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Abstract

Lecture notes regarding the multi-scale analysis of reaction diffusion particle systems. These
notes are still in a very rudimentary form and being frequently updated; in particular, some
proofs have a few details omitted and a few rough approximations, and the bibliographical
references are yet very scarse. Comments and suggestions are very much appreciated. These
lecture notes are based on mini-courses given in TU Darmstadt and Università Roma Tre in
2019. I am thankful to the organizers and the participants for creating a very stimulating and
participative atmosphere.
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1 Introduction

In preparation.

Convention regarding constants and terminology

We use c, c′, c′′, C, C ′′ . . . for arbitrary constants, whose values may change from line to line. When
we want to emphasize that the constant depends only on the dimension, we write cd but the value
of cd may also change from line to line. When we want to fix a constant and use it with the same
meaning throughout a section, we will use numbered indices such as c1, c2, . . ..

We let Poisson(λ) denote a Poisson random variable of parameter λ that is independent of everything
else. We use a similar notation for other distributions such as Bernoulli. We also let PPP(λ) stand
for a Poisson point process of intensity Λ.

2 Particle System

We consider a system of particles on Zd starting from a Poisson point process of intensity µ; that
is, at time 0 the number of particle at each vertex of Zd is given by an independent Poisson random
variable of intensity µ. Then, from time 0, particles move as independent simple random walks on
Zd. Let ηt denote the configuration of particles at time t, where ηt is the counting measure so that,
for all Λ ⊂ Zd,

ηt(Λ) :=
∑
x∈Λ

ηt(x) = “# particles in Λ at time t”.

Thus, we have that

{η0(x)}x∈Zd are i.i.d. Poisson random variables of parameter µ. (2.1)

2.1 Invariant measure

The next theorem shows that the Poisson point process is an invariant measure for the particle
system. In other words, the particle system we consider here is in equilibrium.

Theorem 2.1. For any given t ≥ 0, ηt is a Poisson point process of intensity µ on Zd.
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Proof. Fix t > 0 and x, y ∈ Zd. Let Nt(x → y) be the number of particles that start from x at
time 0 and are located at y at time t. Using the thinning property of Poisson random variables we
obtain that, for any given x ∈ Zd,

{Nt(x→ y)}y∈Zd are independent Poisson random variables, each of intensity µpt(x, y), (2.2)

where pt(x, y) is the probability that a random walk starting from x is located at y at time t.
Using (2.1) we obtain that the Nt(x→ y) are also independent across different values of x. Hence,

ηt(y) =
∑
x∈Zd

Nt(x→ y),

which is a sum of independent Poisson random variables. From the superposition property of
Poisson random variables, we have that ηt(y) is a Poisson random variable of intensity∑

x∈Zd
µpt(x, y) =

∑
x∈Zd

µpt(y, x) = µ.

Using (2.2) we obtain that the ηt(y) are independent across different values of y, completing the
proof.

2.2 Meeting times

The central problem we will look at is the spread of an infection among the particles. In order to
analyze this problem, we will need to control the probability that particles meet1 within a certain
time interval. This is the context of the next theorem.

Theorem 2.2. Assume that two particles are located at distance ` from one another at time 0.
There exists a constant cd such that the probability that the particles meet before time `2 is at least
cd for d = 1, at least cd

log ` for d = 2 and at least cd
`d−2 for d ≥ 3.

Proof. Let Xt and Yt be the location at time t of each of the particles; hence, ‖X0 − Y0‖1 = `. Let
Ms be the amount of time that the particles spend co-located at the same vertex during the time
interval [0, s]; more formally,

Ms =

∫ s

0
1 (Xt = Yt) dt.

We want to derive a lower bound to

P(Ms > 0) =
E(Ms)

E(Ms |Ms > 0)
. (2.3)

Denoting by pt(x, y) the probability that a random walk goes from x to y in time t, we have that

E(Ms) =

∫ s

0
P(Xt = Yt)dt =

∫ s

0

∑
x∈Zd

pt(X0, x)pt(Y0, x)dt.

Since pt(Y0, x) = pt(x, Y0) we obtain that

E(Ms) =

∫ s

0

∑
x∈Zd

pt(X0, x)pt(x, Y0)dt =

∫ s

0
p2t(X0, Y0)dt. =

1

2

∫ 2s

0
pt′(X0, Y0)dt′,

1That is, that the particles are at the same vertex at the same time
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where the last step follows from a change of variable t′ = 2t. Recalling that s is of order `2 =
‖X0 − Y0‖21, for us it will be enough to use the lower bound

E(Ms) ≥
1

2

∫ 2s

s
pt′(X0, Y0)dt′ ≥


c
√
s, d = 1,
c, d = 2,

c
sd−2 , d ≥ 3,

for some constant c. The final bounds follow from the local CLT (see, Lemma B.1). On the other
hand E(Ms |Ms > 0) is at most the expected time that a random walk that starts from the origin
spends at the origin during [0, s], which is the Green’s function up to time s and is known to behave
as

c
√
s, d = 1,

c log(s), d = 2,
c, d ≥ 3,

for some other constant c. Plugging these two bounds into (2.3) establishes the theorem.

3 Frog Model

Most of these notes will be devoted to analyze the spread of infection, which we define in Section 4.
Before going into this model, we discuss a simpler process, called the frog model.

In the frog model, there are two types of particles, S (meaning susceptible) and I (meaning infected).
S particles do not move (or, equivalently, we say that they jump at rate DS = 0) and are initially
distributed as a Poisson point process of intensity µ in Zd. The I particles, in turn, start from a
single particle initially placed at the origin. This I particle move at rate DI = 1. Whenever an I
particle jumps onto a site occupied by S particles, the S particles all turn to type I (and, hence,
start moving independently of one another as simple random walks at rate DI = 1). This is usually
represented by the reaction formula

S + I −→ 2I.

We refer to this model as the frog model with SI dynamics. We let ηSt (x), ηIt (x) be the number of
S and I particles, respectively, that are located at site x at time t. As before, we take ηSt , η

I
t to be

the counting measure so that, for all Λ ⊂ Zd, we have

ηSt (Λ) =
∑
x∈Λ

ηSt (x) and ηIt (Λ) =
∑
x∈Λ

ηIt (x).

The frog model is also called stochastic combustion model. In this context, I particles are regarded
as heat particles which diffuse and spread the heat to inert particles (modelled by the S particles).
Once heated, the inert particles become heat particles and start to diffuse as well.

The frog model was introduced in 1999 by Telcs and Wormald [38], who defined it as a branching
process where particles never die and branch only on their first visit to a vertex. In [38], it was
showed that the frog model is recurrent in all dimensions, which is intended to mean that ηt(0) ≥ 1
for infinitely many values of t.

Theorem 3.1 (Recurrence in the frog model [38]). For all d ≥ 1, each particle will eventually
become infected almost surely.

For a more thorough discussion regarding the recurrence problem, refer to the survey by Popov [30],
and the recent work of Hoffman, Johnson and Junge [20] who proved a phase transition between
recurrence and transience for the frog model on trees.
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3.1 Positive speed and shape theorem

We consider the problem of spread of infection in the frog model. Since infected particles move as
simple random walks, the originally infected particles (that is, the particles that were located at
the origin at time 0) are likely to be at time t within distance of order

√
t from the origin. But since

the infection can spread between particles, it is natural to believe that the infection could spread
faster than

√
t. In particular, we would like to see whether the infection spreads with positive speed.

Definition 3.2 (Positive speed of propagation). We say that the frog model has positive speed of
propagation (or just positive speed) if, for all large enough t, there is an infected particle whose
distance to the origin has order t. More precisely, there exists a constant c = c(d, µ) > 0 such that

ηIt (Zd \ Bct) ≥ 1 for all large enough t, almost surely,

where we recall that Br stands for a ball of radius r centered at the origin.

