Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica II corso - A.A. 2017-2018 - prof. Cigliola Foglio n.11 - Teoremi sulla derivabilità

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili?

(i)
$$f(x) = \begin{cases} kx+3 & x \ge 2\\ x-1 & x < 2 \end{cases}$$
 [continua per $k = -1$ ma non derivabile]

(ii)
$$f(x) = \begin{cases} 2x + k & x > 1 \\ h \log x + h & x \le 1 \end{cases}$$
 [$k = 0, h = 2$]

(iii)
$$f(x) = \begin{cases} kx + 4 & x > 2 \\ x + h & x \le 2 \end{cases}$$
 [$k = 1, h = 4$]

(iv)
$$f(x) = \begin{cases} 2x + h^2 & x \ge 0 \\ e^{-kx^2} + 1 & x < 0 \end{cases}$$
 [continua per $h = \pm \sqrt{2}$, mai derivabile in 0]

Esercizio 2. Mostrare che la funzione

$$f(x) = \begin{cases} x^3 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

è continua e derivabile.

Esercizio 3. Mostrare che la funzione

$$f(x) = \begin{cases} x \cos \frac{1}{x} & x > 0 \\ x^2 & x \le 0 \end{cases}$$

è continua ma non derivabile in x = 0. Determinare se esistono, le derivate destra e sinistra di f in x = 0.

Esercizio 4. Sia $n \ge 2$. Usando il teorema di Rolle, dimostrare che se una funzione continua e derivabile su \mathbb{R} ammette n zeri, allora la sua derivata ammette almeno n-1 zeri.

[Siano $x_1, x_2, ..., x_n$ gli n zeri di f(x). Si considerino allora gli n-1 intervalli $[x_1, x_2], [x_2, x_3], ..., [x_{n-1}, x_n]$. Sugli estremi di ciascuno di questi intervalli f assume lo stesso valore (nullo per precisione), inoltre in ciascuno di questi intervalli la funzione è continua e derivabile. Possiamo allora applicare in ciascuno di essi il teorema di Rolle: in ognuno di essi f' ha uno zero.]

Esercizio 5. Data la funzione

$$f(x) = x - x^3$$

verificare per essa il teorema di Rolle nei compatti [-1,0] e [0,1]. Trovare poi in tali intervalli un x_0 tale che $f'(x_0) = 0$.

[La funzione è continua e derivabile in \mathbb{R} . Quindi è possibile applicare il teorema di Rolle. Risolvendo l'equazione $f'(x) = 1 - 3x^2 = 0$ si trovano i valori di $x_0 = \pm \frac{1}{\sqrt{3}}$.]

Esercizio 6. Mostrare che per la funzione

$$f(x) = \sqrt[3]{(x-2)^2}$$

non è possibile applicare il teorema di Rolle nell'intervallo [0, 10].

[La funzione non è derivabile dove si annulla l'argomento della radice cubica: x = 2 che è interno all'intervallo considerato. Allora il teorema di Rolle non può essere applicato.]

Esercizio 7. Applicare il teorema degli zeri alle seguenti funzioni per localizzare le loro intersezioni con l'asse x:

(i)
$$f(x) = \log x + x$$
 [0,1]

(ii)
$$f(x) = e^x - 2x - 3$$
 [-2,-1] e [1,2]

Esercizio 8. Dimostrare che l'equazione

$$x^3 - 2x^2 - x + 1 = 0$$

ammette esattamente tre soluzioni reali.

[La funzione è continua. Inoltre si ha che f(0) = 1 > 0, f(1) < 0, f(3) > 0, f(-1) < 0. Sicché per il teorema degli zeri la funzione ammette tre zeri localizzati negli intervalli: [-1,0], [0,1] e [1,3]. Inoltre un polinomio di terzo grado non può avere più di tre zeri.]

