Analisi non lineare

Prof. Agrachev - Anno Accademico 2011 - 2012

Lezione 1 - 14/10/2011

Teorema 1.

Siano $n \ge m$, $f \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ e $x_0 \in \mathbb{R}^n$ tale che $\frac{\partial f}{\partial x}(x_0)$ ha rango massimo. Allora esiste un intorno aperto O di x_0 e un diffeomorfismo $\psi : O \to O$ tale che $f \circ \psi$ è affine.

Dimostrazione.

A meno di riordinare le coordinate, si può supporre $x=(u,v)\in\mathbb{R}^m\times\mathbb{R}^{n-m}$ con $\frac{\partial f}{\partial u}(x_0)$ invertibile; dunque, ponendo $F(u,v,y)=f(u,v)-y:\mathbb{R}^{n+m}\to\mathbb{R}^m$ si ha

$$F(u_0, v_0, f(x_0)) = 0$$
 e $\frac{\partial F}{\partial u}(u_0, v_0, f(x_0)) = \frac{\partial f}{\partial u}(x_0)$ è invertibile

dunque per il teorema della funzione implicita esistono r > 0 e $\varphi : B_r(v_0) \times B_r(f(x_0)) \to B_r(u_0)$ tale che

$$f(\varphi(v,y),v) - y = F(\varphi(v,y),v,y) \equiv 0 \tag{1}$$

ponendo dunque $\psi(u,v) = (\varphi(v,u-u_0+y_0),v)$ si ha

$$f(\psi(u,v)) = f(\varphi(v, u - u_0 + y_0), v) = u - u_0 + y_0$$

che è lineare; inoltre, dalla (1) si ricava che

$$\frac{\partial f}{\partial u}(\varphi(v,y),v)\frac{\partial \varphi}{\partial v}(v,y) = \mathbb{I}_m$$

e dunque $\frac{\partial \varphi}{\partial y}$ è invertibile e pertanto, essendo

$$\frac{\partial \psi}{\partial y}(u,v) = \begin{pmatrix} \frac{\partial \varphi}{\partial y}(v, u - u_0 + y_0) & \frac{\partial \varphi}{\partial v}(v, u - u_0 + y_0) \\ 0 & \mathbb{I}_{n-m} \end{pmatrix}$$

 ψ è un diffeomorfismo.

Teorema 2 (Rango costante).

Sia $f \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ tale che f(0) = 0.

Il rango di $\frac{\partial f}{\partial x}$ è localmente costante in 0 se e solo se esistono due intorni $O \subset \mathbb{R}^n, \ U \subset \mathbb{R}^m$ di 0 e due diffeomorfismi $\psi : O \to O, \ \varphi : U \to U$ tali che $\varphi \circ f \circ \psi$ è lineare.

Dimostrazione.

Se esistono φ, ψ con queste proprietà allora il rango di $\frac{\partial f}{\partial x}$ è localmente costante perché lo è quello $\frac{\partial (\varphi \circ f \circ \psi)}{\partial y}$, perché quest'ultima mappa lineare, e dunque essendo φ, ψ diffeomorfismi

$$r\left(\frac{\partial f}{\partial x}(x)\right) = r\left(\frac{\partial \varphi}{\partial z}(f(x))\frac{\partial f}{\partial x}(x)\frac{\partial \psi}{\partial y}\left(\psi^{-1}(x)\right)\right) = r\left(\frac{\partial (\varphi \circ f \circ \psi)}{\partial y}\left(\psi^{-1}(x)\right)\right)$$

è localmente costante. Viceversa, se r $\left(\frac{\partial f}{\partial x}\right) = k$, si può supporre a meno di rotazioni che Im $\left(\frac{\partial f}{\partial x}\right) = 0 \times \mathbb{R}^k$ e scrivere $x = (u, v) \in \mathbb{R}^{n-k} \times \mathbb{R}^k$, $f(u, v) = (g(u, v), h(u, v)) \in \mathbb{R}^{m-k} \times \mathbb{R}^k$ con $\frac{\partial h}{\partial u}$ di rango k; dunque, per il teorema 1, esiste un intorno O di 0 e un diffeomorfismo $\psi: O \to O$ tale che $(h \circ \psi)(u, v) = v$; ponendo inoltre $\varphi(w, v) = (w - (g \circ \psi)(0, v), v)$, quest'ultimo è un diffeomorfismo locale in 0 perché

$$\frac{\partial \varphi}{\partial (w,v)}(w,v) = \left(\begin{array}{cc} \mathbb{I}_{m-k} & \frac{\partial (g \circ \psi)}{\partial v}(0,v) \\ 0 & \mathbb{I}_k \end{array} \right)$$

Infine, poiché la matrice

$$\frac{\partial (\varphi \circ f \circ \psi)}{\partial x}(u,v) = \left(\begin{array}{cc} \frac{\partial (g \circ \psi)}{\partial u}(u,v) - \frac{\partial (g \circ \psi)}{\partial u}(0,v) & \frac{\partial (g \circ \psi)}{\partial v}(u,v) - \frac{\partial (g \circ \psi)}{\partial v}(0,v) \\ 0 & \mathbb{I}_k \end{array} \right)$$

deve avere rango k, dev'essere $\frac{\partial (g \circ \psi(u,v) - g \circ \psi(0,v))}{\partial u} \equiv 0$ e dunque $g \circ \psi(u,v) = g \circ \psi(0,v)$, pertanto $\varphi \circ f \circ \psi(u,v) = ((g \circ \psi)(u,v) - (g \circ \psi)(0,v), v) = (0,v)$ che è linea-

Definizione 1.

Sia $M \subset \mathbb{R}^n$.

M si dice sottovarietà di dimensione k se per ogni $x \in M$ vale una delle tre equivalenti proprietà:

- 1. Esiste $O \subset \mathbb{R}^n$ intorno aperto di x e $F \in C^1(O, \mathbb{R}^{n-k})$ con $\frac{\partial F}{\partial x}(x)$ suriettiva e $M \cap O = F^{-1}(\{0\})$
- 2. Esistono aperti $V \ni 0$ di \mathbb{R}^k e $O \ni 0$ di \mathbb{R}^n un omeomorfismo $f \in C^1(V, O \cap M)$ con $f(0) = x e \frac{\partial f}{\partial v}(0)$ iniettiva

3. Esiste $O \subset \mathbb{R}^n$ intorno aperto di $x \in \psi \in C^1(O, O)$ con $\psi(O \cap M) = (\mathbb{R}^k \times 0) \cap O$

Lo spazio tangente a M nel punto \mathbf{x} è, nei tre casi, rispettivamente:

1.
$$T_x M = \ker\left(\frac{\partial F}{\partial v}(x)\right)$$
 2. $T_x M = \operatorname{Im}\left(\frac{\partial f}{\partial v}(0)\right)$ 3. $T_x M = \left(\frac{\partial \psi}{\partial v}\right)^{-1}(\mathbb{R}^n)$

Definizione 2.

Sia M uno spazio topologico di Hausdorff.

M si dice **varietà differenziabile con bordo** di dimensione k se esistono due famiglie $\{(O_{\alpha}, \varphi_{\alpha})_{\alpha \in A}, \{(O_{\beta}, \varphi_{\beta})_{\beta \in B} \text{ tali che } O_{\alpha}, O_{\beta} \subset M \text{ sono aperti che ricoprono } M \in \varphi_{\alpha}: O_{\alpha} \to \mathbb{R}^{k}, \ \varphi_{\beta}: O_{\beta} \to \mathbb{R}^{k} \cap \{x \in \mathbb{R}^{k}: x_{1} \leq 0\} \text{ sono tali che } \varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \text{ sono diffeomorfismi per ogni } U_{\alpha} \cap U_{\beta} \neq \emptyset.$

Se $x \in \varphi_{\beta}^{-1}(\{x \in \mathbb{R}^k : x_1 = 0\})$ per qualche β , x è detto **punto di bordo**; l'insieme dei punti di bordo è detto **bordo** di M e si indica con ∂M .

Osservazione 1.

Se M è una varietà differenziabile con bordo di dimensione k, ∂M è una varietà differenziabile di dimensione k-1.

Definizione 3.

Siano M, N due varietà e $F \in C^1(M, N)$.

Il differenziale di F in x è l'applicazione lineare $D_xF:T_xM\to T_{f(x)}N$ definita come

$$D_x F\left(\frac{d\gamma}{dt}(0)\right) = \left.\frac{d}{dt}F(\gamma(t))\right|_{t=0}$$

per ogni curva $\gamma: \mathbb{R} \to N \text{ con } \gamma(0) = x$.

Definizione 4.

Siano M, N due varietà, $x \in M$ e $F \in C^1(M, N)$.

Se $\frac{\partial F}{\partial x}(x)$ è suriettiva, x si dice **punto regolare** per F; altrimenti, x si dice **punto critico** per F.

Se esiste un punto critico $x \in F^{-1}(\{y\})$, $y \in N$ si dice valore critico per F; altrimenti, y si dice valore regolare per F.

Osservazione 2.

Se y è un valore regolare per $F: M \to N$, allora $F^{-1}(\{y\})$ è una varietà di dimensione $\dim(N) - \dim(M)$.

Definizione 5.

Sia $W \subset N$ una sottovarietà e $f \in C^1(M, N)$.

Se $\text{Im}(D_x f) + T_{f(x)} W = T_{f(x)} N$ per ogni $x \in M$ tale che $f(x) \in W$, f è **trasversale** a W e si indica $f \cap W$.

Lemma 3.

Sia $W \subset N$ una sottovarietà e $f \in C^1(M,N)$ trasversale a W. Allora $f^{-1}(W)$ è una sottovarietà di M tale che $\dim(N) - \dim(W) = \dim(M) - \dim(f^{-1}(W))$.

Dimostrazione.

Posti $n=\dim(M),\ k=\dim(N)$ e $l=\dim(W)$, per ogni $x\in f^{-1}(W)$ esiste un intorno U di f(x) e $\varphi\in C^1\left(U,\mathbb{R}^{n-k}\right)$ tale che $U\cap W=\varphi^{-1}(\{0\})$ e, per la continuità di $f,\ f^{-1}(U)$ è un intorno di x tale che $(\varphi\circ f)^{-1}(\{0\})=f^{-1}\left(\varphi^{-1}(\{0\})\right)=f^{-1}(U\cap W)=f^{-1}(U)\cap f^{-1}(U)$ e inoltre x è regolare per $\varphi\circ f$ perché, essendo φ nulla su $W,\ D_{f(x)}\varphi(T_{f(x)}W)=0$ e dunque

$$\begin{split} \operatorname{Im}(D_x(\varphi \circ f)) &= D_{f(x)}\varphi(\operatorname{Im}(D_x f)) = D_{f(x)}\varphi(\operatorname{Im}(D_x f) + T_{f(x)}W) = \\ &= D_{f(x)}\varphi(T_{f(x)}N) = \mathbb{R}^{k-l} \end{split}$$

dunque $f^{-1}(U) \cap f^{-1}(W) = (\varphi \circ f)^{-1}(\{0\})$ è una varietà di dimensione n-k+l, e quindi lo è anche $f^{-1}(W)$.

Lezione 2 - 15/10/2011

Definizione 6.

Siano M, N, W varietà e $f \in C^1(M, N)$, $g \in C^1(W, N)$. f e g si dicono **trasversali** se per ogni $x \in M, y \in W$ con f(x) = g(y) si ha $\text{Im}(D_x f) + \text{Im}(D_y g) = T_{f(x)} N$, e si indica $f \pitchfork g$.

Osservazione 3.

Due mappe $f \in C^1(M, N)$ e $g \in C^1(W, N)$ sono trasversali se e solo se la mappa $(f, g) : (x, y) \to (f(x), g(y))$ è trasversale alla diagonale $\Delta_N = \{(z, z) : z \in N\}$.

Definizione 7.

Sia $S \subset \mathbb{R}^k$.

S si dice **di misura 0** se per ogni $\varepsilon > 0$ esiste una famiglia numerabile di palle $\{B_i\}_{i\in\mathbb{N}}$ tali che $S\subset\bigcup_{i\in\mathbb{N}}B_i$ e $\sum_{i\in\mathbb{B}}\operatorname{Vol}(B_i)\leq \varepsilon.$

Osservazione~4.

Gli insiemi di misura 0 hanno le seguenti proprietà:

- 1. Se $\{S_i\}_{i\in\mathbb{N}}$ è una famiglia di insiemi di misura 0, allora anche $\bigcup_{i\in\mathbb{N}}S_i$ ha misura 0.
- 2. Se S ha misura 0 e $\varphi \in \text{Lip}\left(\mathbb{R}^k, \mathbb{R}^n\right)$ è Lipschitz, allora anche $\varphi(S)$ ha misura 0.

Teorema 4 (Morse-Sard).

Sia $f \in C^1(\mathbb{R}^n, \mathbb{R}^k)$.

Allora l'insieme dei suoi valori critici ha misura nulla in \mathbb{R}^k

Dimostrazione.

Procediamo per doppia induzione su $n \in k$.

Se k = 1 e n = 0, Im(f) è un punto e dunque ha misura nulla in \mathbb{R} ; supponiamo

dunque che il teorema sia vero per k=1 e n-1 e mostriamo che vale anche per k=1 e n: indicando con C_f l'insieme dei punti critici di f e

$$X_n = \left\{ x \in \mathbb{R}^n : \frac{\partial^{|j|} f}{\partial x_j}(x) = 0, \forall j = (j_1, \dots, j_n) \text{ con } |j| \le n \right\}$$

basta dimostrare che $f(X_n)$ e $f(C_f \setminus X_n)$ hanno entrambi misura 0: definendo, per ogni $j = (j_1, \ldots, j_n)$,

$$V_j = \left\{ x \in \mathbb{R}^n : \frac{\partial^{|j|} f}{\partial x_j}(x) = 0, D_x \frac{\partial^{|j|} f}{\partial x_j} \neq 0 \right\}$$

si ha $C_f \setminus X_n \subset \bigcup_{|j| \le n-1} V_j$, con $V_j = \left(\frac{\partial^{|j|} f}{\partial x_j}(x)\right)^{-1} (\{0\})$ varietà di dimensione n-1, ma essendo $C_f \cap V_j \subset C_{f|_{V_j}}$, allora

$$|f(C_f \backslash X_n)| \le \sum_{|j| \le n} |f(C_f \cap V_j)| \le \sum_{|j| \le n} |f\left(C_f|_{V_j}\right)| = 0$$

ove l'ultimo passaggio segue dall'ipotesi induttiva; quanto a X_n , è sufficiente provare che $|f(X_n\cap I)|=0$ per ogni cubo $I\subset\mathbb{R}^n$ di lato 1: su $X_n\cap I$ si avrà $||f(x)-f(y)||\leq C||x-y||^{n+1}$, quindi dividendo I in $\frac{1}{\varepsilon^n}$ cubetti Q_i di lato ε , che dunque saranno tali che diam $(f(Q_i))\leq C\varepsilon^{n+1}$; prendendo quindi una palla $B_i\supset f(Q_i)$ avente tale diametro, si ha

$$f(X_n) = \bigcup_i f(Q_i) \subset \bigcup_i B_i \quad \text{con} \quad \sum_i \text{Vol}(B_i) \le \sum_i C\varepsilon^{n+1} \le C\varepsilon$$

e pertanto la base induttiva è provata.

Mostriamo ora che se il teorema è vero per n-1 e k-1 allora è vero anchs per n e k: scrivendo $f=\left(\hat{f},f_k\right)$, se $y=\left(\hat{y},y_k\right)\in\mathbb{R}^k$ è critico per f, allora y_k è regolare per f_k oppure \hat{y} è critico per $\hat{f}|_{f_k^{-1}(\{y_k\})}$; tuttavia, per ipotesi induttiva, i valori critici di $f_k:\mathbb{R}^n\to\mathbb{R}$ hanno misura nulla e, essendo $f_k^{-1}(y_k)$ una n-1-varietà, anche quelli di $\hat{f}|_{f_k^{-1}(y_k)}:f_k^{-1}(y_k)\to\mathbb{R}^{k-1}$, quindi per il teorema di Fubini anche i valori critici di f generati da ciascuna delle due famiglie ha misura nulla, e dunque $|f(C_f)|=0$.

Osservazione 5.

Nel caso $k \geq n$, tutti i punti di una mappa $f \in C^1\left(\mathbb{R}^n, \mathbb{R}^k\right)$ sono critici, dunque l'insieme dei valori critici coincide con $\mathrm{Im}(f)$; dunque, il teorema di Morse-Sard 4 dice che in questo caso $\mathrm{Im}(f)$ ha misura nulla in \mathbb{R}^n , cosa che in genere non è vera se si suppone f solo continua, come ad esempio nel caso della curva di Peano.

Corollario 5.

Ogni varietà liscia M si può scrivere come $M = \bigcup_{i \in \mathbb{N}} B_i$ con $B_i \subset B_{i+1}$ sottovarietà di M compatte con bordo.

Dimostrazione.

Fissata M, costruisco $\alpha: M \to \mathbb{R}$ tale che $\alpha^{-1}([0,t])$ è compatto per ogni t; per il teorema di Morse-Sard 4, esiste una successione $t_i \nearrow +\infty$ di valori regolari, $t_i \to +\infty$

dunque è sufficiente porre $B_i := \alpha^{-1}([0, t_i])$ per avere una successione crescente di varietà compatte con bordo che ricoprono M.

