Time quasi-periodic gravity water waves
in finite depth
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Abstract: We prove the existence and the linear stability of Cantor families of small amplitude time
quasi-periodic standing water wave solutions — namely periodic and even in the space variable z — of a bi-
dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values
of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem. The
main difficulties are the fully nonlinear nature of the gravity water waves equations — the highest order
x-derivative appears in the nonlinear term but not in the linearization at the origin — and the fact that the
linear frequencies grow just in a sublinear way at infinity. We overcome these problems by first reducing
the linearized operators, obtained at each approximate quasi-periodic solution along a Nash-Moser iterative
scheme, to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that
are quasi-periodic in time. Then we apply a KAM reducibility scheme which requires very weak Melnikov
non-resonance conditions which lose derivatives both in time and space. Despite the fact that the depth
parameter moves the linear frequencies by just exponentially small quantities, we are able to verify such
non-resonance conditions for most values of the depth, extending degenerate KAM theory.
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1 Introduction

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible, inviscid,
irrotational fluid under the action of gravity, filling an ocean with finite depth h and with space periodic
boundary conditions, namely the fluid occupies the region

D,:={(z,y) eTxR: —h<y<ntaz)}, T:=T,:=R/27Z. (1.1)

In this paper we prove the existence and the linear stability of small amplitude quasi-periodic in time
solutions of the pure gravity water waves system

0@+ 5|VO2 4+ gn=0 at y = n(t, z)
AD = in D
0 in D, (1.2)
0y®=0 aty=—h
O = 0y® — 0y1 - 0, P at y =n(t,z)

where g > 0 is the acceleration of gravity. The unknowns of the problem are the free surface y = n(¢,x)
and the velocity potential ® : D, — R, i.e. the irrotational velocity field v = V, ,® of the fluid. The first
equation in is the Bernoulli condition stating the continuity of the pressure at the free surface. The
last equation in expresses the fact that the fluid particles on the free surface always remain part of it.



Following Zakharov [61] and Craig-Sulem [26], the evolution problem may be written as an infinite-
dimensional Hamiltonian system in the unknowns (n(t, x), ¥ (t, z)) where ¥ (¢, x) = ®(¢t, z,n(t,z)) is, at each
instant ¢, the trace at the free boundary of the velocity potential. Given the shape 7(t,z) of the domain
top boundary and the Dirichlet value (¢, z) of the velocity potential at the top boundary, there is a unique
solution ®(¢,x,y; h) of the elliptic problem

AP =0 in{-h<y<n(tz)}
0y,®=0 ony=—-h (1.3)
=9y on{y=n(t)}.

As proved in [26], system (1.2) is then equivalent to the Craig-Sulem-Zakharov system

om = G(n, h)iﬁﬁ . (1.4)
0 ==gn =5 + 53y (GO + me)” |
where G(n, h) is the Dirichlet-Neumann operator defined as
Gl ) = (B, — 1) (1.5)

(we denote by n, the space derivative 0,n). The reason of the name “Dirichlet-Neumann” is that G(n, h)
maps the Dirichlet datum v into the (normalized) normal derivative G(n, h)¥ at the top boundary (Neumann
datum). The operator G(n, h) is linear in 1, self-adjoint with respect to the L? scalar product and positive-
semidefinite, and its kernel contains only the constant functions. The Dirichlet-Neumann operator is a
pseudo-differential operator with principal symbol D tanh(hD), with the property that G(n, h) — D tanh(hD)
is in OPS™*° when n(x) € C*. This operator has been introduced in Craig-Sulem [26] and its properties
are nowdays well-understood thanks to the works of Lannes [46]-[47], Alazard-Métivier [5], Alazard-Burqg-
Zuily [2], Alazard-Delort [4]. In Appendix |A|we provide a self-contained analysis of the Dirichlet-Neumann
operator adapted to our purposes.
Furthermore, equations are the Hamiltonian system (see [61], [26])

Om=VyHmnv), O =—VyH(n,)
Ou=JV,H(u), u:= (Z) g = (_2(1 Ig) 7 (1.6)

where V denotes the L?-gradient, and the Hamiltonian
1
Hn.0) o= Hnb )= 5 [ 6Gohwde+5 [ i (17)

is the sum of the kinetic and potential energies expressed in terms of the variables (1,4). The symplectic
structure induced by (1.6 is the standard Darboux 2-form

W(u,ug) := (U1;JU2)L2(T1) = (771’1//2)L2(’J1‘w) - (7/)17772)L2(’JI‘$) (1.8)

for all uy = (m1,%1), u2 = (12, 12). In the paper we will often write G(n), H(n, ¢) instead of G(n, h), H(n, ¥, h),
omitting for simplicity to denote the dependence on the depth parameter h.

The phase space of (1.4)) is
(n,¢) € HY(T) x HY(T)  where  HY(T) := HY(T)/~ (1.9)

is the homogeneous space obtained by the equivalence relation ¢ (z) ~ ¥9(x) if and only if 11 (x) —a(z) = ¢
is a constant, and H}(T) is the subspace of H(T) of zero average functions. For simplicity of notation we
denote the equivalence class [¢p] by ¢. Note that the second equation in is in H'(T), as it is natural
because only the gradient of the velocity potential has a physical meaning. Since the quotient map induces
an isometry of H'(T) onto HA(T), it is often convenient to identify ¥ with a function with zero average.



The water waves system (1.4)-(L.6) exhibits several symmetries. First of all, the mass [, ndz is a first
integral of (1.4]). In addition, the subspace of functions that are even in z,

n(x) =n(=z), P(x)=(-z), (1.10)

is invariant under . In this case also the velocity potential ®(x,y) is even and 27-periodic in x and so
the xz-component of the velocity field v = (®,, ®,) vanishes at x = km, for all k € Z. Hence there is no flow
of fluid through the lines = k7, k € Z, and a solution of satisfying describes the motion of a
liquid confined between two vertical walls.

Another important symmetry of the water waves system is reversibility, namely equations —re

)
reversible with respect to the involution p : (n,v) — (1, —%), or, equivalently, the Hamiltonian H in (1.7)) is
even in :

Hop=H, H(ny)=Hmn-¢), p:n¢)— 0,—v¥). (1.11)
As a consequence it is natural to look for solutions of (|1.4) satisfying
u(=t) = pu(t), ie n(—t,x)=n(tx), v(-t,z)=—y(t,z) Vt,x R, (1.12)

namely 7 is even in time and v is odd in time. Solutions of the water waves equations (|1.4]) satisfying (1.10))
and (|1.12]) are called gravity standing water waves.

In this paper we prove the first existence result of small amplitude time quasi-periodic standing waves
solutions of the pure gravity water waves equations , for most values of the depth h, see Theorem

The existence of standing water waves is a small divisor problem, which is particularly difficult because
is a fully nonlinear system of PDEs, the nonlinearity contains derivatives of order higher than those
present in the linearized system at the origin, and the linear frequencies grow as ~ j/2. The existence of
small amplitude time-periodic gravity standing wave solutions for bi-dimensional fluids has been first proved
by Plotinkov and Toland [53] in finite depth and by Iooss, Plotnikov and Toland in [42] in infinite depth,
see also [38], [39]. More recently, the existence of time periodic gravity-capillary standing wave solutions in
infinite depth has been proved by Alazard and Baldi [I]. Next, both the existence and the linear stability of
time quasi-periodic gravity-capillary standing wave solutions, in infinite depth, have been proved by Berti
and Montalto in [21], see also the expository paper [20].

We also mention that the bifurcation of small amplitude one-dimensional traveling gravity water wave
solutions (namely traveling waves in bi-dimensional fluids like ([1.4))) dates back to Levi-Civita [48]; note that
standing waves are not traveling because they are even in space, see ([1.10). For three-dimensional fluids,
the existence of small amplitude traveling water wave solutions with space periodic boundary conditions has
been proved by Craig and Nicholls [25] for the gravity-capillary case (which is not a small divisor problem)
and by Iooss and Plotinikov [40]-[41] in the pure gravity case (which is a small divisor problem).

From a physical point of view, it is natural to consider the depth h of the ocean as a fixed physical
quantity and to introduce the space wavelength 27¢ as an internal parameter. Rescaling time, space and
amplitude of the solution (n(t,x), ¥ (t,x)) of (1.4)) as

Ti=pt, Fi=cx, A(nE) =pTin e E) =t ), P(n i) = a(pTin e E) = av(t, x),
we get that (7j(7, &), (7, &)) satisfies

2 -
07 = —G(if, sh)y
a s

2,/,2 2
~__@~_€¢;; S ~ T2
0y = g,un ap + ap2(1+72) (G(777§h)¢ + m%) .

Choosing the scaling parameters ¢, i, o such that ;—2 =1, % = 1 we obtain system (1.4)) where the gravity
constant g has been replaced by 1 and the depth parameter h by

h:=ch. (1.13)



Changing the parameter h can be interpreted as changing the space period 27¢ of the solutions and not the
depth h of the water, giving results for a fized equation (1.4).
In the sequel we shall look for time quasi-periodic solutions of the water waves system

1 .
O = —n — % + 402 (G(n,h)y + ﬂx¢z)2

with 7(t) € H}(T,) and ¥(t) € H'(T,), actually belonging to more regular Sobolev spaces.

1.1 Main result

We look for small amplitude solutions of (1.14). Hence a fundamental réle is played by the dynamics of the
system obtained linearizing (1.14) at the equilibrium (n,) = (0, 0), namely

3t77 = G(Oa h)¢
oY =—n

where G(0,h) = D tanh(hD) is the Dirichlet-Neumann operator at the flat surface n = 0. In the compact

Hamiltonian form as in (|1.6)), system (|1.15)) reads

(1.15)

1 0
Ou=JQu, Q:= (0 G(O,h)) , (1.16)
which is the Hamiltonian system generated by the quadratic Hamiltonian (see (1.7)))
1
Hp = 2(u Qu)p, /wG0h¢dx+ /nde. (1.17)

The solutions of the linear system (1.15| , i.e. -, even in x, satisfying (1.12) and ., are
n(t,z) = Z a; cos(wjt) cos(jz), Z a;w; * sin(w;t) cos(j), (1.18)
j>1 §>1
with linear frequencies of oscillation
w; = w;(h) :=+/jtanh(hj), j>1. (1.19)

Note that, since j — jtanh(hj) is monotone increasing, all the linear frequencies are simple.

The main result of the paper proves that most solutions of the linear system can be continued
to solutions of the nonlinear water waves equations for most values of the parameter h € [hy,hs]. More
precisely we look for quasi-periodic solutions u(wt) = (n,v)(@t) of , with frequency @ € R” (to be
determined), close to solutions of , in the Sobolev spaces of functions

H* (T R?) = {u= (1,¢) : n,¢ € H*}
HS = HS(']I‘V"Fl,R) — {f — Z fZ el(e LP+]1) ||fH2 Z |f[j|2<€7j>25 < 00}7 (120)

(t.j)ez+1 (¢g)emr+t
where (¢, j) := max{1, |¢|,|j|}. For

§ > 8 1=

1
> {V; |+1en (1.21)
one has H*(T**1,R) C L>°(T*!,R), and H*(T**!,R) is an algebra.
Fix an arbitrary finite subset ST C N* := {1,2,...} (tangential sites) and consider the solutions of the

linear equation
z) = Y ajcos (wj(h)t) cos(jz), Y(t,x)=— Y —Y_gin (w;(0)t) cos(jz), a; >0,  (1.22)

jESt jest w] (h)

which are Fourier supported on ST. We denote by v := |ST| the cardinality of S*.



Theorem 1.1. (KAM for gravity water waves in finite depth) For every choice of the tangential

sites ST C N\ {0}, there exists § > W%, €0 € (0,1) such that for every vector a := (a;)jes+, with a; >0
for all j € ST and |d@| < g, there exists a Cantor-like set G C [hy,ha] with asymptotically full measure as
a— 0, ie.

lim |g| = h2 —h1 5

a—0

such that, for anyh € G, the gravity water waves system (L.14) has a time quasi-periodic solution u(@t,x) =
(n(@t,x),y(@t, x)), with Sobolev regularity (n,v) € H3(T” x T,R?), with a Diophantine frequency vector
w = w(h,d) := (Wj)jes+ € R, of the form

n(wt,x) = Z a; cos(w;t) cos(jx) + ri(Wt, x),
jest
@

P(wt,z) = — Z ey sin(w;t) cos(jz) + ro(wt, z)
jest Y

(1.23)

with @(h, @) — J(h) := (w;(h));es+ as @ — 0, and the functions r1(p,x),r2(p, ) are o(|al)-small in H*(T" x
T,R), i.e. ||r:i|ls/la@] — 0 as |@| — O for i =1,2. The solution (n(&t, ),y (Wt, x)) is even in x, 1 is even in t
and v is odd in t. In addition these quasi-periodic solutions are linearly stable, see Theorem[1.9

Let us make some comments on the result.

No global wellposedness results concerning the initial value problem of the water waves equations
under periodic boundary conditions are known so far. Global existence results have been proved for smooth
Cauchy data rapidly decaying at infinity in R?, d = 1,2, exploiting the dispersive properties of the flow. For
three dimensional fluids (i.e. d = 2) it has been proved independently by Germain-Masmoudi-Shatah [33] and
Wu [60]. In the more difficult case of bi-dimensional fluids (i.e. d = 1) it has been proved by Alazard-Delort
[4] and Ionescu-Pusateri [37].

In the case of periodic boundary conditions, Ifrim-Tataru [36] proved for small initial data a cubic life span
time of existence, which is longer than the one just provided by the local existence theory, see for example
[3]. For longer times, we mention the almost global existence result in Berti-Delort [19] for gravity-capillary
space periodic water waves.

The Nash-Moser-KAM iterative procedure used to prove Theorem selects many values of the pa-
rameter h € [hy,hy] that give rise to the quasi-periodic solutions , which are defined for all times.
By a Fubini-type argument it also results that, for most values of h € [h1,hs], there exist quasi-periodic
solutions of for most values of the amplitudes |@| < 9. The fact that we find quasi-periodic solutions
only restricting to a proper subset of parameters is not a technical issue, because the gravity water waves
equations are expected to be not integrable, see [27], [28] in the case of infinite depth.

The dynamics of the pure gravity and gravity-capillary water waves equations is very different:

(#) the pure gravity water waves vector field in is a singular perturbation of the linearized vector field
at the origin in (L.15]), which, after symmetrization, is |D$|%tanh% (h|D]); in fact, the linearization of
the nonlinearity gives rise to a transport vector field V0, see . On the other hand, the gravity
capillary vector field is quasi-linear and contains derivatives of the same order as the linearized vector
field at the origin, which is ~ |D,| 2. This difference, which is well known in the water waves literature,
requires a very different analysis of the linearized operator (Sections with respect to the gravity
capillary case in [I], [2I], see Remark

(23) The linear frequencies w; in of the pure gravity water waves grow like ~ j 7 as j — +oo,
while, in presence of surface tension k, the linear frequencies are /(1 + x;2)j tanh(hj) ~ j 2. This
makes a substantial difference for the development of KAM theory. In presence of a sublinear growth
of the linear frequencies ~ j% a < 1, one may impose only very weak second order Melnikov non-
resonance conditions, see e.g. , which lose also space (and not only time) derivatives along the
KAM reducibility scheme. This is not the case of the abstract infinite-dimensional KAM theorems
[44), [45], [54] where the linear frequencies grow as j, « > 1, and the perturbation is bounded. In
this paper we overcome the difficulties posed by the sublinear growth ~ j% and by the unboundedness




of the water waves vector field thanks to a regularization procedure performed on the linearized PDE
at each approximate quasi-periodic solution obtained along a Nash-Moser iterative scheme, see the
regularized system . This regularization strategy is in principle applicable to a broad class of
PDEs where the second order Melnikov non-resonance conditions lose space derivatives.

(#i7) The linear frequencies (|1.19) vary with h only by exponentially small quantities: they admit the
asymptotic expansion

V/jtanh(hj) = \/j +7(j,h) where |0fr(j,h)| < Cre™ VkeN, Vj>1, (1.24)

uniformly in h € [hy,hy], where the constant C}, depends only on k and h;. Nevertheless we shall be
able, extending the degenerate KAM theory approach in [11], [21], to use the finite depth parameter h
to impose the required Melnikov non-resonance conditions, see and Sections |3[ and On the
other hand, for the gravity capillary water waves considered in [2]], the surface tension parameter s
moves the linear frequencies /(1 + x;2)j tanh(hj) of polynomial quantities O(5%/?).

Linear stability. The quasi-periodic solutions u(@t) = (n(wt), ¢ (wt)) found in Theorem are linearly
stable. Since this is not only a dynamically relevant information, but also an essential ingredient of the
existence proof (it is not necessary for time periodic solutions as in [53], [42], [38], [39], [1]), we state
precisely the result.

The quasi-periodic solutions are mainly supported in Fourier space on the tangential sites ST. As
a consequence, the dynamics of the water waves equations on the symplectic subspaces

Hgi = {v = (Zﬁ) Cos(jx)}, HE = {z -3 (ZJ]) cos(jz) € Hé(’]I‘m)}, (1.25)

Jjest JEN\S*

is quite different. We shall call v € Hg+ the tangential variable and z € HSﬁ the normal one. In the
finite dimensional subspace Hg+ we shall describe the dynamics by introducing the action-angle variables
(6,I) € T” x R” in Section [d]

The classical normal form formulation of KAM theory for lower dimensional tori, see for instance [44]-
[45], [54], [43], [29], [55], [13]-[14], [63], [49], provides, when applicable, existence and linear stability of quasi-
periodic solutions at the same time. On the other hand, existence (without linear stability) of periodic and
quasi-periodic solutions of PDEs has been proved by using the Lyapunov-Schmidt decomposition combined
with Nash-Moser implicit function theorems, see e.g. [22], [24], [53], [42], [38], [39], [25], [6], [1] and references
therein. In this paper we follow the Nash Moser approach to KAM theory outlined in [I6] and implemented
in [8], [21], which combines ideas of both formulations, see Section [1.2] “Analysis of the linearized operators”
and Section [Bl

We prove that around each torus filled by the quasi-periodic solutions of the Hamiltonian system
constructed in Theorem there exist symplectic coordinates (¢, y, w) = (¢,y,7n,v) € TV x R” x HSJ;
(see and [16]) in which the water waves Hamiltonian reads

w- Y+ %KQO((ZS)ZJ Y+ (K11(¢)y7 w)LZ(Tm) + %(KOZ((ZS)U)? w)LZ(Tm) + K23(¢7 Y, ’U}) (126)

where K>3 collects the terms at least cubic in the variables (y,w) (see (5.18)) and note that, at a solution,
one has 05Kopo = 0, K19 = w, Ko1 = 0 by Lemma . The (¢,y) coordinates are modifications of the
action-angle variables and w is a translation of the cartesian variable z in the normal subspace, see ([5.16)).
In these coordinates the quasi-periodic solution reads t — (wt,0,0) and the corresponding linearized water
waves equations are

¢ = K0(0t)[y] + Ky (&) [w]

y=0 (1.27)

w = JKOQ(&t)[ﬂ)] + JKH(ZDt)[y] .

The self-adjoint operator Ko (wt) is defined in and J Koz (wt) is the restriction to Hg; of the linearized
water waves vector field J0,V, H (u(wt)) (computed explicitly in (6.8)) up to a finite dimensional remainder,
see Lemma

We have the following result of linear stability for the quasi-periodic solutions found in Theorem [I.1}



Theorem 1.2. (Linear stability) The quasi-periodic solutions (L.23|) of the pure gravity water waves
system are linearly stable, meaning that for all s belonging to a suitable interval [s1,ss], for any initial

s—% s+1 . .
datum y(0) € R, w(0) € Hy * X H™1 the solutions y(t), w(t) of system (1.27) satisfy

vO =90), 0@l gy S CURO g g + O] VEER
In fact, by (1.27), the actions y(t) = y(0) do not evolve in time and the third equation reduces to the

linear PDE
W = J Koz (wt)[w] + JK11(wt)[y(0)] . (1.28)

_1 1
Sections E imply the existence of a transformation (HS x HS)NHg, — (Hy * x Hy'® )NHg; , bounded and
invertible for all s € [s1, s2], such that, in the new variables wo,, the homogeneous equation w = J Koz (&t)[w]
transforms into a system of infinitely many uncoupled scalar and time independent ODEs of the form

OpWioo,j = —ip Voo 5, Vi ES], (1.29)

where i is the imaginary unit, S§ := Z\ Sp, So := ST U (=S*) U {0} C Z, the eigenvalues p3° are (see (.26,
@27)
1

pe = m§|j|% tanh? (h]j]) +t° €R, jeS§, =15, (1.30)
and m‘? =14 O(lal%), SUPjse |j|%|t‘;°| = O(|a|®) for some ¢ > 0, see (4.28). Since p3 are even in j,
equations ([1.29) can be equivalently written in the basis (cos(jz));ems+ of functions even in z; in Section
for convenience, we represent even operators in the exponential basis (elﬂ)jegg. The above result is
the reducibility of the linearized quasi-periodically time dependent equation w = J Koz (@wt)[w]. The Floquet
exponents of the quasi-periodic solution are the purely imaginary numbers {0, 5, j € S§} (the null Floquet
exponent comes from the action component y = 0). Since p;° are real, the Sobolev norms of the solutions

of (1.29)) are constant.

The reducibility of the linear equation w = JKg(&t)[w] is obtained by two well-separated procedures:

1. First, we perform a reduction of the linearized operator into a constant coefficient pseudo-differential
operator, up to smoothing remainders, via changes of variables that are quasi-periodic transformations
of the phase space, see ((1.41]). We perform such a reduction in Sections [0

2. Then, we implement in Section a KAM iterative scheme which completes the diagonalization of
the linearized operator. This scheme uses very weak second order Melnikov non-resonance conditions
which lose derivatives both in time and in space. This loss is compensated along the KAM scheme
by the smoothing nature of the variable coefficients remainders. Actually, in Section [14] we explicitly
state only a result of almost-reducibility (in Theorems we impose only finitely many Melnikov
non-resonance conditions and there appears a remainder R,, of size O(N,;?), where a > 0 is the large
parameter fixed in ), because this is sufficient for the construction of the quasi-periodic solutions.
However the frequencies of the quasi-periodic solutions that we construct in Theorem satisfy all
the infinitely many Melnikov non-resonance conditions in and Theorems pass to the

limit as n — oo, leading to ([1.29)).

We shall explain these steps in detail in Section In the pioneering works of Plotnikov-Toland [53] and
Tooss-Plotnikov-Toland [42] dealing with time-periodic solutions of the water waves equations, as well as in
[1], the latter diagonalization is not required. The key difference is that, in the periodic problem, a sufficiently
regularizing operator in the space variable is also regularizing in the time variable, on the “characteristic”
Fourier indices which correspond to the small divisors. This is definitely not true for quasi-periodic solutions.

Literature about KAM for quasilinear PDEs. KAM theory for PDEs has been developed to a large
extent for bounded perturbations and for linear frequencies growing in a superlinear way, as j%, a > 1. The
case o = 1, which corresponds to 1d wave and Klein-Gordon equations, is more delicate. In the sublinear
case a < 1, as far as we know, there are no general KAM results, since the second order Melnikov conditions
lose space derivatives. Since the eigenvalues of —A on T¢ grow, according to the Weyl law, like ~ j2/¢, j € N,



one could regard the KAM results for multidimensional Schrédinger and wave equations in [22], [29], [15],
[18], [55], under this perspective. Actually the proof of these results exploits specific properties of clustering
of the eigenvalues of the Laplacian.

The existence of quasi-periodic solutions of PDEs with unbounded perturbations (i.e. the nonlinearity
contains derivatives) has been first proved by Kuksin [45] and Kappeler-Poschel [43] for KdV, then by
Liu-Yuan [49], Zhang-Gao-Yuan [63] for derivative NLS, and by Berti-Biasco-Procesi [13]-[14] for derivative
wave equation. All these previous results still refer to semilinear perturbations, i.e. where the order of the
derivatives in the nonlinearity is strictly lower than the order of the constant coeflicient (integrable) linear
differential operator.

For quasi-linear or fully nonlinear PDEs the first KAM results have been recently proved by Baldi-
Berti-Montalto in [7], [§], [9] for perturbations of Airy, KdV and mKdV equations, introducing tools of
pseudo-differential calculus for the spectral analysis of the linearized equations. In particular, [7] concerns
quasi-periodically forced perturbations of the Airy equation

Ut + Ugge + Ef(Wtaxauy Ugy Uga, uaLIl) =0 (131)

where the forcing frequency w is an external parameter. The key step is the reduction of the linearized
operator at an approximate solution to constant coefficients up to a sufficiently smoothing remainder, followed
by a KAM reducibility scheme leading to its complete diagonalization. Once such a reduction has been
achieved, the second order Melnikov nonresonance conditions required for the diagonalization are easily
imposed since the frequencies are ~ j2 and using w as external parameters. Because of the purely differential
structure of , the required tools of pseudo-differential calculus are mainly multiplication operators
and Fourier multipliers. These techniques have been extended by Feola-Procesi [31] for quasi-linear forced
perturbations of Schrédinger equations and by Montalto [51] for the forced Kirchhoff equation.

The paper [8] deals with the more difficult case of completely resonant autonomous Hamiltonian perturbed
KdV equations of the form

Up + Ugge — Ouu, + f(xvuauwa uzwauwww) =0. (132)

Since the Airy equation wu; 4+ uz., = 0 possesses only 2m-periodic solutions, the existence of quasi-periodic
solutions of is entirely due to the nonlinearity, which determines the modulation of the tangential
frequencies of the solutions with respect to its amplitudes. This is achieved via “weak” Birkhoff normal form
transformations that are close to the identity up to finite rank operators. The paper [§] implements the
general symplectic procedure proposed in [I6] for autonomous PDEs, which reduces the construction of an
approximate inverse of the linearized operator to the construction of an approximate inverse of its restriction
to the normal directions. This is obtained along the lines of [7], but with more careful size estimates because
(1.32) is a completely resonant PDE. The symplectic procedure of [16] is also applied in [21] and in Section
of the present paper. We refer to [23] and [32] for a similar reduction which applies also to PDEs which
are not Hamiltonian, but for example reversible.

By further extending these techniques, the existence of quasi-periodic solutions of gravity capillary water
waves has been recently proved in [21]. In items (¢)-(¢i¢) after Theorem we have described the major
differences between the pure gravity and gravity-capillary water waves equations and we postpone to Remark
more comments about the differences regarding the reducibility of the linearized equations.

Acknowledgements. This research was supported by PRIN 2015 “Variational methods, with applications to
problems in mathematical physics and geometry”, by the European Research Council under FP7, project
no. 306414 “Hamiltonian PDEs and small divisor problem: a dynamical systems approach” (HamPDEs),
partially by the Swiss National Science Foundation, and partially by the Programme STAR, funded by
Compagnia di San Paolo and UniNA.

1.2 Ideas of the proof

The three major difficulties in proving the existence of time quasi-periodic solutions of the gravity water

waves equations (1.14}) are:
() The nonlinear water waves system (|1.14)) is a singular perturbation of (1.15)).



(#7) The dispersion relation (1.19) is sublinear, i.e. w; ~ /j for j — oco.
(#4¢) The linear frequencies w;(h) = j2 tanh? (hj) vary with h of just exponentially small quantities.
We present below the key ideas to solve these three major problems.

Nash-Moser Theorem of hypothetical conjugation. In Section[4 we rescale u — eu and introduce
the action angle variables (0, ) € T x R” on the tangential sites (see (1.25]))

N

2 1 2 - . .
=\ WiV +Tcos(0)), yi= =y —w fVE +sin(g), jEST, (1.33)

where §; > 0, j = 1,..., v, the variables I; satisfy |I;| < ;, so that system (.14]) becomes the Hamiltonian
system generated by

1
He =3(0) - T+ 5(2Q2)12 + <P, ()= (j% tanh? (hj))jes+, (1.34)

where P is given in (4.8]). The unperturbed actions §; in (1.33) and the unperturbed amplitudes a; in (1.22)

and Theorem are related by the identity a; = e+/(2/m) wj% V& for all j € ST.

The expected quasi-periodic solutions of the autonomous Hamiltonian system generated by H. will have
shifted frequencies ; — to be found — close to the linear frequencies w;(h) in . The perturbed frequencies
depend on the nonlinearity and on the amplitudes &;. Since the Melnikov non-resonance conditions are
naturally imposed on w, it is convenient to use the frequencies w € R” as parameters, introducing “counter-
terms” « € R” (as in [21], in the spirit of Herman-Féjoz [30]) in the family of Hamiltonians (see (4.9))

1
H, ::a-[+§(z,Qz)L2 +eP.

Then the first goal (Theorem is to prove that, for ¢ small enough, there exist aw(w,h,¢), close to w,
and a v-dimensional embedded torus is (¢;w,h,¢e) of the form

i: T =T xR" x Hg, ¢ i(p):=(0(¢),1(¢), (),

close to (,0,0), defined for all (w,h) € R” x [hy, hg], such that, for all (w,h) belonging to the set C2, defined

in (4.20), (ico,co)(w,h,€) is a zero of the nonlinear operator (see (4.10))

w - 0,0(p) — o — 201 P(i(¢p))
Fli,a,w,h,e) = w- 0 1(p) +€0p P(i(p)) : (1.35)
w-0p2(p) — J(Qz(p) + V. P(i(p)))

The explicit set CY, requires w to satisfy, in addition to the Diophantine property

Wl =) veeZ\ {0}, () =max{L |}, |0 = max |,

the first and second Melnikov non-resonance conditions stated in (4.20)), in particular
W+ £+ 2 (w, ) — 3 (w,b)] > 4y~ ()T, Ve € Z¥, G, j € NT\SY, (6,5,5) # (0,5,5),  (1.36)

where £15°(w,h) are the “final eigenvalues” in ([4.18)), defined for all (w,h) € R¥ x [hy, hy] (we use the abstract
Whitney extension theorem in Appendix . The torus i, the conter-term a, and the final eigenvalues
p5°(w,h) are Cko differentiable with respect to the parameters (w,h). The value of kg is fixed in Section
depending only on the unperturbed linear frequencies, so that transversality conditions like hold, see
Proposition The value of the counterterm « := aqo(w,h,¢) is adjusted along the Nash-Moser iteration
in order to control the average of the first component of the Hamilton equation , especially for solving
the linearized equation , in particular .

Theorem follows by the Nash-Moser Theorem which relies on the analysis of the linearized
operators dj o at an approximate solution, performed in Sections 514 The formulation of Theorem [4.1]
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is convenient as it completely decouples the Nash-Moser iteration required to prove Theorem [I.1] and the
discussion about the measure of the set of parameters C where all the Melnikov non-resonance conditions
are verified. In Section we are able to prove positive measure estimates, if the exponent d in is
large enough and v = o(1) as e — 0. Since such a value of d determines the number of regularization steps to
be performed on the linearized operator, we prefer to first discuss how we fix it, applying degenerate KAM
theory.

Proof of Theorem degenerate KAM theory and measure estimates. In order to prove the
existence of quasi-periodic solutions of the system with Hamiltonian H. in (1.34)), thus (1.14]), and not only
of the system with modified Hamiltonian H, with & := @ (w,h,€), we have to prove that the curve of the
unperturbed linear tangential frequencies

[h1,h2] 3 h — &(h) := (v/jtanh(hj)) es+ € R” (1.37)

intersects the image o (CY) of the set CZ, under the map oo, for “most” values of h € [hy, hg]. Setting

we(h) == a}(G(h),h), (1.38)
where a!(-,h) is the inverse of the function aw (-, h) at a fixed h € [hy, ho], if the vector (w.(h),h) belongs
to C1,, then Theorem implies the existence of a quasi-periodic solution of the system with Hamiltonian
H. with Diophantine frequency we(h).

In Theorem we prove that for all the values of h € [hy,hy] except a set of small measure O(y/*0)
(where kg is the index of non-degeneracy appearing below in (1.39)), the vector (w.(h),h) belongs to CZ.
Since the parameter interval [hy, hy] is fixed, independently of the O(g)-neighborhood of the origin where we
look for the solutions, the small divisor constant + in the definition of C1, (see e.g. (1.36)) can be taken as
v =& with @ > 0 as small as needed, see , so that all the quantities ey~" that we encounter along the
proof are < 1.

The first task is to prove a transversality property for the unperturbed tangential frequencies @(h) in
and the normal ones {(h) := (2(h))jenr\s+ = (wj(h))jenr\s+. Exploiting the fact that the maps
h — w; (h%) are analytic, simple — namely injective in j — in the subspace of functions even in z, and they
grow asymptotically like \/j for j — oo, we first prove that the linear frequencies w;(h) are non-degenerate
in the sense of Bambusi-Berti-Magistrelli [IT] (i.e. they are not contained in any hyperplane). This is verified
in Lemma using a generalized Vandermonde determinant (see Lemma . Then in Proposition we
translate this qualitative non-degeneracy condition into quantitative transversality information: there exist
kg > 0, po > 0 such that, for all h € [hy,hs],

max
0<k<k;

O (@(n) - €+ Q;j(h) — Qy(n))| > po(t), VL#£0, j,j € NF\ST, (1.39)

and similarly for the Oth, 1st and 2nd order Melnikov non-resonance condition with the + sign. We call (fol-
lowing [58]) k¢ the index of non-degeneracy and pg the amount of non-degeneracy. Note that the restriction
to the subspace of functions with zero average in x eliminates the zero frequency wy = 0, which is trivially
resonant (this is used also in [27]).

The transversality condition is stable under perturbations that are small in C*0-norm, where kg :=
kg +2, see Lemma Since w,(h) in and the perturbed Floquet exponents ;i5°(h) = p3°(we(h),h) in
are small perturbations of the unperturbed linear frequencies /j tanh(hj) in C¥°-norm, the transver-
sality property still holds for the perturbed frequencies. As a consequence, by applying the classical
Rissmann lemma (Theorem 17.1 in [58]) we prove that, for most h € [hy, hy], the Oth, 1st and 2nd Melnikov
conditions on the perturbed frequencies hold if d > %kS, see Lemma and .

The larger is d, the weaker are the Melnikov conditions , and the stronger will be the loss of
space derivatives due to the small divisors in the reducibility scheme of Section In order to guarantee
the convergence of such a KAM reducibility scheme, these losses of derivatives will be compensated by the
regularization procedure of Sections [G{I3] where we reduce the linearized operator to constant coefficients
up to very regularizing terms O(|D,|~™) for some M := M (d, ) large enough, fixed in , which is large
with respect to d and 7 by . We will explain in detail this procedure below.
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Analysis of the linearized operators. In order to prove the existence of a solution of F(i,a) = 0 in ,
proving the Nash-Moser Theorem the key step is to show that the linearized operator d; o F obtained at
any approximate solution along the iterative scheme admits an almost approximate inverse satisfying tame
estimates in Sobolev spaces with loss of derivatives, see Theorem Following the terminology of Zehnder
[62], an approzimate inverse is an operator which is an exact inverse at a solution (note that the operator
P in is zero when F(i,a) = 0). The adjective almost refers to the fact that at the n-th step of
the Nash-Moser iteration we shall require only finitely many non-resonance conditions of Diophantine type,
therefore there remain operators (like ) that are Fourier supported on high frequencies of magnitude
larger than O(N,,) and thus they can be estimated as O(N, %) for some a > 0 (in suitable norms). The
tame estimates ([5.48))-(5.51)) are sufficient for the convergence of a differentiable Nash-Moser scheme: the
remainder produces a quadratic error since it is of order O(F (i, «y,)); the remainder arising
from the almost-reducibility is small enough by taking a > 0 sufficiently large, as in ; the remainder
(5.50) arises by ultraviolet cut-off truncations and its contribution is small by usual differentiable Nash-Moser
mechanisms, see for instance [I7]. These abstract tame estimates imply the Nash-Moser Theorem m

In order to find an almost approximate inverse of d; oF we first implement the strategy of Section
introduced in Berti-Bolle [16], which is based on the following simple observation: around an invariant torus
there are symplectic coordinates (¢, y,w) in which the Hamiltonian assumes the normal form ((1.26)) and
therefore the linearized equations at the quasi-periodic solution assume the triangular form as in. In
these new coordinates it is immediate to solve the equations in the variables ¢, y, and it remains to invert

an operator acting on the w component, which is precisely £, defined in (5.26)). By Lemma [6.1|the operator
L, is a finite rank perturbation (see (6.5])) of the restriction to the normal subspace Hg; in (1.25) of

(1.40)

L=w-0,+ ( 0.V +G(n)B ~Gl(n) )

(1+ BVy)+ BG(n)B Vo, — BG(n)

where the functions B,V are given in , which is obtained linearizing the water waves equations
at a quasi-periodic approximate solution (n,%)(wt, z) and changing 0, into the directional derivative w - J,,.

If (i, «) is not zero but it is small, we say that ¢ is approximately invariant for Xg_, and, following [16],
in Section [5| we transform d; o F into an approzimately triangular operator, with an error of size O(F (i, a)).
In this way, we have reduced the problem of almost approximately inverting d; o to the task of almost
inverting the operator £,. The precise invertibility properties of L, are stated in —.

Remark 1.3. The main advantage of this approach is that the problem of inverting d; »F on the whole
space (i.e. both tangential and normal modes) is reduced to invert a PDE on the normal subspace HSJ; only.
In this sense this is reminiscent of the Lyapunov-Schmidt decomposition, where the complete nonlinear
problem is split into a bifurcation and a range equation on the orthogonal of the kernel. However, the
Lyapunov-Schmidt approach is based on a splitting of the space H*(T"*!) of functions u(ip, x) of time and
space, whereas the approach of [I6] splits the phase space (of functions of x only) into Hg+ @ Hg\f; more
similarly to a classical KAM theory formulation. O

The procedure of Section [5|is a preparation for the reducibility of the linearized water waves equations in
the normal subspace developed in Sections[6}{T4] where we conjugate the operator £, to a diagonal system of
infinitely many decoupled, constant coefficients, scalar linear equations, see below. First, in Sections
[(H12] in order to use the tools of pseudo-differential calculus, it is convenient to ignore the projection on the
normal subspace HSJ; and to perform a regularization procedure on the operator £ acting on the whole space,
see Remark Then, in Section we project back on HSJ;. Our approach involves two well separated
procedures that we describe in detail:

1. Symmetrization and diagonalization of £ up to smoothing operators. The goal of Sections
is to conjugate £ to an operator of the form

w - Oy+imy | D|® tanh? (b D|) + ir(D) + Ts () (1.41)

where m ~lisa real constant, independent of ¢, the symbol r(§) is real and independent of (¢, x),

of order S~1/2, and the remainder Tg(y), as well as 8{2’]}; for all |8] < By large enough, is a small,
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still variable coefficient operator, which is regularizing at a sufficiently high order, and satisfies tame
estimates in Sobolev spaces.

2. KAM reducibility. In Section (13| we restrict the operator in (1.41)) to HSJ; and in Section |14] we
implement an iterative diagonalization scheme to reduce quadratically the size of the perturbafion,
completing the conjugation of L, to a diagonal, constant coefficient system of the form

w - 0y +10p(p;) (1.42)

where p; = m%|j|% tanh%(h|j|) +7(j) + 7(j) are real and 7(j) are small.

We underline that all the transformations performed in Sections are quasi-periodically-time-dependent
changes of variables acting in phase spaces of functions of x (quasi-periodic Floquet operators). Therefore,
they preserve the dynamical system structure of the conjugated linear operators.

All these changes of variables are bounded and satisfy tame estimates between Sobolev spaces. As a
consequence, the estimates that we shall obtain inverting the final operator directly provide good
tame estimates for the inverse of the operator £, in .

We also note that the original system L is reversible and even and that all the transformations that we
perform are reversibility preserving and even. The preservation of these properties ensures that in the final
system the p; are real valued. Under this respect, the linear stability of the quasi-periodic standing
wave solutions proved in Theorem [I.1]is obtained as a consequence of the reversible nature of the water waves
equations. We could also preserve the Hamiltonian nature of £ performing symplectic transformations, but
it would be more complicated.