Esercizio 9. Assegnata la funzione

$$f(x) = x - x^3$$

provare che verifica le ipotesi del teorema di Lagrange in [-2,1] e determinare esplicitamente un punto c che verifica la tesi dello stesso teorema.

[Si verifica facilmente che la funzione è continua e derivabile su tutto il suo dominio. La sua derivata prima è $f'(x) = 1 - 3x^2$ e cerchiamo le soluzioni dell'equazione $1 - 3c^2 = -2$. Si ottiene la sola soluzione accettabile c = -1 perché interna all'intervallo proposto.]

Esercizio 10. Sia data la funzione

$$f(x) = |1 - x^2|$$

definita nell'intervallo [0,2]. Provare che non esiste alcun elemento $c \in [0,2]$ tale che

$$f'(c) = \frac{f(2) - f(0)}{2}.$$

[La richiesta dell'esercizio ricorda la tesi del teorema di Lagrange. Per garantirci che non sia verificato, controlliamo che le ipotesi di tale teorema non sono soddisfatte.

Pur essendo continua in [0,2], la funzione in tale intervallo non è derivabile nel punto $x_0 = 1$. Infatti il valore assoluto non è derivabile quando l'argomento si annulla.

Cominciamo col dire che $\frac{f(2)-f(0)}{2}=1$.

Per comodità esplicitiamo il valore assoluto che definisce la funzione f:

$$f(x) = \begin{cases} -x^2 + 1 & x \in [0, 1] \\ x^2 - 1 & x \in [1, 2] \end{cases}$$

La derivata di f definita a tratti diventa:

$$f'(x) = \begin{cases} -2x & x \in [0,1] \\ 2x & x \in [1,2] \end{cases}$$

Siccome in [0,1] la derivata è sempre negativa, non può esserci in tale intervallo un punto c per cui f'(c) = 1. Invece nell'intervallo [1,2] si avrebbe 2c = 1 da cui $c = \frac{1}{2}$, che però non appartiene all'intervallo considerato. La tesi dell'esercizio è allora verificata.]

Esercizio 11. Determinare i valori di a e b affinché la funzione

$$f(x) = \begin{cases} e^x & x \ge 0\\ 2ax^2 + x - b & x < 0 \end{cases}$$

sia derivabile.

[per ogni $a \in \mathbb{R}$ e per b = -1]

Esercizio 12. Determinare i coefficienti $a, b \in c$ della funzione

$$f(x) = ax^4 + bx + c$$

in modo che la derivata terza sia la funzione f'''(x) = 12x e che la curva grafico di f passi per il punto (0,1) avendo ivi come tangente la retta y = 2x + 1. [a = 1/2, b = 5/2 e c = 1]

Esercizio 13. Dimostrare che l'equazione $x^3 - 3x + 5$ non può avere soluzioni nell'intervallo (0,1).

Esercizio 14. Provare che l'equazione $3x^5 + 15x - 1 = 0$ ha esattamente una radice reale.

Esercizio 15. Applicare il teorema di Lagrange alla funzione

$$f(x) = \begin{cases} \frac{3 - x^2}{2} & \text{per } x \in [0, 1] \\ \frac{1}{x} & \text{per } x \in (1, 2] \end{cases}$$

[usando entrambi i rami della funzione, si trovano i punti $c = \frac{1}{2}$ e $c = \sqrt{2}$]

Esercizio 16. Studiare la derivabilità nell'origine per le seguenti funzioni:

(i)
$$f(x) = \begin{cases} x+1 & x < 0 \\ e^x & x \ge 0 \end{cases}$$

(ii)
$$f(x) = \begin{cases} x^2 + 1 & x < 0 \\ \cos x & x \ge 0 \end{cases}$$

(iii)
$$f(x) = \frac{x^2 + |x^3|}{|x+2|}$$

Esercizio 17. Determinare gli intervalli di monotonia delle seguenti funzioni:

(i)
$$f(x) = x(x-1)^2$$
 [cresc. per $x < \frac{1}{3}$ e per $x > 1$, decr. per $\frac{1}{3} < x < 1$]

(ii)
$$f(x) = \sqrt{x+1}$$
 [cresc. per $x > -1$]

(iii)
$$f(x) = \frac{3x^2 - 1}{(x^2 + 1)^3}$$
 [cresc. per $x < -1$ e per $0 < x < 1$, decr. per $-1 < x < 0$ e per $x > 1$]

(iv)
$$f(x) = xe^x$$
 [cresc. per ogni valore di x]

(v)
$$f(x) = \frac{e^x}{x}$$
 [cresc. per $x > 1$, decr. per $x < 0$ e $0 < x < 1$]

(vi)
$$f(x) = \log(x + \sqrt{x^2 + 1})$$
 [cresc. per ogni valore di x]

(vii)
$$f(x) = x - 2\sin x$$
 [cresc. per $\frac{\pi}{3} < x < \frac{5\pi}{3}, \dots$]

(viii)
$$f(x) = \arctan x - x$$
 [decresc. per ogni valore della x]

(ix)
$$f(x) = \arcsin(x+1)$$
 [cresc. per $-2 < x < 0$]

Esercizio 18. Dimostrare che la funzione

$$f(x) = e^x + \sin x$$

è invertibile in un intorno di $x_0 = 0$. Calcolare la derivata della funzione inversa di f nel punto $y_0 = 1$.

Esercizio 19. Dimostrare che la funzione

$$f(x) = e^x + \log x$$

è invertibile (precisando l'insieme immagine). Calcolare la derivata della funzione inversa di f nel punto $y_0 = e$.

[Il dominio della funzione è $(0, +\infty)$. La derivata è $f'(x) = e^x + \frac{1}{x}$ che è strettamente positiva nel dominio di f. Allora f è strettamente crescente e quindi iniettiva nel suo dominio. Inoltre, per il teorema dei limiti sulle funzioni monotone, inf $f = \lim_{x \to 0^+} f(x) = -\infty$ e sup $f = \lim_{x \to +\infty} f(x) = +\infty$. Per il teorema dei valori intermedi, essendo f continua nel suo dominio, essa ha per immagine

Per il teorema dei valori intermedi, essendo f continua nel suo dominio, essa ha per immagine l'intero insieme $(-\infty, +\infty) = \mathbb{R}$. Per calcolare la derivata della funzione inversa in $y_0 = e$, dobbiamo prima cercare la controimmagine di y_0 secondo f. Si trova facilmente che $f(1) = e^1 + 0 = e = y_0$. Quindi, usando il teorema di derivazione della funzione inversa, $(f^{-1})'(e) = \frac{1}{f'(e)} = \frac{1}{e+1}$.

Esercizio 20. Dimostrare che per ogni x > 0 si ha che

$$\log(x+1) > \frac{x}{x+1}.$$

[Sia dato il numero reale x > 0. Applichiamo il teorema di Lagrange alla funzione $f(t) = \log(t+1) - \frac{t}{t+1}$ nell'intervallo [0,x]. Si controlli che essa verifichi tutte le ipotesi di detto teorema. La sua derivata è la funzione $f(t) = \frac{x}{(x+1)^2}$. Dalla tesi del teorema di L. segue che esiste $\xi \in [0,x]$ tale che $\frac{f(x)-f(0)}{x} = f'(\xi)$. Sostituendo, si trova: $\log(x+1) - \frac{x}{x+1}x = x \cdot \frac{\xi}{(\xi+1)^2}$. Poiché la quantità a destra è strettamente positiva, si ha anche che $\log(x+1) - \frac{x}{x+1}x > 0$ e quindi che $\log(x+1) > \frac{x}{x+1}$.]

