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Abstract. We investigate a general question about the size and regularity of the data and the
solutions in implicit function problems with loss of regularity. First, we give a heuristic explanation
of the fact that the optimal data size found by Ekeland and Séré with their recent non-quadratic
version of the Nash-Moser theorem can also be recovered, for a large class of nonlinear problems,
with quadratic schemes. Then we prove that this heuristic observation applies to the singular
perturbation Cauchy problem for the nonlinear Schrodinger system studied by Métivier, Rauch,
Texier, Zumbrun, Ekeland, Séré. Using a “free flow component” decomposition and applying an
abstract Nash-Moser-Hormander theorem, we improve the existing results regarding both the size
of the data and the regularity of the solutions.
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1 Introduction

This paper is motivated by a general question concerning the size and regularity of the
data and the solutions in implicit function problems with loss of regularity. In the recent
work [4], Ekeland and Séré introduce a new iteration scheme in Banach spaces for solving
nonlinear functional equations of the form

F(u)=v

where the linearized operator F’(u) admits a right inverse that loses derivatives. In such
situations, a well-established strategy for constructing a solution w consists in applying



a Nash-Moser iteration, essentially based on a quadratic Newton scheme combined with
smoothing operators. The scheme in [4] differs from the standard Nash-Moser approach
in that it is not quadratic, and it consists in solving a sequence of Galerkin problems by
a topological argument (Ekeland’s variational principle). This gives two main improve-
ments with respect to the standard quadratic approach: the map F' needs not be twice
differentiable, and a larger ball for the datum v is covered.

The first point of the present paper is the observation that, for operators of the form

F(u) = Lu+ N (u)

where L is linear and NV (u) = O(||u||*) for some a > 1 in a ball ||u|| < R, the same size of
the ball for the datum v as in [4] can also be obtained by quadratic Nash-Moser schemes.
In Section [2| we explain the heuristics behind this simple, general observation.

In Sections we consider the singular perturbation Cauchy problem for the nonlinear
Schrodinger system studied by Métivier and Rauch [10], Texier and Zumbrun [I1I] and
Ekeland and Séré [4], and we rigorously prove that the observation of Section [2| applies to
this PDE problem. The result of Sections [3}{6]is stated in Theorem [3.4] which improves the
results in [11] and [4] regarding the size of the data and also the regularity of the solution:
for initial data in a Sobolev space H*(R?) we prove that the solution of the Cauchy problem
belongs to C([0,T], H*(R?)) with the same regularity s, as it is expected, and we give the
corresponding estimate for the solution in terms of its initial datum. For initial data of a
special “concentrating” form, see , Theorem also improves the size of the ball for
the data with respect to [11] and [4], see Remark

For initial data of the other special form considered in [I1] (“fast oscillating” data,
see (13.5))), we improve the size of initial data in Theorem which is proved in Sections
With respect to Theorem the new ingredient is a “free flow decomposition” of
the unknown, which is a natural way of exploiting the interplay between the linear and
nonlinear part of the system and the better L>° embedding properties of concentrating or
highly oscillating free flows (see Lemma [7.2), inspired by the “shifted map” trick of [I1].
The price to pay for this improvement on the size of data is a loss of one derivative: for
data in H*(R?), the solution belongs to C([0,7], H*~'(R%)). Theorem improves the
results of [I1] and [4] both regarding the regularity of the solution and the size of the data,
see Remark [3.7]

We point out that the loss of regularity in Theorem is mot due to the Nash-Moser
iteration: the loss of one derivative is introduced when solving the linearized Cauchy
problem as a triangular system (see ) in two components, which are the “free flow”
component of the unknown and its correction — the Nash-Moser-Hérmander Theorem
just replicates the loss of one derivative for the nonlinear problem, without introducing
additional losses. The loss of regularity in Theorem equals exactly the amount of
derivatives in the nonlinearity, which is 1 in system .

The main difference between our “free flow decomposition” and the “shifted map”
trick of [11] is that we treat the free flow as an unknown, although it is already completely
determined by the initial datum of the problem. In this way, Theorem regularizes the
free flow, introducing just one new dyadic Fourier packet at each step of the iteration.
This is the key ingredient for preserving the regularity of the linearized problem in the
nonlinear one, and it is somewhat reminiscent of a similar idea in Hérmander [5].

Technical details of the fact that the heuristic observation of Section[2]rigorously applies
to Theorems [3.4] and [3.5] are contained in Remarks [6.1] and Other general observations



about the optimization of the data size in Nash-Moser schemes are in Remarks and
L4
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2 Large radius with quadratic schemes: an informal expla-
nation

Consider a nonlinear problem of the kind
F(u) =,

where v is given, u is the unknown, and F' is a twice differentiable nonlinear operator in
some Banach spaces satisfying F'(0) = 0. Assume that for all w in a ball ||ul| < R the
linearized operator F’(u) admits a right inverse W(u) satisfying

@ ()bl < Allhll V[ull < R, (2.1)
and the second derivative F”(u) satisfies
17" (u) [, wll| < B|Allllw] - V]l <R (2.2)

(in this discussion we ignore completely the questions about loss of derivatives, and we
only care about size). As explained in [4], the quadratic Newton scheme gives a solution
u of the equation F'(u) = v for all v of size

1 R
v|| < min {—, —},
ol S min {
while, with topological arguments, one can prove the existence of a solution u for all v in

the larger ball
R

Z.
Our observation is that, for operators F' in some large class, the two radii are of the same
order.

Indeed, assume that F' is given by the sum of a linear part £ and a nonlinear one N,

loll <

F(u) = Lu+ N (u).
Assume that N satisfies

IV ()| < P,
IV ()R] S lul” IR, (2.3)
IV () B, w]| S Mul P~ IR ]



for some p > 1, for all w in the ball ||u|| < 1, so that
1 () [, w]ll S Ml P~ ([ ]

Suppose that £ has a right inverse £! (namely ££ ! = I) and that

1L N ()] < (2.5)

N =

for u sufficiently small, say ||u|| < R, so that, by Neumann series, the linearized operator
F'(u)=L+N'(u) = LI+ LN (u))

has the right inverse

V(u) = (I + LN (w) 7L,

with
1 (w)|| < 2[1£,7].

Hence ({2.1)) holds with
A=20L.

What is the “intrinsic” size of R? By (2.3), condition (2.5 holds for

1
I P < 5, el < (5or)
2 20177

therefore we fix

1 1 1
Ri=(—— )" = A 5. 2.6
(i) =4 (26)

Moreover, by ([2.4)), condition (2.2)) holds with
B:=Rrl=A""5,

Thus ) R
_1-1 _1-1
w4 AT AT

namely the two balls have the same size.

Remark 2.1. Even when £ !A’(u) is an unbounded operator, so that the right invert-
ibility of F’(u) cannot be directly obtained by Neumann series, the heuristic argument
above still catches the right size of R, provided that the invertibility of F’(u) is obtained
by a perturbative procedure. ]

3 Application to a singular perturbation problem

Like Ekeland and Séré in [4], we consider the Cauchy problem studied by Métivier and
Rauch [I0] and Texier and Zumbrun [II], which is a nonlinear system of Schrédinger
equations arising in nonlinear optics. In [10], Métivier and Rauch prove the existence of
local solutions of the Cauchy problem, with existence time 7' converging to 0 when the
Sobolev H*(R?) norm of the initial datum goes to infinity. In [I1], Texier and Zumbrun
use a Nash-Moser scheme to improve this result, giving a uniform lower bound for T for



two classes of initial data (concentrating and highly oscillating) whose H*(R%) norm goes
to infinity. In [4], Ekeland and Séré apply their non-quadratic version of the Nash-Moser
theorem, extending the result in [I1] to even larger initial data.

Like in the aforementioned papers, we consider the system

N
O + iNjAvj = Z (bjk(v, Oz )i + ¢k (v, axm), j=1,...,N, (3.1)
k=1
where v = v(t,z) = (v1,...,vy) € CV is the unknown, (¢,z) € [0,T] x R%, \1,..., Ay are

constants, and bjx (v, 0x), ¢ji(v,0;) are first order differential operators

]k v, 8 Zb@k mé, Cjk v, 8 ZCg]k sz (3.2)
with byj, ceji complex-valued C*° functions of Re (v1),...,Re(vn),Im (v1),...,Im (vy)
of order

bejk(v) = O(|v[P),  cgjr(v) = O(|v|P) (3.3)

in a ball around the origin, for some integer p > 1.
Following [10], [I1] and [4], we assume these “transparency conditions”:

Assumption 3.1. We assume that
(1) M,..., AN are real and pairwise distinct;
(1) for all j,k such that \j + A, = 0 there holds cji, = cyj;
(¢4i) for all j, bjj is real.

Under these assumptions, the Cauchy problem for is locally wellposed in the
Sobolev space H*(R?) for s > 1+ d/2 (Theorem 1.5 in [I0]). As is natural in the case of
general initial data, the result in [10] gives an existence time 7' going to 0 as the initial
datum goes to co in H*(R%). In [I1] and [4] it is assumed that p > 2, and special initial
data

v(0,z) = e%a.(x) (3.4)

are considered, either concentrating or fast oscillating
a:-(x) = ag(z/e) (concentrating); ac(x) = ag(x)e™ /% (oscillating), (3.5)

with & € R?, and in both cases 0 < e <1, 0 > 0, ag € H*(R?) for some large s1.
In [I1] and [4] the following results are proved.

Theorem 3.2 (Theorem 4.6 in [I1]). Under the assumptions above, let d,p > 2 and

ke —o0,—1 d p
o> pT’ g > 2p— 1 — Oa, (36)
where o, = d/2 in the concentrating case, o, = 0 in the oscillating case, and k. is a con-
stant depending on (d,p). Let s1 be large enough, and let T > 0. Ifag € H3(R?) for 5 large
enough, and ||ag||gs is small enough, then, for all e € (0,1], the Cauchy problem (3.1))-
(3-4)-(3.5) has a unique solution in the space C1([0,T], H**=2(R%)) N C°([0, T], H**(R?)).

The second condition in (3.6|) is not written explicitly in the statement of Theorem 4.6
in [11], but it is used in its proof. The constant k. in (3.6|) satisfies k. > max{6,3+ %},
see Remark [3.7



Theorem 3.3 (Theorem 6 in [4]). Under the assumptions above, let d,p > 2, let

4
2(p—1)’
and consider the concentrating case. Let sy > d/2+4 and T > 0. Ifag € H*(R?) for 5 large

enough, and ||ag||gs is small enough, then, for all e € (0,1], the Cauchy problem (3.1])-
(3.4)-(3.5) has a unique solution in the space C*([0,T], H**=2(R%)) N C°([0, T], H**(R?)).

o> (3.7)

Following [I1], we introduce the “semi-classical” Sobolev norms
£l = (=€ A+ D2 fll oy = N1+ [€)2(FN Ol 2@g),  sER, (38)

where F is the Fourier transform on R%, and 0 < & < 1. The first theorem we prove in
this paper is the following.