Remark 1.4. (Comparison with the gravity-capillary linearized PDE) With respect to the gravity
capillary water waves in infinite depth in [I], [2I], the reduction in decreasing orders of the linearized operator
is completely different. The linearized operator in the gravity-capillary case is like

w- Oy +i|Dy|? + V(p,2)0,,

the term V0, is a lower order perturbation of \Dw|%, and it can be reduced to constant coefficients by

conjugating the operator with a “semi-Fourier Integral Operator” A of type (%, %) (like in [I] and [21]): the

commutator of |D$|% and A produces a new operator of order 1, and one chooses appropriately the symbol
of A for the reduction of VJ,. Instead, in the pure gravity case we have a linearized operator of the type

w- By +i|Dy|? + V(p,2)0,

where the term V), is a singular perturbation of i|/D,|2. The commutator between | D, |2 and any bounded
pseudo-differential operator produces operators of order < 1/2, which do not interact with V9,. Hence one
uses the commutator with w-0,, (which is the leading term of the unperturbed operator) to produce operators
of order 1 that cancel out V0,. This is why our first task is to straighten the first order vector field ,
which corresponds to a time quasi-periodic transport operator. Furthermore, the fact that the unperturbed
linear operator is ~ |D\%7 unlike ~ |D|%, also affects the conjugation analysis of the lower order operators,
where the contribution of the commutator with w - 0, is always of order higher than the commutator with
|Dl.\%. As a consequence, in the procedure of reduction of the symbols to constant coefficients in Sections
we remove first their dependence on ¢, and then their dependence on . We also note that in [21],
since the second order Melnikov conditions do not lose space derivatives, there is no need to perform such
reduction steps at negative orders before starting with the KAM reducibility algorithm. O

We now explain in details the steps of the conjugation of the quasi-periodic linear operator described
in the items 1 and 2 above. We underline that all the coefficients of the linearized operator £ in are
C* in (¢, ) because each approximate solution (n(p,x), ¥ (¢, z)) at which we linearize along the Nash-
Moser iteration is a trigonometric polynomial in (¢, ) (at each step we apply the projector II,, defined in
(15.1)) and the water waves vector field is analytic. This allows us to work in the usual framework of C*°
pseudo-differential symbols, as recalled in Section [2.3
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1. Linearized good unknown of Alinhac. The first step is to introduce in Section [6.1] the linearized
good unknown of Alinhac, as in [I] and [2I]. This is indeed the same change of variable introduced by
Lannes [46] (see also [47]) for proving energy estimates for the local existence theory. Subsequently, the
nonlinear good unknown of Alinhac has been introduced by Alazard-Métivier [0], see also [2]-[4] to perform
the paralinearization of the Dirichlet-Neumann operator. In these new variables, the linearized operator
becomes the more symmetric operator (see (6.15)))

0,V -G Vo, 0 Ve -G

where the Dirichlet-Neumann operator admits the expansion
G(n) = |D|tanh(h|D|) + Rg

and Rg is an OPS™%° smoothing operator. In Appendix |A] we provide a self-contained proof of such a
representation. We cannot directly use a result already existing in the literature (for the Cauchy problem)
because we have to provide tame estimates for the action of G(n) on Sobolev spaces of time-space variables
(p,x) and to control its smooth dependence with respect to the parameters (w,h). We can neither directly
apply the corresponding result of [2I], which is given in the case h = +o0.

Notice that the first order transport operator V9, in is a singular perturbation of £ evaluated at

(77,1/1) =0, i.e. w-8¢+ ((IJ —Cz‘)(O))’

2. Straightening the first order vector field w -0, + V(p,z)0;. The next step is to conjugate the
variable coefficients vector field (we regard equivalently a vector field as a differential operator)

w0y + V(p, )0, (1.44)

to the constant coefficient vector field w - d, on the torus T, x T, for V(p,z) small. This a perturbative
problem of rectification of a close to constant vector field on a torus, which is a classical small divisor
problem. For perturbation of a Diophantine vector field this problem was solved at the beginning of KAM
theory, we refer e.g. to [62] and references therein. Notice that, despite the fact that w € R” is Diophantine,
the constant vector field w - 9, is resonant on the higher dimensional torus T¢, x T,. We exploit in a crucial
way the symmetry induced by the reversible structure of the water waves equations, i.e. V(p,x) is odd in
@, to prove that it is possible to conjugate w - 9, + V (¢, )0, to the constant vector field w - J, without
changing the frequency w.

From a functional point of view we have to solve a linear transport equation which depends on time in
quasi-periodic way, see equation . Actually we solve equation for the inverse diffeomorphism. This
problem amounts to prove that all the solutions of the quasi periodically time-dependent scalar characteristic
equation & = V(wt, x) are quasi-periodic in time with frequency w, see Remark B3], [42] and [52]. We
solve this problem in Section [7] using a Nash-Moser implicit function theorem. Actually, after having inverted
the linearized operator at an approximate solution (Lemma , we apply the Nash-Moser-Hérmander
Theorem proved in Baldi-Haus [10]. We cannot directly use already existing results for equation
because we have to prove tame estimates and Lipschitz dependence of the solution with respect to the
approximate torus, as well as its smooth dependence with respect to the parameters (w,h), see Lemmata
AR

We remark that, when searching for time periodic solutions as in [42], [53], the corresponding transport
equation is not a small-divisor problem and has been solved in [53] by a direct ODE analysis.

In Lemma we apply this change of variable to the whole operator Ly in , obtaining the new

conjugated system (see (7.31)))

a1 70/2|D‘Th + R1
as 0

Li=w-0,+ ( ) , Ty := tanh(h|D]),

where the remainder R4 is in OPS™°.
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3. Change of the space variable. In Section [§] we introduce a change of variable induced by a diffeomor-
phism of T, of the form (independent of )

y=1x+ a(zx) & r=y+a(y). (1.45)

Conjugating £; by the change of variable u(z) — u(xz + a(z)), we obtain an operator of the same form

as —as|D|Ty + Ro
£2:w.a@+<a6 | |Oh )7

see (8.5]), where Ro is in OPS~%°, and the functions as, ag are given by

as = [az(p,2)(1 + au(x))] ag = az(p,y + a(y)) .

lz=y+a(y)’

We shall choose in Section [11] the function a(z) (see (11.23))) in order to eliminate the dependence on x from
the time average (a7),(z) in (T1.17)-(T1.18) of the coefficient of |D,|z. The advantage of introducing the
diffeomorphism at this step, rather than in Section Where it is used, is that it is easier to study the
conjugation under this change of variable of differentiation and multiplication operators, Hilbert transform,
and integral operators in OPS™°°, see Section (on the other hand, performing this transformation in
Section |11| would require delicate estimates of the symbols obtained after an Egorov-type analysis).

4. Symmetrization of the order 1/2. In Section |§| we apply two simple conjugations with a Fourier
multiplier and a multiplication operator, whose goal is to obtain a new operator of the form

o _ 13
ngw.(?w( o a7|D|2Th>+

az|D|2 T} 0

see (9.10)-(9.14)), up to lower order operators. The function a7 is close to 1 and a4 is small in €, see (9.17).
Notice that the off-diagonal operators in L3 are opposite to each other, unlike in £5. Then, in the complex
unknown h = 7 + i, the first component of such an operator reads

(h,}) — w - O,k + iar|DIET b+ ash + Psh + Qsh (1.46)

(which corresponds to neglecting the projector illp) where Ps(¢) is a p-dependent families of pseudo-
differential operators of order —1/2; and @Q5(¢) of order 0. We shall call the former operator “diagonal”,
and the latter “off-diagonal”, with respect to the variables (h, h).

In Sections we perform the reduction to constant coefficients of up to smoothing operators,
dealing separately with the diagonal and off-diagonal operators.

5. Symmetrization of the lower orders. In Section [I0] we reduce the off-diagonal term Qs to a pseudo-
differential operator with very negative order, i.e. we conjugate the above operator to another one of the
form (see Lemma [10.3)

(hy]) — w - D,k + iar(, 2)| DI T2 h + ash + Psh + Qgh, (1.47)

where Pg is in OPS™2 and Qs € OPS~M for a constant M large enough fixed in Section in view of the
reducibility scheme.

6. Time and space reduction at the order 1/2. In Sectionwe eliminate the ¢- and the z-dependence
1
from the coefficient of the leading operator iaz (e, sc)|D|%Th2 . We conjugate the operator (1.47)) by the time-1
flow of the pseudo-PDE )
aTU = 15((,0,1‘)|D|5U

where B(p,x) is a small function to be chosen. This kind of transformations — which are “semi-Fourier
integral operators”, namely pseudo-differential operators of type (%, %) in Hormander’s notation — has been
introduced in [I] and studied as flows in [21].
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Choosing appropriately the functions (¢, z) and a(z) (introduced in Section , see formulas (|11.19)
and (11.23)), the final outcome is a linear operator of the form, see (11.31)),

(h ) = w- Bh +imy | DIFTE b+ (as + agH)h + Prh + To(h,R), (1.48)

where H is the Hilbert transform. This linear operator has the constant coefficient m 1~ 1lat the order 1/2,

while P; is in OPS~'/2 and the operator 77 is small, smoothing and satisfies tame estimates in Sobolev
spaces, see ((11.39)).

7. Reduction of the lower orders. In Section we further diagonalize the linear operator in ,
reducing it to constant coefficients up to regularizing smoothing operators of very negative order |D|=M.
This step, based on standard pseudo-differential calculus, is not needed in [21], because the second order
Melnikov conditions in [21] do not lose space derivatives. We apply an iterative sequence of pseudo-differential
transformations that eliminate first the ¢- and then the z-dependence of the diagonal symbols. The final
system has the form

(h,h) = w - Dph + imy | D|¥T2 h + ir(D)h + T (2) (h, h) (1.49)
where the constant Fourier multiplier r(£) is real, even r(§) = r(—¢), it satisfies (see (12.78))

s _
sup |2 |r;[Fo7 <pp ey EMED
JEZ

and the variable coefficient operator 7g(ip) is regularizing and satisfies tame estimates, see more precisely
. We also remark that the operator is reversible and even, since all the previous transformations
that we performed are reversibility preserving and even.

At this point the procedure of diagonalization of £ up to smoothing operators is complete. Thus, in
Section restricting the operator to HSﬁ, we obtain the reduction of £, up to smoothing remainders.
We are now ready to begin the KAM reduction procedure.

8. KAM reducibility. In order to decrease quadratically the size of the resulting perturbation Ry (see
(14.4)) we apply the KAM diagonalization iterative scheme of Section which converges because the
operators

(D)™ PR (D)™ HPH - Gt (D) PR (DY i =1, (1.50)

satisfy tame estimates for some b := b(7,kg) € N and m := m(kg) that are large enough (independently
of s), see Lemma Such conditions hold under the assumption that M (the order of regularization of
the remainder) is chosen large enough as in (essentially M = O(m + b)). This is the property that
compensates, along the KAM iteration, the loss of derivatives in ¢ and x produced by the small divisors
in the second order Melnikov non-resonance conditions. Actually, for the construction of the quasi-periodic
solutions, it is sufficient to prove the almost-reducibility of the linearized operator, in the sense that the
remainder R,, in Theorem is not zero but it is of order O(ey 2(M+1) N2 ) which can be obtained
imposing only the finitely many Diophantine conditions , (114.26]).

The big difference of the KAM reducibility scheme of Section [14] with respect to the one developed in
[21] is that the second order Melnikov non-resonance conditions that we impose are very weak, see ,
in particular they lose regularity, not only in the ¢-variable, but also in the space variable z. For this reason
we apply at each iterative step a smoothing procedure also in the space variable (see the Fourier truncations
1015 — 7] < Na_y in (T328)).

After the above almost-diagonalization of the linearized operator we almost-invert it, by imposing the first
order Melnikov non-resonance conditions in , see Lemma Since all the changes of variables that
we performed in the diagonalization process satisfy tame estimates in Sobolev spaces, we finally conclude
the existence of an almost inverse of £, which satisfies tame estimates, see Theorem [14.10

At this point the proof of the Nash-Moser Theorem given in Section follows in a usual way, in
the same setting of [21].

Notation. Given a function u(p,z) we write that it is even(p)even(z) if it is even in ¢ for any = and,
separately, even in z for any ¢. With similar meaning we say that u(p, x) is even(p)odd(z), odd(yp)even(x)
and odd(p)even(z).
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The notation a Ssq,n b means that a < C(s, o, M)b for some constant C(s, o, M) > 0 depending on
the Sobolev index s and the constants «, M. Sometimes, along the paper, we omit to write the dependence
Sso.ke With respect to s, ko, because sg (defined in ) and ko (determined in Section [3|) are considered
as fixed constants. Similarly, the set ST of tangential sites is considered as fixed along the paper.

2 Functional setting

2.1 Function spaces

In the paper we will use Sobolev norms for real or complex functions u(w,h, ¢, x), (p,x) € T x T, depending
on parameters (w,h) € F in a Lipschitz way together with their derivatives in the sense of Whitney, where
F is a closed subset of R“Tt. We use the compact notation A := (w,h) to collect the frequency w and the
depth h into a parameter vector.

We use the multi-index notation: if k = (ki,...,k,41) € N“T we denote |k| := k1 + ... + k,41 and

k' == kil - kyqa! and if A = (Aq,...,A\41) € RYFL we denote the derivative 9% := 8’;1 81;:11 and

Moo= M )\l]fff Recalling that || ||s denotes the norm of the Sobolev space H*(T**1,C) = HE, o
introduced in (1.20), we now define the “Whitney-Sobolev” norm || - ||’:;17

Definition 2.1. (Whitney-Sobolev functions) Let F be a closed subset of R“*1. Let k > 0 be an integer,

v € (0,1], and s > sg > (v +1)/2. We say that a function v : F — Haa 2) belongs to Lip(k + 1, F,s,7) if
there exist functions u9) : F — Haa ) JeN, 0<|j| <k with u©® =, and a constant M > 0 such that,

if Rj(\Ao) == RS (A, \o) is defined by

. 1 .
uD(\) = > i w9 (M) (A= X0) 4+ Rj(M\ ho), M\ Ao €F, (2.1)
LENVHL:|j4e|<k

then
YWD Nl < M, AR, Xo)lls < MIX = Xo[FHE1 YA N € F, [j] < k. (2.2)

An element of Lip(k + 1, F, s,7) is in fact the collection {u\9) : |j| < kY. The norm of u € Lip(k + 1, F, s,7)
is defined as

[l S o= uf| 5 = inf{M > 0 : 2:2) holds}. (2.3)

If F = R”“ by Lip(k + 1,R¥*1, 5, ) we shall mean the space of the functions u = u(®) for which there exist
uld) = RKu, 7] < k, satisfying (2.2)), with the same norm ([2.3)).

We make some remarks.

L. If F = R"*!, and u € Lip(k + 1, F,s,v) the ul), |j| > 1, are uniquely determined as the partial
derivatives u) = Ru, |j| <k, of u = u(9). Moreover all the derivatives Nu, |j| = k are Lipschitz.
Since H* is a Hilbert space we have that Lip(k + 1,R**! s ) coincides with the Sobolev space
Wk+1’°o(Ry+1,Hs).

2. The Whitney-Sobolev norm of u in ([2.3)) is equivalently given by

k+1,y
F

lulls, I

1 g WROLe Y

= ul |E+1=Ti]

"7:max{ Ul sup [|u@ (V)]s
ik U AEFH Mllsy AEdo [A = Ao

Theorem and (B.10) provide an extension operator which associates to an element u € Lip(k +
1,F,s,7) an extension @ € Lip(k + 1,R** s,v). As already observed, the space Lip(k + 1,R**! s )
coincides with W+ (R¥+1 [%) with equivalence of the norms (see (B.9))
+1y
F

k ~ -
[[ulls, S R W Z 'Yla‘”agu”Lw(R"*'l,HS)'

la|<k+1
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By Lemma [B:3] the extension @ is independent of the Sobolev space H*.

We can identify any element u € Lip(k + 1, F,s,v) (which is a collection u = {u¥) : |j| < k}) with the
equivalence class of functions f € Whtloo(R¥+1 [%) /~ with respect to the equivalence relation f ~ g when
Rf(N) =g\ for all X € F, for all |j| < k+ 1.

For any N > 0, we introduce the smoothing operators

(IIyu)(p, ) : Z g el tiv) My :=Id — M. (2.5)
(6.4)<N

Lemma 2.2. (Smoothing) Consider the space Lip(k+ 1, F,s,7) defined in Definition[2.1, The smoothing
operators Iy, Ix satisfy the estimates

IMyul17 < N a2 0<a<s, (2.6)
[Tpull57 < N=fullsfy”, a>o0. (2.7)
Proof. See Appendix [B] O

Lemma 2.3. (Interpolation) Consider the space Lip(k + 1, F, s,7) defined in Definition .
(i) Let s1 < s3. Then for any 6 € (0,1) one has

[l &5 < (ulls ) Al )7, s = 051+ (1= 0)sz. (2.8)

(ii) Let ag,bg > 0 and p,q > 0. For all € > 0, there exists a constant C(¢) := C(e,p,q) > 0, which
satisfies C(1) < 1, such that

k41, k41, k41, k+1, , k41,
[ullagep ol ie” < ellullaneptiqllvllyn " + ClOulle ™ o]l 00, - (2.9)

Proof. See Appendix [B] O

Lemma 2.4. (Product and composition) Consider the space Lip(k+1, F,s,v) defined in Definition .
For all s > s > (v +1)/2, we have

k+1, k+1, k+1, k+1, k+1,
[uoll ™57 < Cls, B)ulls™ 7 lolls™ ™ + Clso, B)Julls™ ol (2.10)
Let ||ﬁ|\§;gl+q < d(so, k) small enough. Then the composition operator
B:ur Bu, (Bu)(p,z):=u(p,z+p(p 1)),

satisfies the following tame estimates: for all s > sg,

k41, )
1Bull§7 Kok lully Ly + 1815

k+1,
skl L (2.11)

‘u||30+k+2

Let ||5H12€;)1+7€+2 < 8(s0, k) small enough. The function (3 defined by the inverse diffeomorphism y = x+0(p, x)

if and only if x = y + B(cp, y), satisfies
2 k+1,
1515 Sow 1BI5 TR0 - (2.12)
Proof. See Appendix [B] O

If w belongs to the set of Diophantine vectors DC(7, 7), where

- v v v
DC(y, 7) i= {weR otz g Ve \{0}}, (2.13)

the equation w - 9,v = u, where u(y, x) has zero average with respect to ¢, has the periodic solution

W 0p) = Y et (2.14)
ccz\qo}jez Y
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For all w € R” we define its extension

1 x(w-&y~HO)7) i(C-ptja)
. I = E -~ - ; 2.1
(w alp)emﬁu(gpax) = iw -l Ug,j € ’ ( 5)
J v+1

where x € C*(R,R) is an even and positive cut-off function such that

x@){o it <

1 2
L ¥ s Bex(€) > 0 vge( ) (2.16)

373

ol Wi

)

Note that (w - 9,),4u = (w - d,) " 'u for all w € DC(v, 7).

Lemma 2.5. (Diophantine equation) For all u € WLV (RV L {1 we have

—1, k41, - k+1,
(w0 bl bt < Oy M ull bt g, pe= kit 1+ 7(k +2). (2.17)

Moreover, for F CDC(y,7) X R one has

(w - 0p)~ ull 557 < )yl 0% - (2.18)
Proof. See Appendix O

We finally state a standard Moser tame estimate for the nonlinear composition operator

u(p, z) = £(u)(p,x) = flp,z,ulp,x)).
Since the variables (¢, z) := y have the same role, we state it for a generic Sobolev space H*(T?).

Lemma 2.6. (Composition operator) Let f € C(T¢ x R,C) and Cy > 0. Consider the space Lip(k +
1,F,s,v) given in Definition . If u(\) € H*(T%, R), A € F is a family of Sobolev functions satisfying
Hu||§0+}ﬂ < Cy, then, for all s > sop > (d+1)/2,

()55 < Cls, b, £,Co) (1 + [[ull £57). (2.19)

The constant C(s, k, f,Co) depends on s, k and linearly on || f||cm rax gy, where m is an integer larger than
s+k-+1, and B C R is a bounded interval such that u(\,y) € B for all X € F, y € T?, for all ||uH];;r}ﬂ < (.

Proof. See Appendix O

2.2 Linear operators

Along the paper we consider p-dependent families of linear operators A : T — L(L?*(T,)), ¢ — A(y) acting
on functions u(z) of the space variable x, i.e. on subspaces of L?(T,), either real or complex valued. We
also regard A as an operator (which for simplicity we denote by A as well) that acts on functions u(p, x) of
space-time, i.e. we consider the corresponding operator A € L(L?(T” x T)) defined by

(Au)(p, ) := (A(P)ulp,))(x) - (2.20)

We say that an operator A is real if it maps real valued functions into real valued functions.
We represent a real operator acting on (n,%) € L?(T**1,R?) by a matrix

® <«Z) B <é g) (ZD (2.21)

where A, B, C, D are real operators acting on the scalar valued components n,v € L?(T**1 R).
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The action of an operator A as in (2.20) on a scalar function u := u(p,z) € L*(T” x T,C), that we
expand in Fourier series as

u(p,z) = Y uj(p)e¥ = Y g eI (2.22)

JEZ LELY JEL
iS -/ . -/ . .
Au(p,z) = Y A (puy(p)e? = Y~ > AL =gy, (2.23)

7,3 €L LeZv jEL L' el” 5’ €L

We shall identify an operator A with the matrix (A;l(é — é’))j STt which is T6plitz with respect to
the index ¢. In this paper we always consider Toplitz operators as in (2.20)), (2.23)).
The matrix entries A7 (¢ — ') of a bounded operator A : H® — H* (as in (2.23)) satisfy

S 14T (€= )P < AR (0,50, V(5 €2 (2.24)
£,j
where [|A|| z(g+) := sup{||Ah||s : [|h]|s = 1} is the operator norm (consider h = ei(d") (e,
Definition 2.7. Given a linear operator A as in we define the operator
1. |A| (majorant operator) whose matriz elements are |A§/(€ -],
2. IIyA, N € N (smoothed operator) whose matriz elements are

Al(—0) -l - <N

) (2.25)
0 otherwise .

(nNmfwﬂy{

We also denote HJI\-/ =1d — Iy,
3. (9,2)°A, b € R, whose matriz elements are ({ —{',j — j'>bA§/(€ = ).

4. 00, Alp) = [0p,,,A] = 0p,, 0 A — Ao 0, (differentiated operator) whose matriz elements are
i(m — 0,) AT (L= 1").

Similarly the commutator [0, A] is represented by the matrix with entries i(j — ;' )A?(é .
Given linear operators A, B as in (2.23) we have that (see Lemma 2.4 in [21])

1A+ Blulls < |[[AlTul [ls + 1Bl Tul ls, | [ABJulls < |[|Al B[ ful s, (2.26)

where, for a given a function u(p, x) expanded in Fourier series as in (2.22)), we define the majorant function

lul(p,@) i= Y Jugyle o). (2.27)
tezv jer

Note that the Sobolev norms of u and |u| are the same, i.e.

l[ulls = [lullls- (2.28)

2.3 Pseudo-differential operators

In this section we recall the main properties of pseudo-differential operators on the torus that we shall use
in the paper, similarly to [I], [21]. Pseudo-differential operators on the torus may be seen as a particular
case of the theory on R", as developed for example in [35].
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Definition 2.8. (VDO) A linear operator A is called a pseudo-differential operator of order m if its symbol
a(x, j) is the restriction to R X Z of a function a(z,§) which is C*°-smooth on R x R, 2w-periodic in x, and
satisfies the inequalities

0207 a(x,€)| < Cap(&™?, VYa,BeN. (2.29)

We call a(x,€) the symbol of the operator A, which we denote
1
A=0p(a) =a(z,D), D:=D,:= Tax.

We denote by S™ the class of all the symbols a(x, &) satisfying (2.29), and by OPS™ the associated set of
pseudo-differential operators of order m. We set OPS™>° := N,,,crOPS™.
For a matriz of pseudo differential operators

(A A, 4 m
A_<A3 A4>, A, €OPS™, i=1,....4 (2.30)

we say that A € OPS™.

When the symbol a(z) is independent of j, the operator A = Op(a) is the multiplication operator by the
function a(x), i.e. A : u(x) — a(z)u(z). In such a case we shall also denote A = Op(a) = a(x).

We underline that we regard any operator Op(a) as an operator acting only on 27-periodic functions
u(@) = S use" as

(Au)(z) := Op(a)[u](z) := Zjeza(x,j)ujew-
Along the paper we consider p-dependent pseudo-differential operators (Au) (¢, z) = > 5 alp, , Juj(p)ei®
where the symbol a(p, z, ) is C*°-smooth also in . We still denote A := A(p) = Op(ya(cp, -)) = Op(a).
Moreover we consider pseudo-differential operators A(\) := Op(a(A, ¢, x,£)) that are kg times differen-
tiable with respect to a parameter A := (w,h) in an open subset Ag C R” x [h1,hs]. The regularity constant
ko € N is fixed once and for all in Section [3} Note that 9§ A = Op(d5a), Vk € NVF1,
We shall use the following notation, used also in [I], [2I]. For any m € R\ {0}, we set

|D|™ := Op(x(&)IEI™) , (2.31)

where x is the even, positive C* cut-off defined in (2.16]). We also identify the Hilbert transform H, acting
on the 2m-periodic functions, defined by

H(e") := —isign(j)e’*, Vj #0, H(1):=0, (2.32)
with the Fourier multiplier Op( — isign(&)x(€)), i.e. H = Op( —isign(&)x(€)).
We shall identify the projector 7y, defined on the 27-periodic functions as

Tou = S / u(z) dx, (2.33)
2w T

with the Fourier multiplier Op(1 — x(€)), i.e. o = Op(1 — x(£)), where the cut-off x(£) is defined in (2.16)).
We also define the Fourier multiplier (D)™, m € R\ {0}, as

(D)™ :=mo + D™ := Op ((1 = x(€)) + x(OIE™). € €R. (2.34)

We now recall the pseudo-differential norm introduced in Definition 2.11 in [21] (inspired by Métivier [50],
chapter 5), which controls the regularity in (¢, z), and the decay in £, of the symbol a(y, z, &) € S™, together
with its derivatives Gga € S™8 0 < B < a, in the Sobolev norm || [|;.

Definition 2.9. (Weighted Y DO norm) Let A(\) := a(A\, p,2,D) € OPS™ be a family of pseudo-
differential operators with symbol a(\, ¢, x,&) € S™, m € R, which are ko times differentiable with respect to
A€ Ay CRYL Fory € (0,1), a €N, s >0, we define the weighted norm

JAlR 2o = > ™ sup |0FAN) [n,s o (2.35)
" ‘k‘gko AEAQ
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where

— &) . —m+f
AW sca = s sup [97a( 5Ol (6) . (2.36)

For a matriz of pseudo differential operators A € OPS™ as in (2.30)), we define its pseudo differential norm

|A|ﬁ(z):g,a = iIIllaX4 |Ai|frg,’;:a .
=1,...,

For each kg, ~, m fixed, the norm ({2.35) is non-decreasing both in s and «, namely

Vs<sia<a, |Imla<|lwda [Ide <1l (2.37)

m,s,o0 — m,s’,a? m,s,o0 — m,s,a’
and it is non-increasing in m, i.e.

Vm<m', | e <1 e (2.38)

m’,s,a — m,s,x

Given a function a(\, ¢, ) that is C* in (¢, z) and ko times differentiable in A, the “weighted ¥DO norm”
of the corresponding multiplication operator Op (a) is

ko, . _ 5
10p (@)l5%% = D> A* sup [95a(M)ls = lallweo. e ag o) ~ho lallf?,  Va €N, (2.39)
lk|<ko ~ ~Eho

see . For a Fourier multiplier g(A, D) with symbol g € S™, we simply have

10D(9) 1570 = 10P(9) |5 < Clm,a,g,ko), Vs = 0. (2.40)

m,s,q m,0,a

Given a symbol a(\, ¢, z,£) € 8™, we define its averages

1 1
<a>80()‘a €, 5) = W /I[‘V a<)‘7 ¥, T, 5) d(p ) <a>$0,w()‘a 6) = W /’]I‘u+1 CL()\, @Y, T, f) d(p dx .
One has that (a),, and (a), , are symbols in S™ that satisfy

I0p((@)p)I 70 S 10P(a)570, 0D((@)g.0) 1220 S 10P(@)] 50, Vs > 0. (2.41)

m,s,o ~ m,s,o? m,s,a ~ m,0,c

The norm | |o,s,0 controls the action of a pseudo-differential operator on the Sobolev spaces H®, see Lemma

The norm | |F0:7  is closed under composition and satisfies tame estimates.

Composition. If A = a(z,D) € OPS™, B = b(z,D) € OPS™ then the composition operator AB :=

Ao B = oap(x,D) is a pseudo-differential operator in OPS™™ whose symbol o5 has the following
asymptotic expansion: for all N > 1,

oaB(z,§) = Z Tﬁlaﬁ 2,6) 00b(x,&) +rn(w,6)  where 1y i=ryap €SN, (2.42)

and the remainder 5 has the explicit formula

1

N(x, &) ==1NaB(7,§) = NV =

1)/ (1= )N SO a) (@, € + 7)) OVD) ()= dr . (2.43)

JEL
We remind the following composition estimate proved in Lemma 2.13 in [21].

Lemma 2.10. (Composition) Let A = a(), @, T, D), B = b(\,p,x,D) be pseudo-differential operators
with symbols a(\, p,x,€) € S™, b(A, ¢, x,€) € S™, m,m' € R. Then A()) o B(\) € OPS™ ™" satisfies, for
all € N, s > sq,

|ABI D 0 S C()I AL 2ol Bl o T Clso)| Al

mAm/ 5,0 ~Sm,ako mos,al Bl so+at|ml, myso,c

| B|Fo,7 . (2.44)

m/,s+a+|m|,a
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Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (2.42) satisfies

ko, ko,
||RN||77$-§:YM/—N,S,(X vaNaakaC(S)|A|7r?,;N+a||B|m/ 30+2N+|m‘+a «

ko, k
+ C(50)| Al sy N+al Bl s von 1 jm+aa

(2.45)

Both (2.44)-(2.45) hold with the constant C(sg) interchanged with C(s).
Analogous estimates hold if A and B are matriz operators of the form (2.30)).

For a Fourier multiplier (X, D) with symbol g € S™ we have the simpler estimate

ko, s ko, R
| A0 g(D)|,,3, o [ALS 2l OP(9) b o0 Shoscrm [ALS T - (2.46)

m+m/,s,a Nk07 m,s,a

By (2.42) the commutator between two pseudo-differential operators A = a(x,D) € OPS™ and B =
b(z,D) € OPS™ is a pseudo-differential operator [A, B] € OPS™+m =1 with symbol a * b, namely

[A,B] = Op(a D). (2.47)
By the symbol a xb € Smtm' =1 admits the expansion
a*b=—i{a,b} + ra(a,b) where {a,b} := 0:a 0yb — Dya 0cb € gmAm =1 (2.48)
is the Poisson bracket between a(x, &) and b(z, ), and
ro(a,b) :=ro ap —ropa € gmAm =2, (2.49)

By Lemma we deduce the following corollary.

Lemma 2.11. (Commutator) If A = a(), ¢, z, D) € OPS™ and B = b(\, ¢, , D) € OPS™ , m,m’ € R,
then the commutator [A, B] := AB — BA € OPS™ ™ ~1 satisfies

ko, ko, ko,
”A’ B”n?Jr’Ym’ 1,s,a S_,m m’ o ko (S)|A|7rg,g+2+\m’|+a a+1||B|17? 1o+2+|m|+o¢ a+1 (2 50)
ko, :
+ C(SO)||A‘|nS,;)+2+|m’|+a at1lB |m 5+2+ m|+a a1
Proof. Use the expansion in ) with V =1 for both AB and BA, then use ) and - O

Given two linear operators A and B, we define inductively the operators AdZ(B ), n € N in the following
way: Ada(B):=[A, B] and Ad"y™(B) := [A, Ad"y(B)], n € N. Tterating the estimate (2.50)), one deduces

ko, ko, ko,
AQS (B s Smmamtsia (AL o P IBE s oyt (251)
ko, 1 k
+ (|A|ng,;y0+cn(m,m/,oz),a+n)n "A“n;),g—o—cn(m,m’,a),a—&-nuB”m ,80+cn (m,m’,a),a+n

for suitable constants c,(m,m’, ) > 0.

We remind the following estimate for the adjoint operator proved in Lemma 2.16 in [21].

Lemma 2.12. (Adjoint) Let A = a(\, ¢, x, D) be a pseudo-differential operator with symbol a(\, ¢, xz, &) €
S™ m € R. Then the L?-adjoint A* € OPS™ satisfies

ko, ko,
“A*lnf: :JO ~m |A|7r(z],g+so+|m|,0 :

The same estimate holds if A is a matriz operator of the form ([2.30).

Finally we report a lemma about inverse of pseudo-differential operators.

23



Lemma 2.13. (Invertibility) Let ® := Id+ A where A := Op(a(\, ¢, x,£)) € OPSY. There exist constants
C(s0,a, ko), C(s,a, ko) > 1, s > sg, such that, if

C(s0, a, l<:0)|A|O ot < 1/2, (2.52)
then, for all \, the operator ® is invertible, ®~!' € OPS° and, for all s > s,

71— LI, < Clsy e ko) [ oo (2.53)

0,5,

The same estimate holds for a matriz operator ® = Iy + A where Iy = (Igl I(()i> and A has the form (2.30]).

Proof. By a Neumann series argument. See Lemma 2.17 in [21]. O

2.4 Integral operators and Hilbert transform

In this section we consider integral operators with a C* kernel, which are the operators in OPS™>°. As in
the previous section, they are ko times differentiable with respect to A := (w,h) in an open set Ay C R’”‘l

Lemma 2.14. Let K := K(\,-) € C>°(T” x T x T). Then the integral operator

(Ru)(p, ) == / K\ g, z,y)u(e,y) dy (2.54)

ko,
Cs+ma-

is in OPS™ and, for all m,s,a € N, [R|*7 . < C(m,s,a,ko)|K

m,s,x

Proof. See Lemma 2.32 in [21]. O

An integral operator transforms into another integral operator under a change of variables

Pu(p,x) :=u(p,z + p(p,x)) . (2.55)
Lemma 2.15. Let K(\,-) € C°(T” x T x T) and p(A,-) € C"O('H‘” x T,R). There exists § := §(so, ko) > 0
such that if ||p||2g;1k0+1 < ¢, then the integral operator R in (2.54) transforms into the integral operator
(PT'RP)u(p,x) = [z K\ ¢z, y)u(p,y) dy with a C* kernel

9

K\ z,2) = (1+ 0.0\ 0, 2)) K\, 0,2+ q(N, 9, 2), 2 + a(N, ¢, 2)),
where z — z + q(\, @, ) is the inverse diffeomorphism of x — x + p(\, p,x). The function K satisfies

i1k Ko, ko, ko,
KNS < Cls ko) (KNSR, + PSR I s kg s) s = 50

Proof. See Lemma 2.34 in [21]. O

We now recall some properties of the Hilbert transform H defined as a Fourier multiplier in (2.32)). The
commutator between H and the multiplication operator by a smooth function a is a regularizing operator
in OPS™°, as stated in Lemma 2.35 in [2I] (see also Lemma B.5 in [6], Appendices H and I in [42]).

Lemma 2.16. Let a(A,-,-) € C°(TY x T,R). Then the commutator [a, H] is in OPS™° and satisfies, for
all m, s, € N, i N
lla, HI| =50 < Clms s, ko) llall g, i1maa -

—m,s,a —

We also report the following classical lemma, see e.g. Lemma 2.36 in [2I] and Lemma B.5 in [6] (and
Appendices H and I in [42] for similar statements).
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Lemma 2.17. Let p = p(\,-) be in C>°(T**) and P := P(),-) be the associated change of variable defined
in (2.55). There exists d(so, ko) > 0 such that, if Hp||]2€251k0+1 < (80, ko), then the operator P"YHP —H is
an integral operator of the form

(PP = Hpulpa) = [ KO, 2)ulip.2)ds
where K = K(X,-) € C®(T" x T x T) is given by K(\, ¢, z,2) := —10.1og(1 + g(\, ¢, %, 2)) with

T — Z) Sin(%(Q(Aa 2 SC) - q(>‘7 2 Z)))
2 sin(3(z — 2))

where z — q(X, , 2z) is the inverse diffeomorphism of x — x4+ p(X\, p,x). The kernel K satisfies the estimate

<q(/\, P, x) —

. q(/\,%Z))

g\ @, 2, 2) := cos — 1+ cos <

(1527 < C s, ko) lpll<] Vs 2 s

é+ko+2 ’
We finally provide a simple estimate for the integral kernel of a family of Fourier multipliers in OP.S™°.

Lemma 2.18. Let g(\, ¢,€) be a family of Fourier multipliers with 0%g(\, ¢,-) € S~°, for all k € N¥T1,
|k| < ko. Then the operator Op(g) admits the integral representation

[Op(g)u] (¢, ) :AKg(A,w,x,y)U(w,y) dy, Ko\ e,2,y) = Zg eIy (2.56)

jEZ

and the kernel K, satisfies, for all s € N, the estimate

k ) ko, ko,
e S0P 4500 F 1OP(DZ 50100 - (2.57)

Proof. The lemma follows by differentiating the explicit expression of the integral Kernel K, in (2.56). O

2.5 Reversible, Even, Real operators

We introduce now some algebraic properties that have a key role in the proof.

Definition 2.19. (Even operator) A linear operator A := A(p) as in (2.23) is EVEN if each A(p), ¢ € T,
leaves invariant the space of functions even in x.

Since the Fourier coefficients of an even function satisfy u_; = u; for all j € Z, we have that
Aiseven <<= Al (p)+A;7 (p)=AL(p)+ AT (p), Vjj €Z, peT" (2.58)
Definition 2.20. (Reversibility) An operator R as in (2.21)) is
1. REVERSIBLE if R(—¢) o p=—poR(p) for all ¢ € T", where the involution p is defined in (L.11)),

2. REVERSIBILITY PRESERVING if R(—p) o p = poR(p) for all ¢ € T".

The composition of a reversible operator with a reversibility preserving operator is reversible. It turns
out that an operator R as in (2.21)) is

1. reversible if and only if ¢ — A(y), D(¢) are odd and ¢ — B(p), C(yp) are even,
2. reversibility preserving if and only if ¢ — A(yp), D(p) are even and ¢ — B(p), C(p) are odd.

We shall say that a linear operator of the form £ := w - d, + A(yp) is reversible, respectively even, if A(y)
is reversible, respectively even. Conjugating the linear operator £ := w - 0, + A(p) by a family of invertible
linear maps ®(¢) we get the transformed operator

L =0 (0)LB(p) =w- Dy + Ar(p),
Ap(p) =07 (@) (W 0,2(p)) + 271 (0) A(p)D(0) -

It results that the conjugation of an even and reversible operator with an operator ®(y) that is even and
reversibility preserving is even and reversible.
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Lemma 2.21. Let A := Op(a) be a pseudo-differential operator. Then the following holds:
1. If the symbol a satisfies a(—x,—&) = a(x, &), then A is even.

2. If A = Op(a) is even, then the pseudo-differential operator Op(a) with symbol

a(z,€) = %(a(m, €) +a(—z,-¢)) (2.59)

coincides with Op(a) on the subspace E = {u(—x) = u(x)} of the functions even in x, namely

Op(d)|E = Op(a)|E.
3. A is real, i.e. it maps real functions into real functions, if and only if the symbol a(x,—¢&) = a(x, §).

4. Let g(&) be a Fourier multiplier satisfying g(§) = g(=¢£). If A = Op(a) is even, then the operator
Op(a(z,£)g(€)) = Op(a)oOp(g) is an even operator. More generally, the composition of even operators
is an even operator.

We shall use the following remark.

Remark 2.22. By item [2| we can replace an even pseudo-differential operator Op(a) acting on the sub-
space of functions even in z, with the operator Op(a) where the symbol a(z,&) defined in (2.59)) satisfies
a(—xz, =) = a(z,€). The pseudo-differential norms of Op(a) and Op(a) are equivalent. Moreover, the space
average

- 1 [ . - -
@9 1= 3= [@dr  satisfies (@).(=) = (@),
and, therefore, the Fourier multiplier (a), (D) is even. O

C D
(n,1) € R?, as a linear operator acting on the complex variables (u, %) introduced by the linear change of

coordinates (n,v) = C(u, @), where
111 (1
oL e (), o0

We get that the real operator R acting in the complex coordinates (u, ) = C~1(n, ) takes the form

. . . A B . . .
It is convenient to consider a real operator R = < ) as in (2.21)), which acts on the real variables

R=C'RC:= @1 %) :
. 2 M . (2.61)
where the conjugate operator A is defined by
A(u) == A@). (2.62)

We say that a matrix operator acting on the complex variables (u, @) is REAL if it has the structure in
and it is EVEN if both Ry, Ro are even. The composition of two real (resp. even) operators is a real (resp.
even) operator.