Lezione 3 - 20/10/2011

Definizione 8.

Sia $F \in C^1(M, N)$.

Se $D_xF: T_xM \to T_{F(x)}N$ è suriettiva per ogni $x \in M$, F è detta **summersione**. Se $D_xF: T_xM \to T_{F(x)}N$ è iniettiva per ogni $x \in M$, F è detta **immersione**. Se F è un'immersione e un omeomorfismo sull'immagine, F è detta **embedding**.

Proposizione 6.

Sia $F \in C^1(U \times M, N)$ una summersione $e(u, x) \in F^{-1}(W)$ regolare $per p|_{F^{-1}(W)}$, ove $p: (u, x) \to u$.

Allora $f_u := F(u, \cdot) : M \to N$ è trasversale a W in x.

Dimostrazione.

Essendo F una summersione, $F \cap W$ e dunque $F^{-1}(W)$ è una varietà e

$$T_{(u,x)}F^{-1}(W) = \{(v,\xi) \in T_x U \times T_x M : D_{(u,x)}F(v,\xi) \in W\} =$$

$$= \left\{ (v,\xi) \in T_x U \times T_x M : \frac{\partial F}{\partial u}(u,x)v + \frac{\partial F}{\partial x}(u,x)\xi \in W \right\}$$

Inoltre, per la suriettività di $\operatorname{Im}(D_{(u,x)}F)$, per ogni $\eta \in T_{F(u,x)}N$ esistono $v_{\eta} \in T_{x}U, \xi_{\eta} \in T_{x}M$ tali che $\frac{\partial F}{\partial u}(u,x)v_{\eta} + \frac{\partial F}{\partial x}(u,x)\xi_{\eta} = \eta$; per ipotesi, $D_{(x,u)}|_{F^{-1}(W)}: (v,\xi) \to \xi$ è suriettiva, dunque per ogni $v_{\eta} \in T_{x}U$ esiste $\widetilde{\xi}_{\eta} \in T_{x}M$ tali che $\left(v_{\eta}, \widetilde{\xi}_{\eta}\right) \in T_{(u,x)}F^{-1}(W)$; dunque.

$$\eta = \frac{\partial F}{\partial u}(u,x)v_{\eta} + \frac{\partial F}{\partial x}(u,x)\xi_{\eta} =$$

$$= \frac{\partial F}{\partial u}(u,x)v_{\eta} + \frac{\partial F}{\partial x}(u,x)\tilde{\xi}_{\eta} + \frac{\partial F}{\partial x}(u,x)\left(\xi_{\eta} - \tilde{\xi}_{\eta}\right) \in T_{f_{u}(x)}W + \operatorname{Im}(D_{x}f_{u})$$
per l'arbitrarietà di η , si ha $T_{f_{u}(x)}N \subset T_{f_{u}(x)}W + \operatorname{Im}(D_{x}f_{u})$ e dunque $f_{u} \cap W$

Proposizione 7.

in x.

Siano U, M, N varietà, $F \in C^1(U \times M, N)$ una summersione e $W \subset N$ una sottovarietà.

Allora, $f_u \cap W$ per q.o. $u \in U$.

Dimostrazione.

Dal teorema di Morse-Sard 4, q.o. $u \in U$ è regolare per $p|_{F^{-1}(W)}$, e dunque applicando la proposizione 6 per questi valori si ottiene la tesi.

Corollario 8.

Sia $f \in C^1(M, \mathbb{R}^k)$ e $W \subset \mathbb{R}^k$ sottovarietà. Allora, per q.o. $y \in \mathbb{R}^k$, la mappa $f_y : x \to f(x) + y$ è trasversale a W.

Definizione 9.

Sia $M \subset \mathbb{R}^k$ una *n*-varietà.

Il fibrato vettoriale $M \times \mathbb{R}^k$ è detto fibrato vettoriale banale.

Il fibrato vettoriale $TM := \{(x, v) : x \in M, v \in T_xM\}$ è detto fibrato tangente.

Il fibrato vettoriale $SM := \{(x,v) \in TM : ||v|| = 1\}$ è detto fibrato sferico. Il fibrato vettoriale $TM^{\perp} := \{(x,v) : x \in M, v \in T_xM^{\perp}\}$ è detto fibrato normale.

Osservazione 6.

Il fibrato vettoriale banale ha dimensione n+k, il fibrato tangente ha dimensione 2n, il fibrato sferico ha dimensione 2n-1 e il fibrato normale ha dimensione 2n-k; inoltre, ogni fibrato vettoriale è un sottofibrato di quello banale, e in particolare $M \times \mathbb{R}^n = TM \oplus TM^{\perp}$

Teorema 9 (Whitney).

Sia M una n-varietà.

Allora esistono un'immersione $\varphi: M \to \mathbb{R}^{2n}$ e un embedding $\psi: M \to \mathbb{R}^{2n+1}$.

Dimostrazione.

Innanzi tutto, in virtù del corollario 5, si può supporre M compatta oppure $M=\overline{M}\backslash\partial\overline{M}$ con \overline{M} compatta con bordo; dunque si può supporre di avere un nu-

mero finito di carte locali
$$\{(U_i, \varphi_i)\}_{i=1,\dots,m}$$
 e prendere $V_i \in U_i$ con $M = \bigcup_{i=1}^m V_i$;

per ogni $i \in \{1, ..., m\}$ prendiamo $a_i \in C^1(M, \mathbb{R})$ con $\operatorname{supp}(a_i) \subset U_i$ e $a_i \equiv 1$ su V_i e consideriamo $\varphi : x \to (a_1(x)\varphi_1(x), ..., a_m(x)\varphi_m(x))$; è un embedding di M in \mathbb{R}^{mn} , dunque d'ora in poi si può supporre senza perdita di generalità che $M \subset \mathbb{R}^{mn}$.

A questo punto, per dimostrare l'esistenza dell'immersione φ è sufficiente che per almeno un valore di $l \in \mathbb{S}^{k-1}$ la proiezione $\pi_l : \mathbb{R}^k \to l^\perp$ ristretta a M sia un'immersione per ogni k > 2n, perché iterando il procedimento si otterrà un'immersione in \mathbb{R}^{2n} ; per mostrare questo fatto, notiamo che $D_x\pi_l$ è iniettiva se e solo se $l \notin T_x M \subset \mathbb{R}^n$; definendo $p: SM \to \mathbb{S}^{k-1}$ come p(x,v) = v, la sua immagine ha misura nulla per il teorema di Morse-Sard 4, e dunque per ogni $x \in M$ fissato l'insieme degli $l \in T_x M \cap \mathbb{S}^{k-1}$, cioè l'insieme dei valori per cui π_l non è un'immersione, ha misura nulla, e dunque in particolare non è vuoto.

Per mostrare l'esistenza dell'embedding ψ è sufficiente far vedere che, per k > 2n + 1, $\pi_l|_M$ sia un embedding per q.o. $l \in \mathbb{S}^{k-1}$, e per la compattezza di M vasterà mostrare l'iniettività di $\pi_l|_M$; posta $\Sigma = M \times M \setminus \Delta_M$, considero $\widetilde{\varphi} : \Sigma \to \mathbb{S}^{k-1}$

definita da $\widetilde{\varphi}(x,y) = \frac{x-y}{\|x-y\|}$: essendo una mappa liscia tra una varietà di dimensione 2n e una di dimensione k-1>2n, per il teorema di Morse-Sard 4 la sua immagine avrà misura nulla in \mathbb{R}^k ; tuttavia, essendo π_l è iniettiva sul complementare dell'immagine di $\widetilde{\varphi}$, che ha misura nulla, lo è per q.o. l, e quindi si ha la tesi.

Osservazione 7.

Data una n-varietà $M \subset \mathbb{R}^k$, la mappa $F: TM^{\perp} \to \mathbb{R}^k$ definita da $F(x,\xi) = x + \xi$ ha rango massimo, come si può vedere facilmente calcolando le derivate, dunque è un diffeomorfismo su un intorno O_M di M.

Definizione 10.

Sia $M \subset \mathbb{R}^k$ una *n*-varietà.

L'intorno O_M definito in precedenza è detto **intorno tubolare** e l'inversa locale di F si denota con $\pi_M:F^{-1}:O_M\to M$

Proposizione 10.

Siano M, N varietà, $f \in C^1(M,N)$ e $W \subset N$ una sottovarietà. Allora esiste $\tilde{f}: M \to N$ arbitrariamente vicina a f (nella topologia C^1) tale che $f \cap W$.

Dimostrazione.

Per il teorema di Whitney 9 si può supporre $M, N \subset \mathbb{R}^k$; la mappa $F(x,y) : x \to \pi_M(f(x) + y)$, definita su un intorno $O_M \subset \mathbb{R}^k$ di M, è una summersione e dunque, per la proposizione 7, $f_y = F(\cdot, y)$ è trasversale a W per q.o. $y \in \mathbb{R}^k$, in particolare lo è per y arbitrariamente vicini a 0, valori per cui f_y è arbitrariamente vicina a f.

Proposizione 11.

Siano M, N varietà e $f \in C(M, N)$.

Allora esiste $\widetilde{f} \in C^1(M, N)$ arbitrariamente vicina a f (nella topologia C^0).

Dimostrazione

Supponiamo $M, N \subset \mathbb{R}^k$ e consideriamo $f \circ \pi_M : O_M \to \mathbb{R}^k$; essendo continua, esiste un polinomio g arbitrariamente vicino nella topologia C^0 ; dunque, prendendo un intorno tubolare $O_N \supset N$, la mappa $\widetilde{f} = \pi_N \circ g|_M$ ha le proprietà richieste.

Lezione 4 - 21/10/2011

Lemma 12.

Sia M varietà con bordo, $f \in C^1(M, N)$ e $W \subset N$ sottovarietà tale che $f|_{\partial M} \cap W$. Allora esiste $\tilde{f} \in C^1(M, N)$ arbitrariamente vicina a f (nella topologia C^1) tale che $\tilde{f}|_{\partial M} = f|_{\partial M}$ e $\tilde{f} \cap W$. Dimostrazione.

Supponiamo $M, N \subset \mathbb{R}^k$ e prendiamo $a \in C^1(M, \mathbb{R})$ tale che $a|_{\partial M} \equiv 0$ e $a \equiv 1$ fuori da un intorno di ∂M ; allora, la mappa $f_y : x \to \pi_N(f(x) + a(x)y)$, definita su un intorno O_N di N, assume gli stessi valori di f su ∂M , è trasversale a W per q.o. y, in particolare per y arbitrariamente vicina a 0, e dunque per questi valori si ottiene la \widetilde{f} desiderata.

Definizione 11.

Siano $f_0, f_1 \in C(M, N)$.

Una **omotopia** tra f_0 e f_1 è una mappa $F: M \times [0,1] \to N$ tale che $F(\cdot,i) = f$ per i = 0, 1.

Proposizione 13.

Siano M, N varietà e $f \in C(M, N)$.

Allora, un intorno \mathcal{U} di f (nella topologia C^0) tale che per ogni $g_0, g_1 \in \mathcal{U}$ esiste un'omotopia tra g_0 e g_1 .

Dimostrazione.

Supponiamo $N \subset \mathbb{R}^k$; se g_0, g_1 sono vicine a f nella topologia C^0 , allora $tg_1(x) + (1 - t)g_0(x) \in O_N$ per un opportuno intorno O_N di N, dunque se O_N è un intorno tubolare basta prendere $F(x,t) = \pi_N(tg_1(x) + (1-t)g_0(x))$.

Definizione 12.

Sia $E = \bigcup_{x \in M} E_x$ un fibrato vettoriale e $\pi : E_x \to x$ la sua proiezione.

Una sezione di E è una mappa $s \in C^1(M, E)$ tale che $\pi \circ s = \mathrm{Id}$.

Un **campo vettoriale** X su M è una sezione di TM e si denota $X \in \text{Vec}(M)$; per ogni diffeomorfismo $\varphi: M \to N$, si pone $\varphi_*(X): y \to d_{\varphi^{-1}(\{y\})}\varphi\left(X\left(\varphi^{-1}(\{y\})\right)\right)$.

Proposizione 14.

Sia M una n-varietà, $X \in \text{Vec}(M)$ e $x_0 \in M$ tale che $X(x_0) \neq 0$. Allora esiste un intorno $O_{x_0} \ni x_0$ e una carta locale $\varphi : O_{x_0} \to \mathbb{R}^k$ tale che $\varphi_*(X) = (1, \ldots, 0)$.

Dimostrazione.

A meno di diffeomorfismi, si può supporre $M=\mathbb{R}^n, x_0=0$ e $X_1(0)\neq 0$; consideriamo, sull'iperpiano $(0,x_2,\dots,x_k)=(0,y)$, la soluzione $\gamma(t,y)$ di $\left\{ \begin{array}{l} \frac{\partial \gamma}{\partial t}(t,y)=X(\gamma(t,y))\\ \gamma(0,y)=y \end{array} \right.$; si tratta di un diffeomorfismo locale perché

$$\frac{\partial \gamma}{\partial (t,y)}(0,0) = \left(\begin{array}{cc} X_1(0) & X_2(0), \dots, X_n(0) \\ 0 & \mathbb{I}_n \end{array} \right)$$

Dunque, $\varphi = \gamma^{-1}$ è un diffeomorfismo con le proprietà volute perché

$$\varphi_*(X)(x) = D_{\gamma(x)}\gamma^{-1}(X(\gamma(x))) = D_{\gamma(x)}\gamma^{-1}\left(\frac{\partial \gamma}{\partial t}(x)\right) = (1, 0, \dots, 0)$$

Osservazione 8.

Per ogni fibrato E su M e ogni sezione $s: M \to E$ esiste un'altra sezione \widetilde{s} arbitrariamente vicina a s tale che $\widetilde{s} \cap M$.

In particolare, scegliendo E = TM, per ogni campo vettoriale X su M ne esiste un altro \widetilde{X} arbitrariamente vicino a X con $\widetilde{X} \uparrow M$.

Proposizione 15.

Sia M una 1-varietà compatta connessa. Allora M è diffeomorfa a [0,1] oppure a \mathbb{S}^1 .

Dimostrazione.

L'insieme degli zeri di un campo vettoriale X su M che abbia 0 come valore regolare è una 0-verietà, cioè un insieme discreto e quindi, per compattezza, discreto; dunque ogni soluzione di $\dot{q}=X(q)$ è definita globalmente da un punto di equilibrio all'altro e definisce un diffeomorfismo tra \mathbb{R} e la sottovarietà ristretta all'intervallo tra questi due punti; incollando questi diffeomorfismi si ottiene un diffeomorfismo globale, che è tra M e [0,1] se M ha bordo, e tra M e \mathbb{S}^1 se M non ne ha.

Teorema 16.

Sia $\mathbb{B}^n \subset \mathbb{R}^n$ la palla unitaria chiusa e $\varphi \in C^1(B^n, \mathbb{S}^n)$. Allora, non può accadere che $\varphi_{\mathbb{S}^{n-1}} = \mathrm{Id}$.

Dimostrazione.

Se esistesse una φ siffatta, per il teorema di Morse-Sard 4 avrebbe un valore regolare y, e $\varphi^{-1}(\{y\})$ sarebbe una varietà compatta con bordo di dimensione 1, e dunque è unione disgiunta di copie diffeomorfe di \mathbb{S}^1 e [0,1] e perciò ha un numero pari di punti di bordo; tuttavia, per ipotesi dev'essere $\partial \varphi^{-1}(\{y\}) = \varphi^{-1}(\{y\}) \cap \mathbb{S}^{n-1} = \{y\}$, e questo è assurdo.

Teorema 17 (Brouwer).

Sia $\varphi \in C^1(\mathbb{B}^n, \mathbb{B}^n)$.

Allora esiste $x \in \mathbb{B}^n$ tale che $\varphi(x) = x$.

Dimostrazione.

Se fosse $\varphi(x) \neq x$ per ogni $x \in \mathbb{B}^n$, si potrebbe costruire una mappa $\psi : \mathbb{B}^n \to \mathbb{S}^{n-1}$ nel seguente modo: detta r la retta passante per $x \in \varphi(x)$, $\psi(x)$ è il punto di $r \cap \mathbb{S}^{n-1}$ tale che x si trova tra $\psi(x) \in \varphi(x)$; ψ sarebbe una mappa di classe C^1 che coincide con l'identità su \mathbb{S}^{n-1} , ma non può esistere per il teorema 16. \square

Lezione 5 - 30/10/2011

$Osservazione \ 9.$

Il teorema di Brouwer 17 non è più valido se si sostituisce \mathbb{R}^n con uno spazio di Banach di dimensione infinita; infatti, prendendo

$$\ell_2 := \left\{ \{x_k\}_{k \in \mathbb{N}} : \sum_{k=0}^{+\infty} x_k^2 < +\infty \right\}$$

e la palla sua unitaria chiusa

$$\mathbb{B} := \left\{ x \in \ell_2 : ||x|| := \sqrt{\sum_{k=1}^{\infty} x_i^2} \le 1 \right\}$$

per $f(x) = \left(\sqrt{1 - \|x\|^2}, x_1, x_2, \ldots, \right)$ si ha $f(\mathbb{B}) = \partial \mathbb{B} =: \mathbb{S}$, dunque se fosse f(x) = x per qualche $x \in \mathbb{B}$, si avrebbe $x \in \mathbb{S}$, ma l'uguaglianza delle prime componenti darebbe $x_1 = 0$, l'uguaglianza delle seconde componenti darebbe $x_2 = 0$ e così via, quindi $x = 0 \notin \mathbb{S}$.