A positive answer to the above question was given by Alves, Machado, Popov and Ravishankar [3],
building on earlier results by Alves, Machado and Popov [1] and Ramı́rez and Sidoravicius [31].
In fact, [3] proves a stronger result, which we will discuss below. But before that, we state the
theorem on the positive speed of propagation since the proof of this theorem is the central content
of this section.

Theorem 3.3. For d ≥ 2 and any µ > 0, the frog model with SI dynamics has positive speed.

As we mentioned above, [3] proved a stronger result, which goes under the name of shape theorem.
Let At be the set of sites of Zd which were infected at least once during [0, t]; that is,

At =
{
x ∈ Zd : ∃s ∈ [0, t] for which ηIs(x) ≥ 1

}
.

Then we transform At into a subset of Rd by adding cubes of side length 1 centered at the sites of

At to obtain Ãt =
⋃
x∈At

(
x+ [−1/2, 1/2]d

)
. We consider Ãt, instead of At, since Ãt

t :=
⋃
x∈Ãt

x
t

is a simply connected subset of Rd, whereas At
t is just a collection of points. We are now ready to

state the shape theorem result of Alves, Machado, Popov and Ravishankar. We will not prove this
result, as it goes out of the scope of our discussion here.

Theorem 3.4 ([1, 31, 3]). In the frog model, for any d ≥ 1 and any µ > 0, there exists a compact
subset S of Rd such that for any ε > 0 we have

(1− ε)S ⊂ Ãt
t
⊂ (1 + ε)S for all t large enough, almost surely.

The set S is called the limit shape. The above theorem can be interpreted as a type of law
of large numbers for a sequence of random subsets Ã1, Ã2, . . . of Rd. As we pointed out above,
Theorem 3.4 is an extension of an earlier result of Alves, Machado and Popov [1] and Ramı́rez and
Sidoravicius [31] who independently established the shape theorem for the frog model when, in the
initial configuration, each site x ∈ Zd\{0} has exactly one susceptible particle. The main difference
between [1] and [31] is that in [1] the particles perform discrete time random walks, whereas in [31]
the particles perform continuous time random walks. We remark that [31] also showed that S is
not an Euclidean ball and that the distribution of the particles at time t converges weakly to a
Poisson point process.

In dimension one, more can be said about the frog model. Using a regeneration time argument,
Comets, Quastel and Ramı́rez [11] proved that the fluctuations around the limit shape are Gaussian.
Refer to the survey [21] for a more thorough discussion.
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3.2 SIS and SIR dynamics

There are two other variants of the frog model (and of spread of infection in general) that we will
discuss: the SIS and the SIR dynamics. They include an additional parameter λ > 0. In the SIS,
we allow I particles to “heal” at rate λ, turning back to type S. The reaction formulas become

S + I −→ 2I

I
λ−→ S.

Note that, as defined above, if an I particle is at the same site of other I particles and decides to
turn to type S, it instantaneously gets reinfected by the other I particles, and becomes of type I
again. In other words, I particles can effectively turn into type S only when they are alone at a
site.

In the SIR dynamics, there is a third type of particle, denoted R (meaning removed or dead). Each
I particle dies at rate λ, turning to type R. This is an irreversible transition, since R particles never
change types. So, the reaction formulas become

S + I −→ 2I

I
λ−→ R.

It is also possible to combine these two dynamics, for example, by letting I particles turn to type
S at some rate and to type R at some other rate. But we will not look at this variant here.

3.3 Phase transition in the SIR dynamics

We now turn our attention to the SIR dynamics for the frog model. A central question here is
whether the infection survives.

Definition 3.5 (Survival of the infection). We say that the infection survives if we have that
P
(
ηIt (Zd) ≥ 1 for all t ≥ 0

)
> 0. If the infection does not survive, then we say that the infection

dies out.

Note that, with positive probability, all particles that are initially at the origin die out before any
particle jumps into or out of the origin. So, for all µ > 0 and λ > 0, the infection dies out with
positive probability. That is the reason why, in the definition of survival above, we only require the
infection to survive with positive probability.

Alves, Machado and Popov [2] showed that the infection survives for small enough λ in dimensions
d ≥ 2. (In fact, [2] considers the frog model in discrete time, but the proof carries through to
continuous time.)

Theorem 3.6 ([2, Theorem 1.3–1.5]). In the frog model with SIR dynamics, for d ≥ 2 and all
µ > 0, there exists λc such that if λ < λc then the infection survives, otherwise the infection dies
out.

They also showed that, in dimension d = 1, the infection dies out for any µ > 0 and λ > 0.

Theorem 3.7 ([2, Theorem 1.1]). In the frog model with SIR dynamics, for d = 1, all µ > 0 and
all λ > 0, the infection dies out almost surely.
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The above proofs can be adapted to show that in dimension d ≥ 2 and for all µ > 0, the infection
survives in the SIS dynamics for all small enough λ. An open question is what happens in the SIS
dynamics at very large density, since particles get immediately reinfected when they heal at sites
where there are other infected particles.

Question 3.8. In the frog model with SIS dynamics, is there a value µc < ∞ such that, for all
µ > µc, it happens that the infection survives for all λ <∞?

In Section 3.4, we will present the proof of positive speed for the frog model in d ≥ 2, which will
be a single-scale argument using a widely used techniques: comparison with percolation.

3.4 Proof of positive speed: a single-scale argument via percolation

In this section we will prove that the frog model has positive speed of propagation in the SI
dynamics, which is the result we stated in Theorem 3.3. The proof we will present here is inspired
by the argument used in [2], which actually establishes the phase transition in the SIR dynamics
(Theorem 3.6 above). We will discuss how the proof we present here can be adapted to the SIR
dynamics in Remark 3.9.

Before turning to the proof, we introduce a representation of the frog model as a percolation process,
which intuitively explains why positive speed happens. Later we will see that this representation
does not hold in the “standard” model of spread of infection (that is, with DS = DI = 1), which
gives rise to fundamental challenges in the analysis.

3.4.1 Frog model as a percolation process

Fix a large enough value τ . For each particle of η0, sample a random walk path of time-length τ .
That is, define a collection

(Xx,i (t))t∈[0,τ ] for each x ∈ Zd and i ∈ {1, 2, . . . , η0(x)},where Xx,i(0) = x and

Xx,i(t) is the location at time t of the ith particle that started from x. (3.1)

With the above construction, if a particle (call it p) that starts from the origin is such that its path
intersects a site x with ηS0 (x) ≥ 1, which we will refer to as

0 x,

then the particles that start from x will turn to type I within time τ . Note that it is not necessarily
true that it will be p that infects the particles from x, since it could happen that, on its way to
x, p infected other particles that move to x faster than p. But, undoubtedly, we obtain that the
particles that start from x will get infected during the time [0, τ ]. So, in some sense, the frog model
is an abelian process, which is to mean that time plays a less important role. In other words, once

we have fixed the collection of paths
{

(Xx,i (t))t∈[0,τ ] : x ∈ Zd, i ∈ {1, 2, . . . , η0(x)}
}

, if there exists

a sequence of sites x1, x2, . . . , xk such that

0 x1  x2  · · · xk,
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then regardless of the exact times at which particles will jump (thus, regardless of the order at
which particles jump), we obtain that, for each i ∈ {1, 2, . . . , k}, the particles in xi turn into type
I during the interval [0, iτ ].