The following properties of the conjugated operator hold:

1. AB=AB.

2. If (Ag:,) is the matrix of A, then the matrix entries of A are (Z);l = A:?l.

3. If A = Op(a(x,£)) is a pseudo-differential operator, then its conjugate is A = Op(a(z, —£)). The

pseudo differential norms of A and A are equal, namely [A[FoY = [A]Fo7 .
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In the complex coordinates (u, @) = C~*(n, ) the involution p defined in (1.11]) reads as the map u +— .
Lemma 2.23. Let R be a real operator as in (2.61]). One has
1. R is reversible if and only if Ri(—¢) = —Ri(p) for all o € TV, i = 1,2, or equivalently

’ ’

(R)] (—9) = =(R) T (p) Vo eT, e (R)](0)=—(Ri)7J () Veez. (2.63)

2. R is reversibility preserving if and only if Ri(—p) = Ri(p) for all o € T, i = 1,2, or equivalently

’

(R (—¢) = (R)] (p) VoeT, ie (R (0)=R)I(6) veer. (2.64)

2.6 DY-tame and modulo-tame operators

In this section we recall the notion and the main properties of D¥o-tame and modulo-tame operators that
will be used in the paper. For the proofs we refer to Section 2.2 of [21I] where this notion was introduced.

Let A := A(X) be a family of linear operators as in (2.23)), ko times differentiable with respect to A in an
open set Ag C R¥*+1,

Definition 2.24. (DF-g-tame) Let o > 0. A linear operator A := A(\) as in ([2.20) is D*0-o-tame if
there exists a non-decreasing function [sg, S] — [0, +00), s — M(s), possibly with S = +oo, such that for
all so < s< S, for allu € H**°

sup sup y*(|(OFAN)ulls < Malso)[ullsto +MMals)|wllsoro - (2.65)
|k|<ko AEAo

We say that M4 (s) is a TAME CONSTANT of the operator A. The constant Ma(s) == Ma(ko, 0, s) may also
depend on ko, o but, since ko, o are considered in this paper absolute constants, we shall often omit to write
them.

When the “loss of derivatives” o is zero, we simply write D -tame instead of D -0-tame.

For a real matriz operator (as in (2.61]))

(A Ay
A_<A2 A1>7 (2.66)

we denote the tame constant M 4(s) := max{Ma, (s), M a,(s)}.

Note that the tame constants 94 (s) are not uniquely determined. Moreover, if S < 400, every linear
operator A that is uniformly bounded in A (together with its derivatives Ble) as an operator from H*t°
to H*® is DFo-g-tame. The relevance of Definition is that, for the remainder operators which we shall
obtain along the reducibility of the linearized operator in Sections [6}{I4] we are able to prove bounds of the
tame constants M4 (s) better than the trivial operator norm.

Remark 2.25. In Sections [6{{14] we work with D*o-g-tame operators with a finite S < 400, whose tame

constants M4 (s) may depend also on S, for instance M4 (s) < C(S)(1 + ||30||]:3r;’), forall s <s<S. O

An immediate consequence of (2.65) (with k =0, s = so) is that [|Al|z(gsote meo) < 29Ma(s0).

Also note that representing the operator A by its matrix elements (A;I(é ) ¢ pren ien @ in (2:23)
we have, for all |k| < ko, j/ €Z, ¢ € 7",

72|k|24j<€’j>2s|8§‘4§,(€ . f’)|2 < 2(93?A(80))2<€’,j/>2(5+0) + Q(WA(S))2<€/’J~/>2(SO+U) . (2.67)

The class of D*o-g-tame operators is closed under composition.
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Lemma 2.26. (Composition) Let A, B be respectively D0 -0 4-tame and D*0 -0 g-tame operators with tame
constants respectively M4 (s) and Mp(s). Then the composition Ao B is D*0-(c4 + op)-tame with a tame
constant satisfying

Map(s) < Cko)(Ma(s)Mp(so+0a) +Malso)Mp(s+04)).
The same estimate holds if A, B are matrixz operators as in .
Proof. See Lemma 2.20 in [21]. O
We now discuss the action of a D*o-g-tame operator A(\) on a family of Sobolev functions u()\) € H*.

Lemma 2.27. (Action on H®) Let A := A()\) be a D*o-g-tame operator. Then, Vs > sq, for any family
of Sobolev functions u = uw(\) € HT7 which is ko times differentiable with respect to X, we have

AUl 27 Sk MMa(so) [ullsd + Mas)llull 57, -
The same estimate holds if A is a matrix operator as in .
Proof. See Lemma 2.22 in [21]. O
Pseudo-differential operators are tame operators. We shall use in particular the following lemma.
Lemma 2.28. Let A = a(\,¢,x,D) € OPS® be a family of pseudo-differential operators that are kg times
differentiable with respect to X. If |\A|\gos% < 400, 8 > 50, then A is Do -tame with a tame constant satisfying

Ma(s) < Cs) Al - (2.68)

As a consequence

1AR] 2 < C(s0, ko) | Al o[BI + C (s, ko) Al
The same statement holds if A is a matriz operator of the form (2.66]).
Proof. See Lemma 2.21 in [21] for the proof of (2.68]), then apply Lemma to deduce (2.69)). O

In view of the KAM reducibility scheme of Section we also consider the stronger notion of Dko-
modulo-tame operator, which we need only for operators with loss of derivatives o = 0.

Rk, (2.69)

S0

Definition 2.29. (D*°-modulo-tame) A linear operator A := A(\) as in ([2.20) is D*-modulo-tame if
there exists a non-decreasing function [sg, S] — [0, +00), s +— smﬁ,(s), such that for all k € NYT1 k| < ko, the
majorant operators |05 A| (Definition satisfy the following weighted tame estimates: for all sg < s < .S,
ue H?,

sup sup y/*1| [0 Alulls < D, (so)[lulls + I (5)||ulls, (2.70)
|k|<ko AEAo

The constant ‘.m'i,(s) is called a MODULO-TAME CONSTANT of the operator A.
For a matriz operator as in (2.66)) we denote the modulo tame constant E)JT?4 (s) = max{ﬁ)ﬂ%l (s), 9)??42 (s)}-

If A, B are D¥-modulo-tame operators, with |A§:/ )| < |B§/(€)|, then 9)??4(5) < Em%(s)

Lemma 2.30. An operator A that is D¥o-modulo-tame is also D*0-tame and M4(s) < Sﬁﬁ‘(s). The same
holds if A is a matriz operator as in (2.66]).

Proof. See Lemma 2.24 in [21]. O

The class of operators which are D*o-modulo-tame is closed under sum and composition.

28



Lemma 2.31. (Sum and composition) Let A, B be D*-modulo-tame operators with modulo-tame con-
stants respectively 9)?{14(5) and imﬁB(s). Then A+ B is D*o-modulo-tame with a modulo-tame constant satis-

fying
My (5) < Oy () + M (s) - (2.71)

The composed operator A o B is D -modulo-tame with a modulo-tame constant satisfying
My 5 (5) < C (ko) (0¥ (5) M (s0) + Dy (50) My (5)) - (2.72)

Assume in addition that (Oy +)°A, (0p )" B (see Deﬁnition are D*-modulo-tame with a modulo-tame
constant respectively sm'ja ”>bA(s) and im%a ”>bB(s). Then (0y.)*(AB) is D* -modulo-tame with a modulo-
tame constant satisfying '

m%a%I)b(AB)(s) < C’(b)C(ko)(m%a%x>bA(s)9)TﬁB(so) + m%a%m>b,4(50)mﬁ3(s)

(2.73)
O ()M, (s0) + M (50)E, ()

for some constants C(ko), C(b) > 1. The same statement holds if A and B are matriz operators as in (2.66]).

Proof. The estimates (2.71), (2.72)) are proved in Lemma 2.25 of [2I]. The bound (2.73) is proved as the
estimate (2.76) of Lemma 2.25 in [21], replacing (9,)° (cf. Definition 2.3 in [21]) with (9, .)®. O

Tterating (2.72)-(2.73)), one estimates imﬁamw (s), and arguing as in Lemma 2.26 of [21] we deduce the
following lemma.

Lemma 2.32. (Invertibility) Let ® := Id + A, where A and (D, )°A are D*-modulo-tame. Assume the
smallness condition
4C () C (ko) (s0) < 1/2. (2.74)

Then the operator @ is invertible, A :== &1 — Id is D -modulo-tame, as well as (8%%)[’/1, and they admit
modulo-tame constants satisfying

M (s) < 2000 (s) zmi‘aw)b A(8) < m’g%x)m(s) + 8C(b)C’(k0)9ﬁ§aw>bA(so) M, (s) .

The same statement holds if A is a matrixz operator of the form (2.66)).

Corollary 2.33. Let m € R, ® :=1d + A where (D)™ A(D)™™ and (0, ,)*(D)™A(D)~™ are D*-modulo-
tame. Assume the smallness condition

AC(0)C ()M, 1y 4y (50) < 1/2. (2.75)

Let A := &~ —1d. Then the operators (D)™ A(D)™™ and (3, ,)*(D)™A(D)~™ are D*o-modulo-tame and
they admit modulo-tame constants satisfying

i
E):n<D>"U4(D>""

# f f i
M0 0 (Dym Agpy—m (8) S2Ma_yo(pym = (8)+H8COICHR)Min_ oy a(py = (80) My = (5) -
The same statement holds if A is a matriz operator of the form (2.66]).

Proof. Let us write ®,,, := (D)™ ®(D)™™ = Id + A, with A, 1= (D)™A(D)~™. The corollary follows by
Lemma since the smallness condition (2.75)) is (2.74) with A = A,,, and ®_.! = Id+ (D)™ A(D)~™. O

Lemma 2.34. (Smoothing) Suppose that (9, ,)°A, b > 0, is D*-modulo-tame. Then the operator 5 A
(see Definition is D*-modulo-tame with a modulo-tame constant satisfying

mﬂ

I A (s) < My (s). (2.76)

—bay i
(s) <N bm(%,x)bA(S)’ mHﬁA

The same estimate holds when A is a matriz operator of the form ([2.66)).
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Proof. As in Lemma 2.27 in [21], replacing (9,)® (cf. Definition 2.3 in [2I]) with (9, 4)®. O

In order to verify that an operator is modulo-tame, we shall use the following Lemma. Notice that the
right hand side of (2.77) below contains tame constants (not modulo-tame) of operators which control more
space and time derivatives than (9, ,)®(D)™A(D)™.

Lemma 2.35. Let b,m > 0. Then
i)ﬁ%a%w(mmA(D) ( ) Ssob Dﬁ Dym+b A(Dym+bt1 (S) + 1:1111,ax,1/ {93?8;%+b<D>m+bA<D>m+b+1 (S)} . (277)

Proof. We denote by M(s,b) the right hand side in For any o, € N, the matrix elements of the
operator 0%, (D)P A(D)P+1 are i (£; — £)*(j )ﬂAj (£— 6’)( )ﬁ“ Then, by (2.67) with o = 0, applied to the
operators (D)™*?A(D)™ >+ and 9507 (D)™ P A(D)™ T+ we get, using the mequahty (0 — )2 s04D) <
U [0 — £;]2(0F?) the bound

2\k|z (t,5) 25 (0 - £/> (so+b)<j>2(m+b)|al;A;/(€7£/)|2<j/>2(m+b+1)

Se M (50, D)€', 4")* + M2 (s, b)(C', j')>* . (2.78)

1+ max;—1,

.....

For all |k| < ko, by Cauchy-Schwarz inequality and using that
(=05 —=3")° So (=) =5 So (€= )°((G)° + (1)°) Se (€= ) ()°()° (2.79)
we get
2
11(0,2)> (D)™ O A(D)™ [h]|2 S ZM%J?% (Ze (€= 0P GYTROE AT (€ — 0) () b, /|)
1 2

< -\ 258 __ pI\So+b m-+b kAj / m-+b+1

S 2, 600, (= G IORAT (€= O™ b )

Suow Y0, (DY, (= €)X G 9T (0= )P (D g

Suow Yoy e B3, (51250 — €7 R0 gE AT (¢ — )R 2m o+

VY e P (M (0, D)€, ) + M2 (s, 0)(C, 7))

Ssow V(M (s0, D) | A2 + M2 (s, B)|[AI3, ) (2.80)
using , whence the claimed statement follows. O
Lemma 2.36. Let my be the projector defined in (2.33)) by mou := fT x)dz. Let A, B be @-dependent

families of operators as in ) that, together with thezr adjomts A*, B* wzth respect to the L2 scalar product,
are DFo-g-tame. Let mq, mo 2 0 Bo € N. Then for any 8 € N, |B| < Bo, the operator (D >m1 (85(A7TOB -

7T0))<D>m2 is DFo-tame with a tame constant satisfying, for all s > s,
m<D>m1(6£(A7roB—7ro))<D>m2 (s) Sﬂn,sﬁoyko Ma—14(s + Bo +m1) (1 + Mp-_1a(s0 + mz)) (2.81)
+ Mp-_1a(s + Bo + ma) (1 + Ma—1a(so +m1)).

The same estimate holds if A, B are matriz operators of the form (2.66|) and my is replaced by the matriz
operator Iy defined in ((10.2)).

Proof. A direct calculation shows that (D)™ (AmoB —m)(D)™2[h] = g1(h, g2)r2 + (h, g3) > Where g1, g2, g3
are the functions defined by

1 * 1 m *
gr= o (D)™ (A-IA], g2 = (D)™ B*[l],  g5:= 5 (D)™ (B" ~1d)[1].
us 2r
The estimate (2.81)) then follows by computing for any 8 € N, k € N*! with |3| < Bo, |k| < ko, the
operator 9597 ((D)™ (AmoB — mo)(D)™?). O
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2.7 Tame estimates for the flow of pseudo-PDEs

We report in this section several results concerning tame estimates for the flow ®” of the pseudo-PDE

GRS D|z
{ u =ia(p, )| D]>u 0eT’, z€T, (2.82)

u(O,Qj) - UO(QO,I) )

where a(p,z) = a(\, ¢, z) is a real valued function that is C> with respect to the variables (¢, z) and ko
times differentiable with respect to the parameters A = (w,h). The function a := a(¢) may depend also on
the “approximate” torus i(¢). Most of these results have been obtained in the Appendix of [21].

The flow operator @7 := &(7) := ®(\, ¢, 7) satisfies the equation

0-(r) = ia(ep, )| D|? &(r)
{@(0) —1d. =5

Since the function a(yp, ) is real valued, usual energy estimates imply that the flow ®(7) is a bounded
operator mapping H: to H. In the Appendix of [2I] it is proved that the flow ®(7) satisfies also tame
estimates in HZ ., see Proposition below. Moreover, since (2.82)) is an autonomous equation, its flow
®(p, ) satisfies the group property

Q(p, 11 +12) = P(p,11) 0 P(p,T2), (e, T)_l = Q(p,—7), (2.84)

and, since a(},-) is ko times differentiable with respect to the parameter A, then ®(\,¢,7) is ko times
differentiable with respect to A as well. Also notice that ®~!(7) = ®(—7) = ®(7), because these operators
solve the same Cauchy problem. Moreover, if a(p,x) is odd(yp)even(x), then, recalling Section the real

operator
_ (®lp7) 0
)= ( 0 2p7)
is even and reversibility preserving.
11+ 1k]

The operator 8’/{8@@ loses | D, |2  derivatives, which, in (2.86)) below, are compensated by (D)~™! on

(
the left hand side and (D)~™2 on the right hand side, with my, mo € R satisfying my + mg = "B‘;r'kl. The
following proposition provides tame estimates in the Sobolev spaces H .

Proposition 2.37. Let By, ko € N. For any 8,k € N” with |3| < Bo, k| < ko, for any mi,m2 € R with
my +mg = M, for any s > sg, there exist constants o(|8], |k|, m1, m2) > 0, 6(s,m1) > 0 such that if

ko,y <
so+o(Bo,ko,m1,m2) — 1

lall2so+imj+2 < (s,ma),  laf 7 (2.85)

then the flow ®(7) := ®(\, ¢, 7) of (2.82) satisfies

—m -m - ko,
Sup ||<D> 18§a£¢(T)<D> 2hHS SJSvBO:kD;mhmZ Y Ikl (”h”S + ”aHsiZ(\ﬁ\,\k\,ml,mz)”hHsO) (286)

T€[0,1]
— ko,
s%pl] 105 (2(7) = Td)h|s So v " (Ilall’jg’”\lhllswgl +allsy s gz 1Rl gy n) (2.87)
T7€|0,

Proof. The proof is similar to Propositions A.7, A.10 and A.11 in [2I] with, in addition, the presence of
(D)~™1 and (D)~™2 in ([2.86). O

We consider also the dependence of the flow ® with respect to the torus i := i(¢) and the estimates for
the adjoint operator ®*.

Lemma 2.38. Let s1 > so, fo € N. For any § € N, |8 < Bo, for any m1,ma € R satisfying mq + ma =

WTH there exists a constant o(|f]) = o(|B8],m1,m2) > 0 such that if ||al|s, +5(8,) < 0(s) with d(s) > 0 small
enough, then the following estimate holds:
P (D)™™ 0] A12@(r){D)""Rlls, Ser 1A120]l s, 1081 I, - (2.88)
T€|0,
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where A12® 1= ®(iy) — ®(i1) and Aiza = a(iz) — a(iy). Moreover, for any k € N**1 |k| < ko, for all
s§2 505

B3Rl <o v~ (IRl 1 + Nl L pyea 1B

s+so+|k|+3 sﬁ%)
105(®* = 1)y So v~ ([lafl o

ko,
Bl sz + 10552 ol sg22)

Finally, for all s € [sg, $1],
81297 Rls Ss [[Ar2allsygorzl1Pllsys -

Proof. The proof is similar to Propositions A.13, A.14, A.17 and A.18 of [21]. O

3 Degenerate KAM theory

In this section we extend the degenerate KAM theory approach of [I1] and [21].

Definition 3.1. A function f := (f1,..., fn) : [h1,ha] — RY is called non-degenerate if, for any vector
c:= (c1,...,cn) € RN\ {0}, the function f-c = fic1 + ...+ fxen is not identically zero on the whole
interval [hy,hs].

From a geometric point of view, f non-degenerate means that the image of the curve f([hy,hs]) C RY
is not contained in any hyperplane of RY. For such a reason a curve f which satisfies the non-degeneracy
property of Definition is also referred to as an essentially non-planar curve, or a curve with full torsion.
Given ST € N* we denote the unperturbed tangential and normal frequency vectors by

O(0) = (wim)jest ,  b) = (YD) enngr = (wjh)jenrst (3.1)

where w;(h) = y/j tanh(hj) are defined in (L.19).

Lemma 3.2. (Non-degeneracy) The frequency vectors @(h) € R, (&d(h),1) € R*! and
(@), Q(0) R, (@(h),Q;(h), 2y (h)) € RF?, W), 5" e NFAST, j # ),

are non-degenerate.

Proof. We first prove that for any N, for any wj, (h),...,w;, (k) with 1 < j; < jo < ... < jn the function
[h1,ho] 3 h+— (wj, (h),...,w;y(h)) € RY is non-degenerate according to Definition namely that, for all
c € RN\ {0}, the function h — cjwj, (h) + ... + cywjy (h) is not identically zero on the interval [hy,hy]. We
shall prove, equivalently, that the function

h+— C1Wy, (h4) + ...+ CNWjn (h4)
is not identically zero on the interval [hf, hi]. The advantage of replacing h with h* is that each function
h — w;(h?) = \/j tanh(h%j)

is analytic also in a neighborhood of h = 0, unlike the function w;(h) = y/j tanh(hy). Clearly, the function
g1(h) := y/tanh(h?) is analytic in a neighborhood of any h € R\ {0}, because g; is the composition of
analytic functions. Let us prove that it has an analytic continuation at h = 0. The Taylor series at z = 0 of
the hyperbolic tangent has the form

tanh(z ZT 22l — 5 ——i——z +.
= 3 15

and it is convergent for |z| < 7/2 (the poles of tanh z closest to z = 0 are +ir/2). Then the power series
12

tanh(z ZT24(2"+1) (1+ZT2 )—z —%—l-ﬁzgo—i— ..
n>1
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is convergent in |2| < (7/2)}/%. Moreover |, -, T,,2%"| < 1 in a ball |z| < §, for some positive § sufficiently

small. As a consequence, also the real function

h8n+2 th

12 I
h) := wq(h?Y) = h(h?) = h%(1 T, 1" = = n?- ... 2
o) = 0) = b ) =3 (10 1) = Db 5 (32

is analytic in the ball |z| < 6. Thus g¢; is analytic on the whole real axis. The Taylor coefficients b,, are
computable. We expand in Taylor series at h = 0 also each function, for j > 1,

h8n+2
(8n+2)17

“+o0
9;(8) := w;(b*) = \/jy/tanh(b¥)) = \/5 g1 (/*n) = bt

n=0

(3.3)

which is analytic on the whole R, similarly as ¢;.

Now fix N integers 1 < j; < jo < ... < jn. We prove that for all ¢ € RV \ {0}, the analytic function
c19;,(h) + ... + cngjy (R) is not identically zero. Suppose, by contradiction, that there exists ¢ € RV \ {0}
such that

c1g9j;(h) +...+cngjy(m) =0 VheR. (3.4)
The real analytic function ¢; (k) defined in (3.2) is not a polynomial (to see this, observe its limit as h — 00).
Hence there exist N Taylor coefficients b, # 0 of g1, say bn,,...,bn, With n; < ng < ... < ny. We

differentiate with respect to h the identity in (3.4) and we find

(D" g; ) (m) + .4 en (DY g ) () = 0
e (DE g, V) + ..+ en (DE™ g, ) () = 0

(D™ g ) (0) + ..+ en (DY g, ) () = 0.

D) (D
Ay | O 0)0) e (D)) (35)
(Dﬁsnﬁé)gjl)(h) - (Dr(xgnﬁé)gm) (b)

is singular for all h € R, and so the analytic function
det A(h) =0 VheR (3.6)

is identically zero. In particular at h = 0 we have det. A(0) = 0. On the other hand, by (3.3) and the
multi-linearity of the determinant we compute

-2n1+1 -2n1+1 2n1+1 2n1+1
s SRR/ O Bt 7 i
:2no+ :2no+ :2no+ :2n2+
naJ1 : bnz]N2 Vi 2 JN2
det A(0) := det ] } =bp, ... bpy det
2nny+1 2ny+1 2ny+1 2ny+1
bnndi™™ coo b dn™ Vinkt N

This is a generalized Vandermonde determinant. We use the following result.

Lemma 3.3. Let x1,...,xN,Q1,...,an be real numbers, with0 < x1 < ...<xy anday < ... < ay. Then
it ol
det | . >0.
e N
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Proof. The lemma is proved in [57]. O

Since 1 < j; < jo < ... < jn and the exponents a; := 2n; + 1 are increasing o; < ... < ap, Lemma
implies that det.A(0) # 0 (recall that by, ,...,b,, # 0). This is a contradiction with (3.6).

In order to conclude the proof of Lemma 3.2 we have to prove that, for any N, for any 1 < j; < jo < ... <
Jjn, the function [hy,ha] 3 h — (1,wj, (h),...,wj, (h)) € RN is non-degenerate according to Definition
namely that, for all ¢ = (co,c1,...,cn) € RVTL\ {0}, the function h — co + ciw;, (B) + ... + enwjy (B)
is not identically zero on the interval [hy,hs]. We shall prove, equivalently, that the real analytic function
h — co + ciwj, (h*) + ... + eywjy (h?) is not identically zero on R.

Suppose, by contradiction, that there exists ¢ = (cg,c1,...,cn) € RVTI\ {0} such that

co + C19j, (h) + ...+ CNGjn (h) =0 VheR. (37)

As above, we differentiate with respect to h the identity (3.7), and we find that the (N +1) x (N + 1)-matrix

N
B®f>g<m :wmm:7<m :%mw .
0 (DE™ g m) ... (D, ) (h)

is singular for all h € R, and so the analytic function det B(h) = 0 for all h € R. By expanding the
determinant of the matrix in (3.8)) along the first column by Laplace we get det B(h) = det . A(h), where the
matrix A(h) is defined in (3.5)). We have already proved that det . A(0) # 0, and this gives a contradiction. [

In the next proposition we deduce the quantitative bounds (3.9))-(3.12)) from the qualitative non-degeneracy
condition of Lemma the analyticity of the linear frequencies w; in (L.19)), and their asymptotics (1.24).

Proposition 3.4. (Transversality) There exist ki € N, pg > 0 such that, for any h € [hy, hs],

max 05 {3 () - £} > po(l), Ve eZ”\{0}, (3.9)

max O {S() - €4+ Q; ()} = po(l), VEe€ZV, jeNT\SH, (3.10)

ma |08 (3(0) €+ 95 (8) — (W)} > poll), V€ T\ {0}, 5 i €NF\ST, (3.11)
max Op{@() - £+ Q(h) + Qy ()} > po(l), W eZ', jj e NT\St (3.12)

where &(h) and Q;(h) are defined in (3.1). We recall the notation (£) := max{1, |{|}. We call (following
[58]) po the “amount of non-degeneracy” and ki the “index of non-degeneracy”.

Note that in (3.11]) we exclude the index ¢ = 0. In this case we directly have that, for all h € [hy, h)

.
1, (h) — Qs ()| > e1|V/G — Vil = cluiﬂ,/ V4,5 € NT, where ¢ := y/tanh(h;) . (3.13)
Vi+ Vi
Proof. All the inequalities (3.9)-(3.12|) are proved by contradiction.
PrOOF OF (3.9). Suppose that for all k € N, for all pg > 0 there exist £ € Z” \ {0}, h € [hy,hs] such
that maxy<xs |05 {&(h) - £}| < po(f). This implies that for all m € N, taking kj = m, po = there exist

1
1+m?
ly, € 2V \ {0}, hyy, € [hy,ho] such that

1
kg )
%aéc\@h {G(hm) -} < 1+m<€m>
and therefore / 1
k > k k= hm . m _ .14
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The sequences (hy, )men C [h1,ho] and (£, /{(€m))men C R \ {0} are bounded. By compactness there exists
a sequence my, — +oo such that h,,, — h € [hy,ha], &, /(€m, ) — € # 0. Passing to the limit in ) for
m,, — +oo we deduce that OF@(h) - ¢ = 0 for all k € N. We conclude that the analytic function h +— w(h) c
is identically zero. Since ¢ # 0, this is in contradiction with Lemma

PROOF OF (3.10). First of all note that for all h € [hy, hs], we have |&(h) - £+€;(h)| > Q;(h) —|&(h)-£] >
c1jt? — Cle| > [e] if /% > Cpl¢| for some Cy > 0. Therefore in we can restrict to the indices
(¢,7) € Z" x (N1 \ S) satisfying

j7 < Colt|. (3.15)
Arguing by contradiction (as for proving ), we suppose that for all m € N there exist ¢,, € ZY,
Jm € NT\'ST and h,,, € [hy,h], such that

o) - s Ly

im Gy ) L+m
and therefore ' Q () )
— m Im hm
VkeN, VYm>k, h{w(hm)-w o+ J<€ > }‘ e (3.16)

Since the sequences (hy,)men C [hi1,ho] and (€n,/{€m))men € RY are bounded, there exists a sequence
m,, — +oo such that

b zeme. (3.17)

B )

—>1_1€ [hl,hg],

n

We now distinguish two cases. -

Case 1: (L) C Z" is bounded. In this case, up to a subsequence, £,,,, — ¢ € Z", and since |j,,,| < C|ép,
for all m (see (3.15)), we have j,,, — 7. Passing to the limit for m,, — +o0 in (3.16]) we deduce, by (3.17
that

{om) c+0
Therefore the analytic function h — &(h) - ¢ + (ﬁ}
contradiction with Lemma

Case 2: (Ly,,) is unbounded. Up to a subsequence, |¢,,, | — +00. In this case the constant ¢ in (3.17) is
nonzero. Moreover, by (3.15]), we also have that, up to a subsequence,

(@O =0, VkeN.

1QJ—(h) is identically zero. Since (¢, (£)~1) # 0 this is in

GE )T S deR. (3.18)

By (T.24), (.17), (3.18), we get

Qo () G tGm b)) o B G B,
mo ] I Tma s Bme) g g e ) gk TImasZme) g > 3.19
o) Uy T (o) Ny T (3.19)

as my — 4oc. Passing to the limit in (3.16), by (3.19), (3.17) we deduce that F{G(h) - ¢+ d} = 0, for all
k € N. Therefore the analytic function h — &(h) - ¢+ d = 0 is identically zero. Since (¢,d) # 0 this is in
contradiction with Lemma

PrOOF OF (3.11)). For all h € [hy,hs], by (3.13) and (1.19), we have
- - 1 g1
|&(0) - £+ €;(h) — Q5 (0)] > [9Q;(h) — Qi (B)] — [SM[E] > er]sz - §"2] = Cle] > (€)
provided |jz — j/2| > Cy(¢), for some Cy > 0. Therefore in (3.11)) we can restrict to the indices such that

% — 55| < C1(e) . (3.20)

Moreover in (3.11)) we can also assume that j # j', otherwise (3.11)) reduces to (3.9]), which is already proved.
If, by contradiction, (3.11)) is false, we deduce, arguing as in the previous cases, that, for all m € N, there

exist £, € ZY \ {0}, Jm, jh, € NV\ST, jo # jl., by € [h1,ho, such that

VkeN, Vm>k,

h{(D(hm)' <£m + i (Bm) Qj;n(hm)}‘ _ 1

B 1+m’

oy T Tl () (3.21)
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As in the previous cases, since the sequences (hy,)men, (bm/{€m))men are bounded, there exists m,, — +oo
such that
hy, = h € [h,ha], Ly, /(nm, ) — € R\ {0}. (3.22)

We distinguish again two cases.
Case 1 : () is unbounded. Using (3.20]) we deduce that, up to a subsequence,

1 gL . _
g = Jmt [{€m) ™ — d €R. (3.23)

Hence passing to the limit in (3.21)) for m,, — +o0o, we deduce by (3.22)), (3.23)), (1.24) that

of{&(m)-¢+dy=0 VkeN.

Therefore the analytic function h — &(h) - ¢ + d is identically zero. This in contradiction with Lemma
Case 2 : (Up,,)) is bounded. By (3.20), we have that |v/jm —/45,] < C and so, up to a subsequence, only
the following two subcases are possible:

(i) jmsjm < C. Up to a subsequence, jm, — J, ji. — 7 tm, — € # 0 and h,,, — h. Hence passing to
the limit in (3.21)) we deduce that

a}’f{a(ﬁ).m ;Qﬂ(h)} —0 VkeN.

Hence the analytic function h — d(h) - ¢ + (Q5(h) — Q7 (1_1))<57>_1 is identically zero, which is a contra-
diction with Lemma

(#2) Jm,Jm — +00. By (3.23]) and ([1.24), we deduce, passing to the limit in (3.21]), that
op{dm)-e+d} =0 VkeN.
Hence the analytic function h ~ &(h) - €+ d is identically zero, which contradicts Lemma

PRrROOF OF (3.12). The proof is similar to (3.10). First of all note that for all h € [hy,hs], we have
|B(h) - €+ (k) + Qs (0)] = 25(h) + Qyr(0) — B(k) - €] = e1/G+ /5 = Cle] = [¢]

if v+ 7 > Coll| for some Cy > 0. Therefore in (3.10) we can restrict the analysis to the indices
(¢,7,5") € Z" x (Nt \ S*)? satisfying

Vi+Vi < Colt]. (3.24)
Arguing by contradiction as above, we suppose that for all m € N there exist ¢,,, € Z", j,, € NT\ ST and
h,, € [hy,hs] such that

Em Qjm (hm) Qﬂn (hm) }‘ 1
() () ) L+m’

Since the sequences (hy,)men C [h1,ha] and (€, /(€m))men € R are bounded, there exist m,, — 400 such
that

VEEN, Vm>k,

o {@tn) - (8.25)

hmn—>f1€[h1,h2], <€ >

—ceR”. (3.26)

We now distinguish two cases.

Case 1: (by,) C Z" is bounded. Up to a subsequence, £, — { € Z", and since, by , also
Jms Jm < C for all m, we have j,,, — 7, j,,. — J. Passing to the limit for m,, — +oc0 in we deduce,
by (3.26)), that

OF{@B(h) e+ Q)0 + Q)0 =0 VkeN.
Therefore the analytic function h — &(h) - ¢ + <l7>71
contradiction with Lemma

Q;(h) + (£)~1Qy(h) is identically zero. This is in
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Case 2: (Ly,,) is unbounded. Up to a subsequence, |¢,,, | — +00. In this case the constant ¢ in (3.26) is
nonzero. Moreover, by (3.24)), we also have that, up to a subsequence,

1 1 _

(i + o) () ~H = d ER. (3.27)
By (L.24), (3.26), (3.27), passing to the limit as m, — +oo in (3.25) we deduce that 0y {@S(h) -c+d} =0
for all k¥ € N. Therefore the analytic function h — &(h) - ¢+ d = 0 is identically zero. Since (¢, d) # 0, this
is in contradiction with Lemma [3.2] O

4 Nash-Moser theorem and measure estimates

Rescaling u — eu, we write (1.14) as the Hamiltonian system generated by the Hamiltonian
He(u) == e ?H(cu) = Hp(u) + eP-(u)
where H is the water waves Hamiltonian (1.7)) (with ¢ = 1 and depth h), Hy, is defined in (1.17) and

P.(u,h) := P.(u) := 2—15 /Td) (G(en,h) — G(0,h)) ¢ da . (4.1)
We decompose the phase space
Hy pven 1= {0 3= (0,9) € HY(T) x HY(T.),  u(@) = u(-a) } = Hs: & HE (4.2)

as the direct sum of the symplectic subspaces Hg+ and HSﬁ defined in (|1.25)), we introduce action-angle
variables on the tangential sites as in ([1.33)), and we leave unchanged the normal component z. The symplectic

2-form in (|L1.8)) reads

W= (Zjewdej NdL;) Wi = dA, (4.3)
where A is the Liouville 1-form
Ao,1 Z)é\f = ZIG fsz z) (4.4)
jEST

Hence the Hamiltonian system generated by H. transforms into the one generated by the Hamiltonian

H.:=H.oA=e¢?HoeA (4.5)

. 1/2 fj V& + 1 cos(6) )
A0,1,z) := Z \/>< JEET, sin(6) cos(jz) + z. (4.6)

jest

where

We denote by X := (0H.,—0pH., JV,H.) the Hamiltonian vector field in the variables (0,1, z) € T" x
R” x Hg;. The involution p in (L.11)) becomes

p:(0,1,2) — (—=0,1,pz). (4.7)
By and the Hamiltonian H. reads (up to a constant)
H.=N+eP, N:i=HoA=dn) I+ %(z,szz)p, P=P.oA, (4.8)
where &(h) is defined in and Q in (1.16). We look for an embedded invariant torus
i T =T xR x Hzz, ¢ i(p) = (0(9), 1(9), 2(¢))

of the Hamiltonian vector field Xy, filled by quasi-periodic solutions with Diophantine frequency w € R¥
(and which satisfies also first and second order Melnikov non-resonance conditions as in ((4.20))).
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4.1 Nash-Moser theorem of hypothetical conjugation

For o € R¥, we consider the modified Hamiltonian
1
Hy,:=Ny+eP, Nyi=a-I+ i(z,ﬂz)Lz. (4.9)

We look for zeros of the nonlinear operator

F (i, o) := Fi, 0, w,h,€) i= w - Opi(p) — Xp, (i(p)) = w - 0,i(p) — (X, +eXp)(i(p)) (4.10)
w - D,0(p) — a — 01 P(i(p))
w - 9,I(p) +£dgP(i())
w - Opz(p) — J(Qz(p) + eV P(i(p)))

where O(y) = 0(p)—¢ is (2m)”-periodic. Thus ¢ — i(p) is an embedded torus, invariant for the Hamiltonian
vector field Xg, and filled by quasi-periodic solutions with frequency w.

Each Hamiltonian H, in is reversible, i.e. H, o p = H, where the involution p is defined in .
We look for reversible solutions of F (i, a) = 0, namely satisfying pi(¢) = i(—¢p) (see (4.7))), i.e.

0(—p) = —0(p), I(—¢p)=1(p), z(—¢)=(pz)(¥). (4.11)
The norm of the periodic component of the embedded torus
is k k
138 = IOl + I + ll2lls (4.13)

where [|z[|5°7 = ||n[|5*7 + [|s[[f>7. We define
ko = ki + 2, (4.14)

where k§ is the index of non-degeneracy provided by Proposition which only depends on the linear
unperturbed frequencies. Thus kg is considered as an absolute constant, and we will often omit to explicitly
write the dependence of the various constants with respect to ky. We look for quasi-periodic solutions with
frequency w belonging to a d-neighborhood (independent of €)

2= {we R : dist(w, ko)) <0}, 6> 0 (4.15)

of the unperturbed linear frequencies @[h,hs] defined in (3.1)).

Theorem 4.1. (Nash-Moser theorem) Fiz finitely many tangential sites St C NT and let v := |ST|.
Let 7 > 1. There exist positive constants ag, &g, x1,C depending on ST, kg, such that, for all v = &%,
0 <a<ag, for alle € (0,e9), there exist a ko times differentiable function

Qoo 1 RY X [y, hy] = RY,  aee(w,h) =w +7.(w,h), with |r.|"7 < Cey™t, (4.16)
a family of embedded tori i defined for all (w,h) € R” X [hy,ha] satisfying (4.11)) and
liso(2) = (9,0, 0)ll5g™ < Czr ™, (4.17)

a sequence of ko times differentiable functions u3° : R” x [hi,ho] = R, j € NT\S*, of the form

. NG
p5° (w,h) = m? (w,h)(j tanh(hj))? + ¢5°(w, h) (4.18)
satisfying .
Im$° — 1|F07 < Cey~t, sup j§|t‘]?°|k°"y < Cey™™ (4.19)
2 JEN+\S+
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such that for all (w,h) in the Cantor like set

clL = {(w,h) €0 x [hy,ho] : w- €] >8y(0)"", Ve e 7\ {0}, (4.20)
jw - £+ p$(w,h)| > 4vjE(0) 77, VL € Z¥, j € NT\ ST,
W £ 5w, 0) + (@) 2 (G )0 Ve ZY, g j e NTAST,
w - £ p(w,h) = P w,b)| = 47O T, Ve 2, i € NFAST, (£,5,5) # (0.5.5)
the function is(¢) = ico(w,h,&)(p) is a solution of F(ico,®eo(w,h),w,h,e) = 0. As a consequence the

embedded torus ¢ +— ioo(p) is invariant for the Hamiltonian vector field Xp, , and it is filled by quasi-
periodic solutions with frequency w.

(w.h

Theorem is proved in Section The very weak second Melnikov non-resonance conditions in (4.20))
can be verified for most parameters if d is large enough, i.e. d > %ké, see Theorem below.

4.2 Measure estimates

The aim is now to deduce Theorem [[1] from Theorem (11
By (4.16)) the function oo (-, h) from Q into the image (2, h) is invertible:

0 =ax(wh) =w+r.(wh) +— w= a;ol(ﬁ, h) =0+ 7(6,h) with |7*5|k°77 < Ceyt. (4.21)

We underline that the function ag!(-,h) is the inverse of oo (-, h), at any fixed value of h in [hy,hs]. Then, for

any [ € ao(CL), Theorem proves the existence of an embedded invariant torus filled by quasi-periodic
solutions with Diophantine frequency w = a!(3,h) for the Hamiltonian

1
H5:6~I+§(Z,Qz)Lz +eP.

Consider the curve of the unperturbed tangential frequencies [hi,hy] 3 h — &(h) := (y/j tanh(hj));es+ in
(L37). In Theorem |4.2| below we prove that for “most” values of h € [hy, hs] the vector (a)(@(h),h),h) is
in C7,. Hence, for such values of h we have found an embedded invariant torus for the Hamiltonian H, in
, filled by quasi-periodic solutions with Diophantine frequency w = a ! (&(h),h).

This implies Theorem together with the following measure estimate.