Theorem 3.4. (i) (Existence) In the assumptions above, let T > 0, p > 1, d > 1, and
$1 > d/2+4. Then there exist constants C,C’' > 0, g9 € (0,1], depending on T, p,d, s1 and
on Aj, bjk, ¢ji in system (3.1), such that for all e € (0,e0), for all initial data vy € H*1 (RY)

in the ball
1 d

[vollgs1 < Cef, g = » + = (3.9)

2 )

the Cauchy problem for system (3.1) with initial data v(0,x) = vo(z) has a solution
v e C%([0,T), H (RY)) N CH([0, T], H* *(R7)),

which satisfies

sup [[o(t)[l e +€® sup [[9u(t)]

si—2 < O vol| o1 -
t€[0,T] 0,77 <’ He

H,

(ii) (Higher regularity) If, in addition, vo € H*(R?) for s > s1, then

sup [[o(t)|lmz +€* sup (|0 (t)l| s> < Csllvollms
t€[0,T) t€[0,T]

where Cy depends on s (and it is independent of ,vp,v).

(777) (Initial data of special form) In particular, initial data vy of the form (3.4)-(3.5)),
with ||ag|| sy (may < 1, belong to the ball (3.9) for all € sufficiently small if o + 0a > g,
namely

1 d

where o, = d/2 in the concentrating case and o, = 0 in the oscillating case.

In the next theorem we deal with the case p > 2, where the power p of the nonlinearity
is used to improve the lower bound for o, at the price of a loss of 1 derivative in the
solution with respect to the regularity of the datum.

Theorem 3.5. (i) (Existence) In the assumptions above, let T > 0, p > 2, d > 1,
s1 > max{d + 4,6}, and

1+d/2—o0,

o> ——

. (3.11)



where o, = d/2 in the concentrating case and o, = 0 in the oscillating case.

Then there exist constants C > 0, €9 € (0,1], depending on T, p,d, s1, on Aj, bjk, cji in
system (3.1), and on the difference o — (1 + d/2 — 04)/p, such that for all e € (0,¢eq], for
all functions ag € H**(R?) in the ball

laoll s <1, (3.12)

the Cauchy problem for system with initial data of the form — has a solution
ve C[0,T], H*~L(RY) n CL ([0, T), H*3(RY))
on the time interval [0,T]. Such a solution v is the sum
v=1yY+v

of a “free flow” component y(t,x), which is the solution of the Cauchy problem for the free
Schréodinger system

Oyj +iNjAy; =0, j=1,...,N,

y(0,z) = e%ac(x),

and a “correction” term v(t,z) satisfying ©(0,z) =0 and

-3 < Ce7 2 |ag]| s .

sup [[5(0) | o1 + €2 sup_ 9650

te[0,T] t€[0,T7]
(ii) (Higher regularity) If, in addition, ag € H*(RY) for s > s1, then

sup [[3(t)l| 1 + € sup [103()|] s < Coe” 2o | e
te[0,T) te[0,T]

where Cy depends on s (and it is independent of €, ag).

Remark 3.6 (Smallness in low norm). In the higher regularity case, the smallness as-

sumptions (3.9) in Theorem and (3.12]) in Theorem are only required in the low
norm si, with radii independent of the high regularity s. O

Remark 3.7 (Comparison with the results in [10], [11], [4l]). As observed in [I1] and [4],
Métivier and Rauch [10] already provide existence for a fixed positive 7', uniformly in ¢,
when

o>oMR:=14+d/2—0,.

Hence [11], [4] and Theorems (3.4 give something new only for o < omR.
The result of Texier and Zumbrun holds for d > 2, p > 2, and ¢ above the threshold

hke—o0a—1

oT7 - p—|-1

(Theorem 4.6 in [I1]), where the constant k. satisfies some conditions; in particular, k. > 6
and

d p
ke>3+-———
23+ 5o

whence



The threshold for ¢ in our Theorem 3.5 is

" 1+d/2—0‘a OMR

For all pairs (d,p) covered by [11] (namely d,p > 2), one has of < ¢ < o1z, therefore
we get a larger ball for the initial data. More precisely, regarding the data size, the
improvement of Theorem with respect to [11] corresponds to the exponent o in the
interval 0] < o < min{orz,omr}. Note that for some pairs (d,p) one has o1z > omg
(see Examples 4.8-4.9 in [I1]), so that [I1] gives no improvements with respect to [10]; our
result improves [10] also in those cases.
The result of Ekeland and Séré holds for d,p > 2, and o above the threshold

d p d

T a1 T T -

in the concentrating case o, = d/2 (Theorem 6 in [4]). The threshold for ¢ in our Theorem
B L1 d

oy = 5 + 5~ Oa;
in particular, o = 1/p in the concentrating case. Since 0§ < ogg for all d,p > 2, we get
a larger ball for the initial data also with respect to [4].

With respect to [11] and [4] we also improve the regularity of the solution with respect
to that of the initial data: using Theorem the solution is one derivative less regular
than the data (the loss of regularity is one), while with Theorem the solution has the
same regularity as the data (the loss is zero). In [I1] and [4], instead, the loss of regularity
depends in a nontrivial way on several parameters of the iteration scheme, it blows up to
400 in certain parameter regimes, and, in particular, can never be zero. ]

Remark 3.8 (Rdle of dispersion). Like in the approach of Métivier and Rauch [10], Texier
and Zumbrun [I1], and Ekeland and Séré [4], smoothing effects, Strichartz estimates and
dispersive properties of the linear Schrodinger flow play no direct role in the present paper.

Another natural approach to the study of system in the singular perturbation
regime — would be the one along the lines of the works of Kenig, Ponce, Vega,
Cazenave, Chihara, ... (see e.g. [6], [7] and the references therein), adapting “dispersive
techniques” to the present singular perturbation issue.

It would be interesting to understand (although outside the scope of the present paper)
if the “inhomogeneous smoothing effect” of [6], [7], which provides a gain of one derivative,
could be used to prove a stronger version of Theorem where the loss of one derivative
is removed and, simultaneously, the existence time, uniform in &, and the threshold
are not deteriorated. Note, on the other hand, that in Theorem there is no loss (even
if we use Nash-Moser).

In fact, our point of view in the study of in the singular perturbation regime —
(3.5)) is very similar as the one in [I1] and [4], which is somewhat the one of considering that
problem also as a “concrete test for abstract Nash-Moser theorems” outside the traditional
field of Hamiltonian dynamics where the loss of derivatives is due to the presence of small
denominators in Fourier series. O



4 Functional setting

In this section we introduce weighted Sobolev norms and recall the basic inequalities that
will be used in the rest of the paper.
For s € R, we define

[ll s ray = 1A ullL2ray,  Nullgsrey = [[AZu]l L2Ra), (4.1)

where A® = (1—A)*/? is the Fourier multiplier of symbol (14 |€|?)¥/? and A2 = (1—2A)%/?
is that of symbol (1 + £2|¢|?)*/2, namely, following [11],

el s ey = (1 = €28)2ul| o gy = |1+ |5€’2)s/2ﬂ(€)”L2(]Rg)v s € R, (4.2)

where @ is the Fourier transform of v on R%, and 0 < ¢ < 1. For all u € H*(R?), one has

o —

(Reu)(§) =e%u(e™'¢),  (Reu)(z) = u(ex), (4.3)
whence
ARe = ReAZ, ull s ray = e[| Rev| o ray. (4.4)

We define the scalar product

(u, V) s (ray == (AZu, AZv) 2 (Ray. (4.5)

To shorten the notation, we write || ||gs instead of || || zs(ra), and so on. Using .4,
it is immediate to obtain the Sobolev embedding and the standard tame estimates for
products and compositions of functions in terms of the rescaled norms : for the
Sobolev embedding, one has

lullze = [|Reullzo < Csyl|Reull oo = Coge™ "2 |Jull g0 (4.6)

for all sg > d/2, all u € H*(R?), for some constant Cs, depending on sg,d; for the
product, one has
luvl[ e < Cs([lullzoe vl s + llullme llvllze) (4.7)

for all u,h € H*(R?), all s > 0, for some constant C depending only on s,d; for the
composition, given any C'* function f such that f(y) = O(yP) around the origin for some
integer p > 1, one has

1 ()l < Conallullz ([l e (4.8)

for all M > 0, all u € H*(R?) in the ball ||ulz~ < M, all s > 0, for some constant C s
depending only on s, M, d, f. Moreover,

eNogulls < ull yotion (4.9)

for all multi-indices o € N,
For m > 0 integer, we define

fullwmee =3 [l0Sullze,  [ulpmee = > ell|ogul| g (4.10)
aeNd aeNd
la|<m la|<m



One has
YR, =el®IR.92,  |Julymee = || Reullwrm.os. (4.11)

Similarly as (4.8), given any C* function f such that f(y) = O(y?) around the origin for
some positive integer p, one has

-1
1 (@) llwzmee < Connellullpee lullymes (4.12)

for all M > 0, all w € W™>(R%) in the ball |jul/z~ < M, all integers m > 0, for some
constant Ci, ps depending on m, M, d, f. For the product of two functions, we also have

lwoll s < &™2(Csollull ool 1z + Cslull elloll z0) (4.13)
for all s > 0, sg > d/2, all u,v € H*(R%) N H*(RY), and
Jwvll s < 2flullLoe vl s + Csllullyzo o] 12 (4.14)

for all s > 0, all v € H3(R?), all u € W™ (R%), where m is the smallest positive integer
such that m > s, and Cy depends on s,d. Estimate is proved in the Appendix (see
@D in Lemma, . We remark that the constants Cs,, Cs, Cs a1, Cpy v in , ,
4.8), (£.12), ([@.13), (4.14) are independent of £, and Cj, is also independent of s.

For time-dependent functions u(t, x), t € [0,T], we denote, in short,

lullcors = llulloo,r), ) lullcrms == llullcoms + %100l o gge—2, (4.15)
2
lullcowm = lullcqommwmeey,  lullcawm = llullcowm +&7[|0pul goyym—2.  (4.16)

The notation a <g b means a < Csb for some constant Cy, independent of e, possibly
depending on s; also, a < b means a < Cb for some constant C' independent of € and s.

