdnA(B),A] ,

where
[B,A] := BA−AB .

By iterating the estimate (i) of Lemma A.9, one has that for any n ≥ 1

‖AdnA(B)‖σ ≤ Cn‖A‖nσ‖B‖σ (A.7)

for some constant C > 0.

Lemma A.10. Let 0 < . . . < ρn < . . . < ρ0 and 0 < . . . � δn � . . . � δ0. Assume that∑
i≥0 δi <∞, choose any n ≥ 0 and let A and B be linear operators such that

A =

n∑
i=0

Ai B =

n∑
i=0

Bi ‖Ai‖ρi,−1 , ‖Bi‖ρi,1 ≤ δi, i = 0, . . . , n .

Then for any 0 < ζi < ρi the following holds.

(i) For any k ≥ 1, one has

AdkA(B) =
n∑
i=0

R(k)
i with ‖R(k)

i ‖ρi−ζi ≤ C
k
0 ζ
−1
i δi ∀i = 0, . . . , n
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(ii) Let R := e−ABeA − B. Then

R =

n∑
i=0

Ri with ‖Ri‖ρi−ζi . ζ
−1
i δi ∀i = 0, . . . , n

Proof. Proof of item (i). We prove the statement by induction on k. For k = 1, one has that

[B,A] =

n∑
i=0

R(1)
i , R(1)

i := [Bi,Ai] +
i−1∑
j=0

(
[Bi,Aj ]− [Ai,Bj ]

)
.

Since for j < i one has that ρj > ρi and so all the terms in the above sum are analytic at least
in the strip of width ρi. By applying Lemma A.9-(i) one has for any 0 < ζi < ρi

‖R(1)
i ‖ρi−ζi . ζ

−1
i

(
δ2
i +

i∑
j=0

δiδj

)
. ζ−1

i δi
∑
j≥0

δj . ζ
−1
i δi

for i = 0, . . . , n. Now we argue by induction. Assume that for some k ≥ 1, R(k) := AdkA(B) =∑n
i=0R

(k)
i , with

‖R(k)
i ‖ρi−ζi ≤ C

k
0 ζ
−1
i δi, i = 0, . . . , n

for any 0 < ζi < ρi. Of course this implies that for all j < i one has

‖R(k)
j ‖ρi−ζi ≤ C

k
0 ζ
−1
i δj , i = 0, . . . , n.

By definition

Adk+1
A (B) = [R(k),A] =

n∑
i=0

R(k+1)
i ,

R(k+1)
i := [R(k)

i ,Ai] +
i−1∑
j=0

(
[R(k)

i ,Aj ]− [Ai,R(k)
j ]
)
, ∀i = 0, . . . , n.

Hence by applying Lemma A.9-(i) and using the induction hypothesis, one obtains

‖R(k+1)
i ‖ρi−ζi ≤ C

(
‖R(k)

i ‖ρi−ζi‖Ai‖ρi−ζi +
i−1∑
j=0

‖R(k)
i ‖ρi−ζi‖Aj‖ρi−ζi + ‖R(k)

j ‖ρi−ζi‖Ai‖ρi−ζi
)

≤ Cζ−1
i Ck0 δi

i−1∑
j=0

δj ≤ CCk0 ζ−1
i δi

∑
j≥0

δj ≤ Ck+1
0 ζ−1

i δi.

Proof of (ii). One has

R = e−ABeA − B =
∑
k≥1

AdkA(B)

k!

(i)
=

n∑
i=0

Ri where Ri =
∑
k≥1

R(k)
i

k!
,
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so that

‖Ri‖ρi−ζi ≤
∑
k≥1

‖R(k)
i ‖ρi−ζi
k!

≤
∑
k≥1

Ck0
k!
ζ−1
i δi . ζ

−1
i δi .

Therefore the assertion follows.

Lemma A.11. Let {ρn}n≥0 and {δn}n≥0 as in Lemma A.10. Choose any n > 0 and consider

g(ϕ, x) =

n∑
i=0

gi(ϕ, x), with gi ∈ Hρi , |gi|ρi ≤ δi, i = 0, . . . , n.

Then the following holds.

(i) Consider the commutator [∂3
x,G] where G := π⊥0 g(ϕ, x)∂−1

x . Then, one has

[∂3
x,G] = 3gx∂x +R, R :=

n∑
k=0

Ri, where ‖Ri‖ρi−ζi . ζ
−3
i δi, for 0 < ζi < ρi.