Theorem 4.2. (Measure estimates) Let

3k;
v=¢%, 0<a<min{ag,1/(ko+r1)}, 7>ki(v+4), d>TO, (4.22)

where k§ is the index of non-degeneracy given by Proposition and ko = k§ + 2. Then the set
G- :={h € [hy,hy] : (o)} (&(h),h),h) € CL} (4.23)
has a measure satisfying |G:| — ha —hy ase — 0.
The rest of this section is devoted to the proof of Theorem By the vector
we(h) := a }(G(h),h) = B(h) + ro(h), r.(h):=7(S(h),h), (4.24)

satisfies
|0Fr.(h)] < Cey™F71 VO <k <ko. (4.25)

We also denote, with a small abuse of notation, for all j € N*\ S,

p5° (0) := p3° (we (h), h) == m3° (h) (4 tanh(nj))? +5°(n), (4.26)
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where

m%o (h) := m%o (we(h),h), t;°(h) == t;°(we(h), h). (4.27)
By (#.19), (#.27) and (4.24)-(4.25), using that ey~*o—1 < 1 (which by (#.22) is satisfied for € small), we get
|8}]f(m%°(h) —1)| < Cey~17F, sup j2 |8k ®(h)| < Cey~r1=k VO <k<kp. (4.28)

JENT\S+

By (4.20), (4.24), (4.26)), the Cantor set G, in (4.23) becomes

Go = {n € Ihuha): [we () - €] = 8(0) 7", W € 27\ {0},
jwe (0) - €+ u3(R)| > 4752 ()77, W € 27, j € N*\ S*,
jwe (B) - €+ p°(B) + pSF (0)] > dy(j2 +5/2)(0) "7, VEe Z¥, j,j e Nt \ ST,

4v{)~T . . .
o) €+ () — )| 2 UL e 25 €NFASY (655) # 040)} . (429)

We estimate the measure of the complementary set

6= pwma\ 6= (URP)u (URG) o (U @i)u (U #52) @)

£#£0 £,5 £,5,3" (£,3,5")#(0,5.5)
where the “resonant sets” are
Ré = {h € [h1,hy] : [we(h) - £] < 8Y(0)""} (4.31)
Rg? .= {n €y, 2] we(h) £+ 2 ()] < 4yj% (0) 77 (4.32)
Qi) = {n € 1, ho] ¢ we(h) - £+ pS°(h) + ¥ (0)] < dy(j% +5'%)(0) "} (4.33)
R = o uhal s o) €4 0) - )] < 0T (434)

with j,7" € NT\ S*. We first note that some of these sets are empty.
Lemma 4.3. Fore, v € (0,7) small, we have that

1. If RS #0 then j2 < C(0).

2. IfRZJI-,) + 0 then |jz — j'2| < C{¢). Moreover, RO]j =0, for all j # j'.

3. I QUL #0 then j3 + j'3 < C{0).

Proof. Let us consider the case of REIJI) If Reﬁ) # () there is h € [hy, hy] such that
o o "
5°(0) = 15 ()] < T + ) - < C(0). (4.35)
On the other hand, (4.26)), (4.28]), and (3.13]) imply
0o 0o 0o - . —K & - -
15" (B) = n37 ()] > m3 clNG— il = Cey™m > §|\/— Vil -1 (4.36)

Combining (£.35) and we deduce |52 — j/2| < C(0).
Next we prove that R(H) =0, Vj #j'. Recalling (4.26)), (4.28), and the definition Q;(h) = /j tanh(hy),

we have

o o o Cey™™  (Cey™™
1 (0) — 35 ()] > m ()| (B) — ()] — S —

G

- . Cery™ k1 Cery™ k1
SIVi = Vil = == = T (4.37)
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Now we observe that, for any fixed 7 € N*, the minimum of |/ — /57| over all j* € N\ {4} is attained at
j' = j + 1. By symmetry, this implies that |\/j — /5’| is greater or equal than both (/5 + 1 + /)" and
(V7 + 1+ +/7)~L. Hence, with ¢o := 1/(1 + +/2), one has

Vi =il = e max{%,%}>co(\1[ \F) % V4,5 € NT, j 4, (4.38)
As a consequence of and of the three inequalities in , for ey™"! small enough, we get for all
i#J
) = i )] > V7 = V7 2 .

for v small, since d > 1 /4 This proves that R\'2) = 0, for all j # 5.

073" —
The statement for R ) and Qg.,) is elementary. O

By Lemma[£.3] the last union in (4.30) becomes

11 11
U == U =& (4.39)
(£,5,5")#(0,5,5) 10
Wi—viTI<C(o)

In order to estimate the measure of the sets that are nonempty, the key point is to prove that

the perturbed frequencies satisfy estimates smnlar to 1- in Proposition
Lemma 4.4. (Perturbed transversality) For e small enough, for allh € [hhhg],

%xm {we(h) - £}] > %w) Ve e Zv\ {0}, (4.40)

i |08 {we (1) - £+ p5° () }| >

%w) VeezZ’, jeNt\ St 2 <), (4.41)
a0 (e () - £+ i (0) = T @Y = (0 Ve Z\(0), .7 e NFAST it = < 00, (4a2)
Po

&%w {we(d) - £+ p5°(0) + p77 ()} >

20 (0) Yeezr, j,j e NP\St:j2 442 <C), (4.43)
where k§ is the index of non—degenemcy given by Proposition |3.4).

Proof. The most delicate estimate is . We split
I (h) = Q;(h) + (45" — ;) ()
where Q;(h) := 47 (tanh(jh))z. A direct calculation using and shows that, for h € [h, hy],
08 {Q;(0) — Qp ()} < Ciljz — 32| Yk >0. (4.44)
Then, using (4.28), one has, for all 0 < k < ko,
|OR (57 = p37) (B) = (9 = Q) ()} < T { (7 () — 1)(2;(R) — Qe ()} + 1355 ()] + |9 ¢57 ()]

E29 “1—k;i ol 1 —k 1
Crofer 1 7Fj2 = j'2 | + ey ™ 7R(G72 + (5)72)}
@3,
Cper iM% — 3. (4.45)
Recall that kg = k& + 2 (see - By (4.25) and (4.45) -7 using |j2 -7 2| < C{l), we get

max [0 {we () - £ + 3% (0) — i3 (b )}I Zgg\@’f{w )+ £+ 9Q(h) — ()} — Cey~ ||

— CeyGitm|j — b

> max [ {G(n) - € + 9 (8) - Q(B)}] — Coy~ it (g)
="

(3.11)
po(l) — Cey~katr gy > po(£) /2
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provided ey~ (Fo+#1) < py/(2C), which, by ([#22)), is satisfied for ¢ small enough.

As an application of Rissmann Theorem 17.1 in [58] we deduce the following

Lemma 4.5. (Estimates of the resonant sets)

RO S (1)) e o,
R s ()T ez,
Proof. We prove the estimate of Ré”,)
R = {h € [hy, ho) :

where fy;;0(h) := (we(h) - £+ p5° (h) —

(0. By (LT3,

k<kg

In addition, (4.24)-(4.28) and Lemma

ey~ (ko+#1) is small enough, namely, by ([#.22

PROOF OF THEOREM COMPLETED. By Lemma .

(5 () ()~
max |9 fej;(0)| = po/2,

ply that maxy<k, |0F fo;;-(h)| < C for all h € [hy, hy], provided
E22 =k

), € is small enough. In particular, fy;;- is of class C*
Thus Theorem 17.1 in [58] applies, whence the lemma follows.

The measure of the sets in (4.31)-(4.34)) satisfies
1o (r X
RD1 S (i)

QU3 < (Y +55)() ")

9

in . The other cases are simpler. We write

4y
<€>T+1jdj/d

j

By (#.39), we restrict to the case |jz — j'2| < C(f) and

| fej ()] <

Vh € [hl,hg] .

1 _ CkoJFl_
O

(in particular, recalhng that Ré ) is empty for £ =0

4.3
and j # 7', see (4.39)) and Lemma E the measure!the set G¢ in is estlmated by

I II
G2 < IR |+Z|R§>|+ 3 RMHZ@Z
£#0 (£,3,3")#(0,5,9) £,5,5"
0 I II
<3 RO+ Z B+ > RED I+ YD (e
(#0 j<Ce)? 0 3,§'<C(0)?
IVG—VTI<C(0)
< 75 AR gl 7 V6% + 52\
~ Z (< T+ + Z ( T+1> + Z <g>¢+1jdj/d> Z ( (0yr+1 )
) F<C(e)2 V=V I<C () 7,3’ <C(6)?
1 1 1
< 07’“0{ Y=t Y —— /%}. (4.46)
tezv ()% Wi-v7l<cey (0) * j*5 j

T

The first series in (4.46) converges because B

—4 > v by (4.22)). For the second series in (4.46), we

observe that the sum is symmetric in (j,5’) and, for j < j/, the bound |/ — /7’| < C(f) implies that

j<j <j+C*0)%+20C/7(f). Since

J+p Jj+p p—|— 1
7 Z — < Z — ., p:=C0O2+20\/5(0)
=3 J % g g
the second series in converges because ,:;1 —2>vand 2— — 3 >1by ([{22). By (4.46) we get

1
G| < Oy

In conclusion, for v = &%, we find |G| > hy —hy —

Ce%%o and the proof of Theorem is concluded.



5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i, ) = 0 we construct
an almost-approximate right inverse (see Theorem [5.6)) of the linearized operator

di o F (0, 20) 1, 0] = w - 050 — di X, (io())[1] = (@,0,0). (5.1)

Note that d; o F (i0, o) = d; o F (ig) is independent of oy, see and recall that the perturbation P does
not depend on a.

Since the linearized operator d; X (io(¢)) has the (6,1, z)-components which are all coupled, it is par-
ticularly intricate to invert the operator (5.1). Then we implement the approach in [16], [8], [21] to reduce it,
approximately, to a triangular form. We outline the steps of this strategy. The first observation is that, close
to an invariant torus, there exists symplectic coordinates in which the linearized equations are a triangular
system as in . We implement quantitatively this observation for any torus, which, in general, is non
invariant. Thus we define the “error function”

Z(p) i= (%1, Za, Z3) () := Flio, 20) () = w - Dpio(p) = X, (i0()) - (5.2)

If Z = 0 then the torus 7o is invariant for Xp, ;in general, we say that i is “approximately invariant”, up to
order O(Z). Given a torus ig(v) = (6o(v), Io(¥), 20(p)) satisfying (5.6) (condition which is satisfied by the
approximate solutions obtained by the Nash-Moser iteration of Section , we first construct an isotropic
torus i5(v) = (o(¢), Is(¢), z0(v)) which is close to iy, see Lemma Note that, by (5.14)), F(i5, ) is
also O(Z). Since i is isotropic, the diffeomorphism (¢, y, w) — Gs(d,y, w) defined in s symplectic.
In these coordinates, the torus is reads (¢,0,0), and the transformed Hamiltonian system becomes 7
where, by Lemma the terms 0y Koo, K10 — w, K¢1 are O(Z). Thus, neglecting such terms, the problem
of finding an approximate inverse of the linearized operator d; oF (ig, o) is reduced to the task of inverting
the operator D in . We solve system in a triangular way. First we solve the equation for the
y-component of system 7 simply by inverting the differential operator w - 9, see and recall
that w is Diophantine. Then in (5.38) we solve the equation for the w-component, thanks to the almost
invertibility of the operator L, i, which is proved in Theorem and stated in this section as
assumption (5.29)-(5.33)). Finally the equation for the ¢-component is solved in by modifying
the counterterms according to and by inverting w - 0,. In conclusion, in Theorem we estimate
quantitatively how the conjugation of I with the differential of G5 (see (5.45)) is an almost approximate
inverse of the linearized operator d; F (4o, o).

First of all, we state some preliminary estimates for the composition operator induced by the Hamiltonian
vector field Xp = (0; P, -9y P, JV,P) in .

Lemma 5.1. (Estimates of the perturbation P) Let J(¢) in (4.12)) satisfy H7||§g(’)12,€0+5 < 1. Then the
following estimates hold:

. ~1ko,

HXP(,L)”?O)’Y SS 1 + H‘J”si;so—i-Qko—i-S ’ (53)
and for all7:= (é\,f,é\)
. ko, ~11kos ko,
i X p @Y Ss 171537 + 131165 S0 4260 alPl oot » (5.4)
e~ ko, ko, ~11ko, ko,

12X p @) E AN So IR0t + 131535004 2mos (1Ell0 )2 (5.5)
Proof. The proof is the same as the one of Lemma 5.1 in [2I], using also the estimates on the Dirichlet
Neumann operator in Proposition O

Along this section we assume the following hypothesis, which is verified by the approximate solutions
obtained at each step of the Nash-Moser Theorem [15.1

e ANSATZ. The map (w,h) — Jo(w,h) :=ig(p;w,h) — (¢, 0,0) is ko times differentiable with respect to
the parameters (w,h) € R” x [hy,hs], and for some p := p(7,v) >0, v € (0,1),
190ll30:7, + lawo — w[*? < Ceyt. (5.6)

For some k := k(7,v) > 0, we shall always assume the smallness condition ey™" <« 1.
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We now implement the symplectic procedure to reduce d; o F (io, op) approximately to a triangular form.
An invariant torus ip with Diophantine flow is isotropic (see [30],[16]), namely the pull-back 1-form A is
closed, where A is the 1-form in (4.4). This is equivalent to say that the 2-form i§W = ijdA = dijA = 0.
For an approximately invariant torus ¢ the 1-form ijA is only “approximately closed”: we consider

. v 1
A=) ar(@)der, ar(p) = —(0:00() o(¢)), — 5 (Opz0(9), J20(0)) L2 (r) (5.7)
and we show that
igW = digh = ZISMSV

is of order O(Z), see Lemma By (4.10), (5.3)), (5.6)), the error function Z defined in (5.2)) is estimated

in terms of the approximate torus as

Aj(p)dpr Ndpj s Apj(p) = 0p,a;i(p) — 0p,ar(p) (5.8)

1Z]157 Ss ey~ + 1301553 (5.9)
Lemma 5.2. Assume that w belongs to DC(v, T) defined in (2.13). Then the coefficients Ay; in (5.8)) satisfy

ko, -1 ko, ko, ko,
e ( P [/ o -1 Lt [ 8 L SO B (5.10)

Proof. The Ay; satisfy the identity w - 8, Ax; = W(0,Z(0)ey,, dpio(@)e;)+ W(9yio(p)ey, 8,2 (p)e;) where
e, denotes the k-th versor of R”, see [16], Lemma 5. Then (5.10)) follows by (5.6) and Lemma[2.5] O

As in [I6], [8] we first modify the approximate torus iy to obtain an isotropic torus is which is still
approximately invariant. We denote the Laplacian A, := 22:1 83,k.

Lemma 5.3. (Isotropic torus) The torus is(¢) := (6o(v), Is(¥), 20(p)) defined by

Is = Io + [0,00(0)] T p(0) s pily) = A;lzzzl%ﬁlk]‘(@ (5.11)

is isotropic. There is o := o(v, T, ko) such that

175 — Toll < |IToll5%7 (5.12)
_ ko, koY ||~ 1Ko,
15 = Tl Ss v (1211555 + 12115005 1011553 ) - (5.13)
. ko, ko, ko,
1F (is, o) 157 Ss 1211557 + 121502 13011352 (5.14)
Idslis) @IS S 150 + 1Tl 557 IRl (5.15)
e denote o:=o(v,T, k) possi ifferent (larger) “loss of derivatives” constants.
We d by (v, T, ko) possibly diff (larger) “l f derivatives”
T00f. e Lemma follows as in 4) an L7)-(5.10]).

Proof. The L foll in [8] by (5-4) and (5.7)-(5-10) O

In order to find an approximate inverse of the linearized operator d; o F(is), we introduce the symplectic
diffeomorpshim Gj : (¢, y,w) — (0,1, z) of the phase space T" x R” x HSJ; defined by

9 ) 0o() .
L) =Gs |y | = |Is(¢) + [0s00(4)] "y — [(99Z0)(60(#))] " Jw (5.16)
z w 20(9) +w

where 29(0) := (0 *(#)). Tt is proved in [16] that G is symplectic, because the torus is is isotropic (Lemma
. In the new coordinates, is is the trivial embedded torus (¢,y,w) = (¢,0,0). Under the symplectic
change of variables G5 the Hamiltonian vector field Xp_ (the Hamiltonian H, is defined in (4.9)) changes
into

Xk, = (DGs) ' Xy, oGs  where  K,:=H,0G;s. (5.17)
By (4.11) the transformation Gy is also reversibility preserving and so K, is reversible, K, o p = K.
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The Taylor expansion of K, at the trivial torus (¢,0,0) is

Ka(¢ay7w) = KOO(d),O‘) + K10(¢7 a) “y+ (K01(¢a O‘)7w)L2(Tm) + %KQO(Qb)y 'Y
+ (K11(¢)ya w) L2(T,) + %(K02(¢)wa w) L2(T,) + K23(¢7 Y, w) (518)

where K>3 collects the terms at least cubic in the variables (y,w). The Taylor coefficient Koo(¢, ) € R,
Klo(gb, o) € RY, Kp1(o, ) € HSJ;, Koo(9) is a v x v real matrix, Kop2(¢) is a linear self-adjoint operator of
H s+ and Ki11(¢) € L(R”, HSJ;) Note that, by and , the only Taylor coefficients that depend on
Q. are ](007 K107 K01.

The Hamilton equations associated to are

¢ = Kio(, @) + Ka0()y + K1 (#)w + 0, K>5(, y,w)
¥ = 0 Ko0(, ) — [0K10(, )]y — [3¢K01(¢7 o) Tw
—5¢( Koo(@)y -y + (K11(9)y, w)2(1,) + 5 (Ko2(d)w, w) 21, + K>3(8,y,w))
= J(Koi(¢,a) + K11(8)y + Ko2(p)w + Vi K>3(¢, y, w))

(5.19)

where 9,K7, is the v x v transposed matrix and dsK{;, K, : HSﬁ — RY are defined by the duality relation
(0pKo1[d],w) 2 = ¢ [0sKo1]"w, ¥é € RV, w € Hg:, and similarly for K11. Explicitly, for all w € H:, and
denoting by ¢; the k-th versor of R”,

Kﬁ (P)w = Z::I (Kﬁ (Q)w '§k)§k = ZV:1 (w, Kll(@ﬁk)p(m)ﬁk eR”. (5.20)

k
The coefficients Kog, K19, Ko1 in the Taylor expansion (5.18)) vanish on an exact solution (i.e. Z = 0).

Lemma 5.4. We have

105 Koo, a0) |57 + | K10 (-, a0) — w57 + | Ko1 (-, o) 1507 S 1211557 + 1 21507 1T0l557 - (5.21)
100 Koo|[57 + (100 K10 = 1d[[57 + (|00 Kor |57 S 1901557, 1K20/15°7 Ss e (14 [130ll537)
ko, , ko, ~ 11ko, ko,
[yl Ss e(lylle” + 13ollsSalyllse™) s G w5 S e(llwllss + 1Tollssa wll o) -
Proof. The lemma follows as in [16], [8], [21] by (5.3)), (5.6), (5.12), (5.13), (5.14), (5.20]. O
Under the linear change of variables
) 9pbo () 0 0 . ¢
DGs(p,0,0) | 7 | == [ 0sls(w) [0s00(0)] ™"  —[(FpZ0)(Oo()]"J | | ¥ (5.22)
W O0p20(p) 0 1 w

the linearized operator d; F(i5) is approximately transformed (see the proof of Theorem into the one
obtained when one linearizes the Hamiltonian system (5.19) at (¢, y,w) = (¥, 0,0), differentiating also in «
at ag, and changing 9; ~» w - J,, namely

w - 8¢$— 0¢K13(<p)[$} — 0aK10(p)[a] — Kao(p)y — Kiy(p)0
= | @ 0,7 + 9500 (#)[9] + 9590 Ko0 (9)[A] + [05K10(0)]"F + [0 Kor (9)]T @ |- (5.23)
w0, — J{0sKo1()[9] + OaKo1(p)[a] + K11(p)y + Koz(p)w}

Q) £) ) e

As in [§], by (5.22)), (5.6), (5.12)), the induced composition operator satisfies: for all 7:= ((;AS, Y, W)

IDG5 (10,0, 0)a][|£ + | DG (0, 0,0) T Il S [lle + [|Toll o3 a2 (5.24)

Yy Y 7 Y 7 Ko,y (1o > )
ID*G5(,0,0)[a1, 2] 1507 S [1Talla 7 [2alle™ + 12 llag 7 [z lls> + [1To | o e 150 22l e (5.25)
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In order to construct an “almost-approximate” inverse of (5.23]) we need that

Lo =Tl (0 9p = TK02(9)) ., (5.26)
is “almost-invertible” up to remainders of size O(N,, %) (see precisely (5.30)) where
N, :=KF, VYn>0, (5.27)
and B
K, =K} , x:=3/2 (5.28)

are the scales used in the nonlinear Nash-Moser iteration in Section The almost invertibility of L,
is proved in Theorem [I4.10] as the conclusion of the analysis of Sections [6}fI4] and it is stated here as an
assumption (to avoid the involved definition of the set A,). Let Hf (T**!) := H*(T**') N Hg; and recall
that the phase space contains only functions even in z, see .

e Almost-invertibility of £,,. There exists a subset A, C DC(v, T) X [h1, ho] such that, for all (w,h) € A,
the operator £, in ((5.26|) may be decomposed as

L,=L5+Ry+RE (5.29)

where LS is invertible. More precisely, there exist constants Ko, M, o, u(b),a,p > 0 such that for any
5o < s < S, the operators R,,, R satisfy the estimates

_ —a ko, ko, ko,
IRWAIIEY S5 ey > MHIN2 (1S + 1300157 ) o IR0 ) - (5.30)
_ ko, ko, ko,
IRGhlIs ™ Ss K (1l g yo + 130l 4o sellBllagio) W0 >0, (5.31)
ko, ~ |1ko; ko,
IRG Al Ss 1Al%s + 1T0llsy oy o 1l - (5.32)

Moreover, for every function g € H57(T¥*!, R?) and such that g(—¢) = —pg(p), for every (w,h) € A,,
there is a solution h := (L3)7'g € H5 (T, R?) such that h(—p) = ph(p), of the linear equation
LSh = g. The operator (£5)™! satisfies for all sp < s < S the tame estimate

- - ko, ~ ko, ko,
12S) gl Ss v (B + 1900507 4o lall0,) (5.33)

In order to find an almost-approximate inverse of the linear operator in ([5.23)) (and so of d; o F(is)), it is
sufficient to invert the operator

(W 0,6 = 0aKio(9)[8] — Kao(9)7 — KT, (0)@
D¢, y,w,a] := w - 9,7 + 9p0a Koo (p)[a] (5.34)
(L5)w = JOaKor(p)a] — JK11(9)y

obtained by neglecting in (5.23) the terms 0y K10, Opg K00, OpKo0, OyKo1, which are O(Z) by Lemma
and the small remainders R,,, R} appearing in (5.29). We look for an inverse of D by solving the system

w

g1

D[, 7, B.a] = | g2 (5.35)
93
where (g1, g2, g3) satisfy the reversibility property
91(p) = g91(=¢), 92(9) = —g2(—9), 9g3(¢) = —(pgs)(—). (5.36)

We first consider the second equation in (5.35)), namely w - 0,y = g2 — 003 Koo(¢)[a]. By reversibility, the
p-average of the right hand side of this equation is zero, and so its solution is

U= (w-9,) " (92 — BadpKoo(p)[a]) . (5.37)
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Then we consider the third equation (£35)w = g3 + JK11(¢)y + JOuKo1(v)[@], which, by the inversion
assumption (5.33)), has a solution

0= (£5) " (95 + JK1(9)7 + JOa Ko (9)[a)) - (5.38)
Finally, we solve the first equation in (5.35]), which, substituting (5.37)), (5.38), becomes
W+ 0o = g1 + M(9)[@] + Ma(p)g2 + Ms()gs (5.39)
where
Mi(p) = 0aK10(p) — M2(9)0adyKoo(p) + Ms(¢)J0aKor(¥), (5.40)
My (p) = Kao()[w- @o]‘l + KN (@0)(L5) T TKu(@)lw- 0,171, Ms(p) = K)(9)(£5)™. (5.41)

In order to solve equation ([5.39) we have to choose & such that the right hand side has zero average. By
Lemman (5.6), the go—averaged matrix is (M) = Id + O(ey~1!). Therefore, for ey~! small enough, (M)
is invertible and (M;)~! = Id + O(ey~!). Thus we define

@ = —(M1)" ((g1) + (Maga) + (M3gs)) . (5.42)
With this choice of &, equation ([5.39) has the solution
6 = (- 0p) " (g1 + My (9)[@] + Ma(p)g2 + Ms () gs) (5.43)

In conclusion, we have obtained a solution (& Y, w, @) of the linear system ((5.35)).

Proposition 5.5. Assume (5.6) (with p = p(b) + 0) and (5.33). Then, for all (w,h) € A,, for all

h) g:
(91,92, 93) even in x and satisfying (5.36)), system (5.35)) has a solutwn]D) g: (¢), 7, A, a), where (¢, y, W, &)
are defined in (5.43), (5.37), (5.38)), (5.42)), which satzsﬁes and for any so < s < S

D~ glifer <o v (Ilgls37 + ||3o\|'§il +a||9||’§3’+70)- (5.44)

Proof. The lemma follows by (5.38)), (5.40), (5.41), (5.42), (5.43), Lemma 5.4 (5.33), (5.6). O
Finally we prove that the operator

Ty := To (i) := (DG5)(10,0,0) o D" o (DG5)(p,0,0) " (5.45)

is an almost-approximate right inverse for d; oF(ig) where G5(¢,y,w, ) := (Gs(4,y,w), @) is the identity
on the a-component. We denote the norm ||(¢,y, w, a)||¥07 := max{||(¢, y, w)||Fo7, |a|*07}.

Theorem 5.6. (Almost-approximate inverse) Assume the inversion assumption (5.29)-(5.33). Then,
there exists & := a(7,v, ko) > 0 such that, if (5.6) holds with u = pu(b) + 7, then for all (w,h) € A,, for all
g := (91, 92, g3) even in x and satisfying (5.36)), the operator T defined in (5.45)) satisfies, for all sp < s < S,

- ko, ko, ko,
IToglls™" Ss v~ (Igllss7 + 1T0l153 ey 5 191 07s) - (5.46)
Moreover T is an almost-approzimate inverse of d; o F (i), namely
di,aF(ig) © To — Id = P(io) + Pu(io) + P (io) (5.47)

where, for all sp < s < S,

- . ko, ko,
IPgllko S5 v (17 o, o)l gl 227

o+ {IF o, 00) 1553 + 17 o, 00) 1507 19017y 4 0115025 ) (5.48)
1Pugllior S5 ev 7N, (lgl552 + 1901527 ) o 915025 (5.49)
P2 gl Sso v B (g0 sy + 19007y o l025) . Wb >0, (5.50)
P2 gl Ss v (gl 52 + 13012 o Nl (5.51)
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Proof. Bound ) follows from , . By (4.10)), since X s does not depend on I, and is

differs by ig only in the I component see , we have
1
Eo i= di o F(i0) — di o F(is) = 5/ 0rd; Xp (0o, Is + s(Io — I5), z0)[Io — 15,11[ -] ]ds (5.52)
0

where II is the projection (7, @) — 7. Denote by u := (¢, y,w) the symplectic coordinates induced by Gs in
(5.16). Under the symplectic map Gs, the nonlinear operator F in (4.10) is transformed into

F(Gs(u(p), a) = DGs(u(p)) (Duu(e) — X, (u(p), o)) (5.53)

where K, = H, oGy, see (5.17) and (5.19). Differentiating ([5.53)) at the trivial torus us(p) = Ggl(ig)(@) _
(@7070% at a = Qp, We get

di o F(i5) =DGs(us) (w - By — du o Xk, (s, 00)) DGs(us) ™t + &1, (5.54)
& ::D2G5(u5) [DGg(u(;)ilf(i(;, ap), DG(;(u(;)ilH[ -] ] (5.55)

In expanded form w - 9, — du,o Xk, (us, ) is provided by (5.23). By (5.34), (5.26), (5.29) and Lemma
we split

w0y — dyoXr(us,a0) =D+ Rz + R, + RS (5.56)
where N
N _ —0sK0(p, a0)[¢]
Rz[9,Y,w,a] := | dpsKoo(, 0)[¢] + [0sK10(. @0)]"F + [0 Ko1 (¢, a0)] @ |
—J{9sKo1(p, ao) (8]}
and
R 0 R 0
Ry [6, 7, @, a] = 0 ; Ri[¢, 7, ,a] = 0
R, [W] R[]

By (5.52)), (5.54)), (5.55)), (5.56) we get the decomposition

di.oF(io) = DGs(us) oD o DGs(us) ' + &+ &y + EF (5.57)

where _ -
£ :=E + & + DGs(us)RzDGs(us)™t, &, := DGs(us)R,DGs(us)™ !, (5.58)
&= DGs(us)REDGs(us) . (5.59)

Applying T defined in ([5.45)) to the right hand side in (5.57) (recall that us(¢) := (p,0,0)), since DoD~! = Id
(Proposition , we get

dioFlig)oTog—Id=P+P,+PL, P:=E0Ty, P,:=E&,0Ty, Pr:=ELoT,
By (5.6), (5.21), (5.12), (5.13)), (5.14), (5.24)-(5.25) we get the estimate

~ ko, ko, ko, ko, ko, ko, ko,
IEE AN Ss 12102 R5%s + 1 ZISS 2 Ne sl + 121 oo [l sos 1 Tolle53 (5.60)

so+o so+o sot+o so+o

where Z := F(ig, ap), recall (5.2]). Then (5.48)) follows from , 7 . Estimates ( -, -7
(5-51) follow by (5.30)-(5.32), (5.46), (5-24), (5.12), (5.6).
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6 The linearized operator in the normal directions

In order to write an explicit expression of the linear operator £, defined in ([5.26) we have to express the
operator Koa(¢) in terms of the original water waves Hamiltonian vector field.

Lemma 6.1. The operator Koz(¢) is
Ko (9) =110,V H(T5(9)) + eR(9) (6.1)

where H is the water waves Hamiltonian defined in (1.7)) (with gravity constant g =1 and depth h replaced
by h), evaluated at the torus

T5(¢) := eA(is(9)) = A(0o(0), 15(0), 20(¢)) = ev(0o(¢), I5(¢)) + £20(0) (6.2)

with A(0,1,2), v(0,I) defined in (4.6). The operator Kos(¢) is even and reversible. The remainder R(¢)
has the “finite dimensional” form

R(¢)[h] = Zjes+ (h, 9i)2Xi> Vhe Hg, (6.3)
for functions g;,x; € HSJ; which satisfy the tame estimates: for some o := o(T,v) > 0, Vs > s,

g 1507 + 11527 So 1+ 1361557 digs @llls + Ao @llls Ss [lls+o + 1TslsolEllsoro - (6.4)
Proof. The lemma follows as in Lemma 6.1 in [21]. O

By Lemma the linear operator £, defined in has the form
L, =T (L+ eR) 2, where  L:=w- 0, — JO,V.H(T5()) (6.5)

is obtained linearizing the original water waves system (L.14)), at the torus u = (n,v¢) = Ts(p) defined
in (6.2), changing 9; ~ w - 9,,. The function 1(p, z) is even(yp)even(z) and (¢, z) is odd(p)even(z).

In order to compute the linearization of the Dirichlet-Neumann operator, we recall the “shape derivative”
formula, given for instance in [46], [47],

&/l = lim (G + ey — G} = ~Gln) (Bi) — 0u(Vi) (6.6)
where o
B:=B(n,¢y) = nx/wﬂi —'_; 772(77)1/} ) Vi=V(n,¢) =t — B (6.7)

It turns out that (V, B) = V,,,® is the velocity field evaluated at the free surface (z,7(z)). Using (6.6)), the
linearized operator of ([L.14]) is represented by the 2 x 2 operator matrix
bmune(y BV 0mE o)

(14 BV,)+ BG(n)B Va, — BG(n) (6.8)

Since the operator G(n) is even according to Definition the function B is odd(p)even(x) and V is
odd(p)odd(x). The operator £ acts on H(T) x H(T).

The operators £, and L are real, even and reversible. We are going to make several transformations,
whose aim is to conjugate the linearized operator to a constant coefficients operator, up to a remainder that
is small in size and regularizing at a conveniently high order.

Remark 6.2. It is convenient to first ignore the projection H§+ and consider the linearized operator £ acting

on the whole space H*(T) x H*(T). At the end of the conjugation procedure, we shall restrict ourselves to
the phase space H}(T) x H L(T) and perform the projection on the normal subspace HS%H see Section
The finite dimensional remainder e R transforms under conjugation into an operator of the same form and
therefore it will be dealt with only once at the end of Section [I3] O
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For the sequel we will always assume the following ansatz (satisfied by the approximate solutions obtained
along the nonlinear Nash-Moser iteration of Section : for some constant g := po(7,v) >0, v € (0,1),

[Tollte,, <1, and so, by (5.12), [|Js]|%7,, < 2. (6.9)

In order to estimate the variation of the eigenvalues with respect to the approximate invariant torus, we
need also to estimate the derivatives (or the variation) with respect to the torus i(¢) in another low norm
I |s,, for all the Sobolev indices s such that

s1+00<sp+pg, for some og:=oo(r,v)>0. (6.10)
Thus by we have
130]87,, <1 and so, by (5.12), ||35]7,, < 2. (6.11)

The constants pg and og represent the loss of derivatives accumulated along the reduction procedure of
Sections [7}[I2] What is important is that they are independent of the Sobolev index s. Along Sections
we shall denote by o := o(kg,7,v) > 0 a constant (which possibly increases from lemma to lemma)
representing the loss of derivatives along the finitely many steps of the reduction procedure.
As a consequence of Moser composition Lemma the Sobolev norm of the function u = Ty defined in
(6.2) satisfies, Vs > sq,
ulle 7 = il + [l < eC(s) (1 + [Fo507) (6.12)

(the function A defined in (4.6 is smooth). Similarly
[Arpulls; Sy €llia —ialls, (6.13)

where we denote Ajou := u(is) — u(iy); we will systematically use this notation.
In the next sections we shall also assume that, for some x := k(7,v) > 0, we have

ey " <4(9),

where §(S) > 0 is a constant small enough and S will be fixed in (15.4). We recall that Jy := Jo(w,h) is
defined for all (w,h) € R” x [hy,hy] and that the functions B,V appearing in £ in are C* in (p, ) as
the approximate torus u = (n,%) = T5(¢). This enables to use directly pseudo-differential operator theory
as reminded in Section 2.3

Starting from here, until the end of Section our goal is to prove Proposition [13.3

6.1 Linearized good unknown of Alinhac

Following [I], [2I] we conjugate the linearized operator £ in by the multiplication operator

Z .= (113 ?) z71= (13 (1)) ; (6.14)

where B = B(p, x) is the function defined in (6.7)), obtaining

Lo=Z2"LZ=w 0,+ (ag;v _V%(”)) (6.15)
where a is the function
a:=a(p,z): =14+ (w-0,B)+VB,. (6.16)

All a, B,V are real valued periodic functions of (¢, x) — variable coefficients — and satisfy
B = odd(yp)even(z), V =odd(p)odd(x), a = even(p)even(z).

The matrix Z in (6.14) amounts to introduce, as in Lannes [46]-[47], a linearized version of the good unknown
of Alinhac, working with the variables (7,¢) with ¢ := ¢ — B, instead of (1, ).
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Lemma 6.3. The maps Z*' — Id are even, reversibility preserving and DFo-tame with tame constants
satisfying, for all s > sq,

Mze11a(s) s M(z11a)- () Ss (1 + [Tolls57) (6.17)

The operator Ly is even and reversible. There is o := o(7,v) > 0 such that the functions
lla = 157 + [V ][5 + | BIJEoY S5 (1 +1190]1557) - (6.18)

Moreover
[A12alls; + [A12V s, + [[A12Blls; Sy ellin — 25140 (6.19)
1A12(ZF A, [A12(ZFY) hlls, Sop ellin = dallsyvolllls, - (6.20)
Proof. The proof is the same as the one of Lemma 6.3 in [21]. O
We expand Lo in (6.15) as

£0_w-8¢+( 0 V@z>+(a o) (6.21)

In the next section we deal with the first order operator w - 0, 4+ V0,.

7 Straightening the first order vector field

The aim of this section is to conjugate the variable coefficients operator w - d, + V (¢, )0, to the constant
coeflicients vector field w - 0, namely to find a change of variable B such that

BN w-0p+V(p,2)0)B=w-0,. (7.1)

Quasi-periodic transport equation. We consider a ¢-dependent family of diffeomorphisms of T, of the
space variable y = z+ 3(p, z) where the function 3 : T, x T, — R is odd in x, even in ¢, and [|B,[|L>~ < 1/2.
We denote by B the corresponding composition operator, namely (Bh)(¢,z) := h(p,z + B(p,z)). The
conjugated operator in the left hand side in is

B (w0, 4+ V(p.2)0:)B = w- 0, + clp.4) ), (7.2)
where
(pyy) =B Hw- 0,8+ V(1 +62))(0,9) - (7.3)
In view of — we obtain if B(¢p,x) solves the equation
w889/6’(3071')+V((p7x)(1+ﬂm(@7x)) =0, (74)

which can be interpreted as a quasi-periodic transport equation.

Quasi-periodic characteristic equation. Instead of solving directly (|7.4) we solve the equation satisfied
by the inverse diffeomorphism

r+B(pr)=y < z=y+Ppy), VnycR, peT”. (7.5)
It turns out that equation ([7.4)) for 5(¢, z) is equivalent to the following equation for B(ap, Y):

w- 0,30, y) = V(p,y+ B(e,y)) (7.6)

which is a quasi-periodic version of the characteristic equation & = V(wt, ).
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Remark 7.1. We can give a geometric interpretation of equation (7.6 in terms of conjugation of vector
fields on the torus T” x T. Under the diffeomorphism of T" x T defined by

<i> - (y+52w,y>>  the system % <<§> - (V(:, x))

transforms into

% (5) - ({ —w- 0,8, y) + V(%yi B, y)) (1 +5y(w,y))_l) '

The vector field in the new coordinates reduces to (w,0) if and only if (7.6]) holds. In the new variables the
solutions are simply given by y(t) = ¢, ¢ € R, and all the solutions of the scalar quasi-periodically forced
differential equation & = V(wt, x) are time quasi-periodic of the form z(t) = ¢ 4+ S(wt, ¢). O

In Theorem we solve equation (|7.6)), for V (¢, x) small and w Diophantine, by applying the Nash-
Moser-Hérmander implicit function theorem in Appendix |C} Rename 5 — u, y — x, and write (7.6) as

F(u)(p, ) = w - dpulp,x) = V(p,x +ulp,z)) =0. (7.7)
The linearized operator at a given function u(y, z) is
Fl(u)h:=w-0,h —q(p,2)h,  qlp,2) = Va(p,z +ulp,x)). (7.8)
In the next lemma we solve the linear problem F’'(u)h = f.

Lemma 7.2. (Linearized quasi-periodic characteristic equation) Let ¢ := 3ko + 27(ko + 1) + 2 =
2u+ ko + 2, where p is the loss in (2.18) (with k+1 = ko), and let w € DC(2v, 7). Assume that the periodic
function u is even(y)odd(x), that V is odd(yp)odd(x), and

lull 20+ MV |50 < 8 (7.9)

Sso+¢s

with 0y small enough. Then, given a periodic function f which is odd(y)odd(x), the linearized equation
F'(u)h = f (7.10)
has a unique periodic solution h(p,x) which is even(p)odd(x) having zero average in @, i.e.

1

(Wo(@) = 50 /T h(g,z)dp =0 VYzeT. (7.11)

This defines a right inverse of the linearized operator F'(u), which we denote by h = F'(u)~1f. It satisfies

_ _ ko, — ko, ko, ko, )
1F" (@) £ S v TS+ AVIEY + Tl S IV I 2o 1l ™) (7.12)
for all s > sq, where || - ||*7 denotes the norm of Lip(ko,DC(27,7), s,7).