5 Analysis of the singular perturbation problem
In [I1] and [4], system is written as

Owu + 1 A(Oy)u = B(u, 0z)u (5.1)

where u = (v,v) = (v1,...,VN,01,...,0n) is the unknown, A(0,) is the constant coeffi-
cients operator of second order

A(Gm) = diag(/\l, ey )\n, —)\1, ey —)\n)A,

B C
B‘(c B)’

B,C are the operator matrices with entries bj;(v,8;), ¢ji(v,8;) respectively, and B,C
have conjugate entries coefficients. To deal with concentrating or highly oscillating initial
data (3.5)), in [11] the weighted Sobolev norms are introduced. Recalling ([4.9), it is
natural, as it is done in [II] and [4], to write the powers of € as separate factors, writing

ED as

B(u, 0,) is the operator matrix

Opu + i 2A(e0,)u = e 1 B(u, €0, )u (5.2)

10



where A(c0,) := ¢2A(0,) and B(u,ed,) := eB(u, ;). In this way A(ed,) and B(u,cd,)
satisfy estimates that are uniform in e:

A0z )ull s < Collul e+ (5:3)
for all s € R, all u € H*(R?), with Cy = max{|\1],...,|A\nx|};
1B (u, 200)hll 11z < Co(llull ool rosr + ull 2 Null sz ledohl o) (5-4)

for all s > 0, all h € H¥*Y(R?), all u € H*(R?) in the ball ||u|p~ < 1; also, by (#.14) and
(#.12),

1B(u, e00)hrz < Cllullfocllll ot + Csllullze lullyisenoe 1Rl (5.5)
for all s > 0, all h € HtY(RY), all u € WEIH19(RY) in the ball |lu|[~ < 1, where [s] is
the integer part of s; and, by (10.13)) and (4.12)),

-1
1B(u, €0z )|l s < Cllullyoe wlly 100 1]l s (5.6)

for all =1 < s < 0, all h € H*TY(RY), all u € WH(R?) in the ball ||Ju|z~ < 1. The

constants in (5.3)), (5.4), (5.5), (5.6) do not depend on ¢ € (0,1]; Cp,C in (5.3), (5.5) and
(5.6) are also independent of s.

We consider the Cauchy problem for (5.2)) with initial data (3.4)), namely

{@u—l—P(u) =0, (5.7)
u(0) = ug
where

P(u) =i 2A(e0,)u — e ' B(u, €0, )u, ug(z) == 7 (ac (), ac(z)). (5.8)

To apply our Nash-Moser theorem, we need to construct a right inverse for the linearized
problem and to estimate the second derivative of the nonlinear operator. Let us begin
with the linear inversion problem.

Analysis of the linearized problem. Given u(t,x), f1(t,x) and fa(x), consider the
linear Cauchy problem for the unknown h(t, z)

{ath + P'(u)h = fi, 59)
h(0) = fo,
where
P'(u)h = ie 2A(edy)h — e 1 B(u,ed,)h + Ro(u)h, (5.10)
Ro(u)h := —e (0, B)(u, £0,)[h]u. (5.11)

Following [11], let

J = {(]7k) PA A= 0}7
and let x € C°(R? R) be a frequency truncation such that 0 < x(£) < 1, x(¢) = 1 for
€] < 1/2, and x(§) = 0 for |{| > 1. Like in [II], we decompose B into the sum of a

resonant term, a non-resonant term, and a low-frequency term: B = B, + B,, + By,
where

11



e the resonant term is
_ (Ba Cy
Br:= <CJ Bd)
where By := diag(bi1,...,byn), (Cr)jk := ¢k if (4, k) € J and (Cy);r := 0 otherwise.
By Assumption the matrix B, (v,§) is Hermitian;

Bl Ct
By =51 —
¢' B

where (BY) 5 := (1 — x)bjx if j # k, and (BY) 5, := 0if j = k; (C1)jk := (1 — x)cjk if
(j,k) & J, and (C1)jx := 0 if (j, k) € J;

e the nonresonant term is

e the low-frequency term is

where (B°) 5 := xbji if j # k, and (B®)jx := 0if j = k; (C%) ;1 := xcjx if (4, k) ¢ J,
and (C%);x == 0 if (j,k) € J.

We recall the normal form transformation of [I1I] (see the proof of Lemma 4.5 in [11]):
define the pseudo-differential matrix symbol M (u(t,x),&) as

(Bur)jk(u(t, ), i€)

if wj # we,

0 if wj = wg,
where
—)\j fOI‘jZl,...,N,
Wi =
! Nj_y  forj=N41,...,2N.
Since the commutator of A and M is the matrix
[A(i€), M (u, &)] = (I¢[*(w; — wi) Mj(u,6)) oy o (5.13)

one has
Like in [IT], we introduce the following semiclassical quantization of a symbol o(z, &)
op- (o)) i= (2m) 2 [ ol 2€)h(E)eic ds
By (5.12) and (5.5)), one has
-1
lope (M)Al g < CllullLoo 1Al g1 + CosllullZoc el o1 100 1l 71 (5.14)
lop (M)A 2 < Cllul|7oollb]l g1 (5.15)

for all s >0, all ||u||f < 1, all h. Hence there exists py > 0, independent of ¢, such that,
for u in the ball
elluflfe < po, (5.16)

12



one has

leope (M)Al g1 < [leop.(M)hl| 2 < Cellullfc bl g1 < IRl g1 < 5lR] L2
Therefore, by Neumann series, I + cop.(M) is invertible in H-! and in L?, and

— —1
I(Z + oo (M) hllzz < Clibllzz + Csellullf o ull 1,00 ]| g1

(5.17)

(5.18)

for all s > 0, for u € W{.,-[S]H’OO(Rd) in the ball ((5.16) (where pg is independent of s).

Under the change of variable
h = (I + eop.(M))e,
the linear Cauchy problem (|5.9) becomes
A+ Qu)p = g1
©(0) = g2

where
g1:= (I +eop.(M))~" f1, go:= (I +cop(M))™"|,_,f2;

and, by (5.13),

O + Q(u) := (I + cop.(M)) (0 + P'(u))(I 4 cop.(M))
= 0y +ic 2A(e0,) — e ' By (u,e0;) + G(u),

with

G(u) := (I + cop.(M))~2 (z—:ope(M)e_lBT(u, £dy) — e Byy(u, e0y)

+ 0p. (M) — ™ B(u,0,)e0p. (M) + Ro(u) (I + <op, (M)

(we have used the trivial identity I — (I + K)™! = (I + K) 'K for K = cop.(M)).

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

Now we prove an energy estimate for ([5.22)), and we start with the term G(u). By

(5.18), (5.14), (5.17), (5.5)), (5.6)), the first term in (5.23]) satisfies, for s > 0,

(2 + 20p.(M)) e0p(M)e ™" By (. 202 )¢l
2p—2

2
Ss llullZellollas + o Ml e el llel 2.

and

— — 2p—1
I(Z + ope (M) eope (M)e ™ Br(u, €8s)¢l 12 < Iull e ullypre [ oll 2.

The low-frequency term By satisfies, for s > 0,

- - -1
le™ Biy(u, €00l s Ss € Hlullzoe el o100 10l 2.

The term containing the time derivative of the symbol M is estimated, for s > 0, by

-1
leop. (0: M)l 1 Ss ellull o 10su] Loe [l 1] s

-1
+ ellullZoe 10ull 141,00 + ullZoo lull o410 | Optell oo ) [l g1
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where
v := max{p — 2,0}, (5.24)

and, by (5.12),
leop (0 M)l 1 < lleop= (O M)l 2 S ellull 10pu] Los |l g1
Next, Ry defined in (5.11)) satisfies, for s > 0,
1Ro(w)llrrs Ss e llullfme (ully oo lpllars + lullyioreace ol ), (5.25)
1Ro(w)ll 2 S & llullfae lally oo ol 2- (5.26)
Hence G(u) in (5.23) satisfies, for all s > 0,
G ela: Ss e lull= (lullyoe + 2100l =)l

+e  Hllullzw (luly,, 2,00 + 2Ol a1 0.00)

+ el HUII (s1+1.00 || Opul| oo | ol 22 (5.27)
IG(elle S e Hlullfae (lullye +52||6tu||L°°)||SOHL2 (5.28)

The constant coefficient operator A(d,) in satisfies
Re <i5_2A(6&E)gp, @)z =0 (5.29)

because \; are all real. To estimate the term with B,.(u,e0;) in (5.22]), we recall that
2Re (X, p)ms = (X + X)A2p, A2p) 2 + 2Re ([AL, X]p, AZp) 12

for any linear operator X, where X* is the adjoint of X with respect to the L? scalar
product and [, | is the commutator, whence

2[Re (X, @) ms| < 1 X + Xz ooy loll s + 20 (AL Xl g2 [l ol s
By the Hermitian structure of B, (u,e0;),
I1X + X"\l ooz S e ull ullyoee, X = Br(u,edy), (5.30)
and, by , for X = e~ B,(u,£0,) one has

1AL XNz Ss e ulfe (lullyaeollollzs + lully e ol 2)-

Therefore
Re (™' By (u,0,) 0, ) s S €l (HU\leooHSOIIHS + llully vz [l 2) o] e,
IRe (67" Br(u,e02) 0, @) 12| S e Hullf= ”UHW1°°HS0||L2 (5.31)

By (5.27)-(5.31)), the solution ¢ of the linear equation d;p + Q(u)p = g1 (see (5.20) and
(5.22))) satisfies

Oc(lllizr) = 2Re (g1 + €™ By (u, €0r)p — Glu)p, ¢) s
Ss {llgillars + e M ull 7= (lullyo + 1 Oull o)l e
+ e ([ulle (el pezce + €2 00ulyia1.00)
+ &% [lullZe< [lullyy g +1oollf?tUHLoo)HsOHLz}IIsDHHS (5.32)
O(llel72) S e Ml (lully o + 2 10eull )il 72 + lgall 2l 2- (5.33)
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If u satisfies
e M fullf (HU\leoo + &%) Opul L) <1 (5.34)

on the time interval [0,7], then for s > 0 the solution ¢ of (5.20) satisfies, with the
notation introduced in (4.15)), (4.16]),
lellcorz S lgrllcore + [lg2llre, (5.35)
lellcoms Ss llgrllcoms + llg2llas + Efl(IIUHCOLooHUH(;leHs
+ ||uH60L00HUHCOWS[S]H||UHC’§W§)(H91HC’0L2 + llg2llr2) (5.36)