Definizione 13.

Siano X,Y spazi di Banach e $\mathbb{B} \subset X$ la sua palla unitaria chiusa e $f \in C(\mathbb{B},X)$. f si dice **compatta** se $\overline{f(\mathbb{B})}$ è compatto.

Esempio 1.

Prendendo $X = (C([0,1], \mathbb{R}), \|\cdot\|_{\infty})$, la mappa $f: u(t) \to \int_0^1 K(t,s)\varphi(u(s))ds$ è compatta se K è continua e φ è continua e limitata; infatti, $f(\mathbb{B})$ è un insieme di funzioni equilimitate ed equicontinue, perché

$$|f(u)(t_1) - f(u)(t_2)| \le ||\varphi||_{\infty} \int_0^1 |K(t_1, s) - K(t_2, s)| ds \underset{t_2 \to t_1}{\longrightarrow} 0$$

indipendentemente da u, e pertanto è compatto per il teorema di Ascoli-Arzelà.

Definizione 14.

Sia M una varietà, $\{O_{\alpha}\}_{{\alpha}\in A}$ un suo ricoprimento di aperti e $\{e_{\alpha}\}_{{\alpha}\in A}$ una famiglia di mappe di classe C^1 da M a $[0,+\infty)$ tali che

$$\begin{cases} \sup_{\rho_{\alpha}} \subset O_{\alpha} \\ \text{Per ogni } x \in M \text{ esistono } O_{\alpha_{1}}, \dots, O_{\alpha_{i_{x}}} \text{ tali che } \rho_{\alpha}(x) = 0 \text{ se } \alpha \notin \{\alpha_{1}, \dots, \alpha_{i_{x}}\} \\ \sum_{i=1}^{i_{x}} \rho_{\alpha_{i}}(x) = 1 \text{ per ogni } x \in M \end{cases}$$

Allora $\{e_{\alpha}\}_{{\alpha}\in A}$ si dice **partizione dell'unità** subordinata a $\{O_{\alpha}\}_{{\alpha}\in A}$

Lemma 18.

Siano X, Y spazi di Banach, $\mathbb{B} \subset X$ la sua palla unitaria e $f \in C(X,Y)$ limitata. Allora, f è compatta se e solo se è limite uniforme di mappa di rango finito.

Dimostrazione.

Supponiamo che f sia limite uniforme di una successione f_k di mappe di rango finito; in particolare, le f_k sono compatte, e dunque ogni $\{x_k\}_{k\in\mathbb{N}}\subset\mathbb{B}$ ha un'estratta $x_{k,1}$ tale che $f_1(x_{k,1})$ converga; a sua volta, $x_{k,1}$ avrà un'estratta $x_{k,2}$ tale che $f_2(x_{k-2})$, e così via; diagonalizzando, $f_k(x_{k,k}) \xrightarrow[k \to +\infty]{} y$, e dunque

$$||f(x_{k,k}) - y|| \le ||f(x_{k,k}) - f_k(x_{k,k})|| + ||f_k(x_{k,k}) - y|| \le$$
$$\le ||f - f_k||_{C(B,X)} + ||f_k(x_{k,k}) - y|| \underset{k \to +\infty}{\longrightarrow} 0$$

perciò $f(x_k)$ ha un'estratta convergente e dunque f è compatta. Supponiamo viceversa che f sia compatta e, fissato $\varepsilon > 0$, ricopriamo $\overline{f(\mathbb{B})}$ con palle $B_{\varepsilon}(y)$ di raggio ε centrate in ogni suo punto y; per compattezza, se ne può estrarre un sottoricoprimento finito $\{B_{i,\varepsilon}(y_i)\}_{i=1}^{n_{\varepsilon}}$; se e_i è una partizione

dell'unità subordinata a $\{B_{i,\varepsilon}(y_i)\}_{i=1}^{n_{\varepsilon}}$ è sufficiente porre $f_{\varepsilon}(x) = \sum_{i=1}^{n_{\varepsilon}} e_i(f(x))y_i$:

$$||f(x) - f_{\varepsilon}(x)|| = \left\| \sum_{i=1}^{n_{\varepsilon}} e_i(f(x))f(x) - \sum_{i=1}^{n_{\varepsilon}} e_i(f(x))y \right\| \le$$

$$\le \sum_{i=1}^{n_{\varepsilon}} e_i(f(x))||f(x) - y|| \le \varepsilon \sum_{i=1}^{n_{\varepsilon}} e_i(f(x)) = \varepsilon$$

Teorema 19 (Schauder).

Sia X uno spazio di Banach, $\mathbb{B} \subset X$ la sua palla unitaria e $f : \mathbb{B} \to \mathbb{B}$ compatta. Allora esiste $x \in \mathbb{B}$ tale che f(x) = x.

Dimostrazione.

In virtù del lemma 18, è sufficiente far vedere che f è limite uniforme di mappe di rango finito: ponendo f_{ε} come nella dimostrazione del lemma 18, $\overline{f_{\varepsilon}(\mathbb{B})} \subset \mathbb{B}$ per la convessità di \mathbb{B} ; in realtà, essendo di rango finito, $\overline{f_{\varepsilon}(\mathbb{B})} \subset \mathbb{B} \cap (\mathbb{R}^{n_{\varepsilon}} \times \{0\})$, dunque per il teorema di Brouwer 17 la mappa $f|_{B \cap (\mathbb{R}^{n_{\varepsilon}} \times \{0\})}$ ha un punto fisso x_{ε} , ma essendo $x_{\varepsilon} \subset \overline{f(\mathbb{B})}$, che è compatto, a meno di estratte si avrà $x_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} x \in \overline{f_{\varepsilon}(\mathbb{B})} \subset \mathbb{B}$ e $f(x) = \lim_{\varepsilon \to 0} f_{\varepsilon}(x_{\varepsilon}) = \lim_{\varepsilon} \to 0$ $x_{\varepsilon} = x$.

Teorema 20.

Siano M,N varietà di cui M è compatta, $W \subset N$ una sottovarietà chiusa tale che $\dim(M) + \dim(W) = \dim(N)$ e F un'omotopia tra due mappe $f_0, f_1 \in C(M,N)$ trasversali a W tale che $f_t(\partial M) \cap W = \emptyset = f_t(M) \cap \partial W$. Allora, $\#f_0^{-1}(W) = \#f_1^{-1}(W) \mod 2$.

Dimostrazione.

Innanzi tutto, per trasversalità, $f^{-1}(W)$ è una 0-varietà compatta, dunque è finito; per il lemma 12 si può supporre $F \cap W$, a meno di sostituirla con un'altra omotopia sufficientemente vicina da rispettare le ipotesi del teorema; dunque, $F^{-1}(W)$ è una 1-varietà con bordo

$$F^{-1}(W)\cap (M\times \{0\})\sqcup F^{-1}(W)\cap (M\times \{1\})=f_0^{-1}(W)\sqcup f_1^{-1}(W)$$

ma il bordo di ogni 1-varietà ha un numero pari di punti di bordo, quindi

$$0 = \#f_0^{-1}(W) + \#f_1^{-1}(W) \mod 2 = \#f_0^{-1}(W) - \#f_1^{-1}(W) \mod 2$$

Corollario 21.

Siano M, N, W varietà di cui N connessa e $\dim(M) + \dim(N) = \dim(W), F$ un'omotopia tra due mappe $f_0, f_1 \in C(M, N)$ e G un'omotopia tra due mappe $g_0, g_1 : W \to N$ tali che $f_i \pitchfork g_i$ per i = 1, 2 e $f_t(\partial M) \cap g_t(W) = f_t(M) \cap g_t(\partial W) = \emptyset$. Allora

$$\#\{(x,y): f_0(x) = g_0(y)\} = \#\{(x,y): f_1(x) = g_1(y)\} \mod 2$$

Dimostrazione.

La mappa $F \times G : (t, x, y) \to (F(t, x), G(t, y)) \in C(M \times W \to N \times N)$ è un'o-motopia tra $(f \times g)_0 = F \times G(0, \cdot)$ e $(f \times g)_1 = F \times G(1, \cdot)$, entrambe trasversali alla diagonale Δ_N , dunque per il teorema 20

$$\#\{(x,y): f_0(x) = g_0(y)\} \mod 2 = \#(f \times g)_0^{-1}(\Delta_N) \mod 2 =$$

= $\#(f \times g)_1^{-1}(\Delta_N) \mod 2 = \#\{(x,y): f_1(x) = g_1(y)\} \mod 2$

Teorema 22.

Siano M, N varietà compatte senza bordo della stessa dimensione di cui N connessa, $f: M \to N$ e y regolare per f.

Allora, $\#f^{-1}(\{y\}) \mod 2$ non dipende da y.

Inoltre, se $f_t: M \to N$ è un'omotopia, allora $\#f_t^{-1}(\{y\}) \mod 2$ non dipende da t.

Dimostrazione.

Poiché y è regolare, $W:=f^{-1}(\{y\})$ è trasversale a f; essendo poi N connessa, tutte le applicazioni costanti sono omotope tra loro, dunque si può applicare il corollario 21 per ottenere

$$\#f^{-1}(\{y_1\}) \mod 2 = \#\{x : f(x) = y_1\} = \#\{x : f(x) = y_2\} \mod 2 = \#f^{-1}(\{y_2\}) \mod 2$$

per ogni $y_1, y_2 \in N$.

Inoltre, se $F: M \times I \to N$ è un'omotopia tra f_0 e f_1 , allora per ogni $t_0, t_1 \in I$ anche $F(t(t_1 - t_0) + t_0, x) : M \times I \to N$ è un'omotopia tra f_{t_0} e f_{t_1} , dunque per il teorema 20

$$\#f_{t_0}^{-1}(\{y\}) \mod 2 = \#f_{t_1}^{-1}(\{y\}) \mod 2$$

Definizione 15.

Sia M una varietà con carta locale $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$.

M si dice **orientabile** se $\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : U_{\alpha} \cap U_{\beta} \to U_{\alpha} \cap U_{\beta}$ è tale che det $\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)$ ha lo stesso segno per ogni $\alpha, \beta \in A$.

Osservazione 10.

Una n-varietà M è orientabile se e solo se esiste una n-forma differenziale mai nulla $\omega \in \Lambda^n(M)$.

Infatti, se M ha una n-forma ω mai nulla, allora prendendo $dx_1 \dots dx_n \in \Lambda^n(\mathbb{R}^n)$ si ha $\varphi_{\alpha}^*(dx_1 \dots dx_n) = f_{\alpha}\omega \in \Lambda^n(U_{\alpha}) \subset \Lambda^n(M)$ per una certa f_{α} che ha segno costante indipendentemente da α ; dunque,

$$\det\left(\varphi_{\alpha}\circ\varphi_{\beta}^{-1}\right)(dx_{1}\dots dx_{n}) = \left(\varphi_{\alpha}\circ\varphi_{\beta}^{-1}\right)^{*}(dx_{1}\dots dx_{n}) =$$

$$= \varphi_{\beta}^{-1*}(\varphi_{\alpha}^{*}(dx_{1}\dots dx_{n})) = \varphi_{\beta}^{-1*}(f_{\alpha}\omega) = \frac{f_{\alpha}}{f_{\beta}}dx_{1}\dots dx_{n}$$

 $con \frac{f_{\alpha}}{f_{\beta}} > 0.$

Viceversa, essendo

$$\omega_{\alpha} := \varphi_{\alpha}^{*}(dx_{1} \dots dx_{n}) = \underbrace{\varphi_{\beta}^{*}\left(\det\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)\right)}_{f_{\alpha,\beta}}\underbrace{\varphi_{\beta}^{*}(dx_{1} \dots dx_{n})}_{\omega_{\beta}}$$

per ipotesi $f_{\alpha,\beta}$ ha segno costante indipendentemente da α , β , dunque prendendo una partizione dell'unità ρ_{α} subordinata a U_{α} , la forma $\omega = \sum_{\alpha \in A} \rho_{\alpha} \omega_{\alpha} \in \Lambda^{n}(M)$

non si annulla mai, perché le ω_{α} hanno segno costante e le ρ_{α} non si annullano mai simultaneamente.

Lezione 6 - 10/11/2011

Definizione 16.

Sia M una varietà orientabile e $\omega_1, \omega_2 \in \Lambda^n(M)$ due forme differenziali mai nulle. ω_1 e ω_2 definiscono la stessa orientazione se esiste a(x) > 0 tale che $\omega_1 = a\omega_2$, e si indica $\omega_1 \sim \omega_2$.

Osservazione 11.

Se M è connessa esistono due sole possibili orientazioni, perché se $\omega_1=a\omega_2$ con $a(x)\neq 0$, allora a(x)>0 oppure a(x)<0.

Definizione 17.

Siano $e = \{e_1, \dots, e_n\}$ e $f = \{f_1, \dots, f_n\}$ due basi di \mathbb{R}^n .

e e f definiscono la stessa orientazione se la matrice di cambiamento di base M_{ef} ha determinante positivo, e si indica $e \sim f$.

Definizione 18.

Sia M una varietà orientata con $\omega \in \Lambda^n(M)$ mai nulla e sia $e = \{e_1, \dots, e_n\}$ una base di T_xM .

e si dice **positivamente orientata** se $\omega(x)(e_1,\ldots,e_n)>0$.

Osservazione 12.

Se M è una varietà orientata, $\gamma:[0,1]\to M$ una curva $\{e_1,\ldots,e_n\}$ una base di $T_{\gamma(0)}M$ positivamente orientata e $\{e_1(t),\ldots,e_n(t)\}$ è una base di $T_{\gamma(t)}M$ che varia con continuità al variare di $t\in[0,1]$, allora $\{e_1(t),\ldots,e_n(t)\}$ è positivamente orientata di; infatti, se $\omega\in\Lambda^n(M)$ è una forma mai nulla, $t\to\omega(e_1(t),\ldots,e_n(t))$ è una funzione continua su [0,1] mai nulla e positiva in 0, dunque positiva su tutto [0,1].

Lemma 23.

Sia M una varietà, $\gamma \subset M$ una curva regolare $e\{e_1, \ldots, e_n\}$ una base di $T_{\gamma(0)}M$. Allora esistono $e_1(t), \ldots, e_n(t) \in C^1([0,1], TM)$ tali che $\{e_1(t), \ldots, e_n(t)\}$ è una base di $T_{\gamma(t)}M$.

Dimostrazione.

Supponiamo che γ non si autointersechi e consideriamo il campo vettoriale $V(\gamma(t)) = \dot{\gamma}(t)$, definito su $\mathrm{Im}(\gamma)$ ed esteso ad un suo intorno tubolare e poi su M in modo che abbia supporto compatto; dunque, il flusso $\varphi_t(x) = \varphi(t,x)$ associato all'equazione differenziale $\dot{q} = V(q)$ è un diffeomorfismo con $\varphi_t(\gamma(s)) = \gamma(t+s)$, dunque è sufficiente porre $e_i(t) = D_{\gamma(0)}\varphi_t(e_i)$.

Se invece γ si autointerseca, consideriamo la curva $\widetilde{\gamma}(t)=(\gamma(t),t)\subset M\times\mathbb{R}$ e definiamo il campo vettoriale $\widetilde{V}(\gamma(t))=\widetilde{\gamma}(t)=(\dot{\gamma}(t),1)$ esteso a $M\times\mathbb{R}$ analogamente a prima; in questo caso, se $\psi_t(x)$ è il flusso associato all'equazione

autonoma
$$\begin{cases} \dot{q} = \widetilde{V}(q,t) \\ \dot{t} = 1 \end{cases}$$
, basterà porre $e_i(t) = D_{(\gamma(0),0)} \psi(\widetilde{e}_i)$.

Proposizione 24.

 $Sia\ M\ una\ n$ -varietà.

M è orientabile se e solo se per ogni coppia di curve γ, γ' su M con stessi estremi e per ogni coppia di basi lisce $\{e_1(t), \ldots, e_n(t)\}, \{e'_1(t), \ldots, e'_n(t)\}$ di $T_{\gamma(t)}M$ e $T_{\gamma'(t)}M$ rispettivamente, con $e_i(0) = e'_i(0)$ si ha $\{e_1(1), \ldots, e_n(1)\} \sim \{e'_1(1), \ldots, e'_n(1)\}$.

Dimostrazione.

Supponiamo che M sia orientabile; allora, $t \to \omega(\gamma(t))(e_1(t), \ldots, e_n(t))$ e $t \to \omega(\gamma(t))(e'_1(t), \ldots, e'_n(t))$ sono due funzioni che non cambiano segno e hanno lo stesso segno in 0, dunque devono avere lo stesso segno anche in 1; essendo poi $\omega(\gamma(t))(e_1(t), \ldots, e_n(t)) = \det(M)\omega(\gamma(t))(e'_1(t), \ldots, e'_n(t))$, dove M è la matrice di passaggio da una base all'altra, si ha det M > 0 e cioè $\{e_1(1), \ldots, e_n(1)\} \sim \{e'_1(1), \ldots, e'_n(1)\}$.