(ii) Let ζ0, ζ1, . . . , ζn satisfying 0 < 2ζi < ρi, 0 < ρn − ζn < ρn−1 − ζn−1 < . . . < ρ0 − ζ0 and
assume that

∑
i≥0 ζ

−3
i δi <∞. Then, one has

e−G∂3
xe
G = ∂3

x + 3gx∂x +R, R =
n∑
i=0

Ri, ‖Ri‖ρi−2ζi . ζ
−4
i δi, i = 0, . . . , n .

(iii) Let ζ0, ζ1, . . . , ζn satisfying 0 < ζi < ρi, 0 < ρn − ζn < ρn−1 − ζn−1 < . . . < ρ0 − ζ0 and
assume that

∑
i≥0 ζ

−1
i δi <∞. Then

e−G(ω · ∂ϕ)eG = ω · ∂ϕ +R, R =

n∑
i=0

Ri, ‖Ri‖ρi−ζi . ζ
−1
i δi, i = 0, . . . , n .

Proof. Proof of (i). One has

[∂3
x, π
⊥
0 g∂

−1
x ] = π⊥0 (3gx∂x + 3gxx + gxxx∂

−1
x ) = 3gx∂x +R,

R :=
n∑
i=0

Ri, Ri := π⊥0 (3(gi)xx + (gi)xxx∂
−1
x )− 3π0(gi)x∂x .

Therefore
‖Ri‖ρi−ζi . ζ

−3
i δi .

Proof of (ii). In view of the item (i), it is enough to estimate

∑
k≥2

AdkG(∂3
x)

k!
.
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Let

B := [∂3
x,G] = 3gx∂x +R =

n∑
i=0

Bi, Bi := 3(gi)x∂x +Ri , i = 0, . . . , n ,

G =

n∑
i=0

Gi, Gi := π⊥0 gi(ϕ, x)∂−1
x i = 0, . . . , n .

(A.8)

One has
‖Bi‖ρi−ζi,1 . ζ

−3
i δi, i = 0, . . . , n,

‖Gi‖ρi−ζi,−1 ≤ ‖Gi‖ρi,−1 . |fi|ρi . δi ≤ ζ−3
i δi, i = 0, . . . , n

(A.9)

For any k ≥ 2 one has

AdkG(∂3
x) = Adk−1

G ([∂3
x,G]) = Adk−1

G (B) ,

hence, we can apply Lemma A.10 (replacing ρi with ρi − ζi and δi with ζ−3
i δi) obtaining

AdkG(∂3
x) =

n∑
i=0

R(k)
i

where R(k)
i satisfies

‖R(k)
i ‖ρi−2ζi ≤ C

k
0 ζ
−4
i δi, i = 0, . . . , n (A.10)

and hence by setting

R =
∑
k≥2

AdkG(∂3
x)

k!
=

n∑
i=0

Ri

item (ii) follows.

Proof of item (iii). The proof can be done arguing as in the item (ii), using that

e−G(ω · ∂ϕ)eG = ω · ∂ϕ +
∑
k≥1

Adk−1
G (ω · ∂ϕG)

k!
, where (ω · ∂ϕG) := π⊥0 ω · ∂ϕg(ϕ, x)∂−1

x .

Lemma A.12. Let A,A+,B,B+ be bounded operators w.r.t. a norm ‖ · ‖σ, and define

MA := max{‖A+‖σ, ‖A‖σ} , MB := max{‖B+‖σ, ‖B‖σ}. (A.11)

Then the following holds.
(i) For any k ≥ 0, one has

‖AdkA+
(B+)−AdkA(B)‖σ ≤ Ck∗Mk

AMB
(
‖A+ −A‖σ + ‖B+ − B‖σ

)
for some constant C∗ > 0.
(ii)

‖e−A+B+e
A+ − e−ABeA‖σ . ‖A+ −A‖σ + ‖B+ − B‖σ .
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Proof. Proof of (i). We argue by induction. Of course the result is trivial for k = 0. Assume
that the estimate holds for some k ≥ 1. Then

Adk+1
A+

(B+)−Adk+1
A (B) = AdA+

(
AdkA+

(B+)
)
−AdA

(
AdkA(B)

)
= AdA+

(
AdkA+

(B+)−AdkA(B)
)
−AdA+−A

(
AdkA(B)

)
.

Hence, by the induction hypothesis, using (A.11), (A.7) and Lemma A.9-(i), one obtains that

‖Adk+1
A+

(B+)−Adk+1
A (B)‖σ . ‖A+‖σ‖AdkA+

(B+)−AdkA(B)‖σ + ‖A+ −A‖σCk‖A‖kσ‖B‖σ
. Ck∗M

k+1
A MB

(
‖A+ −A‖σ + ‖B+ − B‖σ

)
+ CkMk

AMB‖A+ −A‖σ
≤ Ck+1

∗ Mk+1
A MB

(
‖A+ −A‖σ + ‖B+ − B‖σ

)
for some C∗ > 0 large enough.
Proof of (ii). It follows by item (i), using that

e−A+B+e
A+ − e−ABeA =

∑
k≥0

AdkA+
(B+)−AdkA(B)

k!
.