(first use and Gronwall to get (5.35) - then insert ( into and use

Gronwall agaln)

By definitions (5.19), and estimates (5.14)), (5.15), (5.18), we deduce that the
solution h of the linear Cauchy problem satisfies the same estimates , as
@ with fi, fo in place of g1, g2, namely, for all s > 0,

[hllcorz S I fillcorz + (I f2ll 2, (5.37)
Ihllcors Ss fllcoms + N fallms + e (lullPapw |ull gy e+

+l[ullgo poo 1ull oy Nl crwz ) (Lfillcorz + 1 fallz2)- (5.38)

From the equation d;h + P'(u)h = f1 one has, for all s real,

10l e < I fillms + 1P (w)hl|ae - (5.39)
By , , , for —1 < s < 0 one has
1P (w)hllms < €Al geve, (5.40)
and, by , , , for s > 0 one has
1P (w)hll s Ss €2 Nhll e + e M ulle ullyia2.00 1l 2. (5.41)

Hence, by (5.37)-(5.41)), for all s > —1 one has
- —1
e¥l|ohllay Ss il cogrer + 1 fallgreve + €7 (ullgoo oo ull oy o0

Hl[ullgo oo llull oy lullcrwz) (L fillcorz + Il fall 2)-

Thus, recalling definition (4.15)), h satisfies, for all s > 1,
- -1
Wllcrers Ss Iillcors + Il f2lles + &7 (lullGopaellull gy ppgerss

+l[ullgo oo 1ull oy lullcawz) (Lfallcore + 1 fallz2)- (5.42)

In conclusion, we have proved the following result.

Lemma 5.1 (Right inverse of the linearized problem). Let s > 1 be real, and let u belong
to C([0, T], Wllt3.0(RH)Y N C ([0, T], Wsl+1oo(R)), with, and - Then for all
f1 € C([0,T], H*(RY)), all fo € H*(R?), the linear Cauchy pmblem has a (unique)
solution h, which satisfies ((5.42)).
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Estimate for the second derivative. By (3.2) and ([5.8)), the operator

P"(u)[hi, ha] = —e 10y B)(u, £0;)[h1]ha — e 1 (0uB)(u, €0z )[ha]h1
— 5_1(8uuB)(u, £0z)|h1, ha]u

is the sum of terms of the form
s_lg'(u)hl €0zha + 6_19 ( )hg €0zhy1 + ¢ -1 ”( )hlhg €0y u, (5.43)

where g(u) is a vector of components byji(u) or cgx(u). By (3.3), g(u) = O(Ju|P) with
p > 1 integer. For p > 3, by (|4.8]) one has for all v in the ball ||u||z~ < 1, for all s >0,

lg' (@)l S lullzes  llg' @l Ss Nullelull 7, (5.44)

(5.45

lg" (e S lull7=ss llg" (@)l Ss lullrme . )

For p = 2, g(u) = g2(u) + g(u) where ga(u) is homogeneous of degree 2 in v and §(u) =
O(Ju|?) (we do not distinguish whether § is of order 3 or higher). Thus §(u) satisfies

(5.44)-(5.45) with 3 in place of p, and go satisfies (5.44]) with 2 in place of p, while g4 (u)
is a constant, independent of u. For p = 1, one has g(u) = g1(u) + g2(u) + g(u) where
g1(u) is linear in u and g9, g are as above. Thus ¢/ (u) is a constant, independent of u, and

!
g1 (u) = 0.
By (5.43)), (4.7) and (4.8]), for all w in the ball |Ju||z= < 1, for all real s > 0, all integer
p > 1, one has
1P (w) [, holll s S & M el (o] oo [Ball oo + [1Fon | e [[Boll .00
+ [1Pallyyaoo P2l s + [Pl oo [[P2ll s+1)
+ e ullZeo el oo (1P lazs 12l o + ([ ]| os ||z 122)
+ e ullZee el ms (Nl aoe 12l oo + (11| o< (|2 y1.00)
e ([lullLoolfull s+ llullFe lully o0 [Full ) [ | oo [z oo
(5.46)
where v = max{p — 2,0} has been defined in (5.24), and v3 := max{p — 3,0}.

Estimates in H spaces only. For the result in the concentrating case, it is con-
venient to work directly in H? class, avoiding the W."> spaces. Thus, by (5.4), one
has

1B(u, e0:)hl < &2 (Cogllullyso 1Bll oot + Collullfso lull s 1Bll goor) — (5:47)

for all s > sgp > d/2, all u in the ball

Cooe™ 2 |lul| oo <1, (5.48)
so that ||u||ze < 1. By (5.47) and (5.12),
llop (M)Al 1z < &7PY2(Cly [0 11l g1 + Cosllulso el a2 1ol oo 1) (5.49)

for s > sop > d/2, u in the ball ([5.48]). Thus there exists p3 > 0, independent of &, such
that for u in the ball
e P2 ull s < ps, (5.50)
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one has
leopo (M)A g0 < Coge P2 |l so 1Rl o1 < 5Bl o1 (5.51)
Therefore, by Neumann series, I + cop.(M) is invertible in H*°(R?), and
- - —1
(1 + cop (M)~ Alls < Cog|ll 1z + Cse™ P2 ullhog lull 1 1] -1 (5.52)

for s > sp > d/2 and w in the ball (5.50). For u in the ball (5.50)), for s > sop > d/2, we
deduce the following estimates:

I +2op. (M) e0p(M)= " B (w20, )¢

—pd -1
Sse? /QIIUH?{;O(HUIIH?HIIsDHHg + ullzsllell gzo)  (5.53)

(to prove (5.53)), we have used ((10.22))),

- _1- -1
le™" By (u, €02 )pll s Ss e’ pd/QHUllzgoHUInglleL% (5.54)
—pd —1
|eop. (O M)l ns Ss e P /2{““”?{;0||at“||H§0||<P||Hg—1
-1
+ ([0 1 Ovull z + Nl ool s 10l o)l @l o2} (5.55)
with v defined in ([5.24]), and
1—pd 1
| Ro(w)epllms Sse'7P /ZIIUIIZ;O(||UHH50+1H<P||Hg + [[ull g+ lloll grzo)- (5.56)
Hence
1—pd —1
IG(wellas Ss ™77 mHUHZ;dHUl!H;oH +&2)|Bgu o) ol s
1—pd -1
+elp /Q{HUHZESO(HUHHSS“ + &2(|9yu s
2
+ & [Jullfzo llull g 10¢wll 2o Hloll 2o (5.57)
for all s > so. By (5.30) and (10.27), for X = ¢ B, (u,d;), for s > 50, one has
* —1—pd -1
IX + X* | pr2p2) Se P /QHUHZ;()HUHH;oH,
1—pd 1
I[AZ, X]ollp2 Ss e ' 7P /QHUHI;I;O(HUHHESOJrl||SO||H§+||u”Hg+1||SOHHESO)7
—1—nd —1
IRe (X, )| Ss e 7P /2IIU\IZ;o(||U||H;o+1||90||Hg+||UHH;+1||90HH50)H¢||H5- (5.58)
By (5.29)), (5.57) and (5.58)), we get energy estimates for ¢: for u in the ball
e P2y P <1, (5.59)

2 =
ClHOT

the solution ¢ of the linear Cauchy problem ([5.20)) satisfies

lellcogzo S lgrllcopzo + [lg2ll g0, (5.60)
lellcors Ss lgrllcoms + g2/l ms
—1—pd ~1
+eTiP /2Hu||gslH20+2”u“C§H§+2(“91"COH§° + llg2ll o) (5.61)
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for all s > sg. Hence, following the same argument as above, the solution A of the Cauchy
problem ([5.9)) satisfies, for s > sg + 2,
1hllcrms Ss Lf1llcoms + 11 f2llm:

—1—pd —1
+e P /QHuHIC),ElHEsoJﬂ||u||CslH§+2(||f1”COH§0 + [l fall gzo)- (5.62)
We have obtained the following inversion for the linear problem.

Lemma 5.2. Let so > d/2, s > so+2, and u € C([0,T], H**2(R%)) N C1([0, T], H*(R%)),

with (5.48)), (5.50) and (5.59). Then for all fi € C([0,T], H*(RY)), all fo € H*(RY), the
linear Cauchy problem (5.9)) has a (unique) solution h, which satisfies (5.62]).

AISO, by " and " for s > 50,

—1- -1
IP" () [, halllz Ss € P2 [ullbsg (IR | s IBallgrzo + 1l o B2 )

+ 5‘1‘(”+2)d/2||u|!§{;0 [wll g+ 1Pl oo [[P2] gro - (5.63)
6 Proof of Theorem 3.4
For a > 0 real, let
E, = C((0,T), H***(R?)) N C*([0, T], H***2(R)), (6.1)
Fy = C([0,T], HT*(R)) x H*"*(R?), (6.2)

and, recalling the notation in (4.15)), define
lulla = llull g gzores — [fllEe = (s f)llmn = [f1ll gogrove + 1 foll grove. (6:3)

Define the smoothing operators S;, j € N, as the “semi-classical” crude Fourier truncations

Syute) i= (2n) 2 [ g, (6.4)
elg|<279
which satisfy all 1D with constants independent of €. Define
(O + P(u)
O(u) := < w(0) , (6.5)

where P(u) is defined in (5.8). For ||u||g, < 1, the second derivative of ® satisfies (5.63),
which gives, for all a > 0,

19" (w)[hn, halllpy Ss €™ P2l (1all s 2l iy + 1Pl 212l )

+ e TR Null g, (1Bl 1Rz | - (6.6)

For « in the ball
; 1 . d
lullp, <€, q:= PRt
the conditions ((5.48)), (5.50)), (5.59) are all satisfied for e sufficiently small — more precisely,
for e € (0,¢&0], where g9 := min{1, Cs., péﬂ}, and Cs,, p3 are the constants in (5.48)), (5.50),

independent of . Then, for w in the ball , Lemma defines a right inverse ¥(u)

(6.7)
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of the linearized operator ®'(u) (namely h = ¥(u)f solves the linear Cauchy problem
®'(u)h = f, which is (5.9))), with bound (5.62)), which is
1- —1
19(w) fllBa Ss 1fllm + e P2 ully, B | fll Ry @ > 2. (6.8)

To reach the best radius for the initial data (see Remark and Remark, we introduce
the rescaled norm
ulle, = e™ull g, (6.9)

Thus (6.7) becomes
[ulle, < 1. (6.10)

By and (6.8)), for all u in the unit ball (6.10) one has
127 ()P, heolll e, Ss €¥(1hllga i Ih2lley + 1 llg Pzlle,

+ ulleasr halle 1R2]les) (6.11)
for a > 0, because —1 — (v +2)d/2 + q(v + 3) > ¢ (recall that v = max{p — 2,0}), and
1V (u)flle, Ss e U fllr + lulleasell fllm) (6.12)

for a > 2. Hence ® satisfies the assumptions of Theorem [9.1] with

ap =0, p=a =2, B:Oé>4, a2>26_2? U:{U‘GEQ:HUH(E‘QSl}?
01 =1, Mi(a) = Ma(a) = Cee?, Li(a) = La(a) =Cue 9, Ms(a) = Lz(a) =0.
(6.13)

For any function ug = ug(x) € H*0P(RY), the pair g = (0,ug) € Fp trivially satisfies the
first inequality in with A =1 (in fact, the inequality is an identity), because g does
not depend on the time variable.