Proof. Given f, we have to solve the linear equation w - d,h — gh = f, where ¢ is the function defined in
(7.8). From the parity of u,V it follows that ¢ is odd(y)even(x). By variation of constants, we look for
solutions of the form h = we", and we find (recalling (2.14]))

(woe") o
<ev><p

This choice of g, and hence of w, is the only one matching the zero average requirement ([7.11)); this gives
uniqueness of the solution. Moreover v = even(p)even(z),wy = even(yp)odd(x),g = odd(z), whence h is

even(yp)odd(x). Using (2.10)), (2.11)), (2.18)), (2.19), (7.9), and (2.9)) the proof of (|7.12) is complete. O
We now prove the existence of a solution of equation ([7.7)).

vi=(w- aw)_lq, wi=wo+g, wy:=(w- Bw)_l(e_”f), g=g(x):=—

52



Theorem 7.3. (Solution of the quasi-periodic characteristic equation ) Let ¢ be the constant
defined in Lemma and let s3 := 2s9 + 3¢ + 1, p := 3¢ + 2. Assume that V is odd(p)odd(z). There
exist 6 € (0,1),C > 0 depending on s, sy such that, for all w € DC(27, ), if V € Lip(ko,DC(2v,T), S2 + p,7)
satisfies

VIS, <6, (7.13)

then there exists a solution u € Lip(kg,DC(2v,7), s2,7) of F(u) = 0. The solution u is even(y)odd(x), it has

zero average in p, and satisfies
k - ko,
lullss™ < CyH IV [l sg:l- (7.14)

If, in addition, V € Lip(ko,DC(2v,7),s + p,7) for s > s, then u € Lip(ko,DC(2v,7), s,7), with
_ ko,
[ull§7 < CoyH VIS (7.15)

for some constant Cs depending on s,<, sg, independent of V, .

Proof. We apply Theorem of Appendix [C] For a,b > 0, we define

E, = {u € Lip(ko,DC(27,7),250 + a,7) : u = even(p)odd(x), { = 0} lullg, = ||u||’2€201a7 (7.16)
Fy := {g € Lip(ko,DC(27,7),2s0 + b,7) : g = Odd(sﬁ)odd(x)}, lglle, = llgllse?,  (7.17)

(so is in the last term of (7.12), while 25y appears in the composition estimate (2.11))). We consider Fourier
truncations at powers of 2 as smoothing operators, namely

Sp ¢t u(p,x) = Z ug;e! P (S,u) = Z g el b tie) (7.18)

(€.5)ezr+1 (,5)<2"

give the dyadic decomposition 2" < (¢, j) < 2"*1. Since S,, in (7.18)) are “crude” Fourier truncations, (C.7]
holds with “=" instead of “<” and C = 1. As a consequence, every g € Fj satisfies the first inequality
in with A = 1 (it becomes, in fact, an equality), and, similarly, if g € Fg. then holds with
A. =1 (and “=7).

We denote by V the composition operator V(u)(y,x) := V(p,z + u(p, x)), and define ®(u) := w - d,u —
V(u), namely we take the nonlinear operator F' in as the operator ® of Theorem By Lemma
if Hu||’2€2011 < doz (where we denote by dgg the constant ¢ of Lemma, then V(u) satisfies (2.11]), namely
for all s > sg

on both spaces E, and F},. Hence both E, and F; satisfy (C.1)-(C.5|), and the operators R,, defined in (C.6|)
C.7)

k ko, ko, ko,
V@07 Ss IV IR, + 1wl IV I oo ko1 (7.19)

and its second derivative V"' (u)[v, w] = Vi (¢,  + u(p, x))vw satisfies

k ? ’ ’ ’ il
V" (w)lv, wlllz™ s V107 (IIUII?” Mewllsy™ + ollss g ”)

so+ko+3
ko, , ko, )
VIS kg s lullse + VISR o 0I5 w507 (7.20)

We fix p,U of Theorem [Cd]as p := 1, U := {u € Ey : |jullg, < dzg}. Thus ® maps U — F and
UNEqt, — F, for all a € [0, a2 — 1], provided that ||V||§g(’]1a2_1+ko < 00 (ag will be fixed below in ((7.24))).
Moreover, for all a € [0,az — 1], @ is of class C*(U N Eqy,, Fy) and it satisfies (C.9) with ag := 0,

Mi(a) == C@)|[VI[E0 5 Ma(a) = Mi(a), Ms(a):=C@)|[VI[57 4 sora- (7.21)

We fix aq, 61 of Theorem as a1 := ¢, where ¢ = 3ko + 27 (ko + 1) + 2 is the constant appearing in Lemma
and 01 := 3477, where drg is the constant §y of Lemma If v~ V|57 < §; and [v]lE,, <01, then,

so+<

by Lemma the right inverse ¥(v) := F’(v)~! is well defined, and it satisfies

W @)gllz. < Li(a)llgllr. . + (L2(a)l[v]z.. + Ls(a)llgl 7, (7.22)
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where

Li(a) = Cla)y™",  La(a) = Cla)y ?[VI[S2y,  La(a) = Cla)y 2 [VII5% ars- (7.23)
We fix o, 3, as of Theorem as
B:=4¢+1, «a:=3¢+1, ag:=5¢5+3, (7.24)

so that is satisfied. Bound implies for all a € [ay, az] provided that ||V“]2€2(;1a2+§ < 00.
All the hypotheses of the first part of Theorem are satisfied. As a consequence, there exists a
constant dqg1g (given by with A = 1) such that, if ||g||r, < dzgg, then the equation ®(u) = ®(0) +g
has a solution v € E,, with bound . In particular, the result applies to ¢ = V, in which case the
equation ®(u) = ®(0) + g becomes ®(u) = 0. We have to verify the smallness condition ||g|r, < dzT3
Using (7.21)), (7.23), (7.13), we verify that dogg > Cvy. Thus, the smallness condition ||g||r, < dzgis

satisfied if ||V||’§g;j+a2 Ly~ " is smaller than some § depending on ¢,so. This is assumption (7.13), since
2s0 +az + ¢ = s2 +p. Then (C.12), recalling (7.24)), gives |ul/*7 < C'y_1||VH§§ﬂ§, which implies (7.14))
since p > .

We finally prove estimate ((7.15)). Let ¢ > 0. If, in addition, | V||§g(’]1a2+c < 00, then all the assumptions
of the second part of Theorem are satisfied. By (7.21), (7.23) and (7.13]), we estimate the constants

defined in (C.16)-(C.17) as

_ ko, _
gl S CC'Y 2||V“2201a2+c+§? g2 S OCFY 17 z S CC

for some constant C. depending on ¢. Bound (C.15)) implies (7.15) with s = s + ¢ (the highest norm of V' in
(7.15) does not come from the term ||V|| g, . of (C.15), but from the factor G;). The proof is complete. [

The next lemma deals with the dependence of the solution u of ((7.7) on V' (actually it would be enough
to estimate this Lipschitz dependence only in the “low” norm s; introduced in (6.10)).

Lemma 7.4. (Lipschitz dependence of u on V) Let ¢, s9,p be as defined in Theorem . Let Vi, Vs
satisfy (7.13)), and let uy,us be the solutions of

waﬁﬂul_‘/;(@ax+ul((p7x)) :07 i:1727
giwen by Theorem . Then for all s > so — u (where p is the constant defined in (2.18]))

ko, - ko, - ko, ko,
s — ol o v 13 = Vs, 7 ma Vil V2 — Va2, (7.25)
Proof. The difference h := u; — us is even(p)odd(x), it has zero average in ¢ and it solves w - d,h — ah = b,
where

a(p,x) := /0 (0: V1) (@, + tug + (1 — t)ug) dt, blp,z) := (V1 — Va)(p,x + uz).

The function a is odd(yp)even(x) and b is odd(¢)odd(x). Then, by variation of constants and uniqueness,
h = we", where (as in Lemma

(woe”) o )
(eV)e

Then (|7.25]) follows by (2.11), (7.13)), (7.14), (7.15)), (2.18)) and (2.19). O

In Theorem for any A\ = (w,h) € DC(27,7) X [h1,hy] we have constructed a periodic function u = 3
that solves , namely the quasi-periodic characteristic equation , so that the periodic function (3,
defined by the inverse diffeomorphism in , solves the quasi-periodic transport equation .

By Theorem we define an extension & (u) = E(8) =: Bear (with k+1 = ko) to the whole parameter
space R x [hj,ho]. By the linearity of the extension operator & and by the norm equivalence , the
difference of the extended functions & (u1) — Ex(ug) also satisfies the same estimate as u; — Us.

vi=(w- 8¢)_1a, wi=wo+g, wp:=(w- (‘330)_1(6_”1))7 g=g(x) :=—
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We define an extension (.. of 8 to the whole space A € R” X [h1,hs] by

Y=2+ Beat(p,2) & T=y+ Benr(p,y) Vr,yeT, p T

(note that, in general, 8.+ and &E(B) are two different extensions of 8 outside DC(vy,7) X [hy,hs]). The

extended functions ez, Bert induce the operators Beyy, B;zlt by

(Bemth) (907 $) = h(‘Pa T+ ﬁemt(@a .’E)), (Beixlth)(sp? y) = h((p, Y+ Bezt (907 y))a Bewt © ngglt =1Id,

and they are defined for A € R” X [hy,ha].
Notation: for simplicity, in the sequel we will drop the subscript “ext” and we rename

Bext = 0, Bewt = Ba Byt == B, B;clt =B (726)
We have the following estimates on the transformations B and B~1.

Lemma 7.5. Let 3, 3 be defined in (7.26)). There exists o := o(T,v, ko) such that, if holds with pg > o,
then for any s > sa, 5
1815 1BNEY So ey (1 + 1F0ll537) - (7.27)

The operators A = BT —1d, (B! — 1d)* satisfy the estimates

- ko, ~ ko, ko,
[AR|E" Soev ™ (IR0 1 + 1 Toll SNl ) Vs > 2. (7.28)

Let i1,i9 be two given embedded tori. Then, denoting A2 = B(iz) — B(i1) and similarly for the other
quantities, we have

12128051 18128015, S €7 Ml = dollsyor » (7.29)
1Az A)Rllsy Ssi ev i = dzllsyrallhllsra, A€ {BF (B}, (7.30)

where s1 is introduced in (6.10)).
Proof. Bound (7.27)) for £ follows, recalling that B =u, by (7.15)) and (6.18). Estimate (7.27)) for 3 follows
by that for 3, applying . We now prove estimate ([7.28)) for B — Id. We have
1
B-10h=p [ Biluldr,  Blflie.o)i= fpo+ Bp.0).
0

Then ([7.28]) follows by applying (2.11]) to the operator B, using the estimates on 3, ansatz and (2.10).

The estimate for B! — Id is obtained similarly. The estimate on the adjoint operators follows because
B h(p,y) = (1+ B, y)h(e,y + Bp.y)), (B h(p,x) = (1+ (g, 2)h(p,x + Blp,z)) .
Estimates ([7.29)), (7.30) follow by Lemma and by (6.18)-(6.19). O
We now conjugate the whole operator Ly in (6.15) by the diffeomorphism B.

Lemma 7.6. Let 3,3,B8,B~" be defined in (7.26). For all A € DC(~y,7) X [h1,hs], the transformation B
conjugates the operator Lo defined in (6.15)) to

L1 =B '"LoB=w-0,+ <Z; _a“'ayHoTh + Rl) : (7.31)
Ty, = tanh(h|D,|) := Op (tanh(hx(¢)[¢])), (7.32)

where a1, az,az are the functions
a1(p,y) == (B7'Va)(e,y), az(p,y) =1+ B7'6:)(p.y),  as(e,y) = (B a)(v,), (7.33)
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and R is a pseudo-differential operator of order OPS~°. Formula (7.33)) defines the functions ay,az,as
on the whole parameter space R x [hy,ha]. The operator R1 admits an extension to R” X [hy,hs] as well,
which we also denote by Ri. The real valued functions 3, a1, as,as have parity

B = even(p)odd(x); a1 = odd(yp) even(y); as, az = even(p)even(y). (7.34)

There exists o = o(7,v, ko) > 0 such that for any m,a > 0, assuming with po > o +m+ a, for any
s> 89, on RY x [hy,hy] the following estimates hold:

_ ~ ko,

lar][57 + flaz = 1157 + flag — 1|57 Ss ev ™ (1 + [1Tollssa), (7.35)
ko, _ ~ ko,

"Rl Hfon;y,s,a Sm’S,Oé ey 1(1 + ||J0Hs(4)r;+m+a) . (736)

Finally, given two tori i1,12, we have

[Ar2a1]ls, + [[Ar2a2]ls, + [[A12as]ls, Sop €77 Ar2illsy 40 (7.37)
"AlQRll—m,sl,a ,Sm,sl,a 5’)’71 ||A12i||51+a'+m+a . (738)
Proof. By (6.21)) and (7.2)-(7.4) we have that
_pr-1
£1 = 8_1508 =W 6<p + (Zl B OG(T])B> (739)
3

where the functions a; and agz are defined in (7.33). We now conjugate the Dirichlet-Neumann operator
G(n) under the diffeomorphism B. Following Proposition we write

G(n) = | Dy tanh(h| D, |) + Rg = 0, HTw + Re,  Th == tanh(h|D,|), (7.40)

where R¢ is an integral operator in OPS~*°. We decompose

2
() == — 1 & e2bl€[x(€)

and, since B0, B = a20, where the function ay is defined in , we have
B0, HTwB = (B~ 0, B)(B~*HB) (B~ TuB) = a20,{H + (B~'HB — H)}(B~'TuB)
= a20,HTy + a20, H[B~'Op(rn) B — Op(rs)] + a20, (B~ "HB — H)(B~'TB) . (7.42)
Therefore by — we get

tanh(h|Dy|) = Id + Op(ry), €S, (7.41)

~ B 'G(n)B = —a20,HT, + Ry, (7.43)
where R, is the operator in OPS™°° defined by
Ry =R{" + R + RV R =~ B 'ReB, )
R = — 420, H[B~Op(ra)B — Op(r)], R = — 420,(B""HB - H)B~'T,5. '

Notice that B~*ReB and B~1Op(r,)B are in OPS~>° since Rg and Op(ry), defined in and in (7.41)),
are in OPS~>°. The operator B~HB — H is in OPS~ by Lemma[2.17

In conclusion, (7.39) and (7.43) imply (7.31)-(7.33), for all A in the Cantor set DC(7,7) x [h1,ho]. By
formulas (7.44)), R is defined on the whole parameter space R” X [hy, ho].

Estimates 7 for ay,as,as on R” x [hy,hs] follow by (6.18)), (6.19) and Lemma Estimates
, follow applying Lemmata and and Proposition and by using Lemma O

Remark 7.7. We stress that the conjugation identity holds only on the Cantor set DC(7y, 7) x [h1, ha]. Tt
is technically convenient to consider the extension of aj, as, as, Ry to the whole parameter space R x [hy, ho],
in order to directly use the results of Section [2.3] expressed by means of classical derivatives with respect to
the parameter A. Formulas and define a1, as, as, R1 on the whole parameter space R” x [hy, hs].
Note that the resulting extended operator £; in the right hand side of is defined on R” x [hy, hs], and
in general it is different from B~!LyB outside DC(7y, ) X [hy,ha]. O

In the sequel we rename in ([7.31)-(7.34]) the space variable y by .
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8 Change of the space variable
We consider a p-independent diffeomorphism of the torus T of the form
y=1x+ a(zx) with inverse z=y+a(y) (8.1)

where « is a C*°(T,) real valued function, independent of ¢, satistying ||a, ||~ < 1/2. We also make the
following ansatz on « that will be verified when we choose it in Section see formula : the function
ais odd(z) and a = a(\) = a(N,ig(N)), X € R¥T! is kg times differentiable with respect to the parameter
A € RV with 0¥ € C>°(T) for any k € NV, |k| < ko, and it satisfies the estimate

el Ss ey (14 11T0[1537) » Vs > 50, [[Araalls, Sey &7 M| Ar2ills, 4o (8.2)
for some o = o(ko,7,v) > 0. By (8.2) and Lemma arguing as in the proof of Lemma one gets
&5 Soev (14 119001527) , Vs > 50, [[Aradtls, Soy &7 M| Arills, 4o (8.3)

for some o = o(ko, T,v) > 0. Furthermore, the function &(y) is odd(y).
We conjugate the operator £1 in ([7.31) by the composition operator

(Au)(p, @) = ulp, o+ al2), (ATu)(p,y) = ulp,y+&(y)). (8.4)

By ([7.31)), using that the operator A is p-independent, recalling expansion (7.41]) and arguing as in ([7.42))
to compute the conjugation A~ ( — a20, HT3) A, one has

Lo= A LiA=w-0, + (34 O+ RQ) , (8.5)
6
where ay4, as, ag are the functions
as(p,y) = (A a1)(p,y) = ar(p,y + a(y)) , (8.6)
as(p,y) = (A7 (a2(1 + @2))) (0, y) = {az(p, 2) (1 + @w(2))Homytacw)
ag(p,y) = (A" a3)(p,y) = az(p,y + a(y))
and R, is the operator in OPS™*° given by
Ry = —as0yH[A ' Op(ry)A — Op(rn)] — asdy (A" "HA - H)(A™'ThA) + AR, A. (8.9)

Lemma 8.1. There exists a constant o = o(ko,T,v) > 0 such that, if holds with po > o, then the
following holds: the operators A € {A*' —1d, (A*! —1d)*} are even and reversibility preserving and satisfy

_ ko, ko, ko,
[AR[E So ey (I1BN5R 1 + 1 Toll STl Ty 12) s Vs > 50,

(8.10)
1(A12A)Rllsy Sy e I A12illsy 4o 1l 5141 -
The real valued functions a4, as, ag in — satisfy
ag = odd(p)even(y), as, ag = even(p)even(y) , (8.11)
and .
laallo fas = 107 las = 117 0 o971+ [301543) 1)

[A12a4lls, , [[Arzas]ls, , | Ar2as]ls, Ssi e | Ar2illsy 4o -
The remainder Ro defined in is an even and reversible pseudo-differential operator in OPS~™°°. More-
over, for any m,a > 0, and assuming with o +m + a < pg, the following estimates hold:
ko, — ~ 11ko,
|R2 “707%25,0[ §m587a 57 1(1 + ‘|J0||si;+m+a) 9 VS Z S0

" 170l (8.13)
|A12R2"—m,sl,a S,m,sl,a ey 1||A123||31+0+m+a .
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Proof. The transformations A*! —1Id, (A*! —1d)* are even and reversibility preserving because a and ¢ are
odd functions. Estimate (8.10) can be proved by using (8.2)), (8.3), arguing as in the proof of Lemma
Estimate (8.12)) follows by definitions —, by estimates (8.2), (8.3)), (8.10)), (7.35), (7.37), and by
ma

applying Lem Estimates (8.13]) of the remainder Ro follow by using the same arguments we used in
Lemma to get estimates ((7.36), (7.38]) for the remainder R;. O

In the sequel we rename in 1) the space variable y by x.

9 Symmetrization of the order 1/2

The aim of this section is to conjugate the operator Lo defined in to a new operator £4 in which the
highest order derivatives appear in the off-diagonal entries with the same order and opposite coefficients
(see (9.10)-(9.14)). In the complex variables (u, @) that we will introduce in Section [L0} this amounts to the
symmetrization of the linear operator at the highest order, see —.

We first conjugate Lo by the real, even and reversibility preserving transformation

Ay 0
= 1
MQ < 0 A;1> ’ (9 )

where Ay is the Fourier multiplier, acting on the periodic functions,

1

1 1
Awi=mo+ D3T3,  withinverse Ayl =mo+ |D| 3T} 7, (9.2)
with Ty = tanh(h|D|) and 7y defined in (2.33)). The conjugated operator is

A tashy AL (—as0.HTL + Ro)AY A; Bs
Mgy 0 =w-0,+ o 0) (9.3)

Ly := M3 " LoMy=w -0, + (
We develop the operators in (9.3) up to order —1/2. First we write
Az = A;1a4Ah =as+Ra, where Ra, = [A;l,a4]Ah eops~! (9.4)

by Lemma Using that |D|™mg = mo| D|™ = 0 for any m € R and that 72 = my on the periodic functions,
one has

Oy = Anaghn = agA2 + [An, ag)An = ag(mo + [D|AT)2 + [An, ag) A
= a6|D|%Th% + 7o + Re, where Re, = (ag — 1)mo + [An, a6]An - (9.5)
Using that |D| = HO,, and |D|mp = 0 on the periodic functions, we write Bs in as
Bs = Ay (—a50, HTy + Ro)Ay Y = —as|D|TuAy % — [Ay Y, as]|DITuly ' + Ay "RoAL!
= —as|D|Ta(mo + DT %) = (A7 as]| DITRAT ! + Ay T RoAS!
= —a5|D|%Té +Rp,  where  Rp, = —[A; ' as]|D|Tal; ' + Ay "RaA: . (9.6)

Lemma 9.1. The operators Ay € OPSi, AL e OPS~% and Ras, RB,, Re, € OPS~ 3. Furthermore,
there exists o(ko,T,v) > 0 such that for any o > 0, assuming with py > o + a, then for all s > s,

ko, 1yko,
| An] ;,S:ya A, IH_U;&OL Sa 1, (9.7)
ko, _ ko, _ .
IRI™, o Seo ey (1900557 1a) » 1812RI 5 10 Ssra €77 [A12ills o4a (9.8)

for all R € {Ra,,Rp,,Rcy}- The operator Lg in (9.3)) is real, even and reversible.
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Proof. The lemma follows by the definitions of Ra,, Rp,, Rc, in (9.4), , (19.5), by Lemmata and
2.1 recalling (2:39) and using (8.12), (8.13). O

Consider now a transformation Mjs of the form

0 _ -0
Ms = (g 1), Mglz(po 1), (9.9)

where p(p, z) is a real-valued periodic function, with p — 1 small (see (9.14])). The conjugated operator is

Loi= M LoMs =w -0, + (pl(w . agogi; p~1Asp P;Bs> w0, (zéz %4) (9.10)
where, recalling , , , one has

Ay =4+ Ra,, a4:=ay +p*1(w ~0pp), Ra, = pilRAsp (9.11)

Bi=—p 'as|D*T? + Rp,, Ry, =p '‘Ra, (9.12)

Cy = agplDIPTy + 70+ Rey s Re, = asl| DI pl + mo(p — 1) + Regp (9.13)

and therefore R 4,, Rp,, Rc, € OPS™%. The coefficients of the highest order term in By in (9.12) and C,
in (9.13) are opposite if agp = p~tas. Therefore we fix the real valued function

as

pi= ao , agp=p las = \asag =: az. (9.14)
6

Lemma 9.2. There exists o := o(7,v, ko) > 0 such that for any a > 0, assuming with puy > o+a, then
for any s > sg the following holds. The transformation Ms defined in is real, even and reversibility
preserving and satisfies

IME = TdIG%% o e (14 1130]1897) - (9.15)
The real valued functions a4, a7 defined in (9.11)), (9.14) satisfy
a4 = odd(p)even(z), a7 = even(p)even(x), (9.16)
and, for any s > s,
ldall7, llaz = 1[50 S ey (1 + 1190/1527) - (9.17)
The remainders Ra,, Rp,, Rc, € OPS™2 defined in (9.11)-(0.13) satisfy
RIS, S e (14 1B0l20a) . R € (RapRa,Re). (9.18)
Let i1,19 be given embedded tori. Then
|A12M5 ™ o,61,0 Sor €7 A2l 40 » (9.19)
[Ar2aa]s,, [Arzar]ls, <s, 57_1||A12i‘|51+0 ) (9.20)
”Al?Rl—%,sl,a 53170 5771”A12Z‘”31+0+a ’ R € {RA47 RB47 RC4} . (921)

The operator L4 in (9.10)) is real, even and reversible.

Proof. By (8.11)), the functions a5, ag are even(yp)even(z), and therefore p is even(p)even(z). Moreover, since
a4 is odd(p)even(x), we deduce (9.16]). Since p is even(p)even(z), the transformation Msj is real, even and
reversibility preserving.

By definition (9.14), Lemma [2.6] the interpolation estimate (2.10) and applying estimates (8.12) on as

and ag, one gets that p satisfies the estimates
Pt = 1157 So ey A+ 190l5%7) s 18120 sy Ser &7 [ Auzills 40 (9.22)

for some o0 = o(7,v,kg) > 0. Hence estimates (9.15)), (9.19) for ./\/13jEl follow by definition , using
estimates (2.39)), (9.22)). Estimates (9.17)), (9.20) for a4, ar follow by definitions (9.11)), (9.14) and applying
estimates (8.12) on a4, a5 and ag, estimates ((9.22) on p, Lemma and the interpolation estimate (2.10]).

Estimates (9.18), (9.21)) follow by definitions (9.11)-(9.13), estimate (2.39), Lemmata and bounds
0

(8-12) on a4, as,ag, (9.22)) on p, and Lemma [9.1
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10 Symmetrization of the lower orders

To symmetrize the linear operator £4 in (9.10), with p fixed in (9.14), at lower orders, it is convenient
to introduce the complex coordinates (u, ) := C~1(n,1), with C defined in (2.60)), namely u = n + i1,
% =1 — i). In these complex coordinates the linear operator £4 becomes, using (2.61)) and (9.14)),

1 1
L5 := C_1£4C:w-&p+ia7\D\5Th2Z+a8H2+iH0+7>5+Q5, ag = —, (101)
where the real valued functions a7, a4 are defined in (9.14)), (9.11) and satisfy (9.16)),
L 1 0 L 1 ™0 ) L 1 0
se (0 0) mel(m ™) ne(t ). w02
7o is defined in ([2.33)), and
P 0 0
7)512(5 P)’ Q53=( Q5>7
0 Fs @ 0 (10.3)
1 . 1 .
5 = i{RAzL +1(RC4 - RB4)} > Qs :=ag + i{RAAL + 1(7304 +RB4)} :

By the estimates of Lemma [9.2] we have

laz = 1157 S ev 1+ [1301557) s NAwarlls, So v M| A12i]l sy 40 (10.4)
lasll ¥ S ey (L4 130ll557) » [1Ar2as]ls, Ssv v Ml Ar2ills, 4o (10.5)
|Ps \|]i°,’vs oo 1951657 S e (1 + 117001555 40) (10.6)
[A12P51_1 1 05 1812950510 Ssr.0 €77 1 Ar2ills 400 - (10.7)

Now we define inductively a finite number of transformations to remove all the terms of orders > —M from
the off-diagonal operator Qs. The constant M will be fixed in ((14.8)).

Let E(O) = L5, P, 0) = P5 and Q(O) := 5. In the rest of the section we prove the following inductive
claim:

e SYMMETRIZATION OF ﬁgo) IN DECREASING ORDERS. For m > 0, there is a real, even and reversible
operator of the form

1
£ = w0, +iar|D|PTES + agly + illy + P{™ 4 Q0™ (10.8)
where ) )
m) _ [ B5 0 my _ [ 0 5
Ps =m) | L = | sm) ;
0 P . 0 (10.9)

P™ = Op(pm) € OPS™ %, Q'™ = Op(gm) € OPS™%

For any o € N, assuming with g > R4(m, a) + o, where the increasing constants R4(m, a) are
defined inductively by

Ri0,0) =, Nalm+1,0) = Ra(mya+ 1)+ 2 + 20 +4, (10.10)

we have
P m)ko,y Q(m) , < 11417 |k0”y (10.11
“ 5 H_, ,s,00° " 5 I_%as a Sm,s,a €Y ( || 0 |s+N4(m,a)+U) 4 : )

1A0P 1 g o 181200 |2 60 Smsva €7 1 A121lls, 0, (mc) o - (10.12)
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For m > 1, there exist real, even, reversibility preserving, invertible maps ®,,_; of the form

0 wm—l(ﬁaaan))
g =l + Uy, Upgi= [ , 10.13
vk = (o) 0 (10-13)
with ¥m_1(p, 2, D) in OPS~™5" =% such that
=t cm Ve, (10.14)

Initialization. The real, even and reversible operator Ego) = L5 in (10.1) satisfies the assumptions ((10.8])-
(10.12) for m = 0 by (10.6])-(10.7).
Inductive step. We conjugate Eém) in ((10.8) by a real operator of the form (see (10.13)

0 U (@, x, D)) mo1

(I)’H'L = HQ + \Ijnm qj?n = (1/) ( ) ¢m(§07x,D) = Op(wnt) €eOPS 272, (1015)

Ym(p, 2, D) 0
We compute
L0, = B, (w - O, +iar| DTS + agly + il + PI™)
+ [iar| DIFTE S + agly + iy + PS™, W] + (w - 0, W) + Q™ + Q™. (10.16)
In the next lemma we choose ¥,, to decrease the order of the off-diagonal operator Qém).

Lemma 10.1. Let
X(§)gm (o, 2, )

- 1 1 if ‘£| > %7 _m _ 1
Um(p,2,8) := 2ia7(p,x)|€|2 tanh? (h|€]) by € 8773 (10.17)
0 if €< 3,
where the cut-off function x is defined in (2.16)). Then the operator V,, in (10.15)) solves
i[ar| DPTES, W] + Q™ = Q. (10.18)
where ( )
O qw 807 'Tv D —_m_q
Qm:=< " . Qy, €ST2 . 10.19
" @ (e, D) v (10.19)

Moreover, there exists o(ko,7,v) > 0 such that, for any a > 0, if holds with g > Ng(m,a+ 1) + o +
T +o+4, then
ko, - ~ ko,
|96, (02 D281y 0 Ssia €7 LA IT0l50R, sty 2 ratora) - (10.20)

The map ¥, is real, even, reversibility preserving and

ko, - ~ ko,
I¢7n(@axa D)I_O%’Y_l757a 57”737& ey 1(1 =+ ||J0||sig+x4(m7a)) ) (10'21)
|A12"/Jm(907337 D)‘lf%fé,sl,a 5771,51,04 5'7_1|‘A12Z’||51+0+N4(m,a) ) (10‘22)
|A12me(% %D)H—%—le,a fﬂnm,a 57_1HAlﬂ||51+N4(m,a+1)+%+a+o+4 . (10~23)

Proof. We first note that in (10.17) the denominator az|¢|z tanh(h|€])2 > ¢[¢|2 with ¢ > 0 for all |¢] > 1/3,
since ay —1 = O(ey™ 1) by (9.17) and . Thus the symbol 1), is well defined and estimate (10.21)) follows

by (10.17)), (2.46) and (10.11)), (9.17), Lemma . Recalling the definition ((10.2)) of ¥, the vector

1
valued commutator ijar| D[z T2, ¥,,] is

. 11 0 A . 1.1 1,1
ila7|DI2 T2 %, ¥, = (A 0) , A :=i(a7| D> ;2 Op(¢n,) + Op(vm)ar|D|2T;7) . (10.24)
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By (10.24), in order to solve with a remainder Qy, € OPS~% ! as in (10.19), we have to solve
ia7| D3 T Op(¢m) + 10D (tm)az| D3 Ty + Op(gm) = Op(gy,, ) € OPS™ %71, (10.25)
By , applied with N =1, A = a7|D|%Th%7 B = Op(¥.,), and , we have the expansion
az| DI T3 Op () + Op(tm)ar| DA T3 = Op(207¢|* tanh? (b[¢]) ) + Op(ay,,) (10.26)

where, using that azx(€)[¢]2 tanh? (hx(€)[€]) € S% and ¢, € S~% ~ =, the symbol

Gy, = 1,45 + 71,54 + 2a7[€]® (tanh? (hx(€)[€])x(€) — tanh? (h[¢])), € STF L, (10.27)
recalling that 1 — x(§) € S~ by . The symbol ), in is the solution of
2iar|€|? tanh? (B[¢]) ¢, + X(E)am =0, (10.28)
and therefore, by —, the remainder ¢, in is
G = 1y, + (1= X(E))gm € S™F 7. (10.29)

This proves (10.18))-(10.19). We now prove (10.20). We first estimate (10.27). By (2.45) (applied with N = 1,

A= a7|D\%Th§, B = Op(¢m), m =1/2, m = =% — 3 and also by inverting the role of A and B), and the

. o, _ ~ 11kos
estimates (10.21)), (10.4), we have |qy,, (cp,x,D)"_"%'y_l,&a Semss,a €Y 1(1+||J0||30+3+N4(m7a+1)+%+a+4)
and the estimate (10.20)) for gy,, (¢, z, D) follows by (10.29) using (10.11]), recalling that 1 —x(§) € S~ and

by applying (2.46) with g(D) = 1 — x(D) and A = gu(p,z, D). Bounds (10.22)-(10.23) follow by similar
arguments and by a repeated use of the triangular inequality.

Finally, the map V,,, defined by (10.15)), (10.17) is real, even and reversibility preserving because ng)

is real, even, reversible and a7 is even(p)even(zx) (see (9.16)). O
For ey~! small enough, by (10.21)) and the operator ®,, is invertible, and, by Lemma
- ko, ko, - ko,
“‘I)ml = O,Oij Ss,a \|‘I’m||o?s7a Ss,a gy ! (1 + ||30H53_;/+N4(m7a)) . (10~30)

By (10.16) and (|10.18]), the conjugated operator is

LoD = LM, = w0, + iag DIFTE S + asly + illo + P + Py (10.31)
where Py, 1 := &, 'Pr . and
Pry = Qo + [0, U] + [agla + PS™ 0, ] + (- 0,0,,) + QT ,,,. (10.32)

Thus (10.14)) at order m + 1 is proved. Note that 75m+1 and IIy are the only operators in (10.31)) containing
off-diagonal terms.

Lemma 10.2. The operator 75m+1 € OPS—%-3. Furthermore, for any a > 0, assuming with
o > o+ Ny(m + 1, ), the following estimates hold:

Pty o e 217 L+ 1300 )+ V5 2 50, (10.33)
|A12Prsl—m 1 g0 Smsia €7 1A 120y 4oty (mo 1) (10.34)
where the constant Rq(m + 1, ) is defined in (10.10).
Proof. Use Lemma[10.1] (10.9), (10.15), (2.44), (I0.5), (10.11), (10.12), (2-38), (10.32), (10.30). m
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The operator Egmﬂ) in (10.31) has the same form ([10.8)) as Eém) With diagonal operators PémH) and

off-diagonal operators Q5m+1) like in |-D with 73(7"+1 Q(m+1 = +73m+1, satisfying (10.11)-(10.12)
at the step m + 1 thanks to (110.34)) and (10.11)-(10.12)) at the step m. This proves the inductive
claim. Applying it 2M times (the constant M will be fixed in (14.8)), we derive the following lemma.

Lemma 10.3. For any o > 0, assuming with po > N5(M, @) + o where the constant N5(M, ) =
N4 (2M, @) is defined recursively by (10.10), the following holds. The real, even, reversibility preserving,
invertible map

(}M = CI)OO...OCI)QM_;L (1035)
where ®,,, m=0,...,2M — 1, are defined in (10.15)), satisfies
+ ko, + ko, — ko,
157 — Talo%h > 1(@3 —12)"l6%0 Seonr &y (14 1301550 owyar0)) » - V8 > 50, (10.36)
|81287 0,50 > 1812(@31) 0,510 Sisr €7 1A 1216y 40405 (11,0) - (10.37)

The map ®yp; conjugates Ly to the real, even and reversible operator

11
Lg:= ‘I’X;[%‘PM =w- &p + iaﬂD\?ThQE + aglly + illg + Pg + Qs (1038)

where the functions a7, as are defined in (9.14)), , and

(P 0 _1 (0 Qs M
Ps := (O P6> € OPS 2, Qg:= (Qs 0) € OPS (10.39)
giwen by Pg := ’P5(2M), Qg := (2M n - - for m = 2M, satisfy

P |io:/s R 5% o Sarsa &7 (U 1300597 s ara)) ¥ > 50, (10.40)
[A12Ps] -1 50+ 1812Q6]-ar61.0 Shsra €7 1 Ar2ills, 1045 (M0 - (10.41)
Proof. We use (10.11)), (10.12), (10.15), (10.21), (2.44), (10-30) and Lemma [2.12] O

11 Reduction of the order 1/2

We have obtained the operator Lg in (10.38)), where Pg is in OPS~% and the off-diagonal term Qg is in

1
OPS~M_ The goal of this section is to reduce to constant coefficient the leading term iaz(p,z)|D|2 T2 %
To this end, we study how the operator L¢ transforms under the action of the flow ®(7) := ®(7, ¢)

0. P (1) = iA(o)®(1) - ,
{@(0) =1d, A(p) = B(p, )| D| (11.1)

where the function 3(p, z) is a real valued smooth function, which will be defined in . Since [(p, x)
is real valued, usual energy estimates imply that the flow ®(7, ) is a bounded operator on Sobolev spaces
satisfying tame estimates, see Section [2.7}

Let & := ®(y) := ®(1,). Note that ' = & (see Section [2.7) and

‘1)7'(() = Ty = (I)_ITFQ. (112)
We write the operator Lg in (|10.38) as

(0)

P

EG:w-8¢+iH0+ E 52((6))
Qs Po

where IIj is defined in (10.2)), Qg in (10.39)), and

P .= P (o, 2, D) := iaz|D|* T + as + Ps (11.3)
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with Py defined in (10.39)). Conjugating L¢ with the real operator

o= (‘(I)) g) (11.4)

we get, since @111 ® = I1o® by (11.2),

1P  @1Qsd
L7 =8 ' LeP=w 0, +P ' (w 0,®) +illg®+ | __;° 7,19(%)7 (11.5)
Q0 @ Pyd
Let us study the operator
Lii=w-0,+0 ' (w-8,0) + 2 'PVs. (11.6)

ANALYSIS OF THE TERM <I>*1P6(O)<I>. Recalling (|11.1)), the operator P(7, ) := ®(r, w)*lPéo)é(T, ) satisfies
the equation

8- P(r,0) = —i®(r, o) " [A(p), PV ®(7, ) .

Iterating this formula, and using the notation AdA(Lp)PéO) = [A(go), Péo)], we obtain the following Lie series
expansion of the conjugated operator

2M
_ . (_l)n n
O(L,0) " B, p) = P —ilA B+ Y AdY ) Py
n=2 ’

§ EOPME g ) A PO 0 (r ) dr (11.7)
The order M of the expansion will be fixed in (14.8]). We remark that (L1.7)) is an expansion in operators
with decreasing orders (and size) because each commutator with A(p) = 3(p, z)|D|2 gains 3 order (and it

has the size of 8). By (L1.1)) and (11.3]),

~i[4, 2] = [BIDI},az|D|}] + [BID|*, az DI} (T3 —1)] —i[B|DI*, as + Pe] (11.8)
Moreover, by , one has
[B81DI%, ar| DI*] = Op( = {BX(E) &I, ar(©)I¢1 } + 2 (Bx(©)Il} arx(©)lélh)) (11.9)

= i((0.9)a7  5(2:a7)) Op( 5x*(©)sian(€) + X(O)Iex(€)Ie]) + Op(e2(5x(O) €], arx(€)[e]*))
where the symbol r2(8x(6)|¢]2, arx(€)|¢]2) € S~ is defined according to (2:49). Therefore (11.8),

imply the expansion
—i[4, 7] = *% ((9uB)ar = B(Dsar))H + Ry oo (11.10)
where the remainder
Ry g0 = 1((0.8)a7 — (0207))Op (M(ODIx (€] + 5 ((€) — x(€))sizn(€) )
+Op(z2(BX(E)[€]F arx(©)I€]5) + [BID[}arl DI (T —10)] —i[BD[},as + Ps] (1111

is an operator of order —3 (because of the term [3|D]z, as)).
ANALYSIS OF THE TERM w - 0, + @ H{w - 9,8} = ®~ ' ow - 9, o ®. We argue as above, differentiating

O {@(1,0) P ow Dy 0 (7, 0) } = —i®(T,0) M [A(), w - D] B(T, )
= —i®(r,0)" ! (AdA(#,)w . ap)(I)(T, ).
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Therefore, by iteration, we get the Lie series expansion

( ) 2M+1

: —i !
@(1,@)710w~a¢0©(1,@) ZUJ'(()AP—IAdA(@)UJ'aP—F 2 A(Lp) 8 + Z (w)W'8¢
+ (P /1(1 —7)2MHP (1, ) (AL P w - 0,) 0(T, ) dr. (11.12)
(2M +1)! J, ’ Ale) ¢ ’
We compute the commutator
L)
Adapyw - 9y = [Alp),w - 8,] = —(w- 0,A(p)) = —(w-8,8(p,))|D|"/? (11.13)

and, using , ,
A%y pyw - 9y = [(w- D, A(9)), A9)] = [(w- 8,8)|D|7, B|D|?]
= Op( = i{(w- % B)X(O)IE1%, BX(©)I&I } +ra((w - DHx(O)IEI, Bx(©l)) -
According to the term with the Poisson bracket is
_1{ |§| (§)|§|%} = l(ﬁw : apﬁw —Bew- 8506) (%X(E)QSign(f) ( )85)(( )|€|>

and therefore

—1)2
( 21) Ad%y(pyw - 0p = = (Bw - 0pBs — Brw - 0,B)H + Raw.a, (11.14)

o

where
Rawa, = ,i (Bw -8,z — Baw - 0,3) Op((><(§)2 — x(§))sign(§) +2x(£)9ex (& )Iél)

— 50p (e2((w - a,0x(©)lelE, x©)lel)). (11.15)

is an operator in OPS~! (the first line of (11.15]) reduces to the zero operator when acting on the periodic
functions, because x? — y and d¢x vanish on Z).
Finally, by (11.12)), (11.13) and (11.14), we get

@(1,@)71 cw: aﬂ 0 (I)(le) =w- 399 + i(w ’ &,;ﬂ)((p,zﬂDﬁ + i(ﬁ(w . atpﬁﬂc) - ﬂx(w . apﬂ))H + RA,w-ag;
2M+1 .
- (n) Ady,) (@ 0,A(9)) (11.16)
n=3
_ﬂ ! _\2M+1 2M41(,
(2M—|—1)' 0 (1 T) (I)(Tv ) (AdA(Lp (W 3¢A(<p)))<l>(7,<p)d7.