In order to show that positive speed occurs, it is enough to show that the percolation process
obtained from the union of the paths Xx,i percolate in an oriented way. That is, it suffices to show
that there exists an infinite sequence of sites x1, x2, . . . such that

‖xi‖1 > ‖xi−1‖1 for each i ≥ 2, and 0 x1  x2  x3  · · · . (3.2)

We refer to a path as above as an infection path. When such a path occurs, we obtain that ‖xi‖1 ≥ i
by the first part of (3.2), which then implies that the infection reaches out to a site of distance at
least i from the origin by time iτ . It is possible to show that, for any µ > 0, such an infection path
occurs if we set τ large enough and we relax the definition of the paths to allow the particles that
start from the origin to move for an arbitrarily large amount of time. We will first do the proof µ
large (Section 3.4.2) and then will give a more robust argument for all µ (Section 3.4.3).

3.4.2 Positive speed for µ large: oriented percolation

For didactic purpose, we will carry out the proof of Theorem 3.3 in two steps: first for large
enough µ, which allows a direct comparison with oriented percolation, and then for all µ > 0 via a
single-scale renormalization argument.

Proof of Theorem 3.3 for large µ. We fix a value τ . Recall that Xx,i(t) for t ∈ [0, τ ] is the path
that the i-th particle born at x perform for time t after turning to type I; see (3.1). We say that a
site x is good (or open) if it contains at least one S particle at time 0 which jumps to all neighbors
of x within time τ after it turned to type I. In other words, x is good if

there exists i ∈ {1, 2, . . . , ηS0 (x)} such that Xx,i ⊃ x+ B1;

that is, Xx,i contains all neighbors of x.

Now, for any fixed x and i, the probability that Xx,i ⊃ x+ B1 is bounded below by some constant
c1 = c1(d, τ) > 0. Since particles born at x move independently of one another, using the thinning
property of Poisson random variables we obtain that the number of particles that are born at x and
do what we specify above is a Poisson random variable of parameter µc1. Hence, the probability
that a site is good is the probability that this Poisson random variable is at least 1, which is
1− e−µc1 .

Thus, with µ large enough, we can make 1 − e−µc1 strictly larger than psite,↑
c (Zd), the critical

probability for oriented site percolation on Zd. Since the event that a site is good is independent
across different sites, we obtain from oriented percolation that, with positive probability, the origin
is in an infinite oriented path of good sites, where by an oriented path we mean a sequence of
neighboring sites x0, x1, x2, . . . such that ‖xi+1‖1 = ‖xi‖1 + 1 for all i ≥ 1. When the origin belongs
to one such path, letting 0 = x0, x1, x2, . . . denote this path, the fact that the origin is good implies
that a particle from the origin visits all neighbors of the origin. In particular, 0 x1, since x1 is a
neighbor of the origin. Hence, the infection reaches distance i from the origin in time at most τi,
establishing positive speed.

If the origin is not part of an oriented path of good sites, an event that happens with positive
probability, we only need to let a particle from the origin move for as long as necessary (maybe
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for longer than time τ) until it reaches a site that is part of an infinite oriented path of good sites.
When this happens, from that time onwards, the infection will propagate with positive speed. Since
the time it takes for the particle from the origin to reach one such path is almost surely finite, the
proof is completed. (This last part will be carried out in more details at the end of the full proof
below).

3.4.3 Full proof of positive speed: single-scale renormalization

Here we present the proof of Theorem 3.3 via a single-scale renormalization. This is by now a
classical argument, which has been used to establish several results, especially in percolation. We
introduced the frog model exactly to present this type of argument, as it will serve as the basis of
our more elaborate constructions of a multi-scale renormalization in Section 7.

We would like to mimic the proof presented in Section 3.4.2 for large µ. The problem is that if
µ is small, then a site is likely to be empty of particles, and cannot directly send the infection to
its neighbors. To go around this problem, we will consider large enough boxes, whose side lengths
grow with µ.

Imagine a tessellation of Zd in very large boxes, and fix one such box. The box is so large that it
is very likely that it has several particles from ηS0 . When this is the case and an infected particle
gets inside this box, the infected particle has a good chance of visiting several of the sites hosting
particles from ηS0 in the box. So such particles will get infected and will start moving. If several of
them get infected, then it becomes likely that at least one of them will quickly move to a nearby
box, allowing the infection to spread there as well. The goal is to show that this causes a cascading
effect, similar to what happened in Section 3.4.2 when the infection reached a site belonging to an
infinite oriented path of good sites. The difference is that here our aim is to show that there will
be an infinite path of good boxes, where a good box is a box that satisfies the property mentioned
above (namely, that if the infection enters the box, then it can quickly spread to nearby boxes).

Now we make the above argument rigorous. With the sole exception of the particles that start
from the origin, for any other particle that gets infected, we only observe its path during a time
interval of length τ after the infection, using the paths Xx,i defined in (3.1). Now, tessellate Zd
into disjoint cubes of side length L. So cube Q(i) is defined as

Q(i) := iL+
[
−L

2 ,
L
2

)d
.

Also we define the center of Q(i) as the inner cube of side-length L/3 in Q(i); that is, the center
of Q(i) is the cube

Qcenter(i) := iL+
[
−L

6 ,
L
6

]d
.

Later we will take L large with respect to µ, but for the moment just set τ as a function of L by

τ := L2.

For each cube we say that the cube is good if all the following events happen:

1. The first L/3 vertices of Q(i) visited by infected particles contain in total at least µL/6
particles from ηS0 , call the set of such particles from ηS0 as P,

2. For each cube Q(j) neighboring Q(i) (that is, with ‖j − i‖1 = 1) at least one particle from P
visits Qcenter(j) within time L2 of its infection.

10



L

L/3
Q(i)

Figure 1: Definition of good cubes. The black paths represent infected particles entering the center
of the cube; as they traverse the annulus of the cube they infect several particles, which then move
to neighboring centers.

Note that this event gives exactly the argument we intuitively described in the begining of the
proof, where good boxes play the role of good sites. In particular, one can find an oriented path of
good cubes, and if a particle from the origin visits the center of a cube in this path within time s,
we have that, for any positive integer k, after time s + kτ = s + L2k there is an infected particle
from a site of distance at least −

√
s log(s) + (k − 1)L; the term −

√
s log(s) comes from the fact

that particles that start from the origin will not move a distance larger than
√
s log(s) by time s,

with probability going to 1 as s → ∞. We get the term (k − 1)L, instead of kL, because we do
not know where the infection is located in the center of the first and last boxes so there could be a
variation of at most 2L

3 ≤ L. This implies that the infection will spread with speed at least

lim inf
k→∞

−
√
s log(s) + (k − 1)L

s+ L2k
=

1

L
> 0.

We wrote the above event in a more informal way, for the sake of clarity. We now turn to the proof
of the theorem, where we start by presenting a construction of the frog model that will allow us to
define the event that a cube is good in a more suitable way.

Full proof of Theorem 3.3. In order to show that the exists an infinite oriented path of good cubes,
we would like to compare the good cubes with an independent percolation process. For this, we
need that the events that {Q(i) is good} are independent across different i, and that the probability
of each of these events is large enough.

We start with a simple observation. Note that, in the second part of the event that {Q(i) is good},
we need to compute the probability that a particle moves from Q(i) to Qcenter(j) in time L2, where

11



‖i− j‖1 = 1. But, for any x ∈ Q(i), a consequence of the local CLT (see, for example, Lemma B.1)
is that ∑

y∈Qcenter(j)

pL2(x, y) ≤ c

(L2)d/2
|Qcenter(j)| = c(L/3)d

(L2)d/2
= c1(d),

where we recall that pL2(x, y) is the probability that a random walk starting from x is at site y at
time L2.