Hence, by Theorem if [|gllmy <6, with 6 = Ce? given by (9.14)), there exists u € E,
such that ®(u) = ®(0) + g = g. This means that we have solved the nonlinear Cauchy
problem (5.7), i.e. ®(u) = (0, up), on the time interval [0,7] for all initial data uo in the
ball

HuoHH:0+5 <0 =Cél, (6.14)

for all € € (0,£0]. By (9.13), the solution u satisfies
lullea < Ce™gllrs, Lo [ull oy grors < Clluoll yeove-

The higher regularity part of Theorem [3.4] is also deduced from Theorem
For data wug of the form ug(zx) = €7(as(z),a-(x)) (see (5.8)), where a. is defined in

(3.5, one has

luollms = &7 llacll e <s €77l s,

see (7.3)), (7.1), where o, = d/2 in the concentrating case, and o, = 0 in the fast oscillating
case. Hence ug belongs to the ball (6.14)) for all ¢ sufficiently small if

ol yao+5 < Cgr 58”2 fallgreos < 6 = Ce.

For ||al| z7s+5 < 1, this holds for o 4+ o, > ¢, namely

1 d
o>—+ - —0;,.
p 2

Finally, given s; > d/2+4, we define v := s1 — (d/2+4), so :=d/2+7/2,  :=4+~/2,
so that sg > d/2, 8 > 4, and s; = so + . This concludes the proof of Theorem (3.4
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Remark 6.1 (Confirmation of the heuristics discussion of Section @ in Theorem |3.4).
The radius d given by the Nash-Moser Theorem is the minimum among 1/L, §,/L,
1/(L?M); here (see (6.13)) these three quantities are all of order €?. In particular, the
“quadratic condition” § < 1/(L2M), coming from the use of the second derivative ®"(u)
in the Nash-Moser iteration, does not modify d. This is a confirmation of the heuristic
discussion of Section [2| O

7 Free flow component decomposition

The “shifted map” trick used in [I1] and [4] consists in choosing the solution of the linear
part of the PDE as a starting point for the Nash-Moser iteration. The reason for which
that trick works is that the free flow of functions of special structure satisfies better
estimates in L°° norm than the free flow of general Sobolev functions. This, combined
with the power p of the nonlinearity in the equation, makes it possible to obtain solutions
of larger size, which are the sum of a free flow and a correction of smaller size.

Here we use this property in a different way, splitting the problem into components
of special structure and corrections, introducing non-isotropic norms to catch the
different size effect.

For any function a € H*(RY) we define Tza, 0 < e <1, as

a(z/e) (concentrating case), (7.1)
eiz-ﬁo/ea(x) (oscillating case), '

(Tea)(x) == {
so that, in both cases, (3.5) becomes a. = T.a9. To deal with conjugate pairs, define
Toca:=(Tea, Tca), T2 M(b,D) := T D,
Hence the initial datum ug defined in (5.8]) can be written as ug = €77 cao.

Lemma 7.1. Let a € H*(RY), s > 0. Then the Fourier transform of T-a is

@(f) = c4(e€) (concentrating), @(f) = a(& — &o/e) (oscillating), (7.2)
and one has
17allms < e (2llallms + CsllallL2) (7.3)
where
00 =d/2 (concentrating), 0a =0 (oscillating). (7.4)

Proof. Formula (7.2) is a direct calculation. Then, in the concentrating case, ||7:al/gs =
£%2||a||zs. In the oscillating case, using the change of variable £ — & /e = 1 and applying

(10.10), one has || 7za||zs < 2[/al|ms + Cs|éo|*||all 2. ]
Given any yo € H*(R?), let y = Syo denote the solution of the linear Cauchy problem

{&y +ie 2A(e0,)y = 0, (75)

y(0,z) = yo(z),

so that S is the free Schrodinger solution map. For initial data of type 7 .a, the flow
S7: ca has special properties, which are used in the proof of Theorem 4.6 in [11], that we
recall in the following lemma.
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Lemma 7.2. For all real s > 0, sq > d/2, all multi-indices o € N?, for all t € R the
solution
y=387:.a

of the linear Cauchy problem (7.5) with initial datum yo = Tz .a satisfies

[yl 2o < Csollal| o,
| Ouy(t
e NOZy )z < Clagso l1all oo ials

ly@®)l e = | Teallm-

Proof. At each t one has |y(t,x)| < ||g(t,-)||z1 by inverse Fourier formula, and [§(t, )| =

[5(0,€)| = [(Tz ca)| for all £,€ because y solves (T5). By (7:2), one has [|(T-a)|| 1 = [|a] 1
in both cases. This proves (7.6) because, by H('jlder’s inequality, [|a]l1 Ss, ||allzso0-

To prove we use the equation in (7.5) recalling that e 2A4(0,) = A(9;). Pro-
ceeding as above we get [Oy(t,x)| < [€)? | (Tza)(€)| d€, then we use (7.2) to conclude.
Similarly, (7.8) follows from |03y (t,x | < [ gty 7;a)(§)|d§ Finally, (7.9) is trivial. [

7
Mzee < Csollallgroo+2, 7
7.
7

/N TN /N /N
© 0 ~1 >
N— Nt N N

We look for a solution of the Cauchy problem by decomposing the unknown u
into the sum of the solution of the free Schrodinger equation with initial datum wug of the
form and a “correction” (t,x) of smaller size.

For any pair (a, @) where a = a(x) € H*(R?) and @ = a(t,z) € C°([0,T], H*(R%)) N
CY([0,T], H*~2(R9)) with (0, ) = 0, we define

i’(a, u) = <8tu +aP(u)) where u = €°S7T; ca + . (7.10)

At time t = 0 the function u in ([7.10) satisfies u(0) = £?7; ca. Hence the Cauchy problem

(5.7) becomes

®(a, ) = (0,a0). (7.11)

We solve ([7.11)) by applying our Nash-Moser-Hérmander theorem; therefore we have to
construct a right inverse for the linearized operator and to estimate the second derivative.
We only have to adapt the general analysis of Section [5[ to functions u of the form (7.10)).

Right inverse of the linearized operator. The differential of ® at the point (a, )
in the direction (b, h) is

- (ath + P'(u)h

®'(a, @) (b, h) = , ) where u=e’ST. a4+, h=e’ST.b+h (7.12)

and @(0) = 0, 2(0) = 0. Given (a, @) and g = (g1, g2), with g1 = ¢1(¢,z) and gy = gy (z),

the right inversion problem for the linearized operator ®'(a, ) consists in finding (b, h)
such that

/ _
; i ie. {8th P (wh =g, (7.13)

b =g

with u, h as in (7.12)). Since the free flow ST .b b =¢€787¢ g2 solves , and B(O) =0
by construction, (/7.1 3i is equivalent to the following problem for h:

{atiz + P(u)h = g1 + e ' B(u, £0,)e"STz.cg2 — Ro(1)e?STz 090, (714)

h(0) = 0,
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namely h has to solve the linear Cauchy problem (j5.9)) with
f1 =01+ e_lB(u,eﬁz)e"Sﬁ;’ng — RQ(U)EUS'E,CQQ, f2 = 0. (7.15)
The solution of (5.9) is estimated in Lemma to apply that lemma, now we check

that u satisfies its hypotheses. By Lemma (4.6), (4.9), (4.15), (4.16)), the function

u = ST, a + U satisfies

lullcawm Ssom €7Mlall proo+m + fd/QIIﬂHC;H;om, m € N. (7.16)
For all s, let
(2, @)l xs = &llallzs + e~ 2|[iil| ¢ s (7.17)
By ([7.16)), one has, in particular,
2,00 tU[| Lo Jso 7~ Xsot2, .
[ullyy2.00 + €|0pull L Sso ll(a, @) (7.18)

and therefore there exists p; € (0, 1], depending only on sy and on the nonlinearity of the
problem, such that, for (a, ) in the ball

571 ||(a‘) a)||§(so+2 S plu (719)
the function u = €?S7; ca + @ satisfies (5.34]) and (5.16). Hence Lemma applies, and

h satisfies bound (5.42). Moreover, assuming (7.19)), the factor in u appearing in (5.42)
satisfies

(IIUHCOLOOHUH(ﬁWsHs + llullgo oo lull oy pr+1 lullcrwz)
1 ~
S 1@ @) g 2 1 (20 @) | ctsresors + 1@y @) 1550 2125 @) | g2
So 12, @) [5eag ol (s @) oo+ (7.20)

because [s] < s, v + 1 = max{p — 2 O} +1 >p— 1 and H(a 11)HX30+2 <1

Thus we have to estimate fj in ( . By (5.5) and (5.25)), using (7.18)), (7.16]), (7.17)),
(7.9) and Lemma for all s > 0 one has

le™ B(u,e0:)e” STz cgollrz Ss €77 I, @) 5o s2llgzl e
+ 7P|, @) [ 2 | (2, @) tsieso g2l s (7:21)
1Ro(w)e” STz cgellms s €777 I, @) vzl 921115
+ 7|, @) [y o | (2, @)l s g2l 2. (7:22)

By (7.15), (7-21)), (7-22)), (7-20) and Lemma[5.1] for (a,@) in the ball (7.19), for s > 1 we

obtain

1ollcams Ss lgrlcoms + &M@, @)Eg ol (@) | xoross g1 llcor2

+ 7T (2, @) o 42 92l o+
+ 277 (2, @) [N e | (2 @) g0 43192 1 (7.23)
Since b = g9, we get
1) = < Bl + =2 s s
So € Plgllcoms + (2, @) geall (@)l xs a0+ 91 [l o2
+ (14772 (a, @) |5 g 2) [l g2 o

+ e7HI T2 (o, @) | ol (s @) o043 g2 (7.24)
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for all (a,a) in the ball (7.19). As explained in Remark in general, and in Remark
(7.4) for our specific problem, for p > 1 it is convenient

(1) to consider (a,a) in the ball

7 1
a, U)||§(so+z < P1, P2 = pl/p7

(7.25)
which is smaller than the ball (7.19)) if o0, = 0, and it is the same ball if o, = d/2;

(1+d/270a)/p’ oaflfd/QH(

|(a, @) xs0+2 < poe ie. e

(7i) to rescale || ||xs so that (7.25)) becomes a ball with radius O(1) (i.e., independent of
¢) in the rescaled norm.