Viceversa, se $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ è un atlante su $M \ni x$, per ogni base $\{e_1, \dots, e_n\}$ di $T_x M$ e per ogni $\alpha \in A$ prendo $y_{\alpha} \in U_{\alpha}$, una curva γ tra x e y_{α} e una base liscia su γ costruita come nel lemma 23; se $\{D_{y_{\alpha}}\varphi_{\alpha}e_1(1), \dots, D_{y_{\alpha}}\varphi_{\alpha}e_n(1)\}$ è una base di \mathbb{R}^n con la stessa orientazione della base canonica, poniamo $\widetilde{\varphi}_{\alpha} = \varphi_{\alpha}$, altrimenti componiamo con un diffeomorfismo che scambia l'orientazione; in questo modo, l'atlante $\{(U_{\alpha}, \widetilde{\varphi}_{\alpha})\}_{\alpha \in A}$ è positivamente orientato, perché per ogni $y \in U_{\alpha} \cap U_{\beta}$ le basi $\{D_y \widetilde{\varphi}_{\alpha} e_1(1), \dots, D_y \widetilde{\varphi}_{\alpha} e_n(1)\}$ e $\{D_y \widetilde{\varphi}_{\beta} e_1(1), \dots, D_y \widetilde{\varphi}_{\beta} e_n(1)\}$ definiscono entrambe la stessa orientazione della base canonica di \mathbb{R}^n , dunque la stessa, e quindi det $(\widetilde{\varphi}_{\alpha} \circ \widetilde{\varphi}_{\beta}^{-1}) > 0$.

Definizione 19.

Siano M, N orientabili di cui M è compatta, $W \subset N$ una sottovarietà orientabile chiusa tale che $\dim(M) + \dim(W) = \dim(N)$ e sia $f \in C^1(M, N)$ trasversale a W tale che $f(\partial M) \cap W = \emptyset = f(M) \cap \partial W$.

Il numero di intersezione di $f \in W$ è

$$f \cdot W = \sum_{x \in f^{-1}(W)} sign(\omega(x)(f_*(e_1), \dots, f_*(e_n), \eta_1, \dots, \eta_m))$$

per una qualsiasi $0 < \omega \in \Lambda^{n+m}(N)$, $\{e_1, \dots, e_n\}$ base positivamente orientata di T_xM e $\{\eta_1, \dots, \eta_m\}$ base positivamente orientata di $T_f(x)W$.

Se M, N, W sono varietà orientabili di cui M, W sono compatte e tali che $\dim(M) + \dim(W) = \dim(N)$, e $f \in C^1(M, N)$, $g \in C^!(W, N)$ sono tali che $f \pitchfork g$ e $f(\partial M) \cap g(W) = \emptyset = f(M) \cap g(\partial W)$, allora il **numero di intersezione** di f e g è

$$f \cdot g = \sum_{x \in f^{-1}(M) \cap g^{-1}(W)} \operatorname{sign}(\omega(x)(f_*(e_1), \dots, f_*(e_n), g_*(\eta_1), \dots, g_*(\eta_m)))$$

per una qualsiasi $0 < \omega \in \Lambda^{n+m}(N)$, $\{e_1, \dots, e_n\}$ base positivamente orientata di T_xM e $\{\eta_1, \dots, \eta_m\}$ base positivamente orientata di $T_{f(x)}W$.

Osservazione~13.

La definizione di numero di intersezione non dipende dalla scelta della forma ω né delle basi $\{e_1, \ldots, e_n\}$ e $\{\eta_1, \ldots, \eta_m\}$.

Teorema 25.

Siano M, N varietà orientabili di cui M è compatta, $W \subset N$ una sottovarietà orientabile chiusa tale che $\dim(M) + \dim(W) = \dim(N)$ e sia $f_t : M \to N$ un'omotopia tale che $f_t \cap W$ e $f_t(\partial M) \cap W = \emptyset = f_t(M) \cap \partial W$. Allora $f_0 \cdot W = f_1 \cdot W$.

Dimostrazione.

 $F^{-1}(W) \text{ è una 1-varietà, cioè unione di circonferenze e segmenti, con bordo } \partial F^{-1}(W) = f_0^{-1}(W) \times \{0\} \cup f_1^{-1}(W) \times \{1\}; \text{ se } (x,0) \text{ è l'estremo di una curva di } \partial F^{-1}(W) \text{ e l'altro estremo è in } f_0^{-1}(W) \times \{0\}, \text{ sia } \gamma \text{ una parametrizzazione di questa curva; se } \{e_1,\ldots,e_n\} \text{ è una base di } T_xM, \text{ allora per trasversalità } \{(e_1,0),\ldots,(e_n,0),\dot{\gamma}(0)\} \text{ è una base di } T_{(x,0)}M \times [0,1] \text{ e dunque si può estendere in maniera continua a una base } \{\tilde{e}_1(t),\ldots,\tilde{e}_n(t),\dot{\gamma}(t)\} \text{ su } T_{\gamma(t)}M \times [0,1]; \text{ non è restrittivo supporre che } \tilde{e}_i(t) \perp \dot{\gamma}(t), \text{ e cioè che } \{\tilde{e}_1(t),\ldots,\tilde{e}_n(t)\} \text{ sia una base di } T_{\gamma(t)}M; \text{ poiché } \{(e_1,0),\ldots,(e_n,0),\dot{\gamma}(0)\} \text{ definisce la stessa orientazione di } \{(e_1,0),\ldots,(e_n,0),(0,1)\} \text{ e, per l'orientabilità, di } \{\tilde{e}_1(1),\ldots,\tilde{e}_n(1),\dot{\gamma}(1)\}, \text{ ma diversa da quella di } \{(e_1,0),\ldots,(e_n,0),\dot{\gamma}(1)\}, \text{ allora } \{\tilde{e}_1(1),\ldots,\tilde{e}_n(t)\} \text{ non può essere orientata allo stesso modo di } \{(e_1,0),\ldots,(e_n,0)\}; \text{ inoltre, in questo caso } D\gamma(t)F\left(\dot{\gamma}(t)^{\perp}\right) \oplus T_{F(\gamma(t))} = T_{F(\gamma(t))}N, \text{ quindi } t \to \text{sign}\left(\omega(\gamma(t))\left(F_*\left(\gamma^{\perp}(t)\right),w(t)\right)\right) \text{ è costante in } t, \text{ ove } w(t) = \{w_1(t),\ldots,w_n(t)\} \text{ è un'estensione continua di una base } \{w_1,\ldots,w_n\} \text{ di } T_{F(x,0)}W, \text{ dunque} \}$

$$sign(\omega(x)(f_*(e_1),\ldots,f_*(e_n),w_1,\ldots,w_n)) =$$

$$= \operatorname{sign}(\omega(\gamma(t))(f_*(\widetilde{e}_1(t)), \dots, f_*(\widetilde{e}_n(t)), w_1(t), \dots, w_n(t)))$$

ma $\{\widetilde{e}_1(1),\ldots,\widetilde{e}_n(1)\}$ è negativamente orientata, dunque il contributo nella sommatoria è lo stesso, e lo stesso accade se entrambi i punti del bordo sono su $f_1^{-1}(W) \times \{1\}$; se invece la curva ha un punto del bordo su ognuno dei due lati, si ragiona analogamente ma stavolta $\dot{\gamma}(1)$ non cambia l'orientazione delle basi su T_xM e dunque si conclude come prima e pertanto, sommando, si ottiene la tesi.

Teorema 26.

Siano M, N, W varietà orientabili di cui M, W sono compatte e tali che $\dim(M) + \dim(W) = \dim(N)$, e siano $f_t : M \to N$ e $g_t : M \to N$ omotopie tali che $f_i \pitchfork g_i$ per i = 1, 2 e $f_t(\partial M) \cap g_t(W) = \emptyset = f_t(M) \cap g_t(\partial W)$ Allora $f_0 \cdot g_0 = f_1 \cdot g_1$.

Dimostrazione.

A meno di cambiare le omotopie con altre arbitrariamente vicine, si può supporre $f_t \pitchfork g_t$; dunque, $f_t \times g_t : M \times W \to N \times N \supset \Delta_N$ soddisfa le ipotesi del teorema 25 e dunque

$$f_0 \cdot g_0 = (-1)^{\dim(W)} (f_0 \times g_0) \cdot \Delta = (-1)^{\dim(W)} (f_1 \times g_1) \cdot \Delta = f_1 \cdot g_1$$

Definizione 20.

Siano M, N varietà orientabili di cui M è compatta, $f \in C^1(M, N)$ e $y \in N$ regolare per f.

Il **grado** di
$$f$$
 è deg $f = \sum_{x \in f^{-1}(\{y\})} \operatorname{sign} f_* = \sum_{x \in f^{-1}(\{y\})} \det(D_x f).$

Teorema 27.

Siano M,N varietà orientabili di cui M è compatta, $f \in C^1(M,N)$ e $y \in N$ regolare per f.

Allora $\deg f$ è ben definito, cioè non dipende dalla scelta di y, ed è invariante per omotopie.

Dimostrazione.

Presi $y_0, y_1 \in Y$ regolari per f, applichiamo il teorema 26 con $f_t \equiv f$ e le applicazioni costanti $y_t : [0,1] \to N$ costruite con una curva tra y_0 e y_1 , perché la regolarità dei punti dà $f \pitchfork y_i$ per i = 0, 1; dunque, $\deg f = f \cdot y_0 = f \cdot y_1$; analogamente, per un'omotopia f_t si ottiene $\deg f_0 = f_0 \cdot y = f_1 \cdot y = \deg f_1$.

Esempio 2.

- 1. Per ogni $f: M \to N, g: W \to N$ si ha $g \cdot f = (-1)^{mn} f \cdot g$.
- 2. Se $f \times g = M \times W \to N \times N$, allora $(f \times g) \cdot \Delta_N = (-1)^{\dim(W)} f \cdot g$, a seconda dell'orientazione scelta su Δ_N .

Lezione 7 - 11/11/2011

Definizione 21.

Sia M una n-1-varietà orientabile, $f \in C(M, \mathbb{R}^n)$ e $y \notin f(M)$. Il **grado** di f in y è $\deg_y f := \deg\left(\frac{f-y}{\|f-y\|}: M \to \mathbb{S}^{n-1}\right)$.

Osservazione 14

Se $M \cap \mathbb{R}^k \times \{0\}$ e $f - \text{Id} : M \to \mathbb{R}^k \times \{0\}$, allora per ogni $y \in \mathbb{R}^k \times \{0\} \setminus f(M)$ si ha $\deg_y f = \deg_y f|_{M \cap (\mathbb{R}^k \times \{0\})}$.

Definizione 22.

Sia $\Omega \subset \mathbb{R}^n$ un aperto convesso e limitato $x \in \Omega$ e $\varepsilon > 0$ tale che $\overline{B_{\varepsilon}(x)} \subset \Omega$, $p: S_{\varepsilon}(x) \to \partial \Omega$ la proiezione su $\partial \Omega$, $f \in C^1(\overline{\Omega}, \mathbb{R}^n)$ e $y \notin f(\partial \Omega)$. Il **grado** di f in y è $\deg_y f := \deg_y (f \circ p: S_{\varepsilon}(x) \to \mathbb{R}^n)$.

Lemma 28.

Sia X uno spazio di Banach, $\Omega \subset X$ un aperto convesso e limitato e $f \in C\left(\overline{\Omega},X\right)$ tale che $\varphi(x) := f(x) - x$ è compatta. Allora $f(\partial\Omega)$ è chiuso.

Dimostrazione.

Posta $\varphi:=f-\mathrm{Id}$, prendiamo $x_k\in\partial\Omega$ tale che $f(x_k)=x_k+\varphi(x_k)\underset{k\to+\infty}{\to}y;$ per compattezza $\varphi(x_k)$ convergerà a meno di estratte, inoltre, essendo $\partial\Omega$ chiuso, $x_k=y-\varphi(x_k)\underset{k\to+\infty}{\to}z\in\partial\Omega,$ e infine per la continuità di f si ha $f(x_k)\underset{k\to+\infty}{\to}f(z)\in f(\partial\Omega),$ dunque $f(\partial\Omega)$ è chiuso.

Definizione 23.

Sia X uno spazio di Banach, $\Omega \subset X$ un aperto convesso e limitato, $f \in C\left(\overline{\Omega}, X\right)$ tale che $\varphi := f$ – Id è compatta e $y \notin f(\partial \Omega)$.

Allora, se φ_{ε} è una mappa di rango finito che approssima φ per $\varepsilon \in (0, d(y, f(\partial\Omega)))$, $V_{\varepsilon} \subset \varphi_{\varepsilon}(\overline{\Omega})$ e $f_{\varepsilon} = \operatorname{Id} + \varphi_{\varepsilon}$, il **grado di Leray-Schauder** di f in y è $\deg(f, \Omega, y) := \deg_y \left(f_{\varepsilon}|_{\overline{\Omega} \cap V_{\varepsilon}}\right)$.

Lemma 29.

Sia X uno spazio di Banach, $\Omega \subset X$ un aperto convesso e limitato, $f \in C(\overline{\Omega}, X)$ tale che $\varphi(x) := f$ – Id è compatta e $y \notin f(\partial \Omega)$.

Allora, la definizione di grado di Leray-Schauder non dipende dalla mappa di rango finito che approssima φ .

Dimostrazione.

Se $\varphi_{\varepsilon}: \overline{\Omega} \to V_{\varepsilon}$ e $\psi_{\nu}: \overline{\Omega} \to V_{\nu}$ sono due approssimanti, allora $t \to t\psi_{\nu} + (1-t)\varphi_{\varepsilon}$ è un'omotopia tra ψ_{ν} e φ_{ε} in $\widehat{V}:=V_{\varepsilon}+V_{\nu}$; inoltre, se $y \notin f(\partial\Omega)$, non appartiene neanche all'immagine di $\partial\Omega$ attraverso $f_{\varepsilon}:=\operatorname{Id}+\varphi_{\varepsilon}$ e $f_{\nu}:=\operatorname{Id}+\psi_{\nu}$, né attraverso loro combinazioni convesse, per ε,ν sufficientemente piccoli, e dunque $t \to \frac{tf_{\varepsilon}+(1-t)f_{\nu}-y}{\|tf_{\varepsilon}+(1-t)f_{\nu}-y\|}$ è un'omotopia tra $\frac{f_{\varepsilon}-y}{\|f_{\varepsilon}-y\|}$ e $\frac{f_{\nu}-y}{\|f_{\nu}-y\|}$, dunque per l'osservazione precedente

$$\deg_y \left(f_{\varepsilon}|_{\overline{\Omega} \cap V_{\varepsilon}} \right) = \deg_y \left(\frac{f_{\varepsilon} - y}{\|f_{\varepsilon} - y\|} \right) = \deg_y \left(\frac{f_{\nu} - y}{\|f_{\nu} - y\|} \right) = \deg_y \left(f_{\nu}|_{\overline{\Omega} \cap V_{\nu}} \right)$$

Corollario 30.

Sia X uno spazio di Banach, $\Omega \subset X$ un aperto convesso e limitato, $f \in C\left(\overline{\Omega}, X\right)$ tale che $\varphi(x) := f(x) - x$ è compatta e $y \notin f\left(\overline{\Omega}\right)$. Allora $\deg(f, \Omega, y) = 0$.

Dimostrazione.

Se $y \notin f(\overline{\Omega})$, la mappa $\frac{f-y}{\|f-y\|}$ è ben definita su tutto $\overline{\Omega}$ e dunque omotopa alla mappa costante $\frac{f(x_0)-y}{\|f(x_0)-y\|}$, che ovviamente ha grado 0.

Teorema 31 (Schauder).

Sia X uno spazio di Banach, $\Omega \subset X$ un aperto convesso e limitato e $\varphi : \overline{\Omega} \to \overline{\Omega}$ una mappa compatta.

Allora esiste $x \in \overline{\Omega}$ tale che $\varphi(x) = x$.

Dimostrazione.

Se per assurdo φ non avesse punti fissi, allora 0 non sarebbe nell'immagine di $f := \operatorname{Id} - \varphi$, ma allora per il corollario 30 si avrebbe $\deg(f, \Omega, 0) = 0$; tuttavia, perché prendendo $t \to x - t\varphi(x)$ si otterrebbe che f è omotopa all'identità, che ha grado 1, in contraddizione con l'invarianza omotopica del grado.

Teorema 32 (Formula integrale del grado).

Siano M, N n-varietà orientabili, di cui N è compatta, $f \in C^1(M, N)$ e $\omega \in \Lambda^n(N)$. Allora, $\int_M f^*(\omega) = \deg f \int_N \omega$.

Dimostrazione.