Now we are ready to present the construction of the frog model. In this construction, we do not
sample at time 0 the values of the random variables ηS0 . Instead, to each cube Q(i), associate a
pile Li of Ld independent Poisson random variables of parameter µ. Associate as well another
pile, L′i, this time having infinitely many elements, where each element is an independent Bernoulli
random variable of parameter c1. Then, when an infected particle visits for the first time a site
from Q(i), call this site x, then we take the first Poisson random variable from Li and set ηS0 (x) be
this number. We also remove this number from Li. In other words, we add to x as many susceptible
particles as is given by the first number in Li, and remove this number from Li. Note that since
there is an infected particle at x at that time, all such susceptible particles become infected. Next,
we consider an ordering of the neighboring boxes of Q(i), and call it the current neighbor as the
first neighboring box of Q(i) in the ordering. Then, for each susceptible particle that we added to
x, in turn, we take one Bernoulli random variable from L′i. If one such Bernoulli random variables
is equal to 1, then we couple the random walk trajectory that the particle will do during time L2 so
that it ends at the center of the current neighbor. In this case, we also switch the current neighbor
to the next neighboring box in the ordering. On the other hand, if the Bernoulli random variable
is equal to zero, then we will not care about what the particle will actually do, but what one needs
to do is to couple the trajectory of the particle for the next L2 steps given the information that the
Bernoulli random variable is zero.

Note that, if it happens that an infected particle enters Qcenter(i), then at least L/3 numbers will
be used from Li. If these numbers provide at least µL/6 susceptible particles, then the first µL/6
numbers from L′i will be used. And if these numbers sum to at least 2d, we can couple the particles
added in Q(i) so that for each neighboring box of Q(i) at least one particle will be at the center
of that neighboring box after time L2. So, for concreteness, we say that the cube is good if all the
following events happen:

(E1) The first L/3 numbers in Li sum to at least µL/6, and

(E2) The first µL/6 numbers in L′i sum to at least 2d.

Since the above is measurable with respect to the numbers in the lists Li and L′i, and the Li and
L′i are independent across different i, we have that

the events that {Q(i) is good } are independent across different i.

Now we compute the probability that a box is good. Note that

P (Q(i) is bad) = P (Ec
1) + P (Ec

2) = P (Poisson(µL/3) ≤ µL/6) + P (Binomial(µL/6, c1)) .

Then a standard Chernoff bound gives that there exists a constant c = c(d) such that

P (Q(i) is bad) ≤ exp (−cµL) .
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The proof is completed by noting that P (Q(i) is good) goes to 1 with L, so we can set L large

enough so that P (Q(i) is good) > psite,↑
c (Zd), the critical probability for oriented site percolation

on Zd. So we obtain that good boxes percolate in an oriented way; so there exists an infinite path
of boxes that is oriented in Zd. Hence, if such an infinite oriented path of good boxes contains
the box centered at the origin, then we obtain that the infection spreads with positive speed as
explained above.

On the other hand, if the box centered at the origin is not in an infinite path, then we proceed
as follows. Consider the times s1, s2, . . . such that si is the first time that the originally infected
particle from the origin reaches the boundary of a box of `∞ distance i from the origin; this distance
is in term of the `∞ distance between the indices of the boxes, that is, the `∞ distance between the
boxes Q(i) and Q(j) is ‖i− j‖∞. At each si, the particle that is at the boundary of the given box
has a positive probability of jumping all the way to the center of that box. If this happen and the
box is good, then the good event is triggered because at least L/3 sites from the box are visited by
an infected particle. Because good boxes form a supercritical oriented percolation process, there is
a positive probability that this box is connected to infinity via an oriented path of good boxes. If
this does not happen, then we can wait until the next time sk, where k is the smallest value so that
all boxes that were observed in the previous step are within `∞ distance k−1 from the origin. And
then we iterate. Since each iteration finds a percolating good box (i.e., a good box with an infinite
oriented path of good boxes) with positive probability, eventually such an oriented path will be hit
by the infection.

Remark 3.9 (SIS and SIR dynamics). We note that the above proof also establishes that SIS and
SIR dynamics survive with positive probability for the frog model. For this, we only need a small
change in the definition of good box. We use the thinning property of Poisson point processes to
define the particle system η′ which only contains the particles that move for at least time τ = L2

before healing or dying from the infection. Then, after fixing L so that P (Q(i) is good) > psite,↑
c (Zd),

we can choose λ small enough, so that P (Q(i) is good) > psite,↑
c (Zd) even if we replace η with η′.

3.5 Proof of an upper bound on the speed

We give a linear upper bound on the speed of propagation, to show that the frog model cannot
spread faster than ballistic.

Theorem 3.10 (Upper bound on the speed). In the frog model in the SI dynamics, there exists a
constant C = C(d, µ) > 0 such that, for any t,

P
(
ηIt (Zd \ BCt) ≥ 1

)
→ 0 as t→∞.

Before turning to the proof of the above theorem, recall that the I particles of the frog model form
a branching random walk where branching occurs only at the first visit of each site. Therefore the
I particles are stochastically dominated by a branching random walk which branches at each step.
Since at each branching time the number of offsprings is a Poisson random variable of parameter
µ, which is finite, then this branching random walk is at most ballistic. Below we will do a more
direct approach to illustrate how the first moment method can be used in this case.

First, we give one definition that we will use later on as well.
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Definition 3.11 (Genealogical path). A genealogical path p0, p1, . . . is a sequence of particles where
particle pi infected particle pi+1; for the definition of a genealogical path we assume that pi is the
particle that first infected pi+1, so pi+1 was an S particle when pi transmitted the infection to it. If
the infection reaches distance Ct from the origin by time t, then there is a genealogical path that
gets to distance Ct within time t.

Proof of Theorem 3.10. We will apply the first moment method to calculate the expected number
of genealogical paths (see Definition 3.11). Instead of defining the path as a sequence of particles, we
can define the path by its number k of hops (where a hop is meant to correspond to a transmission
of the infection from one particle to the next, so that k + 1 is the number of particles involved
in this genealogical path) and three sequences: the number of jumps m1,m2, . . . ,mk ≥ 1 of each
particle, the displacements x1, x2, . . . , xk ∈ Zd of each particle, and numbers j0, j1, . . . , jk−1 ≥ 1.
We impose that

‖xi‖1 ≤ mi for all i ≥ 1. (3.3)

The path starts at x0, which will be taken to be the origin. We need to choose a particle to start
the genealogical path. Since the site x0 may contain several particles at time 0, we select the j0th
particle (in some predetermined order) from x0 to be the particle p0 of the path. So j0 is a number
that indicates which particle we follow from the S particles present at a given site (such S particles
will at that moment turn to I particles). We follow particle p0 until it makes m1 jumps. If at that
time p0 is not at site x1, then the path is not valid. Otherwise, we select the j1th S particle from x1

(which became an I particle when p0 jumped to x1), and let this be p1. If the number of S particles
at x1 is smaller than j1, the path is not valid. We then repeat this procedure to obtain p2, p3, . . .;
note that pi will be found at site x1 + x2 + · · · + xi. This procedure ends when pk−1 jumps onto
x1 + x2 + · · ·+ xk, where the path ends.