Thus we define
(2, @) z+ == e D/P||(a, @) x, (7.26)

and ([7.24]) becomes

(b, Bl Sg &= W2HT D gy o gy + 7OV 4| (2, @) | 0) 92 o

+ e O (a, @) [ (8, @) 204003 (2 77 g1l oLz + g2l )
(7.27)
for all s > 1, all (a, @) in the ball
(2, @) zs0+2 < po. (7.28)
Therefore, in the case p > 1,
(b, )25 S 7T =272 | gu || coprs + [l g2l ro+1)
+ (2, @) zs+so+s (677" lgulloor + g2l m) } (7.29)

for all s > 1, all (a,a) in the ball (7.28).
For p = 1, the restriction to the ball (7.25) is not convenient (see Remark and
Remark , and we take, instead, u in the entire ball (7.19)). Hence, for p = 1, we define

I(a, @)l z= := &~ "|(a, @)l x, (7.30)

and ([7.24) becomes

10, W)l ze Ss e =2 lgillcons +e =2 (a, @) o043 | gnllcore
+ &7 (14 772 (2, @) go0+2) | 92| oo

+e7H T2 (o, @) g 43| g2 (7.31)

for all (a, @) in the ball
(2, @)[| zs0+2 < po- (7.32)
Therefore, in the case p =1,
(B, )llze Ss 2 {77 grllcom: + llgall)
+ (2, @) oo+ (€77 g1 core + llgall ) } (7.33)

for all s > 1, all (a,a) in the ball (7.32).
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Note that we have used norms || ||z for p = 1 and norms || ||zs for p > 1.

Estimate for the second derivative. By (7.17), (7.16)), (7.9), and Lemma any

function u = €787 ca + U satisfies
ull s Ss €7 allms + [l Ss €7 [I(a, @)|xs,
(a, )| x0,
ullyro S Nl(a, @] xs0+1-

From (5.46|) we deduce that

[ullzee Sl

127 (u)[P1, ha] | e
Se €7 (@, @) 5o (11 (b1, ) [ xces1 | (b2, Big)llxso + | (b1, ) xso | (b2, Biz) [ x++1)
+ 77| (a, @) [ Koo [l (2, @) |1 | (1, ) [ xso [ (B2, Faz) [ xv0 (7.34)

for u=¢€°ST. ca+u, hy =e°STz b + Bi, i=1,2, and s > 0.

With the norms || ||zs defined in ([7.26)), which we use in the case p > 1, from ((7.34))
we get
1P () [, ha) || e

S ¥PHUHAR=00/ (0, @) |55 ([ (br, 2 )| 2o [[ (B2 ho) [ 250 + | (b, )| 220 || (o, B)l| z41)

+ e /PHUHARZ0IP (2, @) |20 || (2, @) | 241 ]| (1, i) | 20| (b2, )| 20 -
Hence, for (a, @) in the ball (7.28)), for s > 0, in the case p > 1, one has

|1 P (w)[h1, holl s
S ePHORARZOI L (b1, B )| 2o ]| (b2, o) | 250 + [[(Br, )| 220 || (ba, o) 2o
+ [[(a, @)| zo+1 [ (b1, h1) || 20| (b2, h2) || 250 }. (7.35)
For p = 1, with the norms || || zs defined in (7.30]), for (a, @) in the ball (7.32)), for s > 0,
one has
1P (u) [, Bl e S €7 {11 (b1, ha)l| zowa [ (b2, )l zeo + | (b1, 7) | 250 || (b2, 2) | 2o+
+ [[(a, @)l zo+1 ]| (br, k1) [ 250 || (b2, h2) [ 25 }. (7.36)
Remark 7.3 (Best rescaling for Nash-Moser application). In this remark we discuss
a general, simple way to choose the best rescaling to obtain the largest size ball for the
solution when applying the Nash-Moser Theorem (or essentially any other Nash-Moser
theorem).

Suppose we have a nonlinear operator ® and a right inverse W(u) of its linearized
operator ®'(u), satisfying an estimate of the form

-1
12 (u)gllxs < (A+ Bllull5s)llgllys + Cllullisllullx:llgllyso (7.37)

for all v in a low norm ball

[ullxso <R (7.38)

for some positive constants A, B, C, R, where || || xs are the norms on the domain of ®,
| |lys are those on its codomain, and s denotes high norms, while sy denotes low norms
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(we ignore any possible loss of regularity, which is not the point in this discussion). From

(7.37)), (7.38]) we deduce bound
1@ (w)gllxs < (A+ BRP)||gllys + CRP~ull xs[lglly=o (7.39)

for w in the ball ([7.38]). Then Theorem |9.1|gives a solution of the problem ®(u) = ®(0)+g¢
for all data g in the ball
lgllyso <6 (7.40)

where (ignoring, at least for the moment, the contribution to § coming from the second
derivative ®”(u)[h1, ha] of the operator @) the radius J is essentially given by

§ = min { L A& L=A+BRP+CRF L. (7.41)

o)
Our goal is to find the best (i.e. the largest possible) radius ¢ that we can obtain in this
situation.
First, we consider a rescaling of the norm || ||xs: for any A positive, let

Ml xs = ||ullzs. (7.42)

Then ((7.37)), (7.38) become
19 (uw)gllze < (AX+ BXP|ulla0)lgllys + CAP|ulls [l 2o lgllyo (7.43)

for all v in the rescaled ball
l|lul| zs0 < RA. (7.44)

From (7.43)), (7.44) we get the bound
1W(w)gllzs < (AN + BARP)|gllys + CR' ™ ul 2 [lg]ly+o (7.45)

for w in the ball (7.44)). Then Theorem solves the nonlinear problem for all data ¢ in
the ball

19llys0 < 0(N), (7.46)
where now the radius is
R 1
—min { 2 _ p p—1
5(\) = min { T IO } L(\) = M(A+ BRP) + CRP. (7.47)
For A > 1/R, one has
SO = —— — ! (7.48)

L(X\) XA+ BRP)+ CRr~V’

which is a decreasing function of A, so that 6(A\) < 6(1/R) for all A > 1/R. For 0 < A <
1/R, one has
R R R

o0 = L(\) MA+BRP)+CRP-' A+ BRP+CR-IAD (7.49)

which is an increasing function of A, so that §(\) < §(1/R) for all A € (0,1/R]. In other
words, the largest radius §(\) we can get by the rescaling (7.42)) is attained at A = 1/R.
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Note that A = 1/R is the value of A corresponding to the unit ball ||ul/zse < 1 in the
rescaled norm ((7.44). For A = 1/R we get the radius

1
AR+ (B+ C)Rr 1

op = 0(1/R) = (7.50)

Second, we check if taking w in a smaller ball can give a better balance among the

constants, and therefore a larger radius for the data. From ((7.37), (7.38) we deduce that,
for every r € (0, R],

19 (u)gllxs < (A+ BrP)|lgllys + CrP~ ullx:|lglly=o (7.51)

for all v in the ball
[[ullxs0 < 7. (7.52)

Apply the best rescaling of the form (7.42)), which is
1
lullxeo = llullze (753)

Then, by the discussion above, we obtain the radius

b = 8(1/7) = =y ; Tt (7.54)

To maximize the radius 8, in (7.54)), we minimize its denominator ¢(r) := Ar~' + (B +
C)rP~! over r € (0, R]. For p = 1, ¢ is decreasing in (0,00), and then the largest d, is
attained at the largest r, namely » = R. For p > 1, ¢ is decreasing in (0, ry) and increasing
in (rp, 00), where

A\
ro i= ((p—l)(B+C)) . (7.55)

Hence min{y(r) : r € (0, R} is attained at r = r¢ if 1o < R, and at r = R if R < 7o,
namely at r = min{ro, R} in both cases. Therefore the best radius is

op forp=1,
max 6, =4 dg for p>1and R < ro, (7.56)
Or, for p>1andry <R.

In fact, to apply the result of this discussion to a specific operator, the only point one has
to check is whether ro < R or vice versa.

In this way we get the best radius ignoring the contribution coming from ®”(u), which
is a condition of the form § < M~1L=2 (see Theorem [9.1)). Then one has to check if
introducing this additional constrain to the radius § does not change its optimal size. The
heuristic discussion of Section [2] shows that, in many situations, this is the case. ]

Remark 7.4. We see how the discussion of Remark applies to our specific problem.

By (7.19)) (ignoring the harmless constant p;) and (7.24) (ignoring g1, which will be
zero in the datum of the original nonlinear problem) one has

A~e? B~Cw~ettoamlzd2 g lp

This gives rg ~ e(1td/2=0a)/p < R, and therefore the best choice is to restrict u to the
smaller ball [Ju|| yso+2 < ro and then to rescale as in ([7.26]), corresponding to A = 1/ry.
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In the previous case, by (5.59) and (/5.62]) one has
A~1, B4+C~e P R~e

with ¢ = 1/p + d/2. This gives rg ~ € ~ R, and therefore the best rescaling for the
linearized operator is , corresponding to A = 1/R. O

8 Proof of Theorem 3.5

Let p > 1, and define

B, = H*(RY), (8.1)
Eap = {@ € C([0,T], H*T*(R))) N C'([0, T}, H*T**(R?)) : 4(0,z) =0}, (82
Ea = Ea71 X Ea’g, (83)
Fyy = C([0,T), HT4(RY)), (8.4)
F, o := H5 TR, (8.5)
Fa = Llg1 X Fa,g. (86)

We consider norms ([7.26) on E,, namely
G2, @)l = @D (e all goora + ™2 ]y gyso+a), (8.7)

and, on F,, we define

lgllz, = (g1, 92l = e~ llgull coggsota + g2l gootass (8.8)

(note that ||al| gso+e and ||g2|| gso+e+1 in (8.7) and (8.8) are the standard Sobolev norms,
without €). For (a,u) € E, and g = (g1, 92) € Fy, we define