This is an expansion in operators with decreasing orders (and size).
In conclusion, by (I1.6), (TT.7), (TT.3), (T1.10), (T1.16), the term of order |D|z in Ly in (T1.6) is

1 1

i((w-0,8) +arTy2)|D|= . (11.17)

Choice of the functions §(¢,z) and «a(z). We choose the function §(y, ) such that

1
(@ 0,8)(p.0) + anlin) = (an)ole) . ar)o(e)i= b [ anlipa)dip (11.18)
For all w € DC(+y, 7), the solution of (11.18) is the periodic function

6(4105 33) = _(w ' 8@)71(a7(§07x) - <a7>¢($)) ’ (1119)
which we extend to the whole parameter 5pace R¥ X [hy,ha] by setting Beyt := —(w - Gv)elt(cw (a7),) via

the operator (w - 9,)., defined in Lemma For simplicity we still denote by [ this extension.
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Lemma 11.1. The real valued function § defined in (L1.19)) is odd(p)even(x). Moreover there exists
o(ko,T,v) > 0 such that, if holds with pg > o, then (B satisfies the following estimates:

181157 So ey 2 (14 190l557) s llw- 08157 So ey (14 130]1557) (11.20)

||A12/6||81 Ser 5772”A12i”31+0a ”W ’ 3¢A12ﬂ\|s1 Se 5'771||A12i||31+0- (1121)

Proof. The function a7 is even(yp)even(x) (see (9.16)), and therefore, by (11.19), 5 is odd(yp)even(x). Esti-
mates ([11.20)-(11.21)) follow by (1T.18), (11.19), (10.4) and Lemma 2.5 O

By @D, €. € one has
a7 = \/asag = \/A_l(ag)A_l(ag)A—l(l +a,) = A_l(\/agag)A_l(\/l + agj).

We now choose the 2m-periodic function a(z) (introduced as a free parameter in (8.1)) so that

(ar)e(z) =my (11.22)
is independent of x, for some real constant my. This is equivalent to solve the equation
(Vaats o () /I F a (@) =)
whose solution is
2
1 dx ) -3 1 ( m%
m=(— [ ——— , a(z) =0, 771» 11.23
3 (277 /T (Vazaz )2 () (z) (Vazaz )2 (z) ( )

Lemma 11.2. The real valued function ax) defined in (11.23)) is odd(x) and (8.2]) holds. Moreover
my =17 Sey™h, [Amy| S ey A, - (11.24)

Proof. Since as, ag are even(z) by (7.34), the function a(x) defined in (11.23) is odd(z). Estimates ((11.24])
follow by the definition of my in (11.23) and (7.35), (7.37), (6.9), applying also Lemma and (2.10).
O

Similarly « satisfies (8.2]) by 1i7.35| , (737), (11.24), Lemmaand (2.10)).

By (11.18) and (11.22)) the term in (11.17) reduces to

1 1
i(w - 0,8(0,2) + ar(p, 2)Ty? ) |D|* = imy T |D|> + Ry (11.25)
where Rg is the OPS™* operator defined by

Ry = i(w- 9,0)(1d — T,7)| D . (11.26)

Finally, the operator Ly in (T1.6) is, in view of (T1.7)), (11.3), (T1.10), (T1.16)), (11.25)),

1
Ly =w- 0, +imy T |D|* + az + agH + Pr + T (11.27)

where ag is the real valued function
1 1
ag 1= ag(p,x) = _5(@: ar — B(9zar)) — Z(ﬁw‘“ 0B = Bw - 0pa) (11.28)

P: is the operator in OPS~'/2 given by

N )" g - ()" ©)
Pri= R, po) + Rawa, - > —Ady (w-0,A(0) + > —AdG ) P+ Po+Rs (11.29)
n=3 ’ n=2 '
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(the operators R, ,), Raw.0,,Ps,Rg are defined respectively in (11.11)), (11.15)), (10.39), (11.26))), and
e

T, .= _(—1)2M+2/1<1 —7)MH(7, )~ (Ad2M+1( 0,A(9))) @(T, ) dr
@M +1)! J, v A ’ (11.30)
(—i)2M+1 AM41 5(0) .
N (2M)'/o (1= 7)2M (7, 0) A PO (7, ) dr

(T stands for “tame remainders”, namely remainders satisfying tame estimates together with their deriva-
tives, see ([11.39)), without controlling their pseudo-differential structure). In conclusion, we have the following
lemma.

Lemma 11.3. Let 3(p,x) and a(z) be the functions defined in (11.19) and (11.23). Then L := &~ 1L;P
in (11.5) is the real, even and reversible operator

Lr=w-0,+imy T |D|> 3 +illy + (as + agH)lz + P7 + T7 (11.31)
where m1 is the real constant defined in (11.23)), ag, ag are the real valued functions in (10.1]), (11.28)),
as = odd(p)even(z) , ag = odd(p)odd(z), (11.32)
and Pz, T7 are the real operators
Pr = P 0 cO0PS 2, Tr = illp(® — 1) + 1 Qs® + Ir 0 (11.33)
0 P7 0 T?

where Py is defined in (11.29) and T7 in (11.30)).
Proof. Formula (11.31]) follows by (11.5) and (11.27). By Lemma the real function [ is odd(y)even(zx).
2.5

Thus, by Sections[2.5 and the flow map @ in (11.4)) is real, even and reversibility preserving and therefore
the conjugated operator L is real, even and reversible. Moreover the function ay is even(p)even(z) by -

and ag defined in is odd(yp)odd(z).

Note that formulas (11.28]) and (11.33]) (via (11.29)), (11.30)) define ag and P7, 77 on the whole parameter
space R” X [h1, ho] by means of the extended function 8 and the corresponding flow ®. Thus the right hand
side of defines an extended operator on R” X [h1,hy], which we still denote by L.

In the next lemma we provide some estimates on the operators P; and 77.

Lemma 11.4. There exists o(ko, T,v) > 0 such that, if holds with pg > o, then

lagllt>” <o ey 2L+ 11T0l352) s Vs =50, [Awzaglls, Sor &7 1 Ar2i]lss40 - (11.34)

For any s > sq there exists 6(s) > 0 small enough such that if ey=2 < §(s), then

I(@* = T)Alle, (@7 = )R] <o ey (IRl7 + 1301357 IR | (11.35)

1A12@ hlls, Sop € 2 Ar2lls 401541 - (11.36)

The pseudo-differential operator Pr defined in (11.33) is in OPS~z. Moreover for any M, > 0, there

exists a constant Ng(M, ) > 0 such that assuming (6.9) with po > Ne(M, ) + o, the following estimates
hold:

[Pl Satsia &7 (L+ 1300155, ary o) (11.37)

[A12Pr] -1 o0 SMsia €7 1 Av2ills, 1 (01,0040 - (11.38)

Let S > sg, Bo € N, and M > (ﬁo + ko). There exists a constant Ng(M, By) > 0 such that, assuming
with po > Ng(M, ﬁo) + o, for any my,my > 0, with my +my < M — £(Bo + ko), for any 3 € N”, |8] < f,
the operators (D >m18ﬁ77< ym2 (D >m18ﬁA12’T7< Ymz qre DFo-tame with tame constants satisfying

M pymr o7 (pyma (8) Sars €72 (L4 Tollsmgarpoy+o) »  ¥s0 <5< S (11.39)
(D)™ D120 Tr (D)™ || 2oy Sars €21 A2l sy 0y (11,60) 0 (11.40)
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Proof. Estimates 1» for ag defined in ) follow by (0. 4 , (11.20), (11.21), (2.10) and (6.9).
Proor orF (11.35))-(11.36]). It follows by applymg Proposition [2.37, Lemma [2.38} estimates (11.20)-(11.21)

and using formula o0y (<I> 1 —1d)h) = 3" s Ok, k2) N (OFT —1d) 8k2h for any k € N“*1 (k| < ko.
Proor oF (11.37))-(11.38)). First we prove (11.37)), estimatmg each term in the definition lj of P;. The
operator A = B(p,x)|D|z in (11.1)) satisfies, by (2.46]) and (11.20)),

JAIT 7, S 18157 Saa e 2 (14 13001557) - (11.41)

The operator Péo) in (T1.3) satisfies, by (10.4), (10.5)), (2.46)), (10.40)),

0) ko, ko,
|P6( ) 7057 ,SMsal'i' ||JO||51§5(M7Q)+U~ (1142)

The estimate of the term — ZQMH 1,)n Ady ! ( 0,A(p)) +Zij\:/[2 C (w)P in (I1.29) then follows

by (11.41)), (11.42)) and by applying Lemma and the estimate (D The term Rg € OPS™*° defined

L 1
in (11.26]) can be estimated by (2.46) (applied with A :=w - 9,0, g(D) := (T2 —1d)|D|z2 € OPS~>°) and
using (11.20)), (7.41). The estimate of the terms RA P, Rawa, in (11.29) follows by their definition given
in (TT.11)), (I1. 15| and by estimates (10.4), (10.5)), 1|10.40| , (IT.20), (2.10), (2.46), and Lemmata [2.10]
Since Pg satisﬁes 10 40)), estimate 1i is proved. Estimate 11.38)) can be proved by similar arguments.
PRrROOF OF , (11.40 4 . We estimate the term ®~'Qs® 11.33). For any k € N*T1 3 € NV, |k| < ko,
18] < Bo, A = (w h), one has

KoN@TQe®) = > C(Br,Ba,Bs k1, ko, k) (05100 1) (32 0F Qo) (05202 @) . (11.43)

B1+P2+B3=p
ki+ko+ks=k

For any my,mo > 0 satisfying my +mo < M — %(ﬂo + ko), we have to provide an estimate for the operator

(D)™ (95102 @~ 1) (05202 Q6) (052 022 ®) (D)™ . (11.44)
We write
[T = ((Dy™ oo @~ (D)~ 3 m) (11.45)
o (D)™ F g g go(p) HE ) (11.46)
° ((D>*m2*|ﬁ3|;|k3‘ a’;3853<1><D>m2) . (11.47)

The terms ([11.45])-(11.47)) can be estimated separately To estimate the terms (11.45)) and (11.47), we apply

2.86)) of Proposition [2.37 of Lemma %@LD 11.21 . The pseudo-differential operator in
11.46)) is estimated in | ||0,S,0 norm by using (2.40)), (2. 44, 24 |}, bounds , on Qg, and the
fact that wllzw +mq+ M +mo — M < 0. Then its action on Sobolev functions is deduced by Lemma
As a consequence, each operator in , and hence the whole operator 7 satisfies
The estimates of the terms in can be done arguing similarly, using also the estimates (2.51)),

The term (D >m18 Io(® — I3)(D)™2 can be estimated by applying Lemma (with
— ]12, B ) and (T1.35), (1120), (11.21). 0

12 Reduction of the lower orders

In this section we complete the reduction of the operator £ in (11.31)) to constant coefficients, up to a
regularizing remainder of order |D|=M. We write

Li 0Y .
57:<07 L7)+1n0+77, (12.1)
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where | )
Ly =w 0, +imyTy? |D|? +as + agH + Pr, (12.2)

the real valued functions ag,ag are introduced in (10.1)), (11.28)), satisfy (11.32)), and the operator P; €
OPS~% in (11.29) is even and reversible. We first conjugate the operator L.
12.1 Reduction of the order 0

In this subsection we reduce to constant coefficients the term ag + a9 of order zero of L; in . We
begin with removing the dependence of ag + agH on ¢. It turns out that, since ag, ag are odd functions in
© by , thus with zero average, this step removes completely the terms of order zero. Consider the
transformation

WO = Id_"fO((va) +go(<p,x)7'(, (123)

where fy, go are real valued functions to be determined. Since H? = —Id + my on the periodic functions
where 7 is defined in (2.33]), one has

L7WO = WO (w . (94p —+ 1m%Th§|D|%) + (w . awfo + as —+ asfo — aggo)
+ (w - Dpgo + ag + asgo + ag fo)H + Py (12.4)
where P; € OPS™% is the operator
9 1
Pr = ag[H, fo] + ao[H, go]H + [imy T;2 D[, Wo) + PrW, + aggomo - (12.5)

In order to eliminate the zero order terms in ([12.4)) we choose the functions fy, go such that

{w'3¢f0+a8+a8f0—a990 =0 (12.6)
w - 0pg0 + ag + aggo +agfo =0.
Writing zp = 1 + fo + igg, the real system is equivalent to the complex scalar equation
w - 0pz0 + (ag +1ag)zo = 0. (12.7)
Since ag, ag are odd functions in ¢, we choose, for all w € DC(+y, 7), the periodic function
20 :=exp(po), po = —(w-0,) " (as +iay), (12.8)
which solves . Thus the real functions
fo :=Re(zp) — 1 = exp(—(w - 9,) tag) cos((w - ) tag) — 1, (12.9)
go :=Im(zp) = —exp(—(w - 0y) 'ag) sin((w - 9,) " ay)
solve , and, for w € DC(, 7), equation reduces to
LiWo = Wo(w- 8, +imy T [D|?) + Pr, Py e OPS™3. (12.10)

We extend the function pp in (12-8) to the whole parameter space R” x [h1,hy] by using (w-9,,)_,; introduced
in Lemma Thus the functions zg, fo, go in (12.8)), (12.9) are defined on R” x [hy,hs] as well.

Lemma 12.1. The real valued functions fo, go in (12.9) satisfy

fo = even(p)even(z), go = even(y)odd(x). (12.11)
Moreover, there exists o(ko,T,v) > 0 such that, if holds with po > o, then
_ ~ ko, _ .
1ol lgolls*” Ss ey (14 1Tollssa) s Ar2follsys [1A1290]lsy Ssv €71 Ar2ilsy 4o - (12.12)

The operator Wy defined in (12.3)) is even, reversibility preserving, invertible and for any o > 0, assuming
with py > o+ o, the following estimates hold:
W5 = 1d[6%7 Sea &7 (14 [130lls3040) s 120205

0,s,a ~oS,x

|0,S17a Ss1,a E'}/_3||A127:||31+oz+0 . (12.13)
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Proof. The parities in (12.11)) follow by (12.9) and (11.32). Therefore Wy in 12.3) is even and reversibility
preserving. Estimates (12.12) follow by (12.9), (10.5), (11.34), (2.10), @2.17), (2.19). The operator W,

defined in ([12.3)) is invertible by Lemma [2.13] ((12.12)), , for ey~ small enough. Estimates (12.13]) then
follow by (12.12)), using (2.39), (2.46) and Lemma [2.13] O

For w € DC(v, 7), by (12.10) we obtain the even and reversible operator
1) . _ -1 . ; -ITsIE (1) 1) _p-1p
Ly =Wy LWy =w-0, + 1m%Th2 |D|z + P; 7, P =Wy Py, (12.14)

where P, is the operator in OPS ~2 defined in (112.5)).
Since the functions fy, go are defined on R” x [hy, hy], the operator P; in ((12.5)) is defined on R” x [hy, hs],

1
and w8, +im; 7,7 [D|% + P{V in ([2.14) is an extension of L") to R” x [y, ho], still denoted L.

Lemma 12.2. For any M,a > 0, there exists a constant N;l)(M, «) > 0 such that if holds with
o > Ngl)(M, a), the remainder P7(1) € OPS_%, defined in (12.14), satisfies
1PV S ey P+ 1300500 )

~lsa ™ sHR{Y (M) (12.15)

1 _ .
180 P01y oy 0 Stisria &7 A2l 4 (11,0

Proof. Estimates (12.15) follow by the definition of P! given in (12.14), by estimates (12.12), (12.13),

[{124), (11.34), (11.37), ((1.33), by applying [@.39), (2.44), [2.46), .50) and using also Lemma
1 1

The fact that P7(1) has size ey~ is due to the term [im%Th2|D|%,WO] = [im%Th2|D|%7WO — 1d], because

mi =1+ O(ey™1) and Wy — Id = O(ey™3). O

We underline that the operator L;l) in (12.14) does not contain terms of order zero.

12.2 Reduction at negative orders

In this subsection we define inductively a finite number of transformations to the aim of reducing to constant

coefficients all the symbols of orders > —M of the operator L(71) in (12.14)). The constant M will be fixed in
(14.8). In the rest of the section we prove the following inductive claim:

¢ Diagonalization of L;l) in decreasing orders. For any m € {1,...,2M}, we have an even and
reversible operator of the form

L = w0, + An(D)+ P™, P™ copPs% (12.16)
where | ) )
Am(D) = imy T2 |D|* +1,,(D),  rm(D) € OPS™E (12.17)

The operator r,,,(D) is an even and reversible Fourier multiplier, independent of (¢,z). Also the
)

m . .
operator P7( is even and reversible.

For any M, > 0, there exists a constant Ngm)(M7 a) > 0 (depending also on T, ko, V) such that, if

holds with s > XY™ (M, @), then the following estimates hold:

lrm(D)IEY, , Sara €7 1A rm(D)| g oy 0 Sara e " VNALI om0 (12.18)

-3

(m) ko, y < —(m+2) ko,y
12212 o SMusa €Y (1+ ||30||S+N§m>(M’a)) , (12.19)
1A P™ |- 510 SMsia 67_(m+2)HA121'||51+N§’">(M,a) : (12.20)
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1
Note that by (12.17), using (I1.24), (12.18) and (2.40) (applied for g(D) = T;?|D|z) one gets

ko, —(m .
IAm(D)ET, Sara s 18128 (D) 0 Satia &7 D[ Braill, o (rp - (12.21)

For m > 2 there exist real, even, reversibility preserving, invertible maps w0 anlll of the form

m—1

m—1

W1§$11 = Id+w£2)_1(gp,x,D) with wgr?)—l(%l‘,f) €S,

e (12.22)
W =Tt wl) (@,D)  with  wl) (r,¢) € ST
such that, for all w € DC(~, 1),
m 1 - 0 — m—1 0 1
18 = (Wi ) ) w0 wll (12.23)

Initialization. For m = 1, the even and reversible operator Lgl) in (12.14) has the form ((12.16))-(12.17)
with
1
ri(D) =0, Ay(D)=im,T;?|D|>. (12.24)

Since A1 (D) is even and reversible, by difference, the operator P7(1) is even and reversible as well. At m =1,
estimate ((12.18) is trivial and (12.19)-(12.20) are (12.15]).

Inductive step. In the next two subsections, we prove the above inductive claim, see (12.60))-(12.62)) and
Lemma We perform this reduction in two steps:

1. First we look for a transformation W,S? ) to remove the dependence on ¢ of the terms of order —m/2
of the operator L;m) in (12.16)), see (12.27)). The resulting conjugated operator is Lgm’l) in (12.34)).

2. Then we look for a transformation W,Sll ) to remove the dependence on z of the terms of order —m/2
of the operator Lgm’l) in (12.34), see (12.48)) and (12.52).

12.2.1 Elimination of the dependence on ¢

In this subsection we eliminate the dependence on ¢ from the terms of order —m/2 in P;m) in (12.16]). We
conjugate the operator Lgm) in (12.16) by a transformation of the form (see ((12.22))

WO = 1d+ wQ(p,z,D), with w(p,z,&)eS5 %, (12.25)
which we shall fix in ((12.29)). We compute

LYW = WO (w - 0, + Am(D)) + (w - 3w (p, 2, D) + PI™)
+ [An (D), wQ (¢, 2, D)] + P™w (o, 2, D). (12.26)

Since A, (D) € OPS? and the operators P7(m)7 wgl))(go,x,D) are in OPS~ %, with m > 1, we have that
the commutator [Am(D),wﬁ,g)(go,x,D)] isin OPS~%~2 and P;m)wﬁg)(g), z,D)isin OPS™™ C OPS~ %%,
Thus the term of order —m/2 in is (w- &pw,(qg))(ap, z, D)+ P7(m).

Let pgm)(gz, z,€) € ST% be the symbol of P7(m). We look for w'l (i, z, ¢) such that

w- 0w (0,2, + py™ (p,2,€) = (p™) o (2, €) (12.27)
where
(™) (x,€) 1= - / " (0, 2,€) dp . (12.28)
TS S Gy Jp T
For all w € DC(~, 7), we choose the solution of ((12.27) given by the periodic function
wfl)(p.2.8) = (- 9) ()20 ~ 0 (02.0)). (1229)
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We extend the symbol wﬁg) in (12.29) to the whole parameter space R” X [hy,hs] by using the extended
operator (w - O )e}lt introduced in Lemma [2.5l As a consequence, the operator Wf,? ) in (12.25)) is extended

© ()

accordingly. We still denote by wy, these extensions.

Lemma 12.3. The operator Wﬁi)) defined in ((12.25)), (12.29) is even and reversibility preserving. For any
a, M > 0 there exists a constant Ngm’l)(M, «) > 0 (depending also on ko, T,v), larger than the constant

Ngm)(M, a) appearing in (12.18)-(12.21) such that, if holds with poy > Ngn’l)(M, «), then for any
s > Sp

o, ko,
[Op(wi )25 o Sarsia €7~ (14 |3l °;<m,1>(M )) (12.30)
|A120p(wi))] - 510 S &7 T Arai]| ARED (M) (12.31)

As a consequence, the transformation W,(,?) defined in (12.25)), (12.29) is invertible and
0)y+1 ko, —(m+3 ~ 11kos
[V~ A1, Satia @™ (L 1300 0 ) (12.32)
1A (W) o.6.0 Srsra 57_(m+3)||A12i||sl+>z$""”(M,a) : (12.33)

Proof. We begin with proving (12.30). By (2.35)-(2.36) one has

m ko,
”Op(w'sr?))”]iojs a Sko, In[a)é] §g£< > 2 +ﬁ||a?w£;g)(7 5 '75)”50 ’Y'

By (12.29) and (2.17), for each ¢ € R one has

108w (o 15 Sk 7 H IO (B (1) = B (- )|

s+

where p is defined in with k+1 = ko. Hence |Op(wy )|k°$£S o Skow 7P m)|k°’7 stpo and (12.30)
follows by (12.19)). The other bounds are proved similarly, using the explicit formula (112.29), estimates

(12.19)-(12:20) and (2.17), (2-44), and Lemma 2.13] O

By (12.26) and (12.27) we get the even and reversible operator

LY = (WO LW = w8, + A (D) + ™) o (z, D) + P (12.34)
where

Py = <w$>>*1([Am<D> wi (¢,z, D)] + P wl) (¢, 2, D) — £3><so,z,D><p$’”)>@<x,D>) (12.35)

isin OPS~%~2, as we prove in Lemmabelow Thus the term of order —2 in ((12.34)) is (p (7m)>¢(:z:, D),
which does not depend on ¢ any more.

Lemma 12.4. The operators (p;m)M(a:,D) and P7(m’1) are even and reversible. The operator P7(m’1) in

([12.35) is in OPS~% 2. For any a,M > 0 there exists a constant N(m 2)(M a) > 0 (depending also on
ko, T,v), larger than the constant N(m 1)(M «) appearing in Lemma such that, if . holds with
Lo > N;m 2)(M, a), then for any s > sg
(m,1) 1ko,y < —(m+3) ko,
P12 St e 0 30 ) (12.36)

1812PY V| w1y Stsra &7 | Al (12.37)

1JrN’(?Tn,Z) (M,a) .
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Proof. Since P7(m) (z, D) is even and reversible by the inductive claim, its p-average (p;m)>@(x, D) defined
in is even and reversible as well. Since A,,(D) is reversible and Wy(,? ) is reversibility preserving we
obtain that P{"™" in is even and reversible.

Let us prove that P7(m’1) is in OPS~"% 2. Since A (D) € OPSz and the operators P7(m), wfg)(go,x, D)
are in OPS~%, with m > 1, we have that [Am(D),wS,?)(go,x, D)] is in OPS~%-% and P;m)wsg)(go,m, D) is
in OPS~™ C OPS~"% 2. Moreover also wg,g)(go,x, D)(pgm))¢(x, D) € OPS~™ C OPS~% 2, since m > 1.

Since (Wi?)~! is in OPS?, the remainder P\™") is in OPS~%~%. Bounds (12.36)-(12.37) follow by the
explicit expression in ((12.35)), Lemma [12.3] estimates (12.18])-(12.21)), and (2.41)), (2.44)), (2.50]). 0

12.2.2 Elimination of the dependence on x

In this subsection we eliminate the dependence on z from (pgm))#,(x, D), which is the only term of order

—m/2 in (12.34). To this aim we conjugate L(7m’1) in (12.34)) by a transformation of the form
WO :=1d + w(z, D), where w)(z,¢) e s %T3 (12.38)

is a p-independent symbol, which we shall fix in (12.50) (for m = 1) and (12.54) (for m > 2). We denote
the space average of the function <p(7m)>¢(x,£) defined in ([12.28) by

(P () /T B (@,8) do = e /T P e ) dpda. (12.39)

" or
By (12.34]), we compute

LW = WD (- 9+ A (D) + (8 e ) + [A(D)wld) (@, D)] + (0o, D) = (™). (D)

+ () (@, DYw (2, D) — wid) (2, D) (pY™) o (D) + P WD (12.40)
By formulas (2.42), (2.43) (with N = 1) and (2.47), (2.48),
B, DYwly) (2. D) = Op (™) (0, DY) (2,€)) 470 ot (@ D). (1241)
w2, D)(p{™)p (D) = Op <w£,§>(x,§)<p§m)><p,w(€)) 7,0 omy (2,D), (12.42)
(A (D), wD (z, D)] = op( — 10 Ay (€)DD) (z, g)) + 2o (Am, wD)(z, D) (12.43)

1

(pgy,L)>Ww%), Tw,&?,(pg'”))%x c §—m—3
C*>*(R,R) be a cut-off function satisfying

where r C S5z, rg(Am,w,(é))(cL‘,D) €S %l c S 51 Let yo €

X0(€) = xo(~€) VEER, xo(6) =0 VIS, xole) =1 Vie|2 L. (12.44)
By (12.40)-(1243), one has
LW = WD (- 0y 4+ An(D) + (0" )¢.0(D))
+ 0p( = 106 Am (2w (@,€) + x0(&) (™) o2, ©) = (1™ 0(©)) (12.45)
+x0(E) (™) o(,€) = (™) 5,06 WD) (2,€) ) (12.46)

+0p( (1= x0(©) (B () = B™)(€)) (1 + 0D (2,€)))
22y 0w, D) 7y (@ D) =1y oy (D) + PIUWLD L (1247)
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The terms containing 1 — xo(§) are in S™°°, by definition (12.44). The term in (12.45) is of order —% and
the term in (|12.46)) is of order —m + %, which equals —7 for m = 1, and is strictly less than — for m > 2.

Hence we split the two cases m =1 and m > 2.

First case: m =1. We look for wgé)(x,ﬁ) = wl (:,C €) such that
—0cA1 (&)l (@,€) +x0(©) (). €) = P10 (€) ) (1 + P ,€)) = 0. (12.48)
By (12.24) and recalling (2.31)), (2.16), for |£] > 4/5 one has A1 () = imy tanh%(h\§|)|§|%. Since, by (11.24]),

my| > 1/2 for ey~ small enough, we have

inf_[¢1%10¢A1(€)] = 6 > 0, (12.49)

le1> 3

where ¢ depends only on h;y. Using that <p(71)>¢ - (p§1)>%w has zero average in x, we choose the solution of

(112.48) given by the periodic function

1 X0(£)05 " (B5) o (2, €) = 97"} ()
w(2,6) = exp (912, 0) =1, g1(2,€) = 04, (0)
0 if €] <

Note that, by the definition of the cut-off function yg given in ([12.44]), recalling (12.24]), (12.49f) and applying
estimates m the Fourier multiplier X0(8) g o symbol in § 3 and satisfies

9 A1 (E)
xo(§) xo(§)
o)
| p(agAl(g)) agAl(g))
Therefore the function g (x, ) is a well-defined symbol in S°.
Second case: m > 2. We look for w%)(m, €) such that
— 10 A (§) o0y (2,€) + X0(©) (P71 €) — (™) .2(6)) = 0. (12.52)
Recalling (12.17)-(12.18) and (12.49), one has that

FIEN= 35 (12.50)

(SN

ko,y
Sa ey A2, - (12.51)

481,

SRR

250[

lnf €17 10eAm ()] > inf [£]2[0¢A1(€)] — sup €] |0¢rm(§)| = 6 — [rm(D)| 101
[€1> l€1>5 ¢€R

> 6§ — Cey~ M) > 579 (12.53)

for 6’)/ —(m+1) small enough. Since <p7 >¢(m & —(p $m)>w(§) has zero average in x, we choose the solution
of { given by the periodic function

Xo()3; 1 ((0F ™) (2,€) — (V™) .2(€))
wi(x,€) = 10 A (€)
0 if [¢] <

il = (12.54)

Gl Ol

By the definition of the cut-off function xo in (12.44]), recalling (12.24), (12.17), (12.53), and applying
estimates (2.40)), (11.24), (12.18)), the Fourier multiplier 5 XO(Q is a symbol in S2 and satisfies

m(€)
Xo(¢) ) ko V Xo(&) ~(mt1 :
.1, |a ( ) ata ey~ MDA . .2
[or <85A @)y Sra e |2u0p(5 0 G ), o Sare T g+ (12:55)
By (12.53), the function w (x €) is a well-defined symbol in S~ ERES
In both cases m = 1 and m > 2, we have eliminated the terms of order —2 from the right hand side of
1.
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Lemma 12.5. The operators W&I) defined in , form =1, and form > 2, are even
and reversibility preserving. For any M,a > 0 there exists a constant N(m’g)(M, a) > 0 (depending also
on ko, T,v), larger than the constant Ngm’z)(M, «) appearing in Lemma such that, if holds with
1o > N;m’?’)(M, a), then for any s > sg

ko, —(m ko,
0p(i) ™G 4y oo St &7 (L 1301 e ) (12.56)

|A120p(wW )| 15 0 SMsia 57_(m+3)||A12i||sl+N;vn»3>(M,a) : (12.57)

As a consequence, the transformation T/V,(n1 ) is invertible and

[WDYVE =TI Sarsia 27~ (L4 13000 ) ) (12.58)
1212(WE)  ossa Sarsra €™ "Dl oo 4y 0 - (12.59)

Proof. The lemma follows by the explicit expressions in (12.38]), (12.50), (12.54)), (12.39)), by estimates (2.40)),
}ll? 55;» O

[2:41), (2:46), Lemmata [2.10} 2-11] and estimates (12.19), (12.20), (12.51),

In conclusion, by (12.47), (12.48) and (12.52), we obtain the even and reversible operator

LYY = (WL DWD = w8, + Ay (D) + PV (12.60)
where )
Ams1(D) i= Am(D) + (" )g(D) = im, T DI* + s (D), (12.61)
Pms1(D) = 7 (D) + (Y™ (D)
and

PIH e (W) o (B wli)) (@, D) 7oy 0 (@, D) = oy (2, D) + P DD
+ X(m22)00 (x0(€) (™) (2,€) = (™ )0 ()P (,6) )
+0p((1 = xo(E) (™) (. €) = (B (€)) (1 + 0D (2.€)) ) } (12.62)
with X (,>2) equal to 1 if m > 2, and zero otherwise.

Lemma 12.6. The operators Apyy1(D), Tmi1(D), P7(m+1) are even and reversible. For any M,a > 0
there exists a constant N(erl)(M7 a) > 0 (depending also on ko, T,v), larger than the constant Ngm’s)(M, @)
appearing in Lemma such that, if holds with pg > N(7m+1)(M, «), then for any s > so

| ko,y v (m-i—2)7

<M5

EN-a

|7m+1(D) [Ar2rmy1 (D)1 4, 0 SM.a 57_(m+2)||A12i||51+ﬁgm+1>(M,a) (12.63)

m—+1) ko, —(m k
|y u_%? b S0 €1 (L 300 i ) (12.64)

AP |10 SMosra ey ") 18123l 4 yogmsn (12.65)

(M,e) *

Proof. Since the operator (pgm)><p(:z:,D) is even and reversible by Lemma the average (pi™ Voo (D)

defined in ((12.39)) is even and reversible as well (we use Remark [2.22)). Since 7, (D), A, (D) are even and
reversible by the inductive Claim, then also 7,,4+1(D), Apy1(D) defined in (12.61) are even and reversible.

Estimates ((12.63)- for rm+1(D) and P7(erl defined respectively in (12.61) and (12.62) follow by
the explicit expressions of 107 <P37 12.39) and wg in ((12.50) and (12.54)) (for m = 1 and m > 2

respectively), by applyl , 12 58)-(12.59), (12.36)-(12.37), (2.46), Lemmata u R.1q] and
2 2

the inductive estimates (

Thus, the proof of the inductive claims ((12.18])-(12.23) is complete.
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12.2.3 Conclusion of the reduction of L(71)

Composing all the previous transformations, we obtain the even and reversibility preserving map

W :=Wyo Wl(o) ° 1(1) o...0 W2(J?/)171 o WQ(Il\/)F1 , (12.66)

where Wy is defined in (12.3) and for m = 1,...,2M — 1, WT(,E), 7(n1) are defined in ([12.25)), (12.38)). The
order M will be fixed in (14.8). By (12.16]), (12.17), (12.23) at m = 2M, the operator L; in ([12.2) is

conjugated, for all w € DC(v, 7), to the even and reversible operator

Lg = LM =W L,W = w- 8, + Aaps (D) + Paons (12.67)

where Py := P7(2M) € OPS™™ and
Aoar(D) = imy T; [D|? + rapg (D), ron(D) € OPS™% (12.68)

Lemma 12.7. Assume with o > NgzM)(M, 0). Then, for any s > so, the following estimates hold:

|T2M(D)|]iogs,o <um 57—(2M+1) , ||A127“2M(D)|_%75170 <u 67_(2M+1)||A12i||sl+x§””(M,0) , (12.69)
ko, —2(M+1 ~ ko,
|P2M|—0]\;,s,0 rSM,s gy (M )(1 + ||JO||81;Z.(72NI)(M,O)) ) (1270)
|A12P2M|7M,51,0 SM,SI 57_2(M+1)||A12i||sl+}{(72M>(M,O) R (1271)
+1 koy <« —2(M+1) ~ 11koyy
[W=t —1d|o% 0 S €7 (1+ IIJoHHNgM)(M’O)) ; (12.72)
|A12Wi1|0’51,0 SM’sl 87_2(M+1)||A12i||sl+N(72M)(M,O) . (12,73)

Proof. Estimates (12.69), (12.70)), (12.71]) follow by (12.18)), (12.19)), (12.20)) applied for m = 2M. Estimates
12.72)-(12.73)) for the map W defined in (12.66)), and its inverse W1, follow by (12.13), (12.32), (12.33)),
12.58), (12.59)), applying the composition estimate (2.44)) (with m = m/ = a = 0). O

Since Agps(D) is even and reversible, we have that

Aopr(§),ram(§) €IR - and  Agpg(§) = Aanr (=€), rom(§) = ram (=€) (12.74)
In conclusion, we write the even and reversible operator Lg in ((12.67)) as

Lg :w-8¢+iD8+P2M (1275)

where Dg is the diagonal operator
Dy = —ifop (D) = diag;ez (1), pj :=myj|* tanh(hlj))2 + 7, 5= —iran (i), (12.76)
piri € Ry g =g, ry =1y, VjeZ, (12.77)

with r; € R satisfying, by (12.69),

sup 12 s |Fo7 Sy ey BMAD (12.78)
S

a1 _ .
sup [5]2 | Arar;| Sar ey ™ PMED||A |
j jez

81+N(72M)(M70)

and Py € OPS™ satisfies (12.70)-(12.71)).

From now on, we do not need to expand further the operators in decreasing orders and we will only
estimate the tame constants of the operators acting on periodic functions (see Definitions and [2.29)).

Remark 12.8. In view of Lemma the tame constants of Pyj; can be deduced by estimates —
of the pseudo-differential norm |Pops|—ar,s,o with @ = 0. The iterative reduction in decreasing orders
performed in the previous sections cannot be set in | |_ass,0 norms, because each step of the procedure
requires some derivatives of symbols with respect to £ (in the remainder of commutators, in the Poisson
brackets of symbols, and also in (12.54))), and a keeps track of the regularity of symbols with respect to
&. O
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12.3 Conjugation of L;

In the previous subsections [12.1 we have conjugated the operator L7 defined in (12.2)) to Lg in (12.67)),
whose symbol is constant in (¢, ), up to smoothing remainders of order —M. Now we conjugate the whole

operator L7 in (12.1)) by the real, even and reversibility preserving map

W e (V(‘)/ 12/) (12.79)

where W is defined in ). By m we obtain, for all w € DC(«y, 7), the real, even and reversible
operator

Lg: =W LW =w-0,+iDs +illy + Ts (12.80)
where Dy is the diagonal operator
_(Dg O

Dg := ( 0 _D8> , (12.81)

with Dg defined in (12.76]), and the remainder 7g is

P
Tg = iIW IGW —illg + WL TW + Popr, Pons = ( 20M 7PO ) (12.82)
2M

with Pops defined in (12.67). Note that 7g is defined on the whole parameter space R x [hj, ho]. Therefore
the operator in the right hand side in (12.80) is defined on R X [h,hs] as well. This defines the extended
operator Lg on R” x [hy, hs].

Lemma 12.9. For any M > 0, there exists a constant Xg(M) > 0 (depending also on T,v,kg) such that, if
holds with pg > Ng(M), then for any s > so

IWEL — 1A, W = Td18 Sars &MY (14 1300153, ) (12.83)
|ALWE 0,510, 1812 0,610 Sarsy €7 2D Aoy g (aa) - (12.84)

Let S > sg, Bg €N, and M > (ﬁo + ko). There exists a constant Rg(M, Bo) > 0 such that, assuming
with py > NG (M, ﬁo), for any my,my > 0, with my +my < M — (8o + ko), for any 8 € N”, |8] < fo, the
operators (D)™ (857Tg)(D)™2, <D)m1A12(a£7g)<D>m2 are Do -tame with tame constants satisfying

M pyma (98 73) Dy (8) Sh.s ey M (1 + (|30l oy (ar,50)) . VS0 <5< S (12.85)

(D)™ A12(95Ts) (D)™l (o) Saas €7 > MV Al sy s (21,50 - (12.86)

Proof. Estimates (12.83]), (12.84) follow by definition (12.79)), by estimates (12.72)), (12.73)) and using also

Lemma [2.12] to estimate the adjoint operator. Let us prove (the proof of (12.86) follows by similar
arguments). First we analyze the term W=1T,W. Let my,ms > 0, with m; +ms < M — %(ﬂo + ko) and
0 € N¥ with |8] < Bp. Arguing as in the proof of Lemma we have to analyze, for any (1, 82,03 € N
with 31 + 82 + s = 3, the operator (92 W~1)(022T7)(02:W). We write

(D)™ (9P W™ (02 T7) (82 W) (D)™
_ (<D>m18g1W<D>*ml) o (<D>m18£2T7<D>m2) o (<D>*m28£3W(D>m2) . (12.87)

For any m > 0, 8 € N”, |5] < f3y, by (2.68)), (2.40), (2.46]), (2.44), one has

+ —mik +1 ko, +1 ko,
m(D>’!n(8£Wi1)<D>*’NL(S) Ss ” <D>m(agw 1)<D> m|00370 55 ||3gW ! O?sjrm,o SS "W 1"0?5150—}-771,0

12.83). The estimate of (12.87) then follows by (|11.39))

and Lemma The tame estimate of (D)™ 0 Paps (D)™ follows by (2.68), (12.70), (12.71). The tame
estimate of the term (D)™ 9% (W~ IoW — Ily) (D)™ follows by Lemma@ (applied with A = W1

B =W) and ([2.63), (12.83), (12.84). O

ko,
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13 Conclusion: reduction of £, up to smoothing operators

By Sections [6{{12] for all A = (w,h) € DC(~,7) X [h1,hs] the real, even and reversible operator £ in is
conjugated to the real, even and reversible operator Lg defined in ((12.80]), namely

PLP =Ls=w-0,+iDs +illy + Ts, (13.1)
where P is the real, even and reversibility preserving map
P = ZBAMoM3CP W (13.2)

Moreover, as already noticed below , the operator Lg is defined on the whole parameter space R” x
[h1,ho].