Innanzi tutto, indicando con C_f l'insieme dei punti critici di f, si ha $f^*(\omega)(x)=0$ per ogni $x\in C_f$, mentre $f(C_f)$ ha misura nulla in M, dunque $\int_M f^*(\omega)=\int_{M\backslash C_f} f^*(\omega)$ e $\int_N \omega=\int_{N\backslash f(C_f)} \omega$; per ogni $y\in N\backslash f(C_f)$ si ha $f^{-1}(\{y\})=\{z_1,\ldots,z_{k_y}\}$, ed esistono degli opportuni intorni O_{z_i} di z_i e O_y di y tali che $f|_{O_{z_i}}:O_{z_i}\to O_y$ è un diffeomorfismo e $f^{-1}(O_y)=\bigsqcup_{i=1}^{k_y}O_{z_i}$, dunque prendendo un sottoricoprimento localmente finito O_{y_α} di O_y e una partizione dell'unità e_α subordinata a O_{y_α} si ottiene

$$\int_{M} f^{*}(\omega) = \int_{M \setminus C_{f}} f^{*}(\omega) = \sum_{\alpha} (e_{\alpha} \circ f) \int_{M \setminus C_{f}} f^{*}(\omega) =$$

$$= \sum_{\alpha} \sum_{i=1}^{k_{y_{\alpha}}} \int_{O_{z_{i}}} (e_{\alpha} \circ f) f^{*}(\omega) = \sum_{\alpha} \sum_{i=1}^{k_{y_{\alpha}}} \operatorname{sign}(f_{*}) \int_{\omega_{y_{\alpha}}} e_{\alpha} \omega =$$

$$= \deg f \sum_{\alpha} \int_{O_{y_{\alpha}}} e_{\alpha} \omega = \deg f \int_{N \setminus f(C_f)} \omega = \deg f \int_{N} \omega$$

Corollario 33.

Sia $\Omega \subset \mathbb{R}^n$ un aperto tale che $\partial\Omega$ è una sottovarietà liscia, $f \in C(\overline{\Omega}, \mathbb{R}^n)$ e $y \notin f(\overline{\Omega})$. Allora $\deg(f, \Omega, y) = 0$.

Dimostrazione.

Se $y \notin f(\overline{\Omega})$, allora $\frac{f-y}{\|f-y\|}$ è ben definito su $\overline{\Omega}$, dunque applicando la formula integrale del grado 32 con una $\omega \in \Lambda^{n-1}(\mathbb{S}^{n-1})$ mai nulla e il teorema di Stokes si ottiene

$$\deg(f, \Omega, y) \int_{\mathbb{S}^{n-1}} \omega = \deg\left(\frac{f - y}{\|f - y\|}\right) \int_{\mathbb{S}^{n-1}} \omega = \int_{\partial \Omega} \left(\frac{f - y}{\|f - y\|}\right)^* (\omega) =$$

$$= \int_{\Omega} d\left(\left(\frac{f - y}{\|f - y\|}\right)^* (\omega)\right) = \int_{\Omega} \left(\frac{f - y}{\|f - y\|}\right)^* (d\omega) = 0$$

Definizione 24.

Siano M e W varietà compatte orientabili di dimensione rispettivamente n e m e $f \in C^1\left(M,\mathbb{R}^{n+m+1}\right)$ e $g \in C^1\left(N,\mathbb{R}^{n+m+1}\right)$ tali che $f(x) \neq g(y)$ per ogni $x \in M, y \in N$.

Il numero di link tra $f \in g$ è link $(f,g) := (-1)^m \deg \left(\frac{f-g}{\|f-g\|} : M \times N \to \mathbb{S}^{n+m}\right)$.

Esempio 3.

- 1. Se M, N, W sono varietà compatte orientabili tali che $\dim(M) = \dim(N) = \dim(W)$ e $f: M \to N$ e $g: N \to W$, allora $\deg(f \circ g) = \deg f \deg g$.
- 2. Se $f:\mathbb{C}\to\mathbb{C}$ è un polinomio di grado n, allora la sua estensione della sfera di Riemann $\hat{\mathbb{C}}$ in sé ha grado n.
- 3. Se $f,g:\mathbb{C}\to\mathbb{C}$ sono due polinomi di grado rispettivamente n e m, allora la mappa $\frac{f}{g}:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ ha grado $\max\{n,m\}$.

Lezione 8 - 15/11/2011

Osservazione 15.

Poiché una mappa g da una 0-varietà connessa in \mathbb{R}^{n+1} è costante, in questo caso la definizione di numero di link equivale a quella di grado: se $g \equiv y$, allora $\operatorname{link}(f,g) = \deg_y f$.

Definizione 25.

Sia M una varietà, $\omega \in \Lambda^k(M)$ e $v \in \text{Vec}(M)$.

Il **prodotto interno** di $v \in \omega$ è la forma differenziale $i_v(\omega) \in \Lambda^{k-1}(M)$ definita da $i_v(\omega)(x)(v_1,\ldots,v_{k-1}) := \omega(x)(v,v_1,\ldots,v_{k-1}).$

Osservazione 16.

Per ogni $\omega_{\alpha} \in \Lambda^{\alpha}(M)$, $\omega_{\beta} \in \Lambda^{\beta}(M)$ si ha $i_{\alpha}(\omega_{\alpha}\omega_{\beta}) = i_{v}(\omega_{\alpha})\omega_{\beta} + (-1)^{\alpha}\omega_{\alpha}i_{v}(\omega_{\beta})$.

Definizione 26.

Sia $\omega = dx_1 \dots dx_{k+1} \in \Lambda^{k+1} \left(\mathbb{R}^{k+1} \right), v(x) = (x_1, \dots, x_{k+1}) \in \text{Vec} \left(\mathbb{R}^{k+1} \right) e i : \mathbb{S}^k \to \mathbb{R}^{k+1}$ l'inclusione.

Si definisce
$$\widehat{\sigma} = i^*(i_v \omega) = \sum_{i=1}^{k+1} (-1)^{i+1} x_i dx_1 \dots \widehat{dx_i} \dots dx_{k+1} \in \Lambda^k (\mathbb{S}^k).$$

Osservazione 17.

La misura k-dimensionale di \mathbb{S}^k è $S_k := \int_{\mathbb{S}^k} \widehat{\sigma}$, dunque per ogni $f \in C^1\left(M, \mathbb{S}^k\right)$ si ha deg $f = \frac{1}{S_k} \int_M f^*\left(\widehat{\sigma}\right)$; posta poi $\pi(x) = \frac{x}{\|x\|}$ e $\sigma = \frac{1}{S_k} \pi^*\left(\widehat{\sigma}\right)$, per ogni $f \in C^1\left(M, \mathbb{R}^{n+m+1}\right)$ e $g \in C^1\left(M, \mathbb{R}^{n+m+1}\right)$ il numero di link si può scrivere come

$$\operatorname{link}(f,g) = \frac{(-1)^m}{S_{n+m}} \int_{M \times N} \left(\frac{f-g}{\|f-g\|} \right)^* (\widehat{\sigma}) = (-1)^m \int_{M \times N} (f-g)^* (\sigma)$$

e inoltre

$$\sigma = \frac{1}{S_k} \sum_{i=1}^{k+1} (-1)^{i-1} d\left(\frac{x_1}{\|x\|}\right) \dots d\left(\frac{x_i}{\|x\|}\right) \dots d\left(\frac{x_{k+1}}{\|x\|}\right) =$$

$$= \frac{1}{S_k} \sum_{i=1}^{k+1} (-1)^{i-1} \left(\frac{1}{\|x\|} dx_1 + x_1 d\left(\frac{1}{\|x\|}\right)\right) \dots \left(\frac{1}{\|x\|} dx_i + x_i d\left(\frac{1}{\|x\|}\right)\right) \dots \left(\frac{1}{\|x\|} dx_{k+1} + x_{k+1} d\left(\frac{1}{\|x\|}\right)\right) =$$

$$= \frac{1}{S_k} \sum_{i=1}^{k+1} \frac{(-1)^{i-1}}{\|x\|^{k+1}} dx_1 \dots dx_i \dots dx_{k+1} +$$

$$+ \frac{1}{S_k} \sum_{i=1}^{k+1} \sum_{j=1}^{i-1} (-1)^{i+j-2} x_i x_j d\left(\frac{1}{\|x\|}\right) dx_1 \dots dx_j \dots dx_i \dots dx_{k+1} +$$

$$+ \frac{1}{S_k} \sum_{i=1}^{k+1} \sum_{j=i+1}^{k+1} (-1)^{i+j-1} x_i x_j d\left(\frac{1}{\|x\|}\right) dx_1 \dots dx_i \dots dx_j \dots dx_{k+1} =$$

In particulare, per k=2 si ottiene $\sigma=\frac{1}{4\pi||x||^3}(x_1dx_2dx_3-x_2dx_1dx_3+x_3dx_1dx_2).$

 $= \frac{1}{S_k} \sum_{i=1}^{k+1} \frac{(-1)^{i-1}}{\|x\|^{k+1}} dx_1 \dots \widehat{dx_i} \dots dx_{k+1}$

Proposizione 34 (Formula di Gauss).

Siano $f \in C^1(0,1], \mathbb{R}^3)$, $g \in C^1([0,1], \mathbb{R}^3)$ due curve tali che $f(x) \neq g(y)$ per ogni $x, y \in [0,1]$. Allora

$$\operatorname{link}(f,g) = -\frac{1}{4\pi} \int_0^1 dt \int_0^1 ds \frac{\det(f(t) - g(s), f'(t), g'(s))}{\|f(t) - g(s)\|^3}$$

Dimostrazione.

Se $h = (h_1(t, s), h_2(t, s), h_3(t, s)) : [0, 1] \times [0, 1] \to \mathbb{R}^3$, allora

$$h^*(\sigma)h^*(x_1dx_2dx_3 - x_2dx_1dx_3 + x_3dx_1dx_2) =$$

$$=h_1(t,s)dh_2(t,s)dh_3(t,s)-h_2(t,s)dh_1(t,s)dh_3(t,s)+h_3(t,s)dh_1(t,s)dh_2(t,s)=\\ =h_1(t,s)\left(\frac{\partial h_2}{\partial t}(t,s)\frac{\partial h_3}{\partial s}(t,s)-\frac{\partial h_2}{\partial s}(t,s)\frac{\partial h_3}{\partial t}(t,s)\right)dtds-\\ -h_2(t,s)\left(\frac{\partial h_1}{\partial t}(t,s)\frac{\partial h_3}{\partial s}(t,s)-\frac{\partial h_1}{\partial s}(t,s)\frac{\partial h_3}{\partial t}(t,s)\right)dtds+\\ +h_3(t,s)\left(\frac{\partial h_1}{\partial t}(t,s)\frac{\partial h_2}{\partial s}(t,s)-\frac{\partial h_1}{\partial s}(t,s)\frac{\partial h_2}{\partial t}(t,s)\right)dtds=\\ =\det\left(h(t,s),\frac{\partial h}{\partial t}(t,s),\frac{\partial h}{\partial s}(t,s)\right)dsdt$$

dunque, prendendo h(t,s)=f(t)-g(s) e applicando l'osservazione precedente, si ottiene la tesi.

Osservazione 18.

In dimensione maggiore, vale un risultato analogo alla proposizione 34: se (t_1, \ldots, t_n) sono coordinate locali su M e (s_1, \ldots, s_m) coordinate locali su N, allora

$$(-1)^m (f-g)^*(\sigma) = \frac{\det\left(f(t) - g(s), \frac{\partial f}{\partial t_1}(t), \dots, \frac{\partial f}{\partial t_n}(t), \frac{\partial g}{\partial s_1}(s), \dots, \frac{\partial g}{\partial s_m}(s)\right)}{S_{m+n+1} ||f(t) - g(s)||^{m+n+1}}$$

Proposizione 35.

Sia $F \in \operatorname{Vec}(\mathbb{R}^n)$ con uno zero non degenere in 0 e $\varepsilon > 0$ tale che $F|_{B_{\varepsilon}(0)\setminus\{0\}} \neq 0$.

Allora
$$\operatorname{deg}\left(\left.\frac{F}{\|F\|}\right|_{S_{\varepsilon}(0)}\right) = \operatorname{sign}\left(\operatorname{det}\left(\frac{\partial F}{\partial x}(0)\right)\right).$$

Dimostrazione.

La mappa $f_t(x) = \begin{cases} \frac{F(tx)}{t} & \text{se } 0 < t \le 1 \\ \frac{\partial F}{\partial x}(0) & \text{se } t = 0 \end{cases}$ è un'omotopia tra $F \in \frac{\partial F}{\partial x}(0)x$, dun-

que
$$\frac{f_t}{\|f_t\|}$$
 è un'omotopia tra $\frac{F}{\|F\|}\Big|_{S_{\varepsilon}(0)}$ e $\frac{\frac{\partial F}{\partial x}(0)x}{\left\|\frac{\partial F}{\partial x}(0)x\right\|}\Big|_{S_{\varepsilon}(0)}$; inoltre, esiste un'o-

motopia A_t nello spazio delle matrici invertibili tra $\frac{\partial F}{\partial x}(0)$ e una matrice orto-

gonale
$$A$$
, pertanto $\frac{A_t x}{\|A_t x\|}$ è un'omotopia tra $\frac{\frac{\partial F}{\partial x}(0)x}{\|\frac{\partial F}{\partial x}(0)x\|}\Big|_{S_{\varepsilon}(0)}$ e $\frac{Ax}{\|Ax\|} = \frac{Ax}{\varepsilon}$, e quest'ultima mappa ha per grado $\operatorname{sign}(\det(A)) = \operatorname{sign}\left(\det\left(\frac{\partial F}{\partial x}(0)\right)\right)$.

Teorema 36.

Sia B una n+1-varietà con bordo, N una m-varietà con bordo e $f \in C^1(B, \mathbb{R}^{n+m+1})$, $g \in C^1(N, \mathbb{R}^{n+m+1})$ tali che $f(\partial B) \cap g(N) = \emptyset$. Allora $\operatorname{link}(f|_{\partial B}, g) = f \cdot g$.

Dimostrazione.

A meno di perturbazioni arbitrariamente piccole, si può supporre $f \pitchfork g \in 0$ regolare per f-g, dunque $(f-g)^{-1}(0) = \{z_1, \ldots, z_k\} \subset (B \backslash \partial B) \times N$; quindi, scegliendo intorni disguinti O_i di z_i , si ha $(f-g)^*(\sigma) \in \Lambda^{n+m} \left(B \times N \backslash \bigcup_{i=1}^k O_i\right)$ e perciò si ottiene, dal teorema di Stokes,

$$0 = \int_{B \times N \setminus \bigcup_{i=1}^k O_i} d((f - g)^*(\sigma)) = \int_{\partial (B \times N \setminus \bigcup_{i=1}^k O_i)} (f - g)^*(\sigma) =$$
$$= \int_{\partial B \times N} (f - g)^*(\sigma) - \sum_{i=1}^k \int_{\partial O_i} (f - g)^*(\sigma)$$

e dunque, se $z_i=(x_i,y_i)$, per ogni base positivamente orientata e_1,\ldots,e_{n+1} di $T_{x_i}B$ in x_i e $\{v_1,\ldots,v_n\}$ di $T_{y_i}N$ in y_i , si ottiene

$$\lim_{k \to \infty} (f,g) = (-1)^m \int_{\partial B \times N} (f-g)^*(\sigma) = (-1)^m \sum_{i=1}^k \int_{\partial O_i} (f-g)^*(\sigma) = (-1)^m \sum_{i=1}^k \frac{1}{S_{m+n}} \int_{\partial O_i} \left(\frac{f-g}{\|f-g\|} \right)^* (\widehat{\sigma}) = (-1)^m \sum_{i=1}^k \deg \left(\frac{f-g}{\|f-g\|} \Big|_{\partial O_i} \right) = (-1)^m \sum_{i=1}^k \operatorname{sign}(\det D_{z_i}(f-g)) = (-1)^m \sum_{i=1}^k \operatorname{sign}(\omega(z_i)(f^*(e_1), \dots, f^*(e_{n+1}), -g^*(v_1), \dots, -g^*(v_m))) = \sum_{i=1}^k \operatorname{sign}(\omega(z_i)(f^*(e_1), \dots, f^*(e_{n+1}), g^*(v_1), \dots, g^*(v_m))) = f \cdot g$$

ove il quartultimo passaggio segue dalla proposizione 35.

Lezione 9 - 17/11/2011

Proposizione 37.

Sia M una varietà compatta orientabile compatta senza bordo e $V \in \text{Vec}(M)$. Allora $V \cdot M$ non dipende da V.

Dimostrazione.

Se $V_1,V_2\in \mathrm{Vec}(M),$ allora $V_t:=(1-t)V_1+tV_2$ è un'omotopia tra V_1 e $V_2,$ dunque $V_1\cdot M=V_2\cdot M$

Definizione 27.

Sia M una varietà e $M \hookrightarrow TM$ la 0-sezione. La caratteristica di Eulero-Poincaré di M è $\chi(M) = M \cdot M$.

Definizione 28.

Sia M una varietà e $\varphi \in C^1(M, \mathbb{R})$ tale che $D_x^2 \varphi : T_x M \times T_x M \to \mathbb{R}$ è una forma bilineare non degenere per ogni x tale che $D_x \varphi = 0$. φ si dice **funzione di Morse**.

Osservazione 19.