Sj(a, ) = (Sjl»a, Siu), Sjg:= (Sjgl,Sjlgg), (8.9)

where S5, S} are the crude Fourier truncations e|¢| < 27, |£] < 27 respectively, namely

S =en [ flgestas sirw = en [ feesa

<29

Thus S; in (8.9) satisfy all ( - . with constants independent of .
We Con51der the operator ® defined in . The ball (| - ) becomes

[(a, @), < po (8.10)

ball (8.10), by (7.29) the linearized problem @' (a, @) (b, h) = g has the

For all (a, @) in the
=: ¥(a, u)g, which satisfies, for all a > 0,

solution (b, h)
1 (a, @)gl 5, Ss €™ Y22 (lgllp, + 112 D By a9 o) (8.11)

where we assume that sy > 1 and sg > d/2. The second derivatives of P is

" (a,@)[(b1, hn), (ba, ha)] = (P”(u)ghl, h2]>
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where u = €?S7T; ca+ @ and h; = STz b + hi, i =1,2. By (7.35) and (8.8), for (a, @) in
the ball (8.10)), one has, for a > 0,

19" (a, @)[(b1, hn), (b, ha)][|r, = e~ ¥2|| P (w) k1, ha]l co gyso+a
o et IR0 (b, h)| ., | (b2, B2) | + 1| (b1, Ba) || o | (B2, o)l £y
112 @) B | (b1, )L 1 (b2, Bo) 15 }- (8.12)

Hence @ satisfies the assumptions of Theorem with

ag =0, w=a =2, B=a=s+3 >4, as > 28 — 2,
U={(a,a) € B2:|(a,9)|lg, < p2},  01=p2,  Ms(a)=Ls(a) =0,
Mi(a) = My(a) = Cue 0T(Hd12=02)/p [ (a) = Ly(a) = C,e? 1Hd/2=0)/p  (8.13)

For any function ag = ag(x) € H®OFA+(R?), the pair g = (0,a0) € Fj trivially satisfies
the first inequality in (9.12)) with A =1 (in fact, the inequality is an identity), because ag
does not depend on the time variable. Hence, by Theorem for every g = (0,a0) in the
ball

laoll gso+e+1 = llgllrs <6, (8.14)

with
§ = Cemot(+d/2=0a)/p (8.15)

given by (0.14)), there exists (a, i) € E, such that ®(a,a) = ®(0,0) + g = (0,a0). By
(7.10)), this means that a = ag and the sum u = ¢?S7; cag + 1 solves the nonlinear Cauchy
problem (5.7) on the time interval [0,7] with initial datum «(0) = uy = €?7T¢ ca0. By
(9-13),

I(a, @)l g, < Ceo= Hd/2702)/P) g s

namely

—d/2‘

6JHaOHHSOH’ +e€ ‘a”cleo+ﬁ < C€UHa0HH50+3+1,
1>

whence

@l s yz0+2 < CeTF 2 ag| oot
£

All ||lag|| gso+s+1 < 1 belong to the ball if 1 < 4, and this holds for ¢ sufficiently
small if
o> 71+d/2_0a.
p
The higher regularity part of Theorem is also deduced from Theorem [9.1
Finally, given s; > max{6,d+4}, we define sy := (s1 —4)/2, so that sp > max{1,d/2},
and the proof of Theorem is complete. O

Remark 8.1 (Confirmation of the heuristics discussion of Section @ in Theorem .
The radius d given by the Nash-Moser Theorem is the minimum among 1/L, §,/L,
1/(L*M); here (see (8:13)) these three quantities are all of order e~o+(1+d/2=0a)/p  Tp
particular, the “quadratic condition” § < 1/(L?M), coming from the use of the second
derivative ®”(u) in the Nash-Moser iteration, does not modify 4. This is a confirmation
of the heuristic discussion of Section 2l O
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For completeness, now we perform the same analysis in the case p = 1. We consider
the same function spaces |i as above, but now we use norms ([7.30) on E,, namely
(see also ([7.17))

G, @lle, = e Hlall geora +e~ =2l gy yoote, (8.16)
and, on F,, we define
l9ll7 = (g1, 92) 70 := €777 l91ll o oo +e + 192l Frsoats. (8.17)
By , and , for (a, @) in the ball
1@, @)[le, < p2, (8.18)
for a > 0 one has
1% (a, @glle, Ss 272 (gl r, + 112 Dllgyogrsll9ll 7o) (8.19)

and

19" (2, @)[(b1, ha), (b2, h2)] |17, = =7 |[P" (u) R, ha] | o gyso+a
Ss €77 {II(b1, 2 g 1 (b2 )l + Il (b1, Bl Nl (B2 Fo) e,
+ {18, @)l [l (b1, ha) [l [1 (D2, 7o) lleg }- (8.20)

Hence @ satisfies the assumptions of Theorem with

ag = 0, w=a =2, B=a=s9+3 >4, ag > 20— 2,
U={(a,a) € Bz :|(a,d)lle, < p2},  d1=p2,  Ms(a) = Ls(a) =0,
Mi(a) = May(a) = Cue' ™, Li(a) = Ly(a) = Cue®toa=174/2,

Hence, by Theorem for every g = (0,a9) in the ball

laoll grso+e+1 = llgllzs <6 (8.21)

with
§ = Qe oflHd=20a (8.22)

given by (9.14), there exists (a, @) € F, such that ®(a, ) = (0,a9). By (9.13)), the solution
(a, @) satisfies

I(a,@)le, < Ceto 1242 g|| £,

namely

_d/2‘ oo tB < 050+Ua_d/2||ao||Hso+B+l,

& lJaoll s+l oy

whence

||ﬂHclH§0+5 < Ce” % lag|| oo
£

All ||ag|| gso+s+1 < 1 belong to the ball (8.21) if 1 < §, and this holds for ¢ sufficiently
small if
oc>14+d-—20,.
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9 Appendix A. Nash-Moser-Hormander implicit function
theorem

In this section we state the Nash-Moser-Hérmander theorem of [1J.
Let (E,)a>0 be a decreasing family of Banach spaces with continuous injections Ej —
Ea7
lullg, < llullg, fora<b. (9.1)

Set B = Ng>0F, with the weakest topology making the injections F, — E, continuous.
Assume that there exist linear smoothing operators S; : Ey — FE for j = 0,1,...,
satisfying the following inequalities, with constants C' bounded when a and b are bounded,
and independent of j,

|Sjullg, < Cllullg, for all a; (9.2)
I1Sjulls, < C2¢=9|S;ul|g, if a < (9:3)
u = Sjullg, < C277@ D u - Sjulg, if a > b; (9.4)
1(Sj1 = Sjullm, < CPC[(Sj41 — Sj)ullp, for all a,b. (9.5)
Set

Rou := Sju, Rju = (Sj+1 — Sj)u, j>1. (9.6)

Thus
|Rjul| g, < C2C~9||Rjul|p, for all a,b. (9.7)

Bound for j > 1 is (9.5), while, for j = 0, it follows from (9.1)) and (9.3]). We also

assume that
o
2 2
lulE, < CY IRulE, Va>0, (9.8)
=0
with C' bounded for a bounded (“orthogonality property” for the smoothing operators).
Suppose that we have another family F, of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation also for the
smoothing operators.

Theorem 9.1 ([1]). (Existence) Let a1, ag, «, 3, ag, i be real numbers with

0<ag<pu<a, a1—|—§<a<a1+ﬁ, 200 < a1 + as. (9.9)

Let U be a convex neighborhood of 0 in E,. Let ® be a map from U to Fy such that
®:UNEq, — Fy is of class C? for all a € [0,az — p], with

12" (w)lv, wlllp, < Mi(a) (0|50l Eay + 1] 2oy 10| oy, )
+{M(a)|[ull .y, + Ma(a) [0 £, 1wl £, (9.10)

for allw € UN Eqqp, v,w € Eqyy, where M; 2 [0,a2 — p) — R, i = 1,2,3, are positive,
increasing functions. Assume that ®'(v), for v € Eoo NU belonging to some ball ||v| g, <
01, has a right inverse ¥(v) mapping Fy to E,,, and that

W ()glle, < Li(a)llgllr o + {L2(@)vlE,s + La(@)}gllr, VYo € lar,ag],  (9.11)
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where L; : [a1,a2] — R, i =1,2,3, are positive, increasing functions.
Then for all A > 0 there exists 0 > 0 such that, for every g € Fp satisfying

o0
> IRigllz, < A%lglE,,  lgle, <6, (9.12)
7=0

there exists u € E, solving ®(u) = ®(0) + g. The solution u satisfies
[ull 2o < CLagz(a2) (1 + A)lgllE,, (9.13)

where Lis3 = L1 4+ Lo + Lg and C' is a constant depending on a1, as, c, 3. The constant §
18

0= l/B, B = C,ngg(ag) max {1/51, 1+ A, (1 + A)ngg(ag)Mlgg(ag - ,U,)} (914)
where Myo3 = My + My + M3 and C' is a constant depending on a1, as,a, f3.

(Higher regularity) Moreover, let ¢ > 0 and assume that (9.10) holds for all a € [0, a2 +
¢ — p], ¥(v) maps Foo to Egyte, and (9.11)) holds for all a € [a1,a2 + c]. If g satisfies
(9.12) and, in addition, g € Fgi. with

S Rsglly,,. < A2l (9.15)
=0
for some A., then the solution u belongs to Eqtc, with
]l Boye < CeAGI+ A)lgllFy + Go(1 + A9l Fy,. } (9.16)
where
G = f/3 + E12(E3M12 + L123(a2)M3)(1 + ZN), Gy = I:lz(l + ZN), (917)
z = L123(a1)M123(0) + leMm, (9.18)

Lo := Ly + Lo, Li :== Li(az +¢), i = 1,2,3; My := My + Ma, M; := M;(az + ¢ — p),
1=1,2,3; N is a positive integer depending on ¢, a1, a, 8; and C. depends on a1, asz,a, 3, c.

10 Appendix B. Commutator and product estimates

In the next lemmas we give “asymmetric” inequalities for the Sobolev norm of commuta-
tors and products of functions on RY, with W™ norms (m integer) on one function and
H? norms (s real) on the other function. Estimate is related to the Kato-Ponce
inequality (see, e.g., [8], [2], [3]), but it is not clear how to deduce directly from
Kato-Ponce. Hence we give here a proof of , entirely based on well-known estimates.