Now we deduce a similar conjugation result for the projected linearized operator L, defined in ,
which acts on the normal subspace Hgﬁ, whose relation with £ is stated in . The operator L, is even
and reversible as stated in Lemma [6.1]

Let S := ST U (—ST) and Sp := SU {0}. We denote by Ils, the corresponding L2-orthogonal projection
and ITg; := Id — IIg,. We also denote Hg; := Ilg L*(T) and H$ := H*(T"*') N Hg. .

Lemma 13.1. (Restriction of the conjugation map to HSJ;) Let M > 0. There exists a constant
om > 0 (depending also on ko, T,v) such that, assuming (6.9) with po > o, the following holds: for any
s > s there exists a constant §(s) > 0 such that, if ey~ 2MF1) < §(s), then the operator

P =g, Pllg, (13.3)

is invertible and for each family of functions h := h()\) € H 7™ x H 7™ it satisfies

+17 1k ko, ~ 11ko, ko,
IPL RIS Sars RIs55, + 1T0llsa0 1Pl 5o ¥ o - (13.4)
1(A12PTAls Sarsy &7 2NV Avzillsy 4o 1Bllsy+1 - (13.5)

The operator P, is real, even and reversibility preserving. The operators P,P~1 also satisfy (13.4)), (13.5).
Proof. Applying (2.69) and (6.17), (7.28), (8.10), (9.7), (0-15), (2.60), (10.36), (11.35)), (12-83) we get
[ARIEY s IBlls,, + ITolls,, 12157, A€ {ZH, B AT My ME CF @y e WY

S+pnm s+unm sot+un )

for some pps > 0. Then by the definition (I3.2)) of P, by composition, one gets that ||PELh|kor <5
)5 | Tol|¥o2 ||h||%07  for some constant oy > 0 larger than ppy > 0, thus PE! satisfy (13.4). In

st+onm s+onm sotom
order to prove that P, is invertible, it is sufficient to prove that IIs,Pllg, is invertible, and argue as in the
proof of Lemma 9.4 in [I], or Section 8.1 of [§]. This follows by a perturbative argument, for ey=2(M+1)
small, using that Ilg, is a finite dimensional projector. The proof of ([13.5)) follows similarly by using (6.20)),
O

(7-30), (8.10), (9.19), (10.37), (11.36)), (12.84).

Finally, for all A = (w,h) € DC(~, 7) X [h1,hs], the operator L, defined in (5.26)) is conjugated to

[:J_ = 'Pllﬂw'PJ_ = HSLO£8HSLO + RM (136)

where
Ry = P 'Ig, (Pllg, Lsllg, — LIIs, Pllg, +cRPL) (13.7)
= P g Plls, 13, + P '35, J0. V. H(Ts()) s, PIIg, + P ' RP, (13.8)

is a finite dimensional operator. To prove — we first use and to get L,P1 = Hé‘o (L+
sR)Hé‘O”PHé-O, then we use to get Hé‘OCPHSfO = Hé‘UP,CgHé'O, and we also use the decomposition
I, =1Ilg, + Hg-o. To get , we use , , and we note that Ilg, w - 0, Hé‘o =0, Hé‘o w-0,1ls, =0,
and Il iDsI1E = 0, by (12:31) and ([2:70).
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Lemma 13.2. The operator Ry in has the finite dimensional form . Moreover, let S > sg and
> L(Bo+ko). Forany B € N, |B| < Sy, there exists a constant Ro(M, By) > 0 (depending also on ko, T,v)

such that, if holds with g > No(M, Bo), then for any mq,mg > 0, with my +mo < M — %(ﬁo + ko),

one has that the operators (D)™ 85 Ry (D)™, (D)™ 05 A12Rp (D)™ are DXo-tame with tame constants

k
M pyrs 08 ryg pyes (8) Sans € V(L 1300538, ar5)) - VS0 <5< S (13.9)
(D)™ A1208 Ras (D)™ || £(arery Sar,s €7 2D Azl s, (1,50 - (13.10)

Proof. To prove that the operator Rj,; has the finite dimensional form , notice that in the first two
terms in there is the finite dimensional projector Ilg,, that the operator R in the third term in
already has the finite dimensional form (6.3), and use the property that 73 1 ( a(p)PLh for all
h = h(p,z) and all a(p) independent of x, see also the proof of Lemma 2 and Lemma 6 30 in ﬂ?:[ﬂ and
Lemma 83 in [§]). To estlmate RM, use , - for P, (12.85)), for ’]E;, , , ,
, ) for JO,V.H(T5(p , l for R. The term Ilg JOy V H (Ts(p HSO is small because

HSD ((1) -D mgh(hD) ) IIg, is zero. -

By (|13.6) and (12.80]) we get

[,J_:w-aw]h_-i-i'DJ_—f—RJ_ (13.11)

where I, denotes the identity map of HSLO (acting on scalar functions u, as well as on pairs (u, @) in a diagonal
manner),

) D, 0 ) 1 n
D, = ( 0 _DJ_> , D, =15 Dsllg, , (13.12)
and R is the operator
R R
o TTL 1 1,1 1,2
R, = HSO%HSO + Ry, RL= <RJ_2 RJ_J) . (13.13)

The operator R | in (|13.13)) is defined for all A = (w,h) € R¥ x [hy, hy|, because Ty in (12.82)) and the operator

in the right hand side of ([13.8]) are defined on the whole parameter space. As a consequence, the right hand
side of (13.11)) extends the definition of £, to R” X [hy, ha]. We still denote the extended operator by £, .
In conclusion, we have obtained the following proposition.

Proposition 13.3. (Reduction of £, up to smoothing remainders) For all A = (w,h) € DC(y,T) X
[h1,hs], the operator L, in (6.5)) is conjugated by the map P, defined in (13.3)) to the real, even and reversible
operator L in (13.6)). For all A € R” x [hy,hs], the extended operator L, defined by the right hand side of

(113.11) has the form

ﬁL:w-6¢HL+iDL+RL (13.14)
where D is the diagonal operator
D 0 .
D, = ( ()L DL) , D, = diagjese 1) 5 Hej = iy, (13.15)
with eigenvalues pj, defined in (12.76]), given by
pj =my|j| tanh? (nlj)) +r; €R, vy =1y, (13.16)

where mi,7j € R satisfy (11.24)), m The operator R defined in (13.13)) is real, even and reversible.

Let S > sg, Bp € N, and M > (ﬁo + ko). There exists a constant N(M, By) > 0 (depending also on
ko, T,v) such that, assuming (6.9) wzth po > N(M, By), for any my,my > 0, with my +ma < M — 1(8 + ko),
for any B € N¥, |5] < By, the operators (D )mlaﬁRL< Y2, (D >m18'6A12RL< )™2 are DFo_tame with tame
constants satisfying

M, pyms o, (pyma (8) Sas € 2V (L4 3018 s p0)) 0 VS0 <5< S (13.17)
(D)™ A1208R (D)™ || oerrony Sars €7 M| Al s, aear,60) - (13.18)

Proof. Estimates (13.17)-(13.18)) for the term Hé‘o’]éﬂg-o in (13.13) follow directly by (12.85)), (12.86). Esti-
mates (13.17))-(13.18]) for Ry are ((13.9))-(13.10)). O
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14 Almost-diagonalization and invertibility of L,

In Proposition we obtained the operator £, = £ (¢) in which is diagonal up to the smoothing
operator R . In this section we implement a diagonalization KAM iterative scheme to reduce the size of
the non-diagonal term R | .

We first replace the operator £, in with the operator L7V defined in below, which
coincides with £ on the subspace of functions even in x, see Lemma This trick enables to reduce an
even operator using its matrix representation in the exponential basis (/%) jez and exploiting the fact that
on the subspace of functions even(z) its eigenvalues are simple. We define the linear operator £, acting
on Hg:) , as

REYM  Rsym
LY i=w 0,1 +iD; +RPY™, RY™ = R;;}n R;ﬁ; , (14.1)
1,2 11
where R, i = 1,2, are defined by their matrix entries
symyj’ RZJIE"‘F,R’zi]/g lfjjl>07 .. c -
(R (0) = {é Ll (% (Rai)y (0 iy <o, 0IESE =12, (14.2)

and R, ;, i = 1,2 are introduced in (13.13). Note that, in particular, (Riyzn)gl = 0,7 = 1,2 on the
anti-diagonal j' = —j. Using definition (14.2), one has the following lemma.

Lemma 14.1. The operator R7Y"™ coincides with R on the subspace of functions even(x) in HSJ[-) X HSJ(-),

namely
Rih=RY"h, VheHg x Hsg, h=h(p,z)=even(z). (14.3)

RY™ is real, even and reversible, and it satisfies the same bounds (13.17), (13.18) as R .

As a starting point of the recursive scheme, we consider the real, even, reversible linear operator £7/™
in (14.1)), acting on HSLO, defined for all (w,h) € R” x [h1,hs], which we rename

Lo = ﬁiym =w- 8(,0]IJ- +iDy 4+ Ro, Dy:=Dy, Ry:= Riym , (14.4)
with
D 0 . 1 1.
Dy = ( 0 Do) , Do:=diagjege py,  pf =my | tanh? (blj]) + 1y, (14.5)
where my = m%(w,h) € R satisfies (11.24), ; :=rj(w,h) € R, r; = r_; satisfy (12.78), and
RO RO |
Ro = <§0) ). BY.HE - HE,  i=1.2. (14.6)
Ry” Ry

Notation. In this section we use the following notation: given an operator R, we denote by 97, (D)™ R(D)™
the operator (D)™ o (95 R()) o (D)™. Similarly (9, .)®(D)™R(D)™ denotes (D)™ o ((Dy,4)°R) o (D)™ where
(Dp,2)® is introduced in Definition

The operator Rg in (14.6)) satisfies the tame estimates of Lemma below. Define the constants

b:=[a]+2€N, a:=max{3n,x(r+1)(4d+1)+1}, x:=3/2,
ko (14.7)

71 :=7(ko + 1)+ ko + m, mi:d(k0+1)+?»

where d > 3k, by (4.22)). The condition a > x(7+1)(4d+1)+1 in (14.7) will be used in Section in order
to verify inequality (15.5)). Proposition implies that R satisfies the tame estimates of Lemma by

fixing the constant M large enough (which means that one has to perform a sufficiently large number of
regularizing steps in Sections [10| and , namely

b+ sg + ko

M= {2m—|—2b+1+ 5

J+1en (14.8)
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where [-] denotes the integer part, and m and b are defined in (14.7). We also set
(o) := R(M, 50 +b) (149)
where the constant (M, s + b) is given in Proposition [13.3]

Lemma 14.2. (Tame estimates of Ry := R’"™) Assume with po > p(b). Then Rq in (14.4)
satisfies the following property: the operators

(DY™Ro (D)™ (D)™ Ro(D)™*, Vi=1,...,v, (14.10)
(D)™ PR (D)™ P+ gt (D)™ PR (D)™ (14.11)

where m,b are defined in (14.7), are D*°-tame with tame constants

My (s) := l:nllaXV {m<D>mRO(D>m+1 (s), Ema;? (DYmRo(D)ym+1 (S)} (14.12)
M (s, b) :=  max {m<D>m+bRO<D>m+b+l (s), E)Jta;?+b<D>m+bR0<D>m+bH (3)} (14.13)

satisfying, for all s < s < S,

Mo (s,b) := max{Mo(s), Mo(s,b)} S5 &> M+ (14 [|30]125 7)) - (14.14)

In particular we have

Mo (s0,b) < C(S)ey 2M+1) (14.15)
Moreover, for alli=1,...,v, B €N, < sg+Db, we have
||8£1 <D>mA12RO <D>m+1 ||£(H50)7 ”aﬁl <D>m+bA12R0<D>m+b+1 “ﬁ(HSO) SS 67_2(M+1) ||A127;H50+#(b) . (14.16)

Proof. Estimate (14.14) follows by Lemma [14.1) by (13.17) with m; = m, mo = m + 1 for My(s), with
m; =m+b, my =m+b+ 1 for My(s,b), and by definitions (14.7)), (14.8)), (14.9). Estimates ((14.16]) follow
similarly, applying (13.18)) with the same choices of m1, ms and with s; = s¢. O

We perform the almost-reducibility of Ly along the scale
N_y:=1, Ny:=NY vn>0, x=3/2, (14.17)

requiring inductively at each step the second order Melnikov non-resonance conditions in ([14.26)). Note that
the non-diagonal remainder R, in (14.19)) is small according to the first inequality in ([14.25)).

Theorem 14.3. (Almost-reducibility of £o: KAM iteration) There exists 7o := To(7,v) > T1+a (where
1,2 are defined in (T4.7)) such that, for all S > sg, there are Ny := No(S,b) € N, & := do(S,b) € (0,1)
such that, if

87_2(M+1) < 6o, N52m0(807b)7_1 <1 (14.18)

(see (14.15)) ), then, for allm e N, n=10,1,...,n:

(S1), There exists a real, even and reversible operator

Lo:=w-0,1, +iDy+ Ra, Dy:= (l())“ 9311) . Dy = diagjes it (14.19)

defined for all (w,h) in RY x [hy, ho] where u% are ko times differentiable functions of the form

(5 (w,h) := pf(w,h) + r¥(w,h) € R (14.20)
where M? are defined in (14.5), satisfying
PR =t de =1t R < (S, b)ey 2MED]j T3 v e S§ (14.21)
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(S2),

(S3)a

and, forn > 1,

i — B0 < 20 oy (50) £ CS D)y XMV 2mN2 - (14.22)
The remainder
Ry = (R:; R%:;) (14.23)
Ry” Ry
satisfies
(R (0) = (RS () =0 (£,4.5), ji’ <0, (14.24)

and it is Do -modulo-tame: more precisely, the operators (D)™Rn(D)™ and (D, .)°(D)™Rn(D)™ are
Dko_modulo-tame and there exists a constant C, := C,(s0,b) > 0 such that, for any s € [so, 5],

8 CMo(s,b) §
9)?<D>,,,RH<D>,“(S) S Wa m((’)%m>b(D>‘“Rn(D>m(s) S C*m()(s,b)Nn—l . (1425)
Define the sets A} by A} :=DC(2v,7) x [h1,hs], and, for alln > 1,

AY = AI() = {A_(w h) € A7

n—1 -
w b+ B = BT 2T TN TT YL = < Ny, Gy € NTASTL (6,4,5) # (0,4,9),
jw L B B = (VT VIO L = 5 < Nt j,j’eN+\S+}- (14.26)

Forn > 1, there exists a real, even and reversibility preserving map, defined for all (w,h) in R x [hy, hs],
of the form

Up11 Yn-12
Sy =1+, 4, Uy == 7 77 14.27
! + ! ! <\Ijn1 2 \Iln 1 1) ( )
such that for all A = (w,h) € A] the following conjugation formula holds:
Lo=0 " Lo 1Dy . (14.28)

The operators (DYX™W,_1(D)T™ and (9, ,)>(D)*™W,_1(D)T™ are D*o-modulo-tame on R” x [hy,ho]
with modulo-tame constants satisfying, for all s € [sg,S], (11,2 are defined in (14.7)))

mgmim\yn,l(p)xm(s) < C(s0,)7 " N7t Ny %Mo (s, b) (14.29)
im%a%m)b(mimq/n_1<D>¢m(5) < C(SO»b)”/_lNZianfzmo(&b), (14.30)
M, (s) < Clso,b)y  NJL Ny %90 (s,b) . (14.31)

Let i1 (w,h), i2(w,h) be such that Ro(i1), Ro(i2) satisfy (14.15). Then for all (w,h) € AJ* (i1) N A2 (i2)
with v1,7v2 € [v/2,27], the following estimates hold

(D)™ A2 Ra (D)™ [l £(z100) Sso €7 > MFINT2 iy — 2l gt pucr) (14.32)
11(8,2)° (D)™ A2 R D)™ [l 210y S50 €7 > M Ny [lin = ol s (o) - (14.33)

Moreover forn > 1, for all j € S§,

|Ara(r — 271 Ssp ey 2D GITENTE iy — dollsg o) - (14.34)

[A1275] Ssip Sl ] i P 12| s+ (1) - (14.35)
Let i1, ig be like in (S2)y and 0 < p < /2. Then

NIV 4y i) S p = (1) S A]P(i2). (14.36)
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We make some comments:

1. Note that in (14.34)-(14.35) we do not need norms | \’“077. This is the reason why we did not estimate
the derivatives with respect to (w,h) of the operators A;1oR in the previous sections.

2. Since the second Melnikov conditions |w - £+ p2 ™!

BB > ][40 740 7T lose regularity both in ¢
and in x, for the convergence of the reducibility scheme we use the smoothing operators IIy, defined in
(2.25)), which regularize in both ¢ and z. As a consequence, the natural smallness condition to impose

at the zero step of the recursion is (14.25) at n = 0 that we verify in the step (S1), thanks to Lemma

E3and (1110,

3. An important point of Theorem is to require bound ([14.18)) for My (s, b) only in low norm, which
is verified in Lemma, On the other hand, Theorem [14.3| provides the smallness ((14.25]) of the tame

constants smi}mmﬂn(mm (s) and proves that smijaw )R (D) R (D) (s,b), n > 0, do not diverge too much.

Theorem [14.3] implies that the invertible operator
U, =Pgo...0P0,_1, n>1, (14.37)
has almost-diagonalized L, i.e. (14.42)) below holds. As a corollary, we deduce the following theorem.

Theorem 14.4. (Almost-reducibility of £y) Assume with po > p(b). Let Rg = RPY™, Lo = L™
n -. For all S > sq there exists Ny := Ny(S,b) > 0, dp := do(S) > 0 such that, if the smallness
condition

NJey~ M+ < 5, (14.38)
holds, where the constant T := 1o(7,v) is defined in Theorem and M is defined in , then, for
alln € N, for all A = (w,h) € R” x [hy, hy], the operator Uy, in (14.37) and its inverse U, 1 are real, even,
reversibility preserving, and D* -modulo-tame, with

— T ~ 11ko,
Emg[%l_h (s) Ss ey BMTINT (1 + 130l ne) Vso<s<S, (14.39)
where 71 is defined in (14.7)).

The operator L, = w - 0,11 +iDy, + R, defined in (14.19) (with n = n) is real, even and reversible. The
operator {D)Y™R,, (D)™ is D -modulo-tame, with

M e, oy () S5 €y 2HIN2 (14 [30)1 847 ) Voo <5< S (14.40)
Moreover, for all A = (w,h) in the set
N =N (14.41)
n=0
defined in (14.26)), the following conjugation formula holds:
L, =U"Loldy . (14.42)

Proof. Assumption (14.18)) of Theorem holds by (14.14), with ug > p(b), and (14.38)). Estimate
(14.40) follows by ([14.25)) (for n = n) and (14.14). It remains to prove (14.39). The estimates of imiil ; (s),
n 41
n=0,...,n— 1, are obtained by using (|14.31}), (14.18) and Lemma 2.32l Then the estimate of ! — 1
follows as in the proof of Theorem 7.5 in [21], using Lemma [2.31} O

14.1 Proof of Theorem [14.3

Initialization.

PROOF OF (S1),. The real, even and reversible operator £y defined in (14.4)-(14.6]) has the form (14.19))-
(14.20)) for n = 0 with r?(w,h) = 0, and (14.21)) holds trivially. Moreover (14.24]) is satisfied for n = 0 by

the definition of Ry := R7Y™ in (14.2). The estimate (14.25) for n = 0 follows by applying Lemma to
A e {R” RV and by recalling definition of Mg(s,b) in (T4.14).
PrOOF OF (S2),. The proof of (14.32)), (14.33)) for n = 0 follows similarly using Lemma and ((14.16)).

PROOF OF (83),. It is trivial because, by definition, Aj = DC(27, 7)x [h1, ho] € DC(2y—2p, 7)x [h1, ho] = AJ™”.
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14.1.1 Reducibility step

In this section we describe the inductive step and show how to define £,11 (and ¥,, ®,, etc). To simplify
the notation we drop the index n and write + instead of n+ 1, so that we write £ := L, D :=D,, D := Dy,
pj = pi, R:=Ra, Ry := Rgn),Rg = Rén), and L4 := Ly41, Dy :=Dy1q, and so on.

We conjugate the operator £ in by a transformation of the form (see (14.27))

.f (Y Wy
=1, +¥, V.= (% \Pl) : (14.43)
We have
L =D(w- I, +iD) + (w- 0¥ +i[D, V] + IINR) + [IxR + RV (14.44)

where the projector Il is defined in ([2.25)), Hﬁ :=1Iy — Iy, and w- 0,V is the commutator [w - 0,, ¥]. We
want to solve the homological equation

w- 0,V +i[D, U] + IIyR = [R] (14.45)

where
[R] := <U§1] U%]) . [Ra] == diag;ege (R1)}(0) .- (14.46)

By (14.19), (14.23]), (14.43)), equation (14.45)) is equivalent to the two scalar homological equations

w - aw\lll + I[D, \Ifl] + HNRl = [Rl] , w - 3¢\IJQ + I(D\IIQ + \IJQD) + HNR2 =0 (1447)

(note that [Ry] = [lIxR1]). We choose the solution of (14.47) given by

) ()] () S % (05 ey Ll <
(\Ill); (ﬂ) = _i(w'£+ﬂj _,Uj’) (4,3,3") # (0,4, %5), |4, 17 — 3" < N, (1448)
0 otherwise;
2 (Ba); (O V(C,4,5) € Z¥ x S5 x S5, |0],1j — 4| < N
(\Ifg)g (f) = 7i(w'£+ﬂj+,uj’) ( 1 J5J ) € X3 X 9, | |7|] —J ‘ ! (1449)
0 otherwise.

Note that, since p; = p_; for all j € S§ (see (14.21)), the denominators in (14.48]), (14.49) are different from
zero for (w,h) € A, (see (14.26) with n ~» n + 1) and the maps ¥, ¥y are well defined on A] ;. Also
note that the term [R;] in (14.46) (which is the term we are not able to remove by conjugation with ¥; in

(14.47)) contains only the diagonal entries j° = j and not the anti-diagonal ones j' = —j, because R is zero
on j' = —j by (14.24)). Thus, by construction,

(1) (0) = (B2)] () =0 V(4,5.5"), ji' < 0. (14.50)

Lemma 14.5. (Homological equations) The operators Uy, ¥y defined in (14.48), (14.49) (which, for
all \ € A;YH, solve the homological equations (14.47)) admit an extension to the whole parameter space
R x [hy,hy]. Such extended operators are D*-modulo-tame with modulo-tame constants satisfying

m%D)im\D(D>¥m(8) fsko N71771W§D>mR<D)m(S)7 (1451)
f 71 . —1amt

Mo, opopysmw(pym (5) Sko NV Mg ot pymz iy () (14.52)

MY, (5) Sky N7y~ M (s) (14.53)

where 71, b, m are defined in (14.7)).
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Given iy, iy, let AoV := W(ig) — W(iy). If y1,72 € [v/2,27], then, for all (w,h) € A}, (i1) NAJ% (42),

- 1 . ) .
(D)= A2 U (D) F™ || ooy S N2 2y L[ [(D)™R(i2)(D)™ | | 2 rreoy i1 — izl s+ (o)

+ [ (D)™ A2 R(D)™ | || £ 20 - (14.54)
(P 2> (DYE™ Ay T (DYF™ || ooy S N2TF245 2971 ([ [(D )P (DY R (12) (D)™ [l 2oy i1 = 2l sg-+ 0
+ [ (0p,2)° (D)™ A2 R(D)™ | £ (#r20)) - (14.55)

Moreover U is real, even and reversibility preserving.

Proof. For all A e A) .y, (¢,5,7") # (0,4,%5), .5 € S§ |€],]7 — 5’| < N, we have the small divisor estimate

w4y — | = w - L4 gz — g | = AL HO T

by (14.26)), because ||5] — [5'|| < |7 —j'| < N. Asin Lemma we extend the restriction to F' = A] ; of
the function (w- £+ p; — pj)~* to the whole parameter space R” x [hy,hy] by setting

X(fNp™h)
fn
where x is the cut-off function in (2.16). We now estimate the corresponding constant M in (B.14)). For
n > 1, z > 0, the n-th derivative of the function tanh%(ag) is P,(tanh(x)) tanh%_"(x)(l — tanh?(z)), where
P, is a polynomial of degree < 2n — 2. Hence \8§{tanh% (b))} < Cforallm=0,..., ko, for all h € [hy, hy],

for all j € Z, for some C = C(ko,h1) independent of n,h, j. By (14.20)), (14.21)), (14.5), (11.24), (12.78) (and
recalling that p; here denotes u?), since ey 2(M+1) <~ we deduce that

ge.j.5'(A) = fO) =w b4y —pyr,  p=~O7 75757,

Alog ;| SAlj1E Ya e N+ 1< o] < k. (14.56)
Since Y1105 (w - £)| < ~|¢| for all || > 1, we conclude that
AN w - €+ 1y = )| S+ 1317 +1512) S4(011E17 17, V1< ]al <ko. (14.57)
Thus (B.14) holds with M = C~(¢)|j|2|j’|2 (which is > p) and (B.15) implies that

k
[ge.g.g0 "7 SOOI with m= (ko + 1)d+ 3 (14.58)

defined in (14.7). Formula (14.48)) with (w- £+ p; — ;)" replaced by g j j(A) defines the extended operator
¥y to RY x [hy, ho]. Analogously, we construct an extension of the function (w - €+ u; + ;) "' to the whole

R” X [hy,hs], and we obtain an extension of the operator ¥y in (14.49).

PRrROOF OF (14.51)), (14.52), (14.53)). We prove (14.52)) for ¥y, then the estimate for ¥o follows in the same
way, as well as (14.51), (14.53). Furthermore, we analyze (D)™9%¥W; (D)™™, since (D)~ ™05W; (D)™ can be

treated in the same way. Differentiating (1)} (£) = ggyj’j/(Rl)gl(E), one has that, for any |k| < ko,

50T OIS D 108 9oy IO (R)F (OIS D0 v Mllge ™ |052 (Ra)] (£)

k1+ko=k k1+ko=k
[258) )
< <€>'r(ko+1)+ko‘j‘m|j/‘m7717|k\ Z 7\k2\|6’;2(R1)§ (()l (1459)
|k2|<|k|

For |[j —j/| £ N, j,j' # 0, one has

™ S ™™ 1= 5 S I+ N S TN (14.60)
Hence, by (14.59) and (14.60), for all |k| < ko, j,j' € S§, £ € Z¥, |{| < N, |j — j'| < N, one has
™K () (O™ S N7y RN ARl atz (RS (0] (14.61)
[k2| <|k|
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where 71 = 7(ko + 1) + ko + m is defined in (14.7)). Therefore, for all 0 < |k| < kg, we get
11{85.2)>(D) ™5 01 (D)™™ A2
y 2
<S> == GOk ] (= NG e )
4,3

[&'—£l,13"—§|<N

271 ., —2(1+]k|) 2|ks| -\ 25 /s sI\bysymgka i’ AL ’
Sk N7 S0 S (S5 = 30 (R (€ = )™ e 1)

[k2|<|k] 4,5 .5
— 2
Sk N2y 20HED N 22 (0, ) (D)™ 03 (Ra) (D)™ [12]] ]
[k2|<|k|
€70, E29) 2
271 ., —2(1+|k # #
Sk, NPTy TR0 D(mww)b(D)le(mm(S)Hh”so +fmw%gﬂ)bm)mmw)m(80)||h||s) (14.62)

and, recalling Definition inequality (14.52)) follows. The proof of (14.54)-(14.55|) follow similarly. O
If U, with ¥y, U5 defined in (14.48))-(14.49)), satisfies the smallness condition

4C(B)C (ko) M, (s0) < 1/2, (14.63)
then, by Lemma [2.32} ® is invertible, and (14.44), (14.45) imply that, for all X € o], ,,
Li=01Ld=w 0,0, +iD; + Ry (14.64)

which proves (14.28)) and (14.19) at the step n + 1, with

iD} :=iD+[R], Ry :=& '(LI§yR+RY - V[R]). (14.65)

We note that R, satisfies

_ (B (By) iy — P
Ry = ((RI); (RI)T) ) [(R+)1]j (0) = [(R+)2]j (0)=0 V(5,5 ji' <0, (14.66)

similarly as R, in , because the property of having zero matrix entries for jj° < 0 is preserved
by matrix product, and R, ¥, [R] satisfy such a property (see (14.24)), (14.50)), (14.46))), and therefore, by
Neumann series, also 1 does.

The right hand sides of (14.64)-(14.65) define an extension of £, to the whole parameter space R” x
[h1,hs], since R and ¥ are defined on R” X [hy, hy].

The new operator £ in has the same form as £ in , with the non-diagonal remainder R
defined in which is the sum of a quadratic function of ¥, R and a term II%R supported on high
frequencies. The new normal form D in is diagonal:

Lemma 14.6. (New diagonal part). For all (w,h) € R x [hy,hs] we have

. : . (D 0 :
iDy =iD+[R] =i ( O+ —D+> , Di:= dlagjesg,u;r, uj =pu;j+r; €R, (14.67)

withr; =r_j, u; = ;f_rj for all j € S§, and, on R x [hy,hs],
51707 = g — "7 S 131 ey (0)- (14.68)

Moreover, given tori i1(w,h), iz(w,h), the difference

Ir(i1) — x;(i2)| S 15172 (D)™ A e R(D)Y™ |l £ (#r20) - (14.69)
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Proof. Tdentity follows by ([4.19) and (T4.46) with r; := —i(R1)7(0). Since R, satisfies and
it is even, we deduce, by (2.58), that r_; = r;. Since R is reversible, implies that r; := —i(Rl)g(O)
satisfies r; = r—;. Therefore r; =T_; =T; and each r; € R.

Recalling Deﬁnltlon we have |||0%((D)™R1(D)™)|h| s, < 27_‘k‘9)T%D>mR1<D>m(sO)HhHSm for all A =
(w,h), 0 < |k| < ko, and therefore (see (2.67))

R (RIS 13172y IR L o (s0) S 172 HamE L (s0)

which implies (14.68]). Estimate (14.69)) follows by |A12(R1)§(0)| S A2 DY A2 R(D)™ ||| 2120y O

14.1.2 Reducibility iteration

Let » > 0 and suppose that (S1),-(S3), are true for all n = 0,...,n. We prove (S1),,41-(S3),41. For
simplicity of notation we omit to write the dependence on kg which is considered as a fixed constant.

PROOF OF (S1),4+1. By (14.51)-(14.53), (14.25)), and using that Smgz(s) < Sm%DWRn(D)‘“(S)’ the operator
¥, defined in Lemma [14.5satisfies estimates (14.29)-(14.31)) with n = n+ 1. In particular at s = sy we have

M sy iy (50) 5 My (50) < Cls0,B)NTE N2y~ Mg (50, b) (14.70)

Therefore, by (14.70)), (14.7)), (14.18), choosing 75 > 71, the smallness condition (14.63) holds for Ny :=
No(S,b) large enough (for any n > 0), and the map ®,, =1, + ¥,, is invertible, with inverse

Ol =1, +¥,, U,:= <\IJ ; 3 ?) . (14.71)
n, n,

Moreover also the smallness condition 5) (of Corollary V with A = ¥, holds, and Lemma
Corollary [2.33 H and Lemma imply that the maps ¥, <D> ‘“\I%(DF‘“ and (D, ,)® (D)™, (D)T™ are
DF*o_modulo-tame with modulo—tame constants satisfying

# i 7'1 —1
mq/n( ) m(D>im\I/ (D);m(s) ~S0,b N m(D)"‘R <D>m( ) (1472)
()
Seow NINT2 4190 (s,b), (14.73)
and
i T10,—1
m(a%w>b<D>im\pn<D>;m (S) ~S0,b N Ty E)ﬁ %I)b<D)mRn<D)m(S)
271 0,2 i
+ Ny m<a¢,x>b(D>me,<D>m(So)mwwnn(p)m(s) (14.74)
@), ([T [
Ssob N N1y ™19 (s, b) - (14.75)
Conjugating £, by ®,,, we obtain, by (14.64)-(14.65)), for all A € A} |,
Lni1=0,"Lon®n =w 9,11 +iDpt1 + Rt (14.76)
namely (14.28]) at n = n + 1, where
D41 :=1iDy, + [Ry], Ros1 =0, (IIy, Ry + Rp¥p, — U, [R,]) (14.77)

The operator L£,11 is real, even and reversible because ®,, is real, even and reversibility preserving (Lemma
114.5) and L, is real, even and reversible. Note that the operators D,, 11, R,+1 are defined on R” x [hy, hy],

and the identity (14.76]) holds on A) .
By Lemma the operator D,, 11 is diagonal and, by (14.15)), (14.25), (14.14), its eigenvalues ,u?“

R” X [hy,hg] — R satisfy

‘rn|ko,7 _ |Mn+1 I |ko,'y < |j| me<D>mR <D>m(80) < C(S, b)E,Y—Z(M+1)|j|—2mNn—_al’
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which is 14.22|) with n = n + 1. Thus also (14.21) at n = n + 1 holds, by a telescoping sum. In addition,
by 1|14.66 the operator R,1 satisfies (14.24) with n = n + 1. In order to prove that (14.25) holds with

n =n+ 1, we first provide the following inductive estimates on the new remainder R, ;1.

Lemma 14.7. The operators (D)™ R, +1(D)™ and (D, ;)°(D)™Ry41(D)™ are D*-modulo-tame, with

N
omt —boyt omt mt
(D)™ Rpq1{(D)™ (S) Sso,b Nn bf!ﬂ(g)%”b(]))mnn(]))m (S> ~ (D >mRn<D>m(8) (DYym R, (D)™ (80) s (14.78)

g g
Mo, oDy R (DY (8) Ssob Mg o pymr,, (pym (5)
71 .,—1 f fi
+Nn17 9jt(a%ac)b([))m'];{n<D>m(s())s)jt([))mf]zn<D>m(s) . (1479)

Proof. By (14.77) and (14.71)), we write

(D)™ R4 (D)™ = (D) "Ik, Ry (D)™ + (D)™ ¥ (D)~ m><<D>mHﬁ,ﬁn<D>m>
+ (1u + (D)™ 0o (D)) (D)™ R (D)™ (D)™ W, (D)™))
= (L (D)™ 0 (D)) (D)™ W (D) ™) (D)™ [RWJ(D)™)) (14.80)

The proof of (14.78)) follows by estimating separately all the terms in (14.80]), applying Lemmata [2.34] [2.31]
and (14.51]), (] 4.72), (14.25)),, (14.7), (14.18). The proof of 14.79' follows by formula (14.80]), Lemmata
2.31} [2.34 and estlmates 14 51)), (14.52), 14 72, [14. 25|)‘n, 1), (14.18). O

In the next lemma we prove that (14.25) holds at n = n + 1, concluding the proof of (S1),,41.

Lemma 14.8. For Ny = Ny(S,b) > 0 large enough we have

m§D>mRn+1(D)m (5) < Ci(s0,b)N,, *Mo(s,b)

My oipynr s oy (8) < Cul50, D) Na o (s, b)

Proof. By (14.78)) and ([14.25]) we get
W§D>m7gn+1<D>m( ) ~5S0,b N Nn71m0(87 b) + N;17_1m0(87b)m0(807b)N7:—2?
S C*(SO, b)N;amo(&b)
by (14.7] m taking No(S,b) > 0 large enough and 79 > 71 + a. Then by (14.79, we get that
m%a%m)ND)"‘Rn_'_l(D)m(S) ,Sso,b Nn—1m0(57b) NTlNl a 7193?0(5 b)mO(*SOv )
S C*(SOab)Nnm0(87b)
by (14.7), (14.18)) and taking Ny(S,b) > 0 large enough. O

PROOF OF (S2),41. The proof of the estimates (14.32)), (14.33) for n = n + 1 for the term A1aR, .1
(where R,,+1 is defined in follow as above. The proof of (14.34) for n = n + 1 follows estimating
A]_Q( ntl_ ) Aqor? by 14 69)) of Lemma m‘ and by (14.32) for n = n. Estimate forn=n+1
follows by a telescoplng argument using (14.34)) and ((14.32]).

PROOF OF (S3),,+1. First we note that the non-resonance conditions imposed in (14.26)) are actually finitely
many. We prove the following

e CLAIM: Let w € DC(27,7) and ey~2(M+1) < 1. Then there exists Cy > 0 such that, for anyn = 0,...,n,
for all |¢],]7 — j'| < Ny, j,j" € Nt \ St if

min{j, j'} > CoNZ T4 72, (14.81)

then |w - €+ p} — p| > y(6)~7.
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PROOF OF THE CLAIM. By ({14.20)), (14.21)) and recalling also ((12.78)), one has

1 = m%j% tanh%(hj) +1f, =4y, sup j? |t‘;|k°’7 <g ey 2D (14.82)
jES*

For all j,j" € N\ {0}, one has

cw
vl (14:83)

Then, using (14.83)) and that w € DC(2v,7), we have, for |j — j'| < Ny, [£] < Ny,

|V/j tanh(hj) — \/j tanh(hj’)| <

C(h)
O R s > w ) — — || = |
w4 — ] > |w - £ \m%| 7, ﬁj/}| -7 5] — [¢}|
(129, ([[382) 24 2C (h) N, 0(5)57—2(1\4-5-1) @48 ~

S (e o7 0, s S o7 v o SRR Lk

where the last inequality holds for Cy large enough. This proves the claim.
Now we prove (S3) namely that

n+1’

CSNTTIE Dy iy iy Sp = ALy (i) © AL5 (). (14.84)

Let A € A}, (i1). Definition (14.26) and (14.36) with n = n (i.e. (S3),) imply that A} (i1) € A (i1) C
A)~P(i3). Moreover A € A)~P(iz) C A2 (i2) because p < v/2. Thus A} (i1) C A} 7P(i2) C A2 (i2). Hence

AY (i) C©AY(i) N AZ/2(Z'2), and estimate (14.35)) on [Aq2r?| = [r} (A, 22(/\)) (A i1 (A)] holds for any
A € A} (i1). By the previous claim, since w € DC(27, ), for all |€| li—71< N satisfying (14.81) with
n =n we have

2 g TP
> —7 = TR
(O = (O~ (074"
It remains to prove that the second Melnikov conditions in (14.26]) with n = n+1 also hold for j, 5/ violating

(14.81))|n=rn, namely that

|w - €4 (A i2 (X)) = pgr (A ia(A))] = W’ VIe|,|j — '] < Ny, min{j,j’} < CoN2T+tDy=2  (14.85)

|w - €4 pf (A, i2(A) — w5 (A i2(A)] =2

The conditions on j, ;" in (14.85)) imply that
max{j, 7'} = min{j,j’} + |j — 5'| < CoN2UTVy=2 L N, < 2C N2+ =2, (14.86)

Now by (14.20), (14.21)), (T4.83)), recalling (11.24), (12.78)), (14.35) and the bound ey~ 2(M+1) < 1, we get
(i = 13 )N a2 (V) = (i = 5O in ()] < [(1F = 15) (N i2 (V) = (1 = 15 (N i (V)]
+ 7 A i (V) = 77 A in ()] + [ (A 22(A) = 75 (A i (V)]
_ C(S)Nn
= win{V7, 7}
Since X € A}, (i1), by we have, for all |¢{| < N, |j — 7| < Ny,

iz — i1l so+p(o) - (14.87)

o L4 25 i) = g ()| > oo €4 3 i) = g (i) = N = ) (i) = (42§ — ) ()|
> ot = Oy
SO min{ VGV

0% . . TP
> <£>Tjdj/d - C(S)Nn”z? - 7’1||So+lt(b) > <€>Tjdj/d

provided C(S)N,,(€)7j%5"|i2 — i1]lso+um) < p. Using that [¢| < N, and (14.86)), the above inequality is
implied by the inequality assumed in (14.84)). The proof for the second Melnikov condltlonb for w-£+p7 +pl,
can be carried out similarly (in fact, it is simpler). This completes the proof of withn=n+1. O
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14.2 Almost-invertibility of L,

By (13.6), £, = PLL,.P[ ", where P, is defined in (13.2), (13:3). By (14.42), for any A € A}, we have that
Lo = U, LU L, where U, is defined in (14.37), Lo = £77™, and L7"™ = L on the subspace of functions
even in z (see (14.3)). Thus

Lo =Vo L V)Y, V=P U,. (14.88)
By Lemmata [2.27] by estimate (14.39)), using the smallness condition (14.38]) and 72 > 71 (see Theorem

, the operators UF! satisfy, for all sp < s < S, UL h||For <o ||h||Fo + ||30||§$Z(b)||h||’§g’7. Therefore,

by definition (14.88)) and recalling (13.4), (14.8), (14.9)), the operators V! satisfy, for all so < s < S,

ko, ko, ko,
VRIS S IR15ST + 130l 257w I1llses (14.89)

for some o = o(kg,T,v) > 0.