Let Gt be the number of genealogical paths, as described above, that reach to distance Ct at time
t. With x0 being the origin, we have

E(Gt) ≤
∞∑
k=1

∑
m1,...,mk≥1∑k
i=1mi≥Ct

∑
x1,...,xk
‖xi‖1≤mi

∑
j0,...,jk−1≥1

P
({∑k

i=1
Ji(mi) ≤ t

}⋂
i∈J+

{
Ni ≥ ji

})
,

where Ji(mi) is the time that particle pi−1 takes to perform mi jumps, and Ni is the number of S
particles found by pi−1 when it jumps onto x1 + x2 + · · ·+ xi. Note that

∑k
i=1 Ji(mi) is a sum of∑k

i=1mi independent exponential random variables of rate 1, so the probability that it is smaller

than t is equal to the probability that a Poisson random variable of parameter t is at least
∑k

i=1mi.
Since Ni is a Poisson random variable of mean µ, we get that

E(Gt) ≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥1∑k
i=1mi=M

∑
x1,...,xk
‖xi‖1≤mi

P (Poisson(t) ≥M)
∑

j0,...,jk−1≥1

k−1∏
i=0

P (Poisson(µ) ≥ ji)

=
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥1∑k
i=1mi=M

∑
x1,...,xk
‖xi‖1≤mi

P (Poisson(t) ≥M)µk

≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥1∑k
i=1mi=M

P (Poisson(t) ≥M)µk
k∏
i=1

(cdmi)
d,
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where the equality follows from the fact that
∑∞

j=1 P (Poisson(µ) ≥ j) = E (Poisson(µ)) = µ, and

the last step follows from the fact that the number of sites of Zd with `1 norm at most mi is upper
bounded by cdm

d
i for some constant cd. Now using standard bounds for the tail of Poisson random

variables (cf. Lemma A.1), we get

E(Gt) ≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥1∑k
i=1mi=M

exp

(
−cM log

(
M

t

))
µk

k∏
i=1

(cdmi)
d.

Using Lagrange multipliers the product at the end is maximized when cdmi = cM/k for all i, thus

E(Gt) ≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥1∑k
i=1mi=M

exp

(
−cM log

(
M

t

))
µk
(
cM

k

)dk

≤
∞∑
k=1

∞∑
M=Ct∨k

(
M − 1

k − 1

)
exp

(
−cM log

(
M

t

))
µk
(
cM

k

)dk

=
∞∑

M=Ct

M∑
k=1

(
M − 1

k − 1

)
exp

(
−cM log

(
M

t

))
µk
(
cM

k

)dk

≤
∞∑

M=Ct

exp

(
−cM log

(
M

t

)) M∑
k=1

(
M − 1

k − 1

)(
cµM

k

)dk
.

Analyzing the derivative of
(
cµM
k

)k
as a function of k, we obtain that this term is maximized when

k = cµM
e . Thus,

E(Gt) ≤
∞∑

M=Ct

exp

(
−cM log

(
M

t

))
exp

(
cdµM

e

) M∑
k=1

(
M − 1

k − 1

)

≤
∞∑

M=Ct

exp

(
−cM log

(
M

t

))
exp

(
cdµM

e

)
2M−1.

The above is at most e−ct since log
(
M
t

)
is lower bounded by an arbitrarily large constant as C

from Ct in the range of M can be set large enough with respect to µ and d.

4 Spread of infection

We now turn our attention to the main model here. In few words, this model corresponds to the
frog model (in the SI dynamics) with DS = DI = 1. In this section, we will define the model
and the quantities we are interested in, and present the results that are known. We will only start
analyzing this model in Section 5.

We now define the model explicitly. There are two types of particles, S (standing for susceptible)
and I (standing for infected). We let ηS0 be a Poisson point process of intensity µ in Zd, and let
ηI0(Zd) = ηI0(0) = 1. We set DS = DI = 1, so all particles perform independent simple random
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walks on Zd from time 0, and an S particle turns to type I whenever it shares a site with an I
particle. So the reaction formula is given by

S + I −→ 2I.

We henceforth unambiguously refer to the above process as spread of infection. (The frog model is
also a model for the spread of an infection, but to avoid confusion we will always explictly mention
the name frog model when talking about that process, and will use the term spread of infection to
refer only to the model with DS = DI = 1.)

Above we defined spread of infection with SI dynamics. As in the frog model (see Section 3.2),
we can define spread of infection with SIS or SIR dynamics. Recall that these variants have an
additional parameter λ and are defined by the reaction formulas

S + I −→ 2I and I
λ−→ S for the SIS dynamics,

and
S + I −→ 2I and I

λ−→ R for the SIR dynamics.

4.1 Challenges not presented in the frog model

The first question we might ask ourselves is whether the techniques employed in the analysis of the
frog model can be made to work for the spread of infection. We will try to give a few intuitive
explanations about why the spread of infection brings additional challenges to the analysis.

For simplicity assume that initially there is only one particle at the origin (the one from ηI0), and
call this particle p. Assume that p has moved for a time t, during which it traversed a space-time
path γ without encountering any S particle. Assume also that p jumps at time t to a site x where
it has not been before. In the frog model, we have that the number of S particles found at x at
time t is a Poisson random variable of intensity µ. The only information one needs to infer this is
that x is not visited by γ.

On the other hand, in the spread of infection, the number of particles at x is also a Poisson random
variable, but the intensity is different. The intensity is given by µ times the probability that a
random walk starting from x at time t, and moving backwards in time from time t to 0, does so
without colliding with the space-time path γ. So this intensity heavily depends on the shape of γ.
In other words, as we observe the particle system, we gain information about the environment of
S particles beyond the sites that were observed.

4.2 Main results with SI dynamics

As in the frog model, the main question we will address is whether there is positive speed for the
infection.

Definition 4.1 (Positive speed). We say that infection spreads with positive speed if for all large
enough t there is an infected particle of distance larger than ct from the origin, for some constant
c. In other words, there exists a constant c = c(d, µ) > 0 such that

ηIt (Zd \ Bct) ≥ 1 for all large enough t, almost surely,

where we recall that Br stands for a ball of radius r centered at the origin.
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The study of the spread of infection was already being discussed and promoted in the 70s by Spitzer.
However, the first rigorous treatment of this question appeared only in the early 2000s with Kesten
and Sidoravicius, who published a series of articles related to this question. In the first of their
paper [22], they analyzed the branching random walk with catalysts model (which we will discuss
in Section 9.1.3). They developed an intricate multi-scale analysis, which serves as the basis of the
multi-scale analysis developed in their later works, and became a very influential technique in the
analysis of several particle systems. In particular, Kesten and Sidoravicius adapted this multi-scale
analysis to show in [23] that the infection spreads with positive speed.

Theorem 4.2 (Positive speed [23]). There exists c = c(d, µ) > 0 such that, almost surely, ηIt (Zd \
Bct) ≥ 1 for all large enough t.

We will give the proof of the above theorem later in Section 7. The proof we will present here will
be different (and slightly simpler) than the one in [23]; it will follow a multi-scale renormalization
scheme. We present this alternative proof since the technique of multi-scale renormalization has
already found application to the analysis of several other processes, including random interlace-
ments [37], activated random walks [34], random walks in changing environments [19], multi-particle
diffusion limited aggregation [33], and even percolation [10].

In Section 8 we will discuss a more powerful multi-scale analysis which is closer in spirit to the
one of Kesten and Sidoravicius, and which has been further developed by Stauffer [36] and Gracar
and Stauffer [17, 16]. These two extensions, in particular [17], put the multi-scale analysis into
a percolation framework, through the construction of a geometrical structure called a Lipschitz
surface.

Kesten and Sidoravicius also showed a shape theorem for the set of vertices visited by infected
particles [25]. This is one of the few instances where a shape theorem was proved for a model which
is not subadditive2. We will not provide a proof of the shape theorem, as it goes beyond the scope
of our discussion here. But, for the sake of completeness, we will state this result. For this, let At
be the set of sites of Zd which were infected at least once during [0, t]; that is,

At =
{
x ∈ Zd : ∃s ∈ [0, t] for which ηIs(x) ≥ 1

}
.

Then extend At to Rd by adding cubes of side length 1 centered at the sites of At to obtain

Ãt =
⋃
x∈At

(
x+ [−1/2, 1/2]d

)
.