Lemma A.13. Let A,A+,B,B+ be linear operators satisfying

‖A‖ρ,−1, ‖A+‖ρ,−1, ‖B‖ρ,1, ‖B+‖ρ,1 < C0.

Then the following holds.
(i) For any k ≥ 1,

‖AdkA+
(B+)−AdkA(B)‖ρ−ζ ≤ Ckζ−1

(
‖A+ −A‖ρ,−1 + ‖B+ − B‖ρ,1

)
for some constant C > 0 depending on C0.
(ii) Setting R := e−ABeA − B, and R+ := e−A+B+e

A+ − B+, one has

‖R −R+‖ρ−ζ . ζ−1
(
‖A −A+‖ρ,−1 + ‖B − B+‖ρ,1

)
.

Proof. Proof of (i). We first estimate AdA+(B+)−AdA(B). One has

AdA+(B+)−AdA(B) = AdA+(B+ − B) + AdA+−A(B).

By Lemma A.9-(i), one has

‖AdA(B)‖ρ−ζ , ‖AdA+(B+)‖ρ−ζ . ζ−1, (A.12)

and
‖AdA+(B+)−AdA(B)‖ρ−ζ . ζ−1

(
‖A −A+‖ρ,−1 + ‖B − B+‖ρ,1

)
. (A.13)
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In order to estimate AdkA+
(B+)−AdkA(B) = Adk−1

A+
AdA+(B+)−Adk−1

A AdA(B) for any k ≥ 2,
we apply Lemma A.12-(i) where we replace B+ with AdA+(B+) and B with AdA(B), together
with the estimates (A.12), (A.13).

Proof of (ii). It follows by (i) using that R+ −R =
∑

k≥1

AdkA+
(B+)−AdkA(B)

k! .

Lemma A.14. Let g+, g ∈ Hρ, G := π⊥0 g(ϕ, x)∂−1
x , G+ := π⊥0 g+(ϕ, x)∂−1

x . Then the following
holds.
(i) The operators R := e−G∂3

xe
G − ∂3

x − 3gx∂x, R+ := e−G+∂3
xe
G+ − ∂3

x − 3(g+)x∂x satisfy
‖R+ −R‖ρ−ζ . ζ−τ |g+ − g|ρ for some constant τ > 0.
(ii) The operators R := e−Gω ·∂ϕeG−ω ·∂ϕ and R+ := e−G+ω ·∂ϕeG+−ω ·∂ϕ satisfy the estimate
‖R+ −R‖ρ−ζ . ζ−τ |g+ − g|ρ, for some constant τ > 0.

Proof. We only prove the item (i). The item (ii) can be proved by similar arguments. We
compute

B := [∂3
x, π
⊥
0 g∂

−1
x ] = π⊥0 (3gx∂x + 3gxx + gxxx∂

−1
x ) = 3gx∂x +RB ,

RB := π⊥0 (3gxx + gxxx∂
−1
x )− π0(3gx∂x),

B+ := [∂3
x, π
⊥
0 g+∂

−1
x ] = π⊥0 (3(g+)x∂x + 3(g+)xx + (g+)xxx∂

−1
x ) = 3(g+)x∂x +RB+ ,

RB+ := π⊥0 (3(g+)xx + (g+)xxx∂
−1
x )− π0(3(g+)x∂x) .

(A.14)

Hence

R+ −R = RB+ −RB +
∑
k≥2

AdkG+(∂3
x)−AdkG+(∂3

x)

k!

(A.14)
= RB+ −RB +

∑
k≥2

Adk−1
G+ (B+)−Adk−1

G (B)

k!
.

(A.15)

By a direct calculation one can show the estimates

‖B‖ρ−ζ,1 . ζ−3|g|ρ, ‖B+‖ρ−ζ,1 . ζ−3|g+|ρ ,
‖G‖ρ,−1 . |g|ρ, ‖G+‖ρ,−1 . |g+|ρ ,
‖RB+ −RB‖ρ−ζ . ζ−3|g+ − g|ρ, ‖G+ − G‖ρ,−1 . |g+ − g|ρ .

(A.16)

The latter estimates, together with Lemma A.13-(i) allow to deduce

‖Adk−1
G+ (B+)−Adk−1

G (B)‖ρ−ζ ≤ Ckζ−τ , ∀k ≥ 2, (A.17)

for some constant τ > 0. Thus (A.15)-(A.17) imply the desired bound.
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