In generale, $D_x^2 \varphi$ non è definita su $T_x M$ perché se $\gamma(0) = x$ allora

$$\frac{d^2}{dt^2}\varphi(\gamma(t)) = \frac{d}{dt}D_x\varphi\dot{\gamma}(t) = D_x\varphi\ddot{\gamma}(t) + \langle D^2x\dot{\gamma}(t),\dot{\gamma}(t)\rangle$$

dipende anche da $\ddot{\gamma}(t)$ oltre che da $\dot{\gamma}(t)$.

Definizione 29.

Sia $\varphi: M \to \mathbb{R}$ una funzione di Morse.

L'indice di Morse di $D_x^2 \varphi$ è

 $\operatorname{Ind} D_x^2 \varphi = \max \left\{ \dim(E) : E \subset T_x M \text{ tale che } D_x^2 \varphi \text{ è definita negativa} \right\}$

Definizione 30.

Sia M una varietà. Il **cofibrato tangente** ad M è $T^*M = \bigcup_{x \in M} (T_x M)^*$.

Osservazione 20.

Sia M una varietà e $\varphi: M \to \mathbb{R}$.

 φ è una funzione di Morse se e solo se $D_x \varphi \cap M$, ove M è intesa come 0-sezione di T^*M .

Proposizione 38.

Sia M una varietà $e \varphi \in C^1(M, \mathbb{R})$.

Allora esiste una funzione di Morse $\widetilde{\varphi}: M \to \mathbb{R}$ arbitrariamente vicina a φ (rispetto alla topologia C^1).

Dimostrazione.

Posta $\varphi_l(x) = \varphi(x) + \langle l, x \rangle$, si ha $D_x \varphi_l = D_x \varphi + l$, che è trasversale a T^*M e quindi, per la proposizione 7, $D_x \varphi_l \cap M$ per q.o. l, in particolare per valori arbitrariamente vicini a 0, dunque φ_l è una famiglia di funzioni di Morse arbitrariamente vicina a φ .

Proposizione 39.

Sia M una varietà compatta senza bordo e $\varphi: M \to \mathbb{R}$ una funzione di Morse. Allora $\chi(M) = \sum_{x \in C_{\mathcal{C}}} (-1)^{\operatorname{Ind} D_x^2 \varphi}$, dove $C_{\varphi} = \{x \in M : D_x \varphi = 0\}$.

Dimostrazione.

Se $M \subset \mathbb{R}^n$, allora T_xM è un sottospazio di \mathbb{R}^n per ogni $x \in M$, dunque $D_x\varphi: T_xM \to \mathbb{R}$ è un funzionale lineare e quindi per ogni $x \in M$ esiste un'unico $\nabla_x\varphi \in T_xM$ tale che $D_x\varphi(\xi) = \langle \nabla_x\varphi, \xi \rangle$ per ogni $\xi \in T_xM$; dunque, $\nabla \varphi: x \to \nabla_x\varphi$ è un campo vettoriale su M trasversale alla 0-sezione, e quindi

$$\chi(M) = \nabla \varphi \cdot M = \sum_{\{x: \nabla_x \varphi = 0\}} \operatorname{sign}(\det(D_x \nabla_x \varphi)) = \sum_{x \in C_{\varphi}} \operatorname{sign}(\det D_x^2 \varphi) =$$
$$= \sum_{x \in C_{\varphi}} (-1)^{\operatorname{Ind} D_x^2 \varphi}$$

Esempio 4.

1. Prendendo $M = \mathbb{S}^2 \subset \mathbb{R}^3$ e $\varphi : (x,y,z) \to z$, i punti critici sono $x_{\pm} = (0,0,\pm 1)$, x_+ è un massimo per φ mentre x_- è un minimo, quindi $D_{x_+}\varphi$ è definita positiva e $D_{x_-}\varphi$ è definita negativa, dunque $\chi(M) = (-1)^2 + (-1)^0 = 2$; prendendo $M = \mathbb{S}^1 \subset \mathbb{R}^2$ e $\varphi(x,y) = y$, c'è sempre un massimo e un minimo e dunque $\chi(M) = (-1)^1 + (-1)^0 = 0$, analogamente $\chi(\mathbb{S}^n) = (-1)^n + 1$.

2. Considerando invece un toro con k buchi $M_k \subset \mathbb{R}^3$, la funzione $\varphi : (x, y, z) \to z$ ha un punto di massimo, uno di minimo e 2k punti di sella, due per ogni buco; dunque $\chi(M_k) = (-1)^2 + (-1)^0 + 2k(-1)^1 = 2 - 2k$.

Corollario 40.

Sia M una varietà di dimensione dispari. Allora, $\chi(M)=0$.

Dimostrazione.

Se dim(M) = 2k + 1 è dispari e $V \in \text{Vec}(M)$, allora det $\left(-\frac{\partial V}{\partial x}(x)\right) = (-1)^{2k+1} \det\left(\frac{\partial V}{\partial x}(x)\right)$, dunque

$$\chi(M) = V \cdot M = (-V) \cdot M = (-1)^{2k+1} V \cdot M = (-1)^{2k+1} \chi(M) = -\chi(M)$$
e cioè $\chi(M) = 0$.

Lezione 10 - 18/11/2011

Teorema 41 (Hopf).

Sia M una n-varietà compatta, connessa e orientabile e $f_0, f_1 \in C(M, \mathbb{S}^n)$. Allora f_0 e f_1 sono omotope se e solo se deg f_0 = deg f_1 . Dimostrazione.

Se f_0 e f_1 sono omotope, allora $\deg f_0 = \deg f_1$ per il teorema 27. Viceversa, fissato un valore regolare $y \in \mathbb{S}^n$ per f_0 e f_1 , colleghiamo ogni coppia di punti di $f_0^{-1}(\{y\})$ dove $\det\left(\frac{\partial f}{\partial x}\right)$ ha segno opposto con una curva in $M \times [0,1]$, e analogamente per $f_1^{-1}(\{y\})$; resteranno $|\deg f|$ punti su ogni $f_i^{-1}(\{y\})$ dove $\det\left(\frac{\partial f}{\partial x}\right)$ ha lo stesso segno, colleghiamo ogni punto di $f_0^{-1}(\{y\})$ con un altro di $f_1^{-1}(\{y\})$ attraverso curve in $M \times [0,1]$, in modo tale che tutte queste curve γ_i non si intersechino, e poniamo $F\left(\bigcup_i \gamma_i\right) = y$; estendiamo F a un'intorno tubolare O_i delle γ_i : se γ_i connette due punti di $f_0^{-1}(\{y\})$, per ogni base $\{e_1,\ldots,e_n\}$ di $T_{\gamma_i(0)}M$, $\{e_1,\ldots,e_n,\dot{\gamma}(0)\}$ è una base di $T_{\gamma_i(0)}M \times [0,1]$ e può essere estesa lungo $\gamma_i(1)$ a $\{e_1(t),\ldots,e_{n+1}(t)\}$ mantenendo l'orientazione; inoltre, $\dot{\gamma}_i(0)$ e $\dot{\gamma}_i(1)$ sono orientati in maniera discorde, dunque le basi $\{e_1,\ldots,e_n\}$ e $\{e_1(1),\ldots,e_n(1)\}$ hanno orientazione diversa, ma anche det $\left(\frac{\partial f}{\partial x}\right)$ ha segno diverso tra i due estremi della curva, quindi la matrice A_0 che rappresenta $D_{\gamma_i(0)}f_0$ rispetto a $\{e_1,\ldots,e_n\}$ ha determinante dello stesso segno della matrice A_1 che rappresenta $D_{\gamma_i(1)}f_0$ rispetto a $\{e_1(1),\ldots,e_n(1)\}$, pertanto esi-

Lezione 11 - 24/11/2011

Lemma 42.

Sia M una varietà, $V \in \mathrm{Vec}(M), \ \varphi_t : M \to M$ il flusso associato all'equazione $\dot{q} = V(q)$ e $q_0 \in M$ tale che $V(q_0) = 0$. Allora il flusso associato all'equazione $\dot{\xi} = D_q V(q_0) \xi$ è $\varphi_{t*} : T_{q_0} M \to T_{q_0} M$.

ste un cammino $A_s \in GL_n(\mathbb{R}^n)$ che le connette; dunque, F può essere estesa a O_i in modo tale che valga A_s su $\gamma(s)$, e analogamente si può estendere se γ_i connette

due punti di $f_1^{-1}(\{y\})$ oppure un punto di $f_0^{-1}(\{y\})$ e uno di $f_1^{-1}(\{y\})$.

Dimostrazione.

$$\dot{\xi}(t) = \frac{d}{dt} \frac{\partial \varphi_t}{\partial q}(q_0) = \frac{\partial}{\partial q} \frac{d}{dt} \varphi_t(q_0) = \frac{\partial}{\partial q} V(\varphi_t(q_0)) = \frac{\partial V}{\partial \xi}(\varphi_t(q_0)) \frac{\partial \varphi_t}{\partial q}(q_0) = \frac{\partial}{\partial q} V(q_0) \xi(t)$$

Definizione 31.

Sia $A: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare.

L'esponenziale di A è l'operatore $e^A := \sum_{k=0}^{+\infty} \frac{A^k}{k!}$.

Osservazione 21.

- 1. Posta $\|A\|=\sup_{\|x\|=1}\|Ax\|$, si ha $\|e^A\|\leq e^{\|A\|}$, dunque l'esponenziale è sempre ben definito.
- 2. La soluzione dell'equazione differenziale $\dot{x}=Ax$ con dato iniziale assegnato è $x(t)=e^{tA}x(0)$.
- 3. Per ogni operatore invertibile S si ha $Se^{tA}S^{-1} = e^{tSAS^{-1}}$.
- 4. Scrivendo, con la notazione a blocchi, $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, si ha $e^{At} = \begin{pmatrix} e^{A_1t} & 0 \\ 0 & e^{A_2t} \end{pmatrix}$.

Osservazione 22.

Se A e B commutano, allora $e^{AB}=e^Ae^B$, ma ciò è falso se $AB\neq BA$: infatti, prendendo $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ e $B=\begin{pmatrix}0&0\\1&0\end{pmatrix}$ si ha $A^2=0$, dunque $e^{tA}=\mathbb{I}_2+tA=\begin{pmatrix}1&t\\0&1\end{pmatrix}$, e analogamente $e^{tB}=\begin{pmatrix}1&0\\t&1\end{pmatrix}$, dunque $e^{tA}e^{tB}=\begin{pmatrix}1+t^2&t\\t&1\end{pmatrix}$, mentre $A+B=\begin{pmatrix}0&1\\1&0\end{pmatrix}$, e dunque essendo $(A+B)^2=\mathbb{I}_2$ si ha

$$e^{t(A+B)} = \sum_{k=0}^{+\infty} \frac{t^k (A+B)^k}{k!} = \sum_{k=0}^{+\infty} \frac{t^{2k}}{(2k)!} \mathbb{I}_2 + \sum_{k=0}^{+\infty} \frac{t^{2k+1}}{(2k+1)!} A =$$

$$= \cosh t \mathbb{I}_2 + \sinh A = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$$

Osservazione 23.

Considerando A come un'operatore su \mathbb{C}^n , è sempre possibile scriverlo in forma

canonica, ovvero trovare un operatore invertibile
$$S$$
 tale che $SAS^{-1} = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & A_m \end{pmatrix}$ dove $A_i = \lambda_i \mathbb{I}_{n_i} + B_i$ è un blocco di Jordan di dimensione n_i con $B_i = \begin{pmatrix} 0 & \dots & \dots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \dots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$,

dunque in virtù delle osservazioni precedenti si ha

$$e^{tA} = S^{-1}e^{tSAS^{-1}}S = S^{-1}e^{tSAS^{-1}}S = \begin{pmatrix} e^{tA_1} & 0 & \dots & 0 \\ 0 & e^{tA_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & e^{tA_k} \end{pmatrix}$$

 $e^{t\mathbb{I}_{n_i}}e^{tB_i}=e^{\lambda_i t}e^{tB_i}$; infine, per calcolare e^{tB_i} , noto che

$$B_i^2 = \begin{pmatrix} 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & 0 \end{pmatrix}, B_i^{n_i - 1} = \begin{pmatrix} 0 & \dots & \dots & 0 \\ \vdots & \ddots & & \vdots \\ 0 & & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix} e B_i^{n_i} = 0, \text{dun-}$$

$$que e^{tB_i} = \sum_{k=0}^{n_i-1} \frac{(tA)^k}{k!} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ t & \ddots & \ddots & \vdots \\ \frac{t^2}{2} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \frac{t^{n_i-1}}{(n_i-1)!} & \dots & \frac{t^2}{2} & t & 1 \end{pmatrix}; \text{ se } \lambda_i = \alpha_i + i\beta_i, \text{ con }$$

 $\alpha_i, \beta_i \in \mathbb{R}$, allora la soluzione sarà del tipo $\sum_{i=1}^m e^{\alpha_i t} (\cos(\beta_i t) + i \sin(\beta_i t)) p_i(t)$, con p_i polinomi reali.

Definizione 32.

Sia

$$x^{(n)} + a_{n-1}x^{(n-1)} + \dots + a_1\dot{x} + a_0x = 0$$
 (2)

un'equazione differenziale lineare scalare di ordine n e $A=\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ -a_0 & \dots & \dots & -a_{n-1} \end{pmatrix}$ l'operatore associato all'equazione differenziale lineare $\begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=x_3 \\ \vdots \\ \dot{x_n}=-a_0x_1-\dots-a_{n-1}x_n \end{cases}$

ottenuta dall'equazione (2) attraverso il cambio di variabile $x_k = x^{(k-1)}$ A
in l'operatore corrispondente all'equazione (2).

Lemma 43.

Nella matrice corrispondente a ogni equazione differenziale lineare scalare, scritta in forma canonica, ad ogni autovalore corrisponde un unico blocco di Jordan.

Dimostrazione.

Se $\lambda_1, \ldots, \lambda_k$ sono gli autovalori di A, allora l'equazione equivale a $(\partial - \lambda_1)_1^n \ldots (\partial - \lambda_k)^{n_k}$, dunque poiché per ogni $j \in \{1, \dots, n_i\}$ e per ogni polinomio di grado j si ha $(\partial - \lambda_i)^j (e^{\lambda_i t} p(t)) = 0$, a ogni autovalore corrisponde un'unico blocco di Jordan.

Lezione 12 - 25/11/2011

Osservazione 24.

La soluzione x(t) del sistema lineare $\dot{x}=Ax$ tenderà a 0 per $t\to +\infty$ per ogni dato iniziale se tutti gli autovalori di A hanno parte reale negativa, mentre se almeno un autovalore ha parte reale positiva allora $x(t) \underset{t\to +\infty}{\to} +\infty$ per quasi ogni dato iniziale.

Definizione 33.

Sia M una varietà e $f \in \text{Vec}(M)$ e $x_0 \in M$ un punto di equilibrio per l'equazione differenziale $\dot{x} = f(x)$.

 x_0 si dice **stabile** (secondo Ljapunov) se esiste per ogni suo intorno O ne esiste un altro U tale che $x(t) \in U$ se $x_0 \in O$.

Esempio 5.

In ogni equazione differenziale lineare 0 è un punto di equilibrio, ed è stabile se e solo se la parte regolare di ogni suo autovalore è non positiva e i blocchi di Jordan corrispondenti ad autovalori con parte reale nulla hanno dimensione 1.

Definizione 34.

Sia M una varietà e $f \in \text{Vec}(M)$ e $x_0 \in M$ un punto di equilibrio per l'equazione differenziale $\dot{x} = f(x)$.

 x_0 si dice (localmente) **asintoticamente stabile** se esiste un suo intorno O tale che se $x(0) \in O$ allora $x(t) \underset{t \to +\infty}{\to} 0$.

Teorema 44.

Sia M una varietà, $f \in \text{Vec}(M)$ e $x_0 \in M$ un punto di equilibrio asintoticamente stabile per l'equazione differenziale $\dot{x} = f(x)$. Allora x_0 è stabile.

Dimostrazione.

Sia O un intorno di x_0 tale che $x(t) \underset{t \to +\infty}{\to} x_0$ se $x(0) \in O$; se $t_{x(0)}$ è tale che $x(t) \in O$ per ogni $t \geq t_x$ e $T = \sup_{x(0) \in O} t_{x(0)}$, allora prendendo $U = \varphi_T(O)$ si ha che $x(t) \in O$ per ogni $x(0) \in U$.

Teorema 45.

Sia M una n-varietà e $f \in Vec(M)$ e $x_0 \in M$ un punto di equilibrio asintoticamente stabile per l'equazione differenziale $\dot{x} = f(x)$. Allora $sign(det(D_{x_0}f))f = (-1)^n$.

Dimostrazione.