Lemma 10.1. Let s > 0 be real, and let m be the smallest positive integer such that
m > s. Then there exists Cy such that

[A°(uv) — ul®v][ 2 < Cs([Jullwroe [0l -1 + lullwm.e[[o]l 2) (10.1)

for all w € W™>(R%), all v € H*"Y(RY) N L2(R?Y). The constant Cy is increasing in s,
and it is bounded for s bounded.
The same estimate holds with A® replaced by A*~10%, |a| = 1, namely

457102 (wv) — uh* 1080 2 < Collullwre olrms + ullwmesoll). (102
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Proof. We use the standard paraproduct decomposition uv = Ty,v + (u — Ty)v (following
Métivier [9]), and split

A (uv) — ul’v = [A®, T, v+ A°((u — Ty)v) — (u — Tyy)Aov.
The commutator [A®, T,] satisfies
1T, A%Joll 2 < Csllullwcel|v]l g (10.3)
by Theorem 6.1.4 of [9]. The second term satisfies
[A*((w = Tu)v)ll 2 = I(w = Tu)vllas < |[[(w = Tu)vllam < Colluflwmesofl2 - (10.4)

by Theorem 5.2.8 of [9]. By duality, the third term is also bounded by the r.h.s. of (10.4):
for all h € L?, by Cauchy-Schwarz,

((u=Tu)A, h) 12 = (v, A*(u = Tu)"h) 2 < [|vl| 2 (w = Tu) "l s < [0l p2]|(u = Tu)* |
where (u — T,)* is the adjoint of (u — T,) with respect to the L? scalar product. Split

(u—Ty)" = (u" —Ty) + (T — (T)"). (10.5)
The first component in the r.h.s. of (10.5)) satisfies

I = T Yhllim < Conlla® fmoo hll 2 = Conllallm oo [l 2

by Theorem 5.2.8 of [9]. The second component in the r.h.s. of (10.5) satisfies

[(Tur = (Tu) ")l < Con[ullwrm.o[[ ]| 2
by Theorem 6.2.4 of [9]. Hence ||(u — T)*h| g is bounded by Cy,||u||wm. ||k 2, and

(= T) A%, B} 2 < Crallullimes 0] 2 A 12

for all h € L?. This implies that

[(u = Tu) A0l 2 < Co [[ullwm.os [[0]] 2. (10.6)

The sum of (10.3]), (10.4) and ([10.6) gives ((10.1)).
Similarly, one proves that (10.3), (10.4) and (10.6) also hold with A® in the Lh.s.
replaced by A*7192, |a| = 1. Then (10.2)) follows. O

Lemma 10.2. Let s > 0 be real, and let m be the smallest positive integer such that
m > s. Then
vl s < 2||ullzoe ([vllzs 4 Csllullwm.e[[v]l L2 (10.7)

for all u € W™>(R?), all v € H5(R?). The constant Cy is increasing in s, and it is
bounded for s bounded.
Moreover, for all0 <e <1,

Jwvllms < 2flullLoe o]l s + Csllullyzo o] L2 (10.8)

with the same constant Cs as in (10.7)) (in particular, Cs is independent of € ).
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Proof. By triangular inequality and ((10.1)),

[wvllrs = [[A°(uv)|[ 2 < [[A*(uv) — uh*v]| 2 + [[ud*v]| 2
< Cs(llullwree vl ga=1 + [[ullwmoe [vllL2) + llull oo [[o] . (10.9)

By standard interpolation, with A = 1/m, for all K > 1 one has
- A —A A
lullwr.eol[vll o1 < Nlull = llelfym.ee 0]l 0] a-m

1 _
= = (lullze [0l ) (lullwmes ol oo ™)

< — (lullz= ol + llallwmee ollgs-m K™)

== ==

< oz lullpsllollms + K™ ullwmos o]l 22

(|| gs—m < ||v||p2 because s —m < 0). We fix K larger or equal to the constant Cy in

(10.9), and we obtain (10.7]).
Inequality ((10.8) is a straightforward consequence of (10.7)), (4.4)), (4.11)) and the trivial
rescaling identity for the product R.(uv) = (R.u)(Rv). O

Remark 10.3. Let s,m be as in Lemmas Then m < [s] + 1, where [s] is the
integer part of s (it is m = [s] for s positive integer, and m = [s] + 1 otherwise). As a

consequence, ((10.1), (10.7) and (10.8]) hold with [s] 4+ 1 in place of m. O

We prove here some elementary inequalities we have used above.

Lemma 10.4. For every real s > 0 there exists Cs > 1 such that
(a+0)* < 2a° + Csb®  Va,b>0.
The constant Cy is increasing in s, with Cs =1 for 0 < s <1, and Cs — 0o as s — 00.

Proof. For b = 0 the inequality is trivial. For b > 0, divide by b° and set A = a/b. The
inequality holds with best constant Cs = max{(1+ A)®* —2X* : A > 0}, which is C5 = 1 for

0<3§1,andCS:2-(Qi—1)*(S*1) for s > 1. O]
Lemma 10.5. For every s > 0 there exists Cs > 1 (increasing in s) such that
(14 (a+b)%)* <4(1 +a?)* + Csb*  Va,b>0.
Proof. For all A > 0 one has 2ab = 2(aX'/?)(bA~/2) < a®X + b%/\, whence
14+a?+2ab+0* <1+a?(14+N) +02(1+1/X) < (1 +a®)(1+N) +b*(1+1/N).
By Lemma [10.4]
(1+ (a+ b)) <214+ M)A +a?)* + Cs(1 + 1/1)%b%.

Then we fix A = 21/% — 1, so that (1 +))* =2 and (1 +1/\)* =2 (215 — 1)~ O
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In the proof of Lemma we have used Lemma [10.5|in the form
(L+ [nl* + 2[nll€o] + €0*)* < 41+ [n*)* + Cléo**, 1.6 € RY. (10.10)
Also, by one directly proves the inequality
Jwvllzrs < Coollullmsol|vllms + Collullms [[0] 720, (10.11)
for s > 0, s9 > d/2, which, by rescaling, implies inequality .
Lemma 10.6. For all s > 0 real, all functions u,v on R?, one has

[udzvl a1 Ss [ullroe ol s + llullyse o]l 22, (10.12)
[uedov]| o1 Ss lullpool[oll s + [l .0 0]l 22, (10.13)

where 0, denotes any 05, |a| = 1.
Proof. Write ud,v as 0y(uv) — (O,u)v. For s > 0, by and Remark

10 (uo) | prs—1 < Jluolls Ss llullzeelloll s + lullysiere o]l 2. (10.14)
For s > 1, by and Remark

(@)l o=t Ss 1Ot ros [0l gt + [|0zullypte-roo 0] 22

Ss l[ullwree|[vllms—1 + [Jullwsnee|[v]| L2, (10.15)
while for 0 < s <1
[(Qzu)v]lgs—1 < [[(Ozw)vl e < [[0pul[Loe|[v]| Lz < llullwreo |[v]| 2. (10.16)

The sum of 110.141 and (|10.16|) gives (10.12) for s € [0, 1]. For s > 1, the sum of ((10.14])
and (|10.15)) gives :10.12) because, by interpolation,

[ellwreel[vll s < flullzee [Joll s + lullyiaerse [0l 1=t

and ||v|| gs—1-1s < ||v]|z2. Inequality (10.13) can be proved similarly, or it can be deduced
from (|10.12) by rescaling. O

Lemma 10.7. For all s > 0 real, one has
1A%, udzvll e Ss llullwreellvllgs + lullpeecs [v]lz2, (10.17)
A2, uledzvllre Ss llullyaeellvllms + [lull s V]2, (10.18)
where Oy denotes any 0%, |o| = 1.

Proof. Write
[A%, u|0zv = [A°0y, ulv — A%((Opu)v).

By (10.2), [|[A®0y,u]v||r2 is bounded by the r.h.s. of (10.17)); by (10.7)), ||(Ozuw)v|ms is
bounded by the r.h.s. of (10.17). Thus ((10.17)) is proved. Inequality (|10.18) follows from
(10.17) by rescaling. O
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Lemma 10.8. For all s >0, sop > d/2, one has

1A%, ulol| 2 Ss ullrsorrl[oll ge—r + ull s [[0]| 220, (10.19)
1AL uloll e Ss &2 (lull goosl[oll g1 + Il e [ol]grz0)- (10.20)

The same inequalities also hold for A*~10%, As~1ed2, |a| = 1, in place of A%, A respec-
tively.

Proof. In the Fourier transform of [A%, u]v one has u(§)v(n)o (€, n), where

o(&m) = (E+m* =) =1+ e+ — (L +nf)?.

For |¢| < 3|n| one has |o(&,n)] Ss (n)*1¢], leading to the term ||u||gso+1||v]|gs—1 in

~S

10.19). For |n| < 2|¢| one has |o(&,n)| Ss (£)°, leading to the term ||u||gs||v]|gso in

~S

10.19)). Inequality (10.20)) follows by rescaling. O

Lemma 10.9. For all s > 0 real, all functions u,v on R?, one has

[udav|| o1 Ss lullmso vllms + [lwll s vl oo + [Jull gsorr (ol s + [Jvllze),  (10.21)
luedzoll s Ss &2 {Nfull oo [0l + lull e lloll 2o + llull yooss (0]l e + ol z2)}
(10.22)

where 0, denotes any 05, |a| = 1.

Proof. We adapt the proof of Lemma Write ud,v as 0, (uv) — (O,u)v. For s > 0, by
(T0.11)),

102 (wv) || zrs=1 < fluvllms Ss [lullmso[[v]las + [lullms [[v]| 5o (10.23)
For s > 1, by (10.11]),

1@zw)vll o1 Ss |0zull mreo |Vl -1 + |0zl o=t [v][ 20

Ss lull ot vl =2 + llwll s [vll 5o, (10.24)
while for 0 < s <1
[(0zw)v]| rs—1 < [[(Ozu)vllpz < [[Opullree|vllr2 S llull oo+ [lv]l 2. (10.25)
Inequality (|10.22)) is deduced from ((10.21)) by rescaling. O
Lemma 10.10. For all s > 0 real, one has
1A% ul@evll 2 Ss ull groorrllvllms + ull s llofl oo, (10.26)
1AL, wledzoll 2 So e (ull goos [Vl + el e l[o]l ) (10.27)

where 0, denotes any 05, |a| = 1.

Proof. Write [A®,u|0,v = [A®Oy, ulv — A*((Ozu)v). By Lemma [10.8 [[[A®0y, u]v||r2 is
bounded by the r.h.s. of m by m, |(Opu)v|| s is also bounded by the r.h.s. of
(10.26)). Thus (10.26)) is proved. Inequality ((10.27] m follows by rescaling. O
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