Università degli Studi Roma Tre Corso di laurea in Matematica A.A. 2014-2015 AL210 - Algebra 2 Foglio di esercizi n.2

Antonio Cigliola

Esercizio 1. Sia $\alpha \in \mathbb{Z}[i]$. Provare che, se la norma di α è un numero primo, allora α è un elemento primo di $\mathbb{Z}[i]$.

Esercizio 2. Provare che, se $\alpha, \beta \in \mathbb{Z}[i]$ hanno norme coprime, allora $(\alpha, \beta) = \mathbb{Z}[i]$.

Esercizio 3. Trovare il massimo comun divisore tra le seguenti coppie di interi di Gauss:

- (i) $\alpha = 4 + i \in \beta = 5i$;
- (ii) $\alpha = 4 + i \in \beta = 1 i$;
- (iii) $\alpha = 6 + 3i \text{ e } \beta = 5i;$
- (iv) $\alpha = 3 + i \ e \ \beta = i 5$.

Esercizio 4. Determinare un generatore per i seguenti ideali di $\mathbb{Z}[i]$:

- (i) (5, 3i-1);
- (ii) (3+i, 2i-1);
- (iii) (2i-3, 6i+1).

Esercizio 5. Fattorizzare come prodotto di irriducibili gli elementi 13, -4+3i, 6-6i, 2-3i di $\mathbb{Z}[i]$.

Esercizio 6. Descrivere i seguenti quozienti e stabilire quali tra essi sono domini o campi:

- (i) $\frac{\mathbb{Z}[i]}{(3i)}$;
- (ii) $\frac{\mathbb{Z}[i]}{(13)}$;
- (iii) $\frac{\mathbb{Z}[i]}{(4i-3)}$;
- (iv) $\frac{\mathbb{Z}_3[x]}{(x^3+x^2+2)}$;
- (v) $\frac{\mathbb{Z}_3[x]}{(x^4 + 2x^3 + 3x^2 + 2x + 2)}$.

Esercizio 7. Siano dati il polinomio $f(x) = x^2 + 2 \in \mathbb{Z}_3[x]$ e l'anello $R = \frac{\mathbb{Z}_3[x]}{(f(x))}$.

(i) Calcolare la cardinalità di R.

- (ii) Determinare il gruppo degli elementi invertibili di R e dire se si tratta di un gruppo ciclico.
- (iii) Calcolare gli zero divisori di R.

Esercizio 8. Siano dati il polinomio $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$ e l'anello $R = \frac{\mathbb{Z}_2[x]}{(f(x))}$.

- (i) Calcolare la cardinalità di R.
- (ii) Determinare il gruppo degli elementi invertibili di R e dire se si tratta di un gruppo ciclico.
- (iii) Calcolare gli zero divisori di R.

Esercizio 9. Siano dati il polinomio $f(x) = x^4 + x^2 + 1 \in \mathbb{Z}_2[x]$ e l'anello $R = \frac{\mathbb{Z}_2[x]}{(f(x))}$.

- (i) Calcolare la cardinalità di R.
- (ii) Determinare il gruppo degli elementi invertibili di R e dire se si tratta di un gruppo ciclico.
- (iii) Calcolare gli zero divisori di R.