Essendo x_0 asintoticamente stabile, è uno zero isolato di f, dunque sign $(\det(D_{x_0}f))f = \deg\left(\frac{f}{\|f\|}\Big|_{S_{\varepsilon}(x_0)}\right)$ e quindi è sufficiente trovare un'omotopia tra quest'ultima mappa e la mappa antipodale: posta $f_t(x) = \frac{\varphi_t(x) - x}{t}$, si ha $f_t \neq 0$ per ε sufficientemente piccolo, perché intorno a punti asintoticamente stabili non ci sono traiettorie periodiche,

dunque $F(s,x) = \begin{cases} f_{st}(x) & \text{se } s \in (0,1] \\ f(x) & \text{se } t = 0 \end{cases}$ è un'omotopia tra f_t e f, e dunque $\frac{F(s,x)}{\|F(s,x)\|} \text{ lo è tra } \frac{f}{\|f\|} \bigg|_{S_{\varepsilon}(x_0)} \text{ e } \frac{f_t}{\|f_t\|} \bigg|_{S_{\varepsilon}(x_0)}; \text{ inoltre, prendendo } t \text{ sufficiente-}$

mente grande affinché
$$\frac{f_t(x)}{\|f_t(x)\|} \neq x$$
, $G(s,x) = \frac{s \frac{f_t(x)}{\|f_t(x)\|} - (1-s)x}{\left\|s \frac{f_t(x)}{\|f_t(x)\|} - (1-s)x\right\|}$ è un'omo-

topia tra $\left.\frac{f_t}{\|f_t\|}\right|_{S_\varepsilon(x_0)}$ e la mappa antipodale, dunque quest'ultima è omotopa a

$$\frac{f}{\|f\|}\Big|_{S_{\varepsilon}(x_0)}$$
.

Definizione 35.

Sia M una varietà e $f \in \text{Vec}(M)$ e $x_0 \in M$ un punto di equilibrio per l'equazione differenziale $\dot{x} = f(x)$ e O un suo intorno.

Una funzione di Ljapunov per x_0 è una mappa $\phi \in C(O, \mathbb{R}) \cap C^1(O \setminus \{x_0\}, \mathbb{R})$ tale che $\phi(x_0) = 0$ e, per ogni $x \in O \setminus \{x_0\}$ si abbia $\phi(x) > 0$ e $\langle D_x \phi(x), f(x) \rangle < 0$.

Osservazione 25.

L'ultima proprietà che caratterizza le funzioni di Ljapunov equivale a dire che ϕ decresce lungo le traiettorie: infatti, per t sufficientemente piccolo affinché $\varphi_t(x) \in O$ si ha

$$\frac{d}{dt}\phi(\varphi_t(x)) = \left\langle D_x\phi(\varphi_t(x)), \varphi_t(x) \right\rangle = \left\langle D_x\phi(\varphi_t(x)), f(\varphi_t(x)) \right\rangle < 0$$

Teorema 46.

Sia M una varietà $e f \in Vec(M)$ $e x_0 \in M$ un punto di equilibrio per l'equazione differenziale $\dot{x} = f(x)$.

Allora x_0 è asintoticamente stabile se e solo se esiste una funzione di Ljapunov per x_0 .

Dimostrazione.

Innanti tutto, se esiste una funzione di Ljapunov in x_0 allora il punto è stabile, perché prendendo un intorno $O \subseteq M$ di x_0 come nella definizione di funzione di Ljapunov e $U = O \cap \left\{ x \in M : \phi(x) < \frac{\min_{\partial O} \phi}{2} \right\}$, allora le traiettorie che partono da U non possono mai lasciare O; inoltre, essendo $t \to \phi(\varphi_t(x))$ strettamente decrescente, allora $\frac{d}{dt}\phi(\varphi_t(x)) \underset{t \to +\infty}{\to} 0$, dunque per ogni successione $t_k \underset{k \to +\infty}{\to} +\infty$, per compattezza si ha $x_k \underset{k \to +\infty}{\to} \widetilde{x}$ a meno di estratte, quindi poiché

$$0 = \lim_{k \to +\infty} \frac{d}{dt} \phi(\varphi_{t_k}(x)) = \lim_{k \to +\infty} \langle D_x \phi(\varphi_{t_k}(x)), f(\varphi_{t_k}(x)) \rangle = \langle D_x \phi(\widetilde{x}), f(\widetilde{x}) \rangle$$

dev'essere $\widetilde{x} = x_0$ e quindi $x_k \xrightarrow[k \to +\infty]{} x_0$.

Viceversa, se x_0 è asintoticamente stabile, allora prendendo $a \in C(M, [0, +\infty))$

tale che $a(x_0)=0,\,a(x)>0$ per ogni $x\neq x_0$ e $\phi(x)=\int_0^{+\infty}a\left(\varphi_s(x)\right)ds<+\infty,$ ϕ è una funzione di Ljapunov: infatti, $\phi(x)\geq 0$ e

$$\phi(x) = 0 \iff a(\varphi_t(x)) = 0 \iff \varphi_t(x) = 0 \iff x = x_0$$

Dunque per ogni $x \neq x_0$

$$\langle D_x \phi(x), f(x) \rangle = \left\langle D_x \phi(\varphi_t(x)), \varphi_t(x) \right\rangle \Big|_{t=0} = \frac{d}{dt} \phi(\varphi_t(x)) \Big|_{t=0} =$$

$$= \frac{d}{dt} \left(\int_0^{+\infty} a(\varphi_{s+t}(x)) ds \right) \Big|_{t=0} = \frac{d}{dt} \left(\int_t^{+\infty} a(\varphi_s(x)) ds \right) \Big|_{t=0} = -a(\varphi_t(x)) \Big|_{t=0} = -a(x) < 0$$

Lezione 13 - 1/12/2011

Teorema 47.

Sia $f \in \text{Vec}(\mathbb{R}^n)$ tale che 0 è un punto d'equilibrio asintoticamente instabile per l'equazione differenziale $\dot{x} = f(x)$ e tutti gli autovalori dell'operatore $D_x f(0)$ hanno parte reale negativa.

Allora 0 è asintoticamente stabile.

Dimostrazione.

Per il teorema 46, è sufficiente mostrare l'esistenza di una funzione di Ljapunov: $\phi(x) := \int_0^{+\infty} \left\| e^{sD_x f(0)} x \right\|^2 ds$ è una funzione strettamente positiva che si annulla nell'origine; inoltre, essendo $f(x) = D_x f(0) x + O\left(\|x\|^2\right)$,

$$\|\phi(x)\| \le \int_0^{+\infty} e^{\min_{i \in \{1,\dots,n\}} \lambda_i s} \|x\|^2 ds = e^{-\min_{i \in \{1,\dots,n\}} \lambda_i} \|x\|^2$$

è ben definita e

$$\langle D_x \phi(x), D_x f(0) x \rangle = \left\langle D_x \phi \left(e^{tD_x f(0)} x \right), D_x f(0) e^{tD_x f(0)} x \right\rangle \Big|_{t=0} =$$

$$= \frac{d}{dt} \phi \left(e^{tD_x f(0)} x \right) \Big|_{t=0} = \frac{d}{dt} \int_t^{+\infty} \left\| e^{sD_x f(0)} x \right\|^2 ds \Big|_{t=0} =$$

$$= - \left\| e^{tD_x f(0)} x \right\|^2 \Big|_{t=0} = -\|x\|^2$$

allora

$$\langle D_x \phi(x), f(x) \rangle = \langle D_x \phi(x), D_x f(0) x \rangle + \langle D_x \phi(x), O\left(\|x\|^2\right) \rangle \le -\|x\|^2 + O\left(\|x\|^4\right)$$

che è negativo se $\|x\|$ è sufficientemente piccolo, e dunque φ è una funzione di Ljapunov. $\hfill\Box$

Osservazione 26. In realtà si ha $\frac{d}{dt}\phi(x(t)) = -\varepsilon\phi(x(t))$ e dunque $x(t) \leq Ce^{-\varepsilon t} ||x(0)||$.

Definizione 36.

Sia A un'operatore lineare su \mathbb{R}^n tale che spec $A \cap i\mathbb{R} = \{0\}$. Allora 0 è detto **punto di equilibrio iperbolico** e A è detto **operatore iperbolico**.

Osservazione 27.

Un operatore lineare A su \mathbb{R}^n è iperbolico se e solo se esistono due sottospazi $E_{\pm} \subset \mathbb{R}^n$ tali che $\mathbb{R}^n = E_+ \oplus E_-$, $AE_{\pm} = E_{\pm}$ ed esistono $\lambda, c > 0$ tali che $\|e^{tA}x\| \le ce^{-\lambda t}\|x(0)\|$ per ogni $x \in E_-, t > 0$ e $\|e^{tA}x\| \ge \frac{e^{\lambda t}x(0)}{c}$ per ogni $x \in E_+, t > 0$.

Definizione 37.

Siano $f, g \in \text{Vec}(M)$ tali che f(0) = 0 = g(0) e φ_t, ψ_t i flussi associati rispettivamente alle equazioni $\dot{x} = f(x)$ e $\dot{y} = f(y)$.

f e g si dicono **localmente topologicamente equivalenti** se esiste un intorno O di O e un omeomorfismo $\phi: O \to O$ tale che $\phi \circ \varphi_t = \psi_t \circ \phi$.

Proposizione 48.

 $\begin{aligned} &\operatorname{Siano} \dot{x} = Ax \ e \ \dot{y} = By \ due \ sistemi \ lineari \ iperbolici \ e \ E_{\pm}^{A}, E_{\pm}^{B} \ tali \ che \ AE_{\pm}^{A} = E_{\pm}^{A}, \\ &BE_{\pm}^{B} = E_{\pm}^{B} \ e, \ per \ opportuni \ \lambda, c > 0, \ \left\| e^{tA} x \right\| \leq c e^{-\lambda t} \|x(0)\| \ per \ ogni \ x \in E_{-}^{A}, t > 0, \\ &\left\| e^{tB} x \right\| \leq c e^{-\lambda t} \|x(0)\| \ per \ ogni \ x \in E_{-}^{B}, t > 0, \ \left\| e^{tA} x \right\| \geq \frac{e^{\lambda t} x(0)}{c} \ per \ ogni \ x \in E_{+}^{A}, t > 0, \\ &\left\| e^{tB} x \right\| \geq \frac{e^{\lambda t} x(0)}{c} \ per \ ogni \ x \in E_{+}^{B}, t > 0. \\ &Allora \ i \ due \ sistemi \ sono \ localmente \ topologicamente \ equivalenti \ se \ e \ solo \ se \\ &\dim \left(E_{+}^{A} \right) = \dim \left(E_{+}^{A} \right). \end{aligned}$

Dimostrazione.

Supponiamo che i due sistemi siano localmente topologicamente equivalenti: poiché $e^{tA} \circ \phi = \phi \circ e^{tB}$, ϕ mappa traiettorie che tendono a 0 in traiettorie che tendono a 0, dunque $\phi\left(E_{-}^{A}\right) \subset E_{-}^{B}$; ragionando allo stesso modo con ϕ^{-1} e scambiando si due sottospazi si deduce che $\phi\left(E_{-}^{A}\right) = E_{B}^{-}$, e dunque essendo ϕ un omeomorfismo i due sottospazi devono avere la stessa dimensione. Supponiamo ora $\dim\left(E_{+}^{A}\right) = \dim\left(E_{+}^{B}\right)$: se questo numero è 0, l'omeomorfismo ϕ si può costruire in questo modo: indicando con φ e ψ i campi vettoriali associati ai sistemi $\dot{x} = Ax$ e $\dot{x} = -x$, per ogni $x \in B_{1}(0)$ esiste $y(x) \in S_{1}(0)$ tale che $\varphi_{\tau(x)}(y(x)) = x$ per qualche $\tau(x)$, dunque la mappa $\phi(x) = \psi_{\tau(x)}(y(x))$ è un'equivalenza topologica locale tra $\dot{x} = Ax$ e $\dot{x} = -x$; ripetendo il procedimento con B al posto di A si ottiene che i due sistemi sono localmente topologicamente equivalenti, e analogamente si può procedere quando dim $\left(E_{-}^{A}\right) = \dim\left(E_{-}^{B}\right) = 0$; nel caso generale, scrivendo $x = x_{+} + x_{-}$ con $x_{\pm} \in E_{\pm}^{A}$ è sufficiente porre $\phi(x) = \phi_{+}(x_{+}) + \phi(x_{-})$, dove $\phi_{\pm}: E_{\pm}^{A} \to E_{\pm}^{B}$ sono mappe costruite come in precedenza.

Lemma 49.

Sia $f \in \text{Vec}(\mathbb{R}^n)$ tale che f(0) = 0. Allora, esiste una famiglia $f_{\varepsilon} \in \text{Vec}(\mathbb{R}^n)$ tale che $f_{\varepsilon} \equiv f$ su $B_{\varepsilon}(0)$ e $f_{\varepsilon} \xrightarrow{} D_x f(0)$.

Dimostrazione.

Presa $\varphi \in C_0^1(\mathbb{R}^n, \mathbb{R})$ tale che $\varphi(x) \equiv 1$ se $||x|| \le 1$, $0 \le \varphi \le 1$ e $\varphi(x) \equiv 0$ se $||x|| \ge 2$, è sufficiente porre $f_{\varepsilon}(x) = D_x f(0) x + \varphi\left(\frac{x}{\varepsilon}\right) (f(x) - D_x f(0) x)$; infatti, $f_{\varepsilon}(x) = f(x)$ se $||x|| \le \varepsilon$ e inoltre essendo $||f(x) - D_x f(0) x|| = O\left(||x||^2\right)$ si ha

$$||f_{\varepsilon}(x) - D_x f(0)x|| = ||\varphi\left(\frac{x}{\varepsilon}\right) (f(x) - D_x f(0)x)|| \le$$
$$\le ||f(x) - D_x f(0)x|| \mathbf{1}_{B_{\varepsilon}(0)} = O\left(\varepsilon^2\right) \underset{\varepsilon \to 0}{\to} 0$$

e inoltre

$$\|D_{x}f_{\varepsilon}(x) - D_{x}f(0)\| \leq$$

$$\leq \left(\left\| \frac{\partial}{\partial x} \varphi\left(\frac{x}{\varepsilon}\right) \right\| \|f(x) - D_{x}f(0)x\| + \left\| \varphi\left(\frac{x}{\varepsilon}\right) \right\| \|D_{x}f(x) - D_{x}f(0)\| \right) \mathbf{1}_{B_{\varepsilon}(0)} \leq$$

$$\leq \frac{C}{\varepsilon} O\left(\varepsilon^{2}\right) + O(\varepsilon) = O(\varepsilon) \underset{\varepsilon \to 0}{\to} 0$$

Lemma 50.

Siano $f \in \text{Vec}(M)$ tale che f(0) = 0 e $D_x f(0)$ è iperbolico, φ_t e ψ_t i flussi associato rispettivamente ai sistemi $\dot{x} = f(x)$ e $\dot{x} = D_x f(0) x$ e ϕ_1, ϕ_2 due omeomorfismi tali che $\phi_i \circ \varphi_t = \psi_t \circ \phi_i$ per qualche $t \neq 0$ e $\phi_i - \text{Id}$ è limitata per i = 1, 2. Allora, $\phi_1 = \phi_2$.

Dimostrazione.

Essendo $\phi_1^{-1} \circ \psi_t \circ \phi_1 = \varphi_t = \phi_2^{-1} \circ \varphi_t \circ \phi_2$, allora $\phi_1 \circ \phi_2^{-1} \circ \psi_t \circ (\phi_1 \circ \phi_2^{-1})^{-1} = \psi_t$ e quindi $\phi_1 \circ \phi_2^{-1} \circ \psi_t = \psi_t \circ \phi_1 \circ \phi_2^{-1}$ con $\phi_1 (\phi_2^{-1}(x)) - x$ limitata, e per ogni $k \in \mathbb{Z}$

$$\phi_1 \circ \phi_2^{-1} \circ \psi_{kt} = \phi_1 \circ \psi_2^{-1} \circ \psi_t \circ \psi_{(k-1)t} = \varphi_t \circ \phi_1 \circ \phi_2^{-1} \circ \psi_{(k-1)t} =$$

$$= \psi_{2t} \circ \phi_1 \circ \phi_2^{-1} \circ \psi_{(k-2)t} = \dots = \psi_{kt} \circ \phi_1 \circ \phi_2^{-1}$$

dunque $\varphi_{kt} \circ (\phi_1 \circ \phi_2^{-1} - \operatorname{Id}) = (\phi_1 \circ \phi_2^{-1} - \operatorname{Id}) \circ \varphi_{kt}$; se per assurdo fosse $\phi_1(\phi_2^{-1}(x)) \neq x$ per qualche x, allora scrivendo $\phi_1 \circ \phi_2^{-1} - \operatorname{Id} = \phi_+ + \phi_- \text{ con } \operatorname{Im}(\phi_\pm) \subset E_\pm^{D_x f(0)}$, allora $\phi_\pm(x) \neq 0$ implicherebbe $\|\psi_{kt} \circ (\phi_1(\phi_2^{-1}(x)) - x)\|_{k \to \pm \infty} \to +\infty$ mentre $(\phi_1 \circ \phi_2^{-1} - \operatorname{Id})(\psi_{kt}(x))$ è limitato; dunque, dev'essere $\phi_1 \circ \phi_2^{-1}(x) = x$ per ogni x, cioè $\phi_1 = \phi_2$.

Lemma 51.