In order to verify the inversion assumption (5.29)-(5.33) we decompose the operator £,, in (14.42)) as
Ln=2L5+Rn+RE (14.90)
where

Ly =Mk, (w-0,[L +iDn)g, + Mk, , Ry =Mx (v-9,lL +iD,)x — 1% , (14.91)

n

the diagonal operator D,, is defined in (14.19) (with n = n), and K, := K(%(n is the scale of the nonlinear
Nash-Moser iterative scheme.

Lemma 14.9. (First order Melnikov non-resonance conditions) For all A = (w,h) in
AL = AL () = N ERY x [y, ho < w - £+ p7] > 2953 (07T, VU < K,, jENT\ST)  (14.92)

the operator £ in (14.91)) is invertible and there is an extension of the inverse operator (that we denote in
the same way) to the whole RY x [h1,ha] satisfying the estimate

_ _ ko,
16€5) " gll5 Sk v Hlgllsn (14.93)

where p = ko + 7(ko + 1) is the constant in (2.18) with ko =k + 1.

Proof. By (14.56), similarly as in (14.57) one has v1*/|0g (w - £ + S v(0)|j]2 for all 1 < |a| < ko. Hence
Lemmal_[Bz can be applied to f(\) = w- £+ u7(\) with M = Cy{0)|j]2 and p = 2vj2 (£)~". Thus, following
{

the proof of Lemma 2.5 with w - £ + p7()) instead of w - £, we obtain (14.93). O
Standard smoothing properties imply that the operator R:- defined in (14.91) satisfies, for all b > 0,
- ko, , ko,
IRZAISY S KAl yr s IR S AT (14.94)

By (14.88]), (14.90)), Theorem Proposition and estimates (14.93)), (14.94)), (14.89)), we deduce the

following theorem.

Theorem 14.10. (Almost-invertibility of £,) Assume (5.6). Let a,b as in (14.7) and M as in (14.8).
Let S > sg, and assume the smallness condition (14.38)). Then for all

(w,h) €AY,y == A (i) =N} NALL (14.95)
(see (14.41)), (14.92)) the operator L,, defined in (5.26]) (see also (6.5)) can be decomposed as (cf. (5.29)))
Lo=LS+Ro+RE, L=V Vb, Ry =VRV, ", RE =V, RV, (14.96)

where LS is invertible and there is an extension of the inverse operator (that we denote in the same way)
to the whole R” X [hy,hs] satisfying, for some o := o(ko,7,v) > 0 and for all s < s < S, estimates
(5.30)-(5.33), with w(b) defined in (14.9). Notice that these latter estimates hold on the whole R x [hy,ha].

This result allows to deduce Theorem [5.6] which is the key step for a Nash-Moser iterative scheme.
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15 Proof of Theorem [4.1]

We consider the finite-dimensional subspaces
B, = {3(@) = (0,1,2)(p), ©=11,0, [ =11, z = an}
where II,, is the projector

I, =1k, : 2(p,z) = Z 206D LT 2(p,2) = Z PR e (15.1)
LeZY JESG [(€.H)ISKn
with K,, = K(’f (see (5.28])) and we denote with the same symbol IL,p(p) := ZIZKK peelt?. We define

I} := Id — II,. The projectors II,,, IT;- satlsfy the smoothing properties , ) for the weighted
Whitney-Sobolev norm || - |07 defined in
In view of the Nash-Moser Theorem @ we introduce the following constants:

a; := max{6oy + 13, xp(7 + 1)(4d + 1) + x(u(b) + 2071) + 1}, as = x ‘a; — u(b) — 201, (15.2)
w1 = 3(pu(b) + 201) + 1, by :=ay + pu(b) + 301 + 3+ x L1, X =3/2, (15.3)
o1 = max{7, sg + 2ko + 5}, = 89 + by (15.4)
where ¢ := 6(7,v,kp) > 0 is defined in Theorem so + 2ko + 5 is the largest loss of regularity in the
estimates of the Hamiltonian vector field Xp in Lemma w(b) is defined in (14.9), b is the constant

b:= [a] + 2 € N where a is defined in (14.7). The constants by, 1 appear in (P3), of Theorem below:

b; gives the maximal Sobolev regularity S = so + b; which has to be controlled along the Nash Moser

iteration and pq gives the rate of divergence of the high norms ||V~VnHlscg_~:Yb1 The constant a; appears in

(15.10) and gives the rate of convergence of F(U,) in low norm.
The exponent p in (5.27) which links the scale (N,)n>0 of the reducibility scheme (Theorem |14.4)) and
the scale (K,,)n>0 of the Nash-Moser iteration (N, = K? ) is required to satisfy

1 3
pa> (x —lai +xo1 = jai + 501 (15.5)

By (14.7), a > x(7+1)(4d+ 1) + 1. Hence, by the definition of a; in , there exists p := p(7, v, ko) such
that holds. For example we fix p := 3(u(b) + 301 + 1)/a.

Given W = (7, 8) where J = J(\) is the periodic component of a torus as in , and 3 = B(\) e R¥
we denote [[W|[k0:7 := max{][|J||ko7, |3|*-7}, where [|T||%7 is defined in (4.13).

Theorem 15.1. (Nash-Moser) There exist §y, Ci > 0, such that, if

. 1
Koy M0 < b0, mi=max{pm 20 bartdl, Ko=77' yi=eh 0<a< o (156)
3

where the constant M is defined in (14.8) and 7o := 1o(7,v) is defined in Theorem then, for allm > 0:

(P1),, there exists a ko times differentiable function W, : R x [hy,hy] — Ep_1 X RY, A = (w,h) = W,,(\) :=
(T, G — w), forn > 1, and Wy := 0, satisfying
ko, _
Wl 20 oy 40y < Coer ™ (15.7)
Let Uy, := Uy + W,, where Uy := (¢,0,0,w). The difference H,, := U, — Up,_1, n > 1, satisfies

ko, - 7 11ko, -
|H e oy 4or S Cuev L Il o)1 < CreY K2, vn>2. (15.8)

(P2),, Setting in, == (¢,0,0) + J,, we define
Go:=x [h1,hy], Gup1: =G, NA) 1 (in), n>0, (15.9)
where A | (i,) is defined in . Then, for all X € G,,, setting K_1 := 1, we have
|F(Un) k07 < Che K2 (15.10)
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(P3), (High norms). |[W,|% 7 < C.ey 'K, for all X € G,.

0+b1

Proof. The proof is the same as Theorem 8.2 in [21]. It is based on an iterative Nash-Moser scheme and uses
the almost-approximate inverse at each approximate quasi-periodic solution provided by Theorem O

We now complete the proof of Theorem Let v = &* with a € (0,a9) and ag := 1/(2M + 3 + 73)
where 73 is defined in (15.6)). Then the smallness condition given by the first inequality in (15.6) holds for
0 < € < g¢ small enough and Theorem applies. By (|15.8) the sequence of functions

Wa = Un = (9,0,0,0) := (Jn, G = w) = (in = (#,0,0), 6 — w)
is a Cauchy sequence in || H’;g"’ and then it converges to a function Wag := limy,_, o W,,. We define
Uso = (lcos 0oo) = (¢,0,0,w) + Woo,  Weo : R” X [y, hg] — HZ® x H3® x HZ’, x R”.

By (15.7) and (15.8]) we also deduce that

ko, _ ~ ko,
Uso U0||ngu(b Jior S Cuey Y Us = Uy oo oy on < CeEV™ 'Ko22 0 on>1. (15.11)

Moreover by Theorem [I5.1}(P2),,, we deduce that F(, Us(A)) = 0 for all A belonging to
() G =G0 () ALGn1) =2 g1 [ ﬂ Y (i } N [ N AZ’I(in,l)} : (15.12)
n>1

n>0 n>1

where Gy = Q x [hy,hs] is defined in (15.9)). By the ﬁrst inequality in (|15.11]) we deduce and (£.17).

It remains to prove that the Cantor set CY, in is contained in (1, ~, Gn. We ﬁrst con51der the set

Goo :=Go N [ N Afﬂ(ioo)} N [ N Aﬁ%’(im)] . (15.13)

n>1 n>1
Lemma 15.2. G, C ngO Gn, where G, is defined in (15.9)).
Proof. See Lemma 8.6 of [21]. O

Then we define the “final eigenvalues”
pse = pd(ice) +15°, jENT\ST, (15.14)
where 1) (i) are defined in (14.5) (with m1,7; depending on i) and

ro = lim r}(is), jeNT\ST, (15.15)

J n——+00

with 7% given in Theorem (Sl) Note that the sequence (77 (ioo))nen is a Cauchy sequence in | koY by
(14.22). As a consequence 1ts limit function r$°(w,h) is well defined, it is ko times differentiable and satisfies

[r5° = 1} (ise) 07 < Ceny XMV 72NT2 0> 0. (15.16)

In particular, since 79(is) = 0, we get [r2°[F07 < Cey2MHD|j|=2™ (here O == C(8, ko), with S fixed
in (15.4)). The latter estimate, (15.14), (14.5) and (12.78)) imply (4.18)-(4.19) with v3° := r; + r7° and

m° :=mi1 (o).
2 2

Lemma 15.3. The final Cantor set C1, in (4.20)) satisfies CY, C Goo, where G is defined in ((15.13)).
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Proof. By ([15.13)), we have to prove that C2, C 427(i.), Vn € N. We argue by induction. For n = 0 the
inclusion is trivial, since A} (i) = @ X [h1,h] = Go. Now assume that CZ, C A27 (i) for some n > 0. For
all A € CL C 427 (iny), by (14.20), (15.14), (15.16), we get

(= 1) (o) — (US° — pS7)| < Cey 2N 72 (572 4 j/=2m)

Therefore, for any |¢|, |7 — j'| < N, with (£,7,5") # (0, 4,7) (recall (4.20)) we have

- £ (i) — 4 (in0)| = - €+ iS° — ] — Cey2MHD =2, (j=2m 4 jr=2m)
> 4,Y<£>7Tj7dj/7d _ 06772(M+1)Nn__a1 (j72m + j/72m)
> 2y(6)"Tj e

provided Cey™2M=3 N2 N7 (j=2™+;'72™) 95’4 < 1. Sincem > d (see ([14.7))), one has (j+N,,)4j472™ <q N2
for all j > 1. Hence, using |j — j'| < N,
-/d -d - (j+Nn)d N (]/+Nn)d

-—2m g—2m\ dgrd ) J d
(*7 +J )‘7 )= j2m—d + j/2m—d - j2m—d j/2m—d ’Sd N"

Therefore, for some C; > 0, one has, for any n > 0,
Cg,y—QM—BNn—_alN:l' (j_2m + jl—Qm)jdj/d S 015’)/_2M_3Nn__alN.,:+d S 1

for € small enough, by (14.7), (15.6)) and because 73 > p(7 + d) (that follows since 75 > 71 + a where 72 has
been fixed in Theorem [14.3). In conclusion C2, C Ai11(ioo) (for the second Melnikov conditions with the +

sign in ([14.26)) we apply the same argument). Similarly we prove that C, C A27{(i ) for all n € N. O

Lemmata , imply C2, C (>0 Gn, where G, is defined in ([15.9). This concludes the proof of
Theorem F11 B

A Dirichlet-Neumann operator

Let n € C*°(T). It is well-known (see e.g. [47], [5], [40]) that the Dirichlet-Neumann operator is a pseudo-
differential operator of the form

G(n) = G(0) + Re(n), where G(0) = |D|tanh(h|D|) (A1)

is the Dirichlet-Neumann operator at the flat surface n(z) = 0 and the remainder R (n) is in OPS™>° and it
is O(n)-small. Note that the profile n(z) := n(w,h, ¢, x), as well as the velocity potential at the free surface
P(x) := Y(w,h, p, x), may depend on the angles ¢ € T” and the parameters A := (w,h) € R” x [h, hy]. For
simplicity of notation we sometimes omit to write the dependence with respect to ¢ and A.

In the sequel we use the following notation. Let X and Y be Banach spaces and B C X be a bounded open
set. We denote by C}(B,Y) the space of the C! functions B — Y bounded and with bounded derivatives.

Proposition A.1. (Dirichlet-Neumann) Assume that O5n(X,-,-) is C*° for all |k| < ko. There exists
d(s0, ko) > 0 such that, if
15 2k 41 < 950, o) (A2)

then the Dirichlet-Neumann operator G(n) may be written as in (A.1l) where Rg(n) is an integral operator
with C* kernel K¢g (see (2.54) ) which satisfies, for all m,s,« € N, the estimate

IRG(0)|%57 4.0 < Cls,m, . ko) | Kal

—m,s,x

ko, ko,
c23m+a < C(s,m,q, k0)||77||si;so+2ko+m+a+3 . (A.3)

Let s1 > 2sg + 1. There exists §(s1) > 0 such that the map {||nlls,+6 < d(s1)} — H (T x T x T),
= Ka(n), is C;.
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The rest of this section is devoted to the proof of Proposition [A1]

In order to analyze the Dirichlet-Neumann operator G(n) it is convenient to transform the boundary
value problem (with h = h) defined in the closure of the free domain D, = {(z,y) : —h < y < n(z)}
into an elliptic problem in a flat lower strip

{(X,)Y):-h—c<Y <0}, (A.4)
via a conformal diffeomorphism (close to the identity for 1 small) of the form
—UX,Y) = X +p(X,Y), y=V(X,Y)=Y +q(X,Y). (A.5)

Remark A.2. If is a conformal map then the system obtained transforming (1.3)) is simply (A.32) -
(the Laplace operator and the Neumann boundary conditions are transformed into themselves)

We require that ¢(X,Y) and p(X,Y) are 2m-periodic in X, so that (A.5]) defines a diffeomorphism between
the cylinder T x [—~h — ¢, 0] and D,,. The bottom {Y = —h — ¢} is transformed in the bottom {y = —h} if

V(X,-h—¢)=—h & g(X,-h—¢)=¢, VX €eR, (A.6)
and the boundary {Y = 0} is transformed in the free surface {y = n(z)} if
V(X,0) =nU(X,0)) <  q(X,0)=n(X+p(X,0)). (A7)

The diffeomorphism ({A.5)) is conformal if and only if the map U(X,Y)+iV(X,Y) is analytic, which amounts
to the Cauchy-Riemann equations Ux = Vy, Uy = —Vx, namely px = gy, py = —¢x. The functions (U, V),
i.e. (p,q), are harmonic conjugate. Moreover, ([A.6) and the Cauchy-Riemann equations imply that

Uy(X,-h—c¢)=py(X,-h —¢) =0. (A.8)
Given any periodic function
X)=po+ > _pre*¥, (A.9)
k#0

the unique function p(X,Y’) that is 27-periodic in X and solves Ap =0, p(X,0) = p(X), py (X, -h—¢) =0
is

cosh(|k[(Y +h+¢)) ux
! Al
Z Pk cosh(|k|(h + ¢)) ¢ (A.10)

The unique function ¢(X,Y") that is 27-periodic in X and solves Aq = 0, (A.6) and px = qy, py = —qx is

) sign(k) ) BX
X,Y)= ——————— sinh(|k|(Y +h L Al
o(X.Y) c+1§)1pkcosh(|k|(h+c)) sinh([K|(¥ + b+ ))e (A1)
We still have to impose (A.7). By (A.11]) we have
q(X,0) =c+ Z isign(k) tanh(|k|(h + ¢))pre*™ = ¢ — H tanh((h + ¢)|D|)p(X) (A.12)

k0

where p(X) is defined in (A.9) and H is the Hilbert transform defined as the Fourier multiplier in (2.32)).
By (A.12), since p(X,0) = p(X), condition (A.7) amounts to solve

¢ — Htanh((h+ ¢)|D|)p(X) = n(X + p(X)) . (A.13)

Remark A.3. If we had required ¢ = 0 (fixing the strip of the straight domain (A.4])), equation (A.13)
would, in general, have no solution. For example, if n(z) = ng # 0, then —H tanh(h|D|)p(X) = 1o has no
solutions because the left hand side has zero average while the right hand side has average 19 # 0. O
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Since the range of H are the functions with zero average, equation (A.13)) is equivalent to
= (X +p(X))), —Htanh((h+¢)|D))p(X) = 75 n(X + p(X)) (A.14)

where (f) = fo = mof is the average in X of any function f, 7 is defined in (2.33)), and 73 := Id — mp. We
look for a solution (¢(¢),p(p, X)), where p has zero average in X, of the system

H

— <7](X +P(X))>7 p(X) - m

[n(X +p(X))].- (A.15)

Since H? = —ng-, if p solves the second equation in (A.T5]), then p also solves the second equation in (A.T4).

Lemma A.4. Let n(\, ¢, ) satisfy 05n(N,-,-) € C(T*TY) for all |k| < ko. There exists 6(so,ko) > 0

such that, if ||r]||}2€g(’)1,CO+2 < (80, ko), then there exists a unique C* solution (c(n),p(n)) of system
satisfying

RIS, llells” Somo InIISTR, » Vs > s0. (A.16)
Moreover, let sy > 2sg + 1. There exists 6(s1) > 0 such that the map {||n|ls,+2 < §(s1)} — HZ x H**,
0= (c(n).p(n)) is Cy.

Proof. We look for a fixed point of the map

®(p) = HE((h+ )| D) +p()],  where £(¢):=

1
i@ CF0 (A.17)

and ¢ := (n(X +p(X))). We are going to prove that ® is a contraction in a ball Bags,4+1(r) := {Hp||]2€20w+1
(p) = 0} with radius r small enough. We begin by proving some preliminary estimates.
The operator Hf ((h + ¢)|D]) is the Fourier multiplier, acting on the periodic functions, with symbol

—isign(€)x (O£ ((h+c(A, @)I€]) = g(h+ (X, 9),&), where g(y,&) == —isign(§)x(§)E(ylE]) Yy >0,

where the cut-off x(¢) is defined in (2.16). For all n € N, there is a constant Cy(hi) > 0 such that
10y 9(y,§)| < Cn(hy) for ally > hy /2, £ € R. We consider a smooth extension g(y, §) of g(y, ), defined for any
(y,€) € R xR, satisfying the same bound as g. Now |[¢(A, ©)| < ||[n]lz= < C|Inllsy, and therefore h+c(X, p) >
hy/2 for all A, ¢ if |||, is sufficiently small. Then, by Lemma[2.6] the composition g(h+ c(), ¢), ) satisfies

(0 + e, ONIF Sokomne 1+ ellE?

uniformly in £ € R (the dependence on hj,hy is omitted in the sequel). As a consequence, we have the
following estimates for pseudo-differential norms (recall Definition of the Fourier multiplier in (A.17):
for all s > s,

[HE (8 + o)D) 6% IHIDIE' (B + 0)|DI) [6%7 L+ el (A.18)

Estimate (2.11)) with k41 = k¢ implies that, for ||p\|§§011 < (80, ko), the function ¢ = ¢(n, p) = (N(X+p(X)))

satisfies, for all s > sq,

ko, ko,
Ssko MllsR, + Pl

Therefore by (A.18), (A.19) we get, for all s > sq,

|2 (8 + )ID]) I5%5. 1HIDIE (B + )| DI) 5

lef

ko,
|77Hs§+7k0+1 . (A.19)

km’)’ <

ko, o, ko,
L+ [l + IRl Il 4 - (A.20)

Now we prove that ® is a contraction in the ball Bag,+1(r) := {||p||’§2011 <r, (p) =0}.

STEP 1: CONTRACTION IN LOW NORM. For any Hp||]§§(’]11 < r < (s, ko), by (2.69), (A.20), (2.11), and

using the bound Hn||sgfk0+1 < 1, we have, Vs > s,

ko, ko, R
1P Sk Inla57, + 0lleg kg1 RIS (A.21)
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We fix r := 2C(so, k0)||7]||§2(’]1,€0+1 and we assume that » < 1. Then, using (A.21)) with s = 2s¢ + 1, one

deduces that ® maps the ball Bag,+1(r) into itself. To prove that ® is a contraction in this ball, we estimate
its differential at any p € Bas,+1(r) in the direction p, which is

?'(p)[p] = A(mp), (A.22)
where the operator A and the function m are
A(h) == (W HE' (b + ) |D])|DI[n(X + p(X))] + HE((h + )| D[], m:=na(X +p(X)). (A.23)
To obtain ((A.22)-(A.23), note that dpc[p] = (mp). By (2.11)), for all s > s,
ko, , ko,
307 S ko M5S0 r + RIS 150 T ve - (A.24)
By (2.69), (A20), ([-11), using the bounds [|n]|£°7, ., < 1 and ||p||/ko < 1, we get, for all 5 > so,
ko, ko, , ko,
|AI% D Seko L 0l + 1218 0l o0 (A.25)
By (A.22), (2.44), (A.24)), (A.25)) we deduce that, for all s > s,
ko, ko, , ko,
127 (0) 6250 Ssako 111558041 + RIS 0150 2 (A.26)
In particular, by (A.26]) at s = 2s¢ + 1, and m, we get
~1 11ko, ko, k ko,
19" (P)[B] 1221 < Cs0, ko) [1mll50) iy 2llBll2eg 1 < 2||P||22011 (A.27)
provided C(so, k0)||77H126201k0+2 <1/2. Thus ® is a contraction in the ball Byy,+1(r) and, by the contraction

mapping theorem, there exists a unique fixed point p = ®(p) in Bas,+1(r). Moreover, by (A.21]), using that

p = ®(p) there is C(so, ko) > 0 such that if C(so,ko)||n] ngkoﬂ < 1/2 for all s € [sg,2s0 + 1], one has

[pll507 S ko H77||§Z’F,ZO Using also (A.19) one deduces ||c[|%o7 <k, HnHﬁilzo for all s € [sg,2s¢ + 1]. Thus we
have proved (A.16) for all s € [sg,2s¢ + 1].

STEP 2: REGULARITY. Now we prove that p is C* in (¢, z) and we estimate the norm [|p||%>" as in (A.16)
arguing by induction on s. Assume that, for a given s > 2sy 4+ 1, we have already proved that

k k ko,
RIS Mells®” Seko MR, - (A.28)

We want to prove that (A-28) holds for s + 1. We have to estimate ||p||¥}7 =~ max{||p|/**", |dxp|*",
0,,pl¥7, i = 1,...,v}. Using the definition (A.17) of ®, we derive explicit formulas for the derivatives
Oxp, 0y, p in terms of p,n, 0,1, 0y, 1. Differentiating the identity p = ®(p) with respect to X we get

px = HE((h+c)|D])[ne(X +p(X))(1+px)] = @' (p)[px] + Am) (A.29)

where the operator ®'(p) is given by (A.22) and A,m are defined in (A.23) (note that (n,(X + p(X))(1 +
px(X))) =0). By (A.26) at s = s, for ||77||]:°_:k 42 < 0(s0, ko) small enough, condition (2.52)) for A = —®'(p)
(with @ = 0) holds. Therefore the operator Id — ®’'(p) is invertible and, by (2.53) (with o = 0), (A.28)) and

(2.69)), its inverse satisfies, for all s > sq,

— ko, ,
1(1d = @' (9)) RIS Sako IR + 1057 40 P15 - (A.30)

By (A.29), we deduce that px = (Id - d'(p ))_1A( ). By (2.69), (A.24)-(A.25) and (A.28), we get
A )12 Ss 11550, 11 Hence, by (A30), using |||l 7, o < 1. we get

ko,
(139 SR (] (A.31)

We similar arguments we get ||, p|/%07 <s ko ||n||ls€j’r’,;’0+1, i=1,...,v, and using (A:28), (A-31)), we deduce
at s+ 1 for p. By (A.19)), the same estimate holds for ¢, and the induction step is proved. This
completes the proof of (A.16).

The fact that the map {[[nls,+2 < 8(s1)} — Hy' x H* defined by n — (c(n), p(n)) is C; follows by the
implicit function theorem. O
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Notice that (A.2)) implies the smallness condition of Lemma Now we transform ([1.3)) via the con-
formal diffeomorphism

cosh(|k[(Y +h+¢)) jx
X 1
U, +Z Pk cosh(|k|(h + ¢)) ¢

sign(k) : ikX
V(X,Y):= Y+c+§0 Pk (k] (B 1) sinh(Jk|(Y +h +¢))e

where ¢ and p are the solutions of (A.I5) provided by Lemma[A.4] Denote (Pu)(X) := u(X + p(X)). The
velocity potential ¢(X,Y) := ®(U(X,Y), V(X,Y)) satisfies, using the Cauchy-Riemann equations Ux = Vy,
Uy = —Vx (or equivalently px = gy, py = —qx) and (A.6)-(A.8),

Ap=0in{-h—c<Y <0}, ¢X,0)=(Py)(X), o¢y(X,~h—¢c)=0. (A.32)
We calculate explicitly the solution ¢ of (A.32]), which is (see (A.10))
—— cosh([k|(Y +B+6) ux
X)Y)= P !
o(X.Y) =D (Pv), cosh(k|b+¢) =

kEZ

where @k denotes the k-th Fourier coefficient of the periodic function Pi. Therefore the Dirichlet-
Neumann operator in the domain {—h — ¢ <Y < 0} at the flat surface Y = 0 is given by

¢y(X70)=Z(P¢) tanh(|k|(h + ¢))|k[e** = D] tanh((h + ¢)|D|)(Py)(X) . (A.33)
k0

Lemma A.5. G(n) = 0, P 'H tanh((h + ¢)|D|) P

Proof. The proof is the same as the one of Lemma 2.40 in [2I]. The only difference is that formula (A.33))
in the case of infinite depth is given by ¢y (X,0) = |D|(Pv)(X). O

PROOF OF PROPOSITION CONCLUDED. By Lemma we write the Dirichlet-Neumann operator as
G(n) = 0,P~ " Htanh((n+¢)|D|)P = |D| tanh(a|D]) + Ra(n) . Ra(n) = Rg () + R (n).
where, using the decomposition ,
RE) (1) := 8, (P~ "H tanh((n + ¢)| D|)P — H tanh((a + ¢)|D|))
= 0,(P™"HP — H) + 0 (P~"HODP(rasc) P — HOD(rntec)) - (A.34)
The second term Rg)(n) is
RE) (n) := 8, H( tanh((h + ¢)| D|) — tanh(h|D|)) = 9, HOp(raye — ) = ¢ HOP(Fa ) € OPS™, (A.35)

where

2exp{2(h + tc)[¢|x(&)}
1+ exp{2(h + tc)|¢|x(€)})?

Estimate (A.3) directly follows estimating and m by Lemmata [2.17] . E and using Lemma
The dlfferentlabhhty of the map {||77H31+6 < 0(s1)} = H**(T" x T x T), n — Kg(n) follows by the

differentiability of the map {|[nlls,+2 < d(s1)} — HZ' x H*, n+ (c(n),p(n)) proved in Lemma

dt € S7°°.

1
Pare() = (€)= Fuol©) e, Fuel€) = 20E|(E) / :

97



B Whitney differentiable functions

The following definition is the one in Section 2.3, Chapter VI of [59], for Banach-valued functions.

Definition B.1. (Whitney differentiable functions) Let F' be a closed subset of R", n > 1. LetY be a
Banach space. Let k > 0 be an integer, and k < p < k+ 1. We say that a function f : FF — 'Y belongs to
Lip(p, F,Y) if there exist functions f9) : F - Y, j € N*, 0 < |j| < k, with f© = f, and a constant M > 0
such that if R;(x,y) is defined by

) 1 .
P@y= > 590 @ -y +Ri(ry), wyeF, (B.1)
LN |j+e| <k

then

IFP @y <M, |Bj(z.9)lly < Mlz =y’ Yo,y e F|j] <k. (B2)
An element of Lip(p, F,Y) is in fact the collection {fU) : |j| < kY. The norm of f € Lip(p, F,Y) is defined
as the smallest M for which the inequality (B.2) holds, namely

||f||Lip(p,F,Y) = ll’lf{M >0: " hOldS} . (B3)

If F = R™ by Lip(p,R™,Y) we shall mean the linear space of the functions f = O for which there exist
fO =01 f, |j| <k, satisfying (B2).

Notice that, if F = R”, the fU), [j| > 1, are uniquely determined by f(®) (which is not the case for a
general F' with for example isolated points).

In the case FF =R", p=k+ 1 and Y is a Hilbert space, the space Lip(k + 1,R™,Y) is isomorphic to the
Sobolev space W*+1:2(R" V), with equivalent norms

Cill fllwrtr.0o@n,yy < 1flLiptes1,rm,v) < Coll fllwns1,00mn v (B.4)

where C1,Cs depend only on k,n. For Y = C this isomorphism is classical, see e.g. [59], and it is based
on the Rademacher theorem concerning the a.e. differentiability of Lipschitz functions, and the fundamental
theorem of calculus for the Lebesgue integral. Such a property may fail for a Banach valued function, but
it holds for a Hilbert space, see Chapter 5 of [12] (more in general it holds if Y is reflexive or it satisfies the
Radon-Nykodim property).

The following key result provides an extension of a Whitney differentiable function f defined on a closed
subset F' of R™ to the whole domain R", with equivalent norm.

Theorem B.2. (Whitney extension Theorem) Let F' be a closed subset of R™, n > 1, Y a Banach space,
k > 0 an integer, and k < p < k+1. There exists a linear continuous extension operator & : Lip(p, F,Y) —
Lip(p,R™,Y) which gives an extension & f € Lip(p,R™,Y) to any f € Lip(p, F,Y). The norm of & has a
bound independent of F,

€k fliLip(orm, vy < CllfllLip(p,ryy s Vf € Lip(p, F,Y), (B.5)

where C depends only on n,k (and not on F|Y ).

Proof. This is Theorem 4 in Section 2.3, Chapter VI of [59]. The proof in [59] is written for real-valued
functions f : F' — R, but it also holds for functions f : F — Y for any (real or complex) Banach space Y,
with no change. The extension operator & is defined in formula (18) in Section 2.3, Chapter VI of [59], and
it is linear by construction. O

Clearly, since & f is an extension of f, one has

I fllLipeo, vy < €k flLip(orr,y) < Cllf lLipeo,F,y) - (B.6)

In order to extend a function defined on a closed set F' C R™ with values in scales of Banach spaces (like
H*(T"*1)), we observe that the extension provided by Theorem does not depend on the index of the
space (namely s).
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Lemma B.3. Let F be a closed subset of R™, n > 1, let k > 0 be an integer, and k < p<k+1. LetY C Z
be two Banach spaces. Then Lip(p, F,Y) C Lip(p, F, Z). The two extension operators glgz) : Lip(p, F, Z) —
Lip(p,R™, Z) and 5,9/) : Lip(p, F,Y') — Lip(p,R™,Y") provided by Theorem satisfy

&7 f=&1F YfeLip(p,FY).

As a consequence, we simply denote & the extension operator.

Proof. The lemma follows directly by the construction of the extension operator & in formula (18) in Section
2.3, Chapter VI of [59], which relies on a nontrivial decomposition in cubes of the domain R™ only. O

Thanks to the equivalence , Lemma and which holds for functions valued in H?, classical
interpolation and tame estimates for products, projections, and composition of Sobolev functions can be
easily extended to Whitney differentiable functions.

The difference between the Whitney-Sobolev norm introduced in Definition [2.1]and the norm in Definition
(for p=k+1, n=v+1, and target space Y = H*(T"T!,C)) is the weight v € (0,1]. Observe that the
introduction of this weight simply amounts to the following rescaling R.: given u = (u(j ))‘ jl<k, we define
Ryu=U = (UD)<, as

A=qp, A =D (yp) = UD () =UD(y71N), U :=Ryu. (B.7)
Thus u € Lip(k + 1, F, s,7) if and only if U € Lip(k + 1,7 1 F, s, 1), with
lull§ 5T = U]t (B.8)

Under the rescaling R, (B.4) gives the equivalence of the two norms

I fllwetr.o0y metr msy == Z AN OL f1| oo @1, 15y ~wk ||f||k££+1 . (B.9)
la|<k+1
Moreover, given u € Lip(k + 1, F, s,7), its extension
i =Ry EWRyu € Lip(k + 1L, RV 5,7)  satisfies [Juf 507~y ]800 (B.10)
Proof of Lemma Inequalities — follow by
(Hyw) D (N) = Dx[u@ V)], B (0, Ao) = T RS (O do)],

for all 0 < [j] < k, A\, \o € F, and the usual smoothing estimates ||TIx f||s < N%|f|ls—a and |[|[Hxf|s
N7 f|ls+a for Sobolev functions. D

Proof of Lemma Inequality (2.8) follows from the classical interpolation inequality [|ul|s < [u]|? [Ju//2°
s =0s¢ + (1 — 0)s; for Sobolev functions, and from the Definition of Whitney-Sobolev norms, since

YD N)s < D N)s0) D )16 < (lalls 57 Qa5 57
YR Ao) s < (FFHIRG O Ao)ls0)? (IR (A A0)lls)' 7 < (lullf 77)° (lu HHI’”)H’IA—Aolk“"j'-

Inequality (2.9)) follows from (2.8) by using the asymmetric Young inequality (like in Lemma 2.2 in [21]). O

Proof of Lemma By —, the lemma follows from the corresponding inequalities for functions
in WhktbLeoy(R¥+1 H9) which are proved, for instance, in [21] (formula (2.72), Lemma 2.30). O

For any p > 0, we define the C* function h, : R — R,

hy(y) == Xp;y) - X(y;’_l) . Yy eR\ {0}, h,(0):=0, (B.11)
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where y is the cut-off function introduced in (2.16]), and x,(y) := x(y/p). Notice that the function h, is of
class C* because h,(y) = 0 for |y| < p/3. Moreover by the properties of x in (2.16) we have

3
ho(y) = 7’ Vigl 2 = ()l < 5 WER. (B.12)
To prove Lemma we use the following preliminary lemma.
Lemma B.4. Let f: R"*! — R and p > 0. Then the function

g\) = h,(f(N), VAeR T (B.13)

where h, is defined in (B.11), coincides with 1/f(\) on the set F:={X € R"T1: |f(\)] > p}.
If the function f is in WFTLo(RY L R), with estimates

FelagfN | <M, YaeNT 1<|o<k+1, (B.14)
for some M > p, then the function g is in WFH1L°(RVT1 R) and
k+1
Flel|agg(N)| < C’“W , YaeN*t 0<|a|<k+1. (B.15)
Proof. Formula (B.15) for & = 0 holds by (B.12). For || > 1, we use the Faa di Bruno formula and
(B14). O

Proof of Lemma The function (w - d,,).u defined in (2.15) is

(W 8p)caru) N, 2) = —i Z ge(N)ug ; () elléetiz)
(¢,5)ezv+1t

where g;(X) = h,(w - ¢) in (B.13) with p = ~v(¢)7 and f(\) = w - £. The function f(\) satisfies (B.14) with
M = ~|¢|. Hence g¢(\) satisfies (B.15)), namely

’yla‘|8§‘ge()\)| <Oy HOP YaeNTL 0<|a| <k +1, (B.16)

where 1 = k+ 1+ (k+2)7 is defined in (2.18). By the product rule and using (B-16)), we deduce /*!(|0§ ((w-

) o) Nl < Ck’)’71||u||§i,ifl§u+1 and therefore (2.17). The proof is concluded by observing that the

restriction of (w - d,).4u to F gives (w-d,) 'u as defined in (2:14), and (2:18) follows by (B.10). O
Proof of Lemma Given u € Lip(k + 1, F, s,7), we consider its extension @ € Lip(k + 1,R**1 s 7)
provided by (B.10). Then we observe that the composition (@) is an extension of f(u), and therefore

one has the inequality Hf(u)”f'}lv < Hf(ﬂ)”f&iﬁ ~ ||£(@)||wer1.00m et 1oy by (B.9). Then (2.19) follows

by the Moser composition estimates for || ||’;£1V]1 (see for instance Lemma 2.31 in [21]), together with the
equivalence of the norms in (B.9)-(B.10). O

C A Nash-Moser-Hormander implicit function theorem

Let (E,)a>0 be a decreasing family of Banach spaces with continuous injections Ej, < E,
lullg, < lullg, fora<b. (C.1)

Set Eoo = Ng>0F, with the weakest topology making the injections Fo, — E, continuous. Assume that
there exist linear smoothing operators S; : Ey — Fo for j = 0,1,..., satisfying the following inequalities,
with constants C' bounded when a and b are bounded, and independent of j,

|S;ulle, < Cllullg, for all a; (C.2)

I1Sull g, < C27C~|S;u| g, if a < b; (C.3)

u— Sjullg, <C279@ Y|y — S;ullg, if a > b; (C4)
1(Sj+1 = Sjullm, < C2C=D|(S;11 = S))ullm, for all a,b. (C.5)
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Set

Rou = Slu, Rju = (Sj+1 - Sj)u, _] Z 1. (CG)

We also assume that -
lull, <CYIRullh, Ya>0, (C.7)

j=0

with C' bounded for a bounded (a sort of “orthogonality property” of the smoothing operators).
Suppose that we have another family Fj, of decreasing Banach spaces with smoothing operators having
the same properties as above. We use the same notation also for the smoothing operators.

Theorem C.1 ([10]). (Existence) Let ay,as,®, 3, a9, be real numbers with

0<ap<pc<a, a1+§<a<a1+ﬁ, 200 < a1 + as. (C.8)

Let U be a conver neighborhood of 0 in E,. Let ® be a map from U to Fy such that ® : U N Eqpy — Fy is
of class C*? for all a € [0,ay — ], with

12" (v, wlllF, < Mi(@)([v]l g,y 0l + 10lE, W] 5.
+{Ms(a)|ullp,, . + Ms(a)}|v]|e., [wle,, (C.9)

for allu e UNEqyp, v,w € Eqy,, where M; : [0,a2 — p] — R, i = 1,2,3, are positive, increasing functions.
Assume that ®'(v), for v € Es NU belonging to some ball |[v|| g, < 01, has a right inverse ¥(v) mapping
Fy to E,,, and that

W (v)glle, < Li(a)llgllF,,s_o +{L2(@)llvl|E, » + La(a)}gllr, VYa € [a1,az], (C.10)

where L; : [a1,a2] — R, i =1,2,3, are positive, increasing functions.
Then for all A > 0 there exists 6 > 0 such that, for every g € Fg satisfying

Y IRl < A%lglE,,  lglle, <6, (C.11)
j=0

there exists u € E, solving ®(u) = ®(0) + g. The solution u satisfies
ull g, < CLi2s(a2)(1+ A)llgllF,, (C.12)
where Liog = Ly + Lo + L3 and C is a constant depending on ay,as, c, 3. The constant 0 is
d=1/B, B = (C'Ljs3(az) max {1/61, 1+ A, (1+ A)Li23(az)Mias(az — M)} (C.13)
where Myo3 = My + Mo + M3 and C’ is a constant depending on a1, az,q, 3.

(Higher regularity) Moreover, let ¢ > 0 and assume that (C.9) holds for all a € [0, a2+ ¢ — p], ¥(v) maps
Fo to Eqytc, and (C.10) holds for all a € [a1,a2 + c]. If g satisfies (C.11) and, in addition, g € Fgq. with

S IRl < 42]gll3.. (C.14)
j=0

for some A., then the solution u belongs to Eq ., with

Jull 2ore < Ce{G1(1+ A)llgllrs + Ga(1+ Ao)llgl £y } (C.15)

where
G1 := Ly + Lio(LsMys + Liag(a2) M3)(1 + 2V), Gy := Lia(1 + 2V), (C.16)
Z = L123((11)M123(0) + ilngg, (Cl?)

I~/12 = El —|—[~/2, Ez = Li(ag —|—C), 1= 1,2,3; Mlg = Ml + Mg, Mz = Mi(ag +c— ,u), 1= 1,2,3,’ N isa
positive integer depending on c,ay,«, 3; and C, depends on ay,as,a, 3, c.
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This theorem is proved in [I0] using an iterative scheme similar to [34]. The main advantage with respect
to the Nash-Moser implicit function theorems as presented in [62, [I7] is the optimal regularity of the solution

u in terms of the datum g (see (C.12)), (C.15])). Theorem has the advantage of making explicit all the
constants (unlike [34]), which is necessary to deduce the quantitative Theorem
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