Theorem 4.3 ([25]). In the SI dynamics, for any d ≥ 1 and any µ > 0, there exists a compact
subset S of Rd such that for any ε > 0 we have

(1− ε)S ⊂ Ãt
t
⊂ (1 + ε)S for all t large enough, almost surely.

In dimension one, Bérard and Ramı́rez [7] proved a central limit theorem for the so-called front of
the infection (that is, the rightmost infected particle). It is shown in [7] via a regeneration argument
that the fluctuations of the front of the infection (around the value given by the shape theorem)
are Gaussian. See also [21] for a survey on spread of infection and the frog model.

2This is another illustration of a difference between the spread of infection and the frog model discussed in
Section 3. While the frog model is subadditive, the spread of infection is not.
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4.3 SIS dynamics

Using a similar multi-scale analysis as in [23], Kesten and Sidoravicius showed in [24] that in the
SIS dynamics the infection survives if λ (the rate of healing) is small enough.

Definition 4.4 (Survival of the infection). We say that the infection survives if

P
(
ηIt (Zd) ≥ 1 for all t ≥ 0

)
> 0.

If the infection does not survive, then we say that the infection dies out.

Theorem 4.5 (Survival of the infection in SIS [24]). In the SIS dynamics, for d ≥ 1, for all µ > 0,
there exists λc such that if λ < λc then the infection survives with positive probability.

They showed the converse case if the SIS dynamics is changed slightly. They assume that a particle
does not get immediately reinfected when it goes from I to S in a site with other I particles.
Instead, they assume that a particle can only get infected if it jumps onto an infected particle or if
an infected particle jumps onto it (so only jumps of particles can trigger an infection). Under this
assumption, [24] also established that if λ > λc, then the infection dies out almost surely.

In the model we consider, with instantaneous reinfections, it is an open problem to say whether
there are large enough densities for which the infection survives regardless of λ.

Question 4.6. In the SIS dynamics, is there a value µc <∞ such that for all µ > µc the infection
survives for all λ <∞?

4.4 SIR dynamics

It is an open problem to establish a phase transition in the SIR dynamics. This is particularly
challenging since the particle system obtained after removing R particles is not anymore stationary.
It is not difficult to convince oneself that such a phase transition cannot occur in dimension 1; for
this case, the infection dies out almost surely for any µ > 0 and any λ > 0. The main reason is
that it takes time t for the infection to reach to distances of order t from the origin (due to the
positive speed of propagation, which is true even without particles dying), but it takes an amount
of time of order only log t for a set of t particles to die (this holds because the probability that a
given particle survive for time at least s after being infected is e−λs). So, if the number of infected
particles is very large, it should tend to decrease in a short amount of time. As a consequence, as
the infection spreads, the set of infected particles will be comprised of two small sets of order 1
(one forming the left front and the other forming the right front). Eventually these two small sets
will die before transmitting the infection any further.

Question 4.7. In the SIR dynamics, for any d ≥ 2 and any µ > 0, is there a value λc > 0 such
that for all λ < λc the infection survives, whereas for all λ > λc the infection dies out?

4.5 Random conductance model

In [17, 16], Gracar and Stauffer showed that a certain percolation structure that they call Lipschitz
surface occurs, and using this they showed that the infection spreads with positive speed in the
random conductance model. In this model, we equip Zd with i.i.d. conductances. We will consider
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the conductances to be uniformly elliptic, which means that there are constants 0 < c < c′ < ∞
so that all conductances are in the interval [c, c′]. Then, particles move as simple random walks,
but when a particle decides to jump, it chooses a neighbor with probability proportional to the
conductance of the edge between them.

Theorem 4.8 (Positive speed for random conductances [17, 16]). Let d ≥ 2, and consider the
random conductance model with uniformly elliptic conductances. For any µ > 0, there exists
c = c(d, µ) > 0 such that, almost surely, ηIt (Zd \ Bct) ≥ 1 for all large enough t.

Gracar and Stauffer also showed that in the SIS dynamics the infection survives when λ is small.

Theorem 4.9 (Survival of the infection in SIS in the random conductance [17, 16]). Let d ≥ 2, and
consider the random conductance model with uniformly elliptic conductances. In the SIS dynamics,
for all µ > 0, there exists λc such that if λ < λc then the infection survives with positive probability.

4.6 Different initial configurations

In [21] it is left as an open problem to establish positive speed when the initial configuration of
S particles is not i.i.d. Poisson. This question has not been addressed explicitly. However, it is
implied by the proof of Gracar and Stauffer [17, 16], which we stated above in Theorem 4.8. We will
discuss this in Section 8, when we present the technique of Lipschitz surface from [17]. Given an

initial configuration of S particles ω ∈ NZd , we let Pω be the measure induced by the SI dynamics
starting from ω and one additional I particle at the origin.

Theorem 4.10 (Positive speed with general starting configurations). Let d ≥ 2. For any µ > 0,
let νµ be the measure of a Poisson point process on Zd and c = c(µ, d) be a constant. Then, for

any t > 0, there exists Ωt ⊂ NZd with νµ(Ωt)→ 1 as t→∞ such that starting from a configuration
ω ∈ Ωt we obtain that Pω

(
ηIt (Zd \ Bct) ≥ 1

)
→ 1 as t→∞.

4.7 DS 6= DI with DS, DI > 0

One of the main open problems left by Kesten and Sidoravicius [23] (see also [21]) is to establish
positive speed when DS 6= SI but both rates are positive. In fact, papers in the physics literature
conjecture that the speed depend only on DI .

Question 4.11. In the SI dynamics, is there positive speed when DS 6= DI with DS , DI > 0?
Moreover, does the speed depend only on DI?

4.8 Zero range process

In [5], Baldasso and Teixeira analyzed the case where the particle system move according to a
zero range process in dimension d = 1. In this case, under mild conditions, which guarantee the
existence of a non-trivial invariant measure for the particle system, they were able to show that the
infection spreads with positive speed. Their proof involve a multi-scale renormalization argument.
This model falls out of the scope of these notes, so we refer the reader to [5] for more information.
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5 First proofs for the spread of infection

In this section we give some initial proofs for the problem of spread of infection with DS = DI = 1
in the SI dynamics. In Section 5.1 we show that the infection cannot spread faster than ballistic,
which refines the first moment method described for the corresponding proof for the frog model in
Section 3.5. Next, in Section 5.2, we show that by time t the infection reaches a distance of order
at least t

(log t)c from the origin. This result will build upon the single-scale argument used to prove
positive speed for the frog model, given in Section 3.4.3, and will serve as a basis for the multi-scale
renormalization we will develop to show the actual positive speed in Section 7.

5.1 Upper bound on the speed

We give a linear upper bound on the speed of propagation, to show that the infection cannot travel
faster than ballistic. A similar argument is given in [23].

Theorem 5.1 (Upper bound on the speed). There exists a constant C = C(d, µ) > 0 such that,
for any t,

P
(
ηIt (Zd \ BCt) ≥ 1

)
→ 0 as t→∞.

Remark 5.2. It is possible to prove the above theorem with a comparison to a branching random
walk. This is because each time an I particle jumps to a given site z which is not occupied by I
particles, then

the number of S particles at z at time t is a Poisson random variable of mean

µ times the probability that a particle at z at time t was not infected before. (5.1)

So this number is stochastically dominated by a Poisson random variable of mean µ. With this, we
obtain that the set of infected particles is stochastically dominated by a branching random walk
with finite expected offspring. The maximum displacement of such branching random walks is
ballistic, which gives a linear upper bound on the speed of propagation. Below we will do a more
direct approach, using a careful first moment method.

We start by recalling the definition of a genealogical path.