Siano $f \in \text{Vec}(M)$ tale che f(0) = 0 e $D_x f(0)$ è iperbolico, φ_t e ψ_t i flussi associato rispettivamente ai sistemi $\dot{x} = f(x)$ e $\dot{x} = D_x f(0) x$ e $\phi_t : \mathbb{R}^n \to \mathbb{R}^n$ una famiglia continua di diffeomorfismi tali che $\phi_t \circ \varphi_t = \psi_t \circ \phi_t$ e $\phi_t - \text{Id}$ è limitato per ogni $t \in \mathbb{R}$.

Allora, $\phi_t = \phi_s \text{ per ogni } t, s \in \mathbb{R}.$

Dimostrazione.

Fissato $t \neq 0$ e $k \in \mathbb{Z}$, si ha

$$\phi_t \circ \varphi_{kt} = \phi_t \circ \varphi_t \circ \varphi_{(k-1)t} = \psi_t \circ \phi_t \circ \varphi_{(k-1)t} = \psi_{2t} \circ \phi_t \circ \varphi_{(k-2)t} = \dots = \psi_{kt} \circ \phi_t$$

e inoltre $\phi_{kt} \circ \varphi_{kt} = \psi_{kt} \circ \phi_{kt}$, dunque per il lemma 50 dev'essere $\phi_{kt} = \phi_t$; analogamente, per ogni $s, t \in \mathbb{Q}$ si ha $\phi_s = \phi_t$, e dunque per continuità lo stesso vale per ogni $s, t \in \mathbb{R}$.

Lezione 14 - 2/12/2011

Teorema 52 (Grobman-Hartman).

Siano $f \in Vec(M)$ tale che f(0) = 0 e $D_x f(0)$ è iperbolico.

Allora, il sistema $\dot{x} = f(x)$ è localmente topologicamente equivalente al sistema $\dot{x} = D_x f(0) x$.

Dimostrazione.

Grazie all'ultima osservazione e ai lemmi 49 e 51, è sufficiente dimostrare che se $P: \mathbb{R}^n \to \mathbb{R}^n$ è lineare ed esistono due sottospazi $E_{\pm} \subset \mathbb{R}^n$ tali che $PE_{\pm} = E_{\pm}$ e $\|Px_{-}\| \le \alpha \|x_{-}\|$ e $\|Px_{+}\| \ge \frac{\|x_{+}\|}{\alpha}$ per ogni $x_{\pm} \in E_{\pm}$ qualche $\alpha \in (0,1)$, allora esiste g a supporto compatto e piccola nella topologia C^1 e un'omeomorfismo $\phi: \mathbb{R}^n \to \mathbb{R}^n$ tale che ϕ – Id è limitata e $\phi \circ P = (P+g) \circ \phi$. È sufficiente trovare $\widetilde{\phi}: \mathbb{R}^n \to \mathbb{R}^n$ nello spazio $C_b\left(\mathbb{R}^n, \mathbb{R}^n\right)$ delle funzioni contin

E sufficiente trovare $\phi : \mathbb{R}^n \to \mathbb{R}^n$ nello spazio $C_b(\mathbb{R}^n, \mathbb{R}^n)$ delle funzioni continue e limitate che verifichi $\widetilde{\phi} \circ P - P \circ \widetilde{\phi} = g \circ (\operatorname{Id} + \widetilde{\phi})$, perché ciò implica che $\phi = \operatorname{Id} + \widetilde{\phi}$ verifica

$$\begin{split} \phi \circ P &= P + \widetilde{\phi} \circ P = P + P \circ \widetilde{\phi} + g \circ \left(\operatorname{Id} + \widetilde{\phi} \right) = \\ &= P \circ \left(\operatorname{Id} + \widetilde{\phi} \right) + g \circ \left(\operatorname{Id} + \widetilde{\phi} \right) = P \circ \phi + g \circ \phi \end{split}$$

Inoltre, se $\widetilde{\phi}$ verifica queste proprietà, ϕ è automaticamente iniettiva e suriettiva: è iniettiva perché se $\phi(x) = \phi(y)$, allora

$$\phi(P(x)) = P(\phi(x)) + g(\phi(x)) = P(\phi(y)) + g(\phi(y)) = \phi(P(y))$$

dunque iterando per ogni $k \in \mathbb{Z}$ si ottiene

$$P^{k}x + \widetilde{\phi}(P^{k}x) = \phi(P^{k}x) = \phi(P^{k}y) = P^{k}y + \widetilde{\phi}(P^{k}y)$$

e quindi $P^{k}(x-y) = \widetilde{\phi}(P^{k}y) - \widetilde{\phi}(P^{k}y)$, pertanto dev'essere x=y, perché altrimenti il termine di sinistra tenderebbe a $+\infty$ per $|k| \to +\infty$ mentre quello a destra è limitato; per mostrare la suriettività, fissato $y \in \mathbb{R}^n$ è sufficiente prendere R_y abbastanza grande affinché $x + t\phi(x) \neq y$ per ogni $x \in S_{R_y}(0), t \in [0, 1]$ e considerare $F(x,t)=x+t\phi(x)$: è un'omotopia tra e $\phi|_{B_{R_n}(0)}$ e $\mathrm{Id}_{B_{R_n}(0)}$, dunque $\deg \phi|_{B_{R_y}(0)} = \deg \operatorname{Id}|_{B_{R_y}(0)} = 1$ e pertanto esiste $x \in B_{R_y}(0)$ tale che $\phi(x) = y$. Mostriamo che l'operatore $L: \widetilde{\phi} \to \widetilde{\phi} \circ P - P \circ \widetilde{\phi}$ è invertibile: scrivendo $C_b(\mathbb{R}^n, \mathbb{R}^n) = \mathcal{E}_+ \oplus \mathcal{E}_+$ con $\mathcal{E}_{\pm} = C_b(\mathbb{R}^n, E_{\pm}) \in \widetilde{P} : \phi \to P \circ \phi, P_{\pm} = \widetilde{P}|_{\mathcal{E}_{\pm}} : \mathcal{E}_{\pm} \to \mathcal{E}_{\pm} \in P^* : \phi \to \phi \circ P,$ si ha $L|_{\mathcal{E}_{\pm}} = P^* - P_{\pm}$, dunque essendo P_{\pm} invertibile basterà far vedere che

lo è
$$P^* \circ P_{\pm}^{-1}$$
 – Id; per quanto riguarda $P^* \circ P_{+}^{-1}$, ciò discende dal fatto che $\|P^* \circ P_{+}^{-1}\| \le \|P^*\| \|P_{+}^{-1}\| \le \|P_{+}^{-1}\| \le \alpha < 1$, perché questo implica $(P^* \circ P_{+}^{-1} - \operatorname{Id})^{-1} = -\sum_{k=0}^{+\infty} (P^* \circ P_{+}^{-1})^k$;

nell'altro caso invece la stessa relazione è verificata da $\left(P^*\circ P_-^{-1}\right)^{-1}=P_-\circ \left(P^*\right)^{-1},$ in quanto $||P_{-} \circ (P^*)^{-1}|| \le ||P_{-}|| ||(P^*)^{-1}|| \le ||P_{-}|| \le \alpha < 1.$

Essendo dunque L invertibile, per trovare una $\widetilde{\phi}$ con le proprietà richieste basterà far vedere che l'operatore $T: \widetilde{\phi}(x) \to L^{-1}\left(g\left(x + \widetilde{\phi}(x)\right)\right)$ ha un punto fisso, ma questo è vero perché T è una contrazione in quanto

$$\begin{split} \left\| T\widetilde{\phi}_{1} - T\widetilde{\phi}_{2} \right\| &= \sup_{\|x\|=1} \left\| L^{-1} \left(g \left(x + \widetilde{\phi}_{1}(x) \right) - g \left(x + \widetilde{\phi}_{1}(x) \right) \right) \right\| \leq \\ &\leq \left\| L^{-1} \right\| \sup_{\|x\|=1} \left\| g \left(x + \widetilde{\phi}_{1}(x) \right) - g \left(x + \widetilde{\phi}_{2}(x) \right) \right\| \leq \\ &\leq \frac{1}{1-\alpha} \|\nabla g\| \|\phi_{1} - \phi_{2}\| \leq \theta \|\phi_{1} - \phi_{2}\| \end{split}$$

con $\theta < 1$ se g è tale che $\|\nabla g\| < 1 - \alpha$.

Lezione 19 - 12/1/2012

Definizione 38.

Sia M una varietà, $x_0 \in M$ e $f \in Vec(M)$.

L'insieme ω -limite di x_0 associato al sistema dinamico $\dot{x} = f(x)$ è

$$\omega(x_0) := \left\{ y \in M : \exists t_k \underset{k \to +\infty}{\to} +\infty \text{ tale che } \varphi_{t_k}(x_0) \underset{k \to +\infty}{\to} y \right\}$$

L'insieme α -limite è

$$\alpha(x_0) := \left\{ y \in M : \exists t_k \underset{k \to -\infty}{\to} +\infty \text{ tale che } \varphi_{t_k}(x_0) \underset{k \to +\infty}{\to} y \right\}$$

$$Osservazione \ 28. \\ \omega(x_0) = \bigcap_{j \in \mathbb{N}} \overline{\{\varphi_t(x) : t \geq j\}}; \ \text{infatti, se} \ y \in \omega(x_0) \ \text{allora} \ \varphi_{t_k}(x) \underset{k \rightarrow +\infty}{\rightarrow} y \ \text{per una}$$

successione $t_k \underset{k \to +\infty}{\to} +\infty$, allora per ogni $j \in \mathbb{N}$ si può supporre, a meno di estratte, $t_k \geq j$, e dunque $y \in \overline{\{\varphi_t(x_0) : t \geq j\}}$, quindi per l'arbitrarietà di j $y \in \bigcap_{j \in \mathbb{N}} \overline{\{\varphi_t(x_0) : t \geq j\}}$; viceversa, se $y \in \bigcap_{j \in \mathbb{N}} \overline{\{\varphi_t(x_0) : t \geq j\}}$ allora per ogni $j \in \mathbb{N}$ esiste $t_{k,j} \geq j$ tale che $\varphi_{t_{k,j}}(x_0) \underset{k \to +\infty}{\to} y$ e dunque, passando ad un estratta tale che $d(\varphi_{t_{k,j}}(x_0), y) \leq \frac{1}{j}$, si ottiene $d(\varphi_{t_{k,k}}(x_0), y) \leq \frac{1}{k} \underset{k \to +\infty}{\to} 0$ e $t_{k,k} \geq k \underset{k \to +\infty}{\to} +\infty$, quindi $y \in \omega(x_0)$.

Proposizione 53.

Sia M una varietà compatta, $x_0 \in M$ e $f \in Vec(M)$ e $\omega(x_0)$ il suo ω -limite. Allora:

- 1. $\omega(x_0) \neq \emptyset$
- 2. $\omega(x_0) = \overline{\omega(x_0)}$
- 3. $\omega(x_0)$ è connesso.
- 4. $\omega(x_0)$ è unione di traiettorie.

Dimostrazione.

- 1. Segue dall'osservazione precedente, in quanto ogni chiuso contenuto in un compatto è compatto e l'intersezione decrescente di compatti è non vuota.
- 2. Segue dell'osservazione precedente, in quanto l'intersezione di chiusi è chiusa.
- 3. Se per assurdo $\omega(x_0)$ fosse sconnesso, esistessero due aperti disgiunti U_1, U_2 tali che $U_1 \cap \omega(x_0) \neq \emptyset \neq U_2 \cap \omega(x_0)$, prendendo $y_i \in \omega(x_0) \cap U_i$ e $t_{k,i} \underset{k \to +\infty}{\to} +\infty$ per i=1,2, con $t_{k,1} < t_{k,2} < t_{k+1,1}$, allora per connessione $\{\varphi_t(x_0); t \in [t_{k,1}, t_{k,2}]\} \not\subset U_1 \cup U_2$, dunque prendendo $\varphi_{t_k}(x_0) \notin U_1 \cup U_2$ con $t_k \in [t_{k,1}, t_{k,2}]$, per la compattezza di $M \setminus (U_1 \cup U_2)$ si avrà $t_k \underset{k \to +\infty}{\to} +\infty$ e, a meno di estratte, $\varphi_{t_k} \underset{k \to +\infty}{\to} y \notin U_1 \cup U_2$, e quindi $y \in \omega(x_0) \setminus (U_1 \cup U_2)$, che è assurdo.

4. Se $t_k \underset{k \to +\infty}{\to} +\infty$ e $\varphi_{t_k}(x_0) \underset{k \to +\infty}{\to} y$, allora $\varphi_{t_k-t}(\varphi_t(x_0)) = \varphi_{t_k}(x_0) \underset{k \to +\infty}{\to} y$ per ogni $t \in \mathbb{R}$, quindi $\varphi_t(x_0) \in \omega(x_0)$ e perciò, per l'arbitrarietà di $t, \omega(x_0)$ è unione di orbite.

Esempio 6.

1. Per il sistema $\begin{cases} \dot{x} = ax \\ \dot{y} = by \end{cases}$ su \mathbb{R}^2 con b < 0 < a, $\omega(x_0) = \{0\}$ se $x_0 \in \{x = 0\}$, altrimenti $\omega(x_0) = \emptyset$.

- 2. Se la traiettoria con dato iniziale x_0 è periodica, $\omega(x_0)$ coincide con la traiettoria.
- 3. Per il sistema $\begin{cases} \dot{x} = ax \\ \dot{y} = by \end{cases}$ sul toro $\mathbb{T} := \mathbb{S}^1 \times \mathbb{S}^1$, la traiettoria è quasiperiodica e $\omega(x_0) = \mathbb{T}$ per qualsiasi dato iniziale.

Lemma 54.

Sia $M = \mathbb{S}^2$, $f \in \text{Vec}(M)$, Σ un segmento trasversale al flusso $\varphi_t(x)$ e $\{t_k\}_{k \in \mathbb{N}}$ l'intersezione tra Σ e la traiettoria γ . Allora x(t) è monotona su Σ .

Corollario 55.

L'intersezione tra Σ e $\omega(\gamma)$ contiene un solo punto se $\Sigma \cap \gamma$ è infinita, oppure è vuota se l'intersezione è finita.

Corollario 56.

Se f ha un numero finito di zeri e $\xi \subset \omega(\gamma)$ è una traiettoria non periodica, allora $\omega(\xi)$ e $\alpha(\xi)$ contengono esattamente un punto.

Teorema 57 (Poincaré-Bendixson).

Sia $M = \mathbb{S}^2$, $f \in \text{Vec}(M)$ con un numero finito di zeri e $x_0 \in M$. Allora, $\omega(x_0)$ può essere un punto di equilibrio oppure un orbita chiusa oppure una traiettoria tendente asintoticamente a due punti di equilibrio. Inoltre, $\omega(x)$ varia con continuità al variare di $x \in M$.

Osservazione~29.

Il teorema 57 non vale per tutte le varietà, ad esempio non vale per il toro $\mathbb{T} := \mathbb{S}^1 \times \mathbb{S}^1$, come si deduce dall'ultimo esempio.

Lezione 20 - 13/1/2012

Definizione 39.

Sia M una varietà e $f, g \in Vec(M)$.

f e g sono **topologicamente equivalenti** se esiste un omeomorfismo $F: M \to M$ tale che γ è una traiettoria per il sistema $\dot{x} = f(x)$ se e solo se $F(\gamma)$ lo è per $\dot{y} = g(y)$.

Osservazione 30.

Detti φ_t e ψ_t i flussi associati rispettivamente ai sistemi $\dot{x} = f(x)$ e $\dot{y} = g(y)$, se $F \circ \varphi_t = \psi_t \circ F$ allora i due sistemi sono topologicamente equivalenti.

Definizione 40.

Sia M una varietà e $f \in \text{Vec}(M)$.

f si dice **strutturalmente stabile** se per ogni $g \in \text{Vec}(M)$ vicino a f (nella topologia C^1) il sistema $\dot{x} = f(x)$ è topologicamente equivalente a $\dot{y} = g(y)$.

Definizione 41.

Sia M una n-varietà, $x_0 \in M$, $f \in \text{Vec}(M)$, γ una traiettoria periodica per $\dot{x} = f(x)$, Σ n-1-dimensionale trasversale a x_0 e $R: \Sigma \to \Sigma$ una mappa di ritorno tale che $R(x_0) = R(x_0)$ tale che x_0 è un punto di equilibrio iperbolico per R.

 γ è detto ciclo iperbolico.

Teorema 58.

Sia M una varietà, $f \in \text{Vec}(M)$ e $\gamma \subset M$ un ciclo iperbolico per il sistema $\dot{x} = f(x)$.

Allora, f è localmente strutturalmente stabile intorno a γ .

Teorema 59.

Sia $M = \mathbb{S}^2$ e $f \in \text{Vec}(M)$.

f è strutturalmente stabile se e solo se:

- 1. Tutti i punti di equilibrio del sistema $\dot{x} = f(x)$ sono iperbolici.
- 2. Le uniche traiettorie periodiche sono iperboliche.
- 3. Non ci sono traiettorie non periodiche tendenti asintoticamente a due selle.

Lezione 21 - 20/1/2012

Teorema 60.

Sia $M = \mathbb{S}^2$ e $S \subset \text{Vec}(M)$ l'insieme dei sistemi strutturalmente stabili. Allora S è denso in Vec(M).