Esercizio 21. Si calcolino i seguenti limiti:

(i)
$$\lim_{x\to 0} \frac{x - \arctan x}{\arcsin x - x}$$
 [2]

(ii)
$$\lim_{x \to 0} \frac{\sin 3x^2}{\log \cos(2x^2 - x)}$$
 [-6]

(iii)
$$\lim_{x \to 0} \frac{e^x - 1 + \log(1 - x)}{\operatorname{tg} x - x}$$
 [$-\frac{1}{2}$]

(iv)
$$\lim_{x \to 1^+} \frac{\sqrt{x} + \sqrt{x - 1} - 1}{\sqrt{x^2 - 1}}$$
 [$\frac{\sqrt{2}}{2}$]

$$(v) \lim_{x \to +\infty} \frac{xe^{\frac{x}{2}}}{x + e^x}$$

$$(vi) \lim_{x \to +\infty} \frac{\log(1 + 2e^x)}{\sqrt{x^2 + 1}}$$
 [1]

(vii)
$$\lim_{x \to +\infty} \frac{\log \sqrt[3]{x^3 + x^2}}{\log x}$$
 [1]

(viii)
$$\lim_{x \to 0^+} \frac{\log \sin 2x}{\log \sin x}$$
 [1]

$$\lim_{x \to 0^+} x^2 \log x \tag{1}$$

(x)
$$\lim_{x \to +\infty} x^2 \log \cos \frac{1}{x}$$
 [$-\frac{1}{2}$]

(xi)
$$\lim_{x \to \frac{\pi}{2}} (\pi - 2x) \operatorname{tg} x$$
 [2]

(xii)
$$\lim_{x \to 1} \log x \log(x-1)$$
 [0]

(xiii)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
 $\left[\frac{1}{2} \right]$

(xiv)
$$\lim_{x \to +\infty} \left(x - x^2 \log \left(1 + \frac{1}{x} \right) \right)$$

[si raccolga x^2 , si applichi il teorema di De l'Hopital, si usi la sostituzione $t = \frac{1}{x}$, il limite vale $\frac{1}{2}$]

(xv)
$$\lim_{x \to 0} (1+x)^{\log x}$$
 [1]

(xvi)
$$\lim_{x \to 0} \left(\frac{(x+1)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}$$

$$\left[\frac{1}{\sqrt{e}} \right]$$

Esercizio 22. Dimostrare che

$$\lim_{x \to +\infty} \frac{x^n}{e^x} = 0,$$

per ogni intero n > 0.

Esercizio 23. Dimostrare che

$$\lim_{x \to +\infty} \frac{\log_a x}{x^{\alpha}} = 0,$$

per ogni numero reale $\alpha > 0$ e a > 0 e $a \neq 1$.

Esercizio 24. Calcolare il differenziale delle seguenti funzioni:

(i)
$$y = \operatorname{arctg} x$$

(ii)
$$y = \cos x$$
 [$dy = -\sin x \, dx$]

(iii)
$$y = e^{t^3}$$

Esercizio 25. Calcolare un valore approssimato di arcsin 0, 51.

[Ci viene in aiuto il differenziale della funzione $f(x) = \arcsin x$. Poniamo $x_0 = 0, 5$ e dx = 0, 01. Sappiamo che $df = \frac{1}{\sqrt{1-x^2}} dx$, da cui

$$f(x_0+dx) = f(x_0) + f'(x_0)dx = \arcsin 0, 5 + \frac{0,01}{\sqrt{1-(0,5)^2}} = \frac{\pi}{6} + \frac{2}{\sqrt{3}} \cdot \frac{1}{100} \approx 0,523598 + 0,011547 = 0,535145$$

Confrontando il valore ottenuto con quello calcolato da una calcolatrice (0,53518479...), si trova che i primi quattro decimali sono esatti.]

Esercizio 26. Calcolare un valore approssimato di $\sqrt{4,3871}$.

Esercizio 27. Calcolare un valore approssimato di $\sqrt{15,8}$.

Esercizio 28. Calcolare un valore approssimato di $\arctan 1,005$.