Definition 5.3 (Genealogical path). A genealogical path p0, p1, . . . is a sequence of particles where
particle pi infected particle pi+1; for the definition of a genealogical path we assume that pi is the
particle that first infected pi+1, so pi+1 was an S particle when pi transmitted the infection to it. If
the infection reaches distance Ct from the origin by time t, then there is a genealogical path that
gets to distance Ct within time t.

Proof of Theorem 5.1. The proof here uses a (non-immediate, but tedious) first moment method.
It resembles the corresponding proof for the frog model (Theorem 3.10), but there are additional
details. To make the proof here self-contained, we will repeat some definitions. Nonetheless, it
may be helpful to look at the proof of Theorem 3.10 since the proof strategy is the same and the
argument there is simpler. Our strategy will be to apply a first moment method to calculate the
expected number of genealogical paths (cf. Definition 5.3).

Instead of defining the path as a sequence of particles, we can define the path by its number k of
hops (as before, a hop corresponds to a transmission of the infection from one particle to the next
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one in the path) and three sequences: the number of jumps m1,m2, . . . ,mk ≥ 0 of each particle,
the displacement x1, x2, . . . , xk ∈ Zd of each particle, and numbers j0, j1, . . . , jk−1 ∈ Z \ {0}. We
impose that

‖xi‖1 ≤ mi for all i ≥ 1. (5.2)

Note that, unlike in the proof of the frog model, we allow the mi to be zero and the ji to be
negative; we will explain this below.

The path starts at x0, which will be taken to be the origin, but x0 may contain several particles at
time 0, so we select the j0th particle (in some predetermined order) from x0 to be the particle p0 of
the path. We will always have j0 ≥ 1, and the ji will represent the number of the particle we will
start to follow, with negative and positive values meaning different sets of particles as we explain
now. We follow particle p0 until it makes m1 jumps. If at that time p0 is not at site x1, then the
path is not valid. Otherwise, we consider the value of j1. If j1 > 0, we look at all the particles in
x1 that were S particles immediately before p0 jumped to x1. If the number of such particles is
smaller than j1, the path is not valid. Otherwise, we select the j1th such S particle (which became
an I particle when p0 jumped to x1), and let this be p1. If, on the other hand, j1 < 0, then we
count how many S particles jump onto x1 before p0 jumps out of x1. If that number is smaller
than −j1, the path is not valid. Otherwise, we select the (−j1)th such particle and let it be p1.
We repeat this procedure to obtain p2, p3, . . .; note that pi will be found at site x1 + x2 + · · ·+ xi.
This procedure ends when pk−1 jumps onto x1 + x2 + · · ·+ xk, where the path ends. Since in the
frog model S particles do not move, the case of an S particle jumping on a site with an I particle
does not occur. We add the possibility of having ji negative to take such cases into consideration.
Because of this one may also have mi = 0.

In fact, if mi = 0, it means that pi−1 will not jump; hence, xi is the origin. In this case, pi will be
a particle that jumps onto pi−1 before pi−1 jumps out of x1 + x2 + · · ·+ xi−1. In other words,

for any i ≥ 1, if mi = 0, we have ji < 0. (5.3)

Moreover, when ji < 0, we know that when particle pi−1 is at site y := x1 + x2 + · · ·+ xi, it has to
wait S particles to jump onto y. In order to model this, we will give a Poisson clock to pi−1 of rate
1 + µ, with 1 being the rate at which pi−1 jumps out of y and µ being an upper bound on the rate
at which S particles jump onto y; see (5.1).

We will refer to this Poisson clock as the clock of pi−1. Each time this Poisson clock rings, a decision
has to be made: with probability at least 1

1+µ we make pi−1 jump out of y, and with probability at

most µ
1+µ we make an S particle jumps onto y. We refer to this as the jump decision of pi−1. We

recall the following useful property of Poisson processes:

jump decisions and the time between rings of the clock are independent random variables. (5.4)

Let Gt be the number of genealogical paths, as described above, that reach to distance Ct at time
t. Given j1, j2, . . . , jk, let J− denote the set of i such that ji < 0, and J+ denote the set of i such
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that ji > 0 Then, with x0 being the origin, we have

E(Gt) ≤
∞∑
k=1

∑
m1,...,mk≥0∑k
i=1mi≥Ct

∑
x1,...,xk
‖xi‖1=mi

∑
j0,...,jk−1∈Z\{0}

P
({∑k

i=1
Ji(mi) +

∑
i∈J−
Wi(−ji) ≤ t

}⋂
i∈J+

{
Ni ≥ ji

}⋂
i∈J−

{
Di > −ji

})
≤
∞∑
k=1

∑
m1,...,mk≥0∑k
i=1mi≥Ct

∑
x1,...,xk
‖xi‖1=mi

∑
j0,...,jk−1∈Z\{0}

P
({∑k

i=1
Ji(mi) ≤ t

}⋂
i∈J+

{
Ni ≥ ji

}⋂
i∈J−

{
Di > −ji

})
,

where Ji(mi) is the time that particle pi−1 takes to perform mi jumps, Wi(−ji) (valid only for
ji < 0) is the time for the clock of pi−1 to ring −ji times, Ni is the number of S particles found by
pi−1 when it jumps onto x1 + x2 + · · ·+ xi, and Di is the number of jump decisions taken by pi−1

before pi−1 decides to jump out of x1 +x2 + · · ·+xi. Using 5.4, all these variables are independent,
which gives

E(Gt) ≤
∞∑
k=1

∑
m1,...,mk≥0∑k
i=1mi≥Ct

∑
x1,...,xk
‖xi‖1=mi

∑
j0,...,jk−1∈Z\{0}

P
(∑k

i=1
Ji(mi) ≤ t

)
∏

i∈J+
P (Ni ≥ ji)

∏
i∈J−

P (Di > −ji) (5.5)

Using (5.1) we have that Ni is stochastically dominated by a Poisson random variable of parameter
µ, thus ∏

i∈J+
P (Ni ≥ ji) ≤

∏
i∈J+

P (Poisson(µ) ≥ ji) . (5.6)

Moreover, Di is a geometric random variable of success probability 1
1+µ , which yields

∏
i∈J−

P (Di > −ji) =
∏

i∈J+

(
µ

1 + µ

)−ji
=

(
µ

1 + µ

)∑
i∈J+

|ji|
. (5.7)

Note that∑
j∈Z\{0}

P (Poisson(µ) ≥ j)
(

µ

1 + µ

)|j|1(j<0)

=
∞∑
j=1

(
P (Poisson(µ) ≥ j) +

(
µ

1 + µ

)j)
= 2µ.

Using this, and plugging (5.6) and (5.7) into (5.5), we sum over all values of ji to obtain

E(Gt) ≤
∞∑
k=1

∑
m1,...,mk≥0∑k
i=1mi≥Ct

∑
x1,...,xk
‖xi‖1=mi

P
(∑k

i=1
Ji(mi) ≤ t

)
(2µ)k

≤
∞∑
k=1

∑
m1,...,mk≥0∑k
i=1mi≥Ct

P
(∑k

i=1
Ji(mi) ≤ t

)
(2µ)k

k∏
i=1

(1 + cdmi)
d,
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where the last step follows since, for any mi, there are at most (1+cdmi)
d sites xi with ‖xi‖1 ≤ mi.

Now note that
∑k

i=1 Ji(mi) is a sum of
∑k

i=1mi exponential random variables of rate 1, so the
probability that this sum is at most t is equal to the probability that a Poisson random variable of
parameter t is larger than

∑k
i=1mi. Denoting

∑k
i=1mi by M , we obtain

E(Gt) ≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥0∑k
i=1mi=M

P
(∑k

i=1
Ji(mi) ≤ t

)
(2µ)k

k∏
i=1

(1 + cdmi)
d

≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥0∑k
i=1mi=M

exp

(
−cM log

(
M

t

))
(2µ)k

k∏
i=1

(1 + cdmi)
d,

where in the last step we used standard bounds for the tail of Poisson random variables (cf.
Lemma A.1). Using Lagrange multipliers the product at the end is maximized when 1 + cdmi =
cM/k for all i, thus

E(Gt) ≤
∞∑
k=1

∞∑
M=Ct

∑
m1,...,mk≥0∑k
i=1mi=M

exp

(
−cM log

(
M

t

))
(2µ)k

(
cM

k

)dk

=

∞∑
k=1

∞∑
M=Ct

(
M + k − 1

k − 1

)
exp

(
−cM log

(
M

t

))
(2µ)k

(
cM

k

)dk
≤
∞∑
k=1

∞∑
M=Ct

exp

(
−cM log

(
M

t

))
2M (4µ)k

(
cM

k

)dk
, (5.8)

where in the last inequality we used the simple bound
(
M+k−1
k−1

)
≤ 2M+k. Now note that

∞∑
k=1

(4µ)k
(
cM

k

)dk
≤
∞∑
k=1

(
4cµM

k

)dk
.

Since the term in the sum is maximized when k = 4cµM
e < 2cµM , we obtain

∞∑
k=1

(
4cµM

k

)dk
≤ 4cµM exp

(
4cdµM

e

)
+

∞∑
k=4cµM

(
4cµM

k

)dk
≤ exp

(
c′µM

)
+ 2−4dcµM

≤ exp
(
2c′µM

)
.

Plugging the above bound into (5.8), we get

E(Gt) ≤
∞∑

M=Ct

exp

(
−cM log

(
M

t

)
+ cµM

)
,

which is at most e−c
′t if the constant C in the range of M is large enough with respect to µ and

d.
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5.2 Almost tight lower bound on speed of propagation

Before establishing the positive speed result (which we will do in Section 7), we first show in this
section that the infection cannot spread much slower than linear in time.

Theorem 5.4 (Almost linear lower bound on the speed). Let c = d+2
d , then for any t > 0 we have

P
(
ηIt

(
Zd \ B t

(log t)c

)
≥ 1
)
→ 1 as t→∞.

To prove the above theorem, we will try to employ a similar strategy as the one we used to obtain
the positive speed for the frog model in Theorem 3.3. The first challenge we encounter is that
when the infection gets inside a box, the number of S particles present in that box depends on the
time the infection entered the box. This is a crucial difference with the frog model, in which it
was enough to look at the S particles that started in that box (which does not change over time
since S particles do not move). To go around this (and other problems) we will need a more subtle
definition of boxes. We will develop the framework now before going into the details of the proof.

5.2.1 Space-time tessellation

We will need to define boxes in space and time; that is, boxes will be subsets of Zd ×R. Tessellate
space-time into boxes of spatial length L and time length S := δL2, where δ will be a small enough
constant that we will fix first, and then let L be large enough. So, for each i ∈ Zd and τ ∈ Z, we
obtain a box

Q(i, τ) :=
(
iL+ [−L

2 ,
L
2 ]d
)
× (τS + [0, S]) . (5.9)

We define the base of box Q(i, τ) as the center of the box in space at the first time of the box:

Qbase(i, τ) :=
(
iL+ [−L

6 ,
L
6 ]d
)
× {τS} ⊂ Q(i, τ).

We will sometimes abuse notation and use Qbase(i, τ) to denote the subset of Zd induced by the
space-time region above.

We now define the event that a box is good. Inspired by the definition of a good box in the proof
for the frog model in Section 3.4.3, we would like to define Q(i, τ) to be good in a way that if there
is an I particle (call it p0) at Qbase(i, τ), then p0 spreads the infection to several other particles in
Q(i, τ), and then for each neighboring box of Q(i, τ) at least one of such newly infected particles
move to that box. So the amount of time S that Q(i, τ) spans is split into two intervals: the
first one [τS, τS + S′] during which p0 infects several other particles, and then [τS + S′, (τ + 1)S]
during which the newly infected particles move to neighboring boxes. The problem is that during
the first interval, the probability that a particle meets p0 is not independent from the probability
that another particle meets p0. For example, if p0 moves atypically quickly and exits the box, it
could happen that p0 does not meet any of the particles. In order to control this probability, we
will consider a more restrictive event, where the particles that could meet p0 are forced to be well
spreadout in the box.

First, consider the following box contained in Q(i, τ):

Qhalf(i, τ) :=
(
iL+ [−L

4 ,
L
4 ]d
)
× (τS + [0, S′]). (5.10)
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Note that Qhalf(i, τ) is a space-time region, where the spatial region is given by a cube with half
the size of the spatial region of Q(i, τ), which motivates the choice of notation. Note also that

Qbase(i, τ) ⊂ Qhalf(i, τ) ⊂ Q(i, τ).

time

L

L/2 L/3

S ′

Qbase(i, τ)

Q(i, τ)

S = δL2

`

`2

p0

space

Qhalf(i, τ)

Qbase(i′, τ + 1)

τk

L/4 L/12

Figure 2: Definition of the space-time region Q(i, τ) and its division in Qbase(i, τ) (the green line
segment) and Qhalf(i, τ) (the tessellated region). The infected particle p0 departs from Qbase(i, τ)
and while moving within Qhalf(i, τ) encounters several other particles (to whom p0 transmits the
infection). At least one such particle then moves to Qbase(i′, τ + 1) where Q(i′, τ + 1) is a neighbor
of Q(i, τ) (that is, ‖i− i′‖1 = 1).

Now we tessellate
(
iL+ [−L

4 ,
L
4 ]d
)
, the spatial region of Qhalf(i, τ), into disjoint sub-boxes of side

length `; refer to Figure 2. We set k = S′

`2
, we assume that k is an integer and then, for each

j ∈ {0, 1, 2, . . . , k}, we set the times τj = τS + j`2. Thus τk = τS + S′.

Definition 5.5 (Good boxes). Fix a box Q(i, τ). Assume that there is an infected particle (which
we distinguish from the others) in Qbase(i, τ), and call it p0. For each j ∈ {1, 2, . . . , k}, let pj be
one particle (chosen according to some arbitrary order) that is at the same site as p0 at time τj
and is different from p0, p1, . . . , pj−1; if p0 is alone at a site at time τj or only shares a site with
particles from {p1, p2, . . . , pj−1}, we set pj = ∅. Given a constant c1 = c1(µ, d) > 0, we say that
Q(i, τ) is good if the following events all hold:

(E1) For each j ∈ {1, 2, . . . , k}, the distinguished particle p0 is inside Qhalf(i, τ) at time τj .
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(E2) For each sub-box and each j ∈ {0, 1, 2, . . . , k − 1}, there are at least µ`d

2 particles at the
sub-box at time τj ; call this set of particles Pj but select exactly µ`d/2 particles from each
sub-box to put into Pj .

(E3) For each j ∈ {0, 1, 2, . . . , k − 1}, the particles of Pj are inside Q(i, τ) at time τS + S′.

(E4) For each j ∈ {1, 2, . . . , k}, if Mj = 1 (pj 6= ∅), then
∑k

j=1Mj ≥ c1k.

(E5) For each neighboring box Q(i′, τ + 1) of i (thus ‖i′ − i‖1 = 1), one of the particles from
{p1, p2, . . . , pk} go to Qbase(i′, τ + 1).

Despite being already a much more involved definition of a good box than the one we had for the
frog model, this definition is still not strong enough. The issue is that we need to define the event
above so that it does not depend on the particles outside of Q(i, τ); in particular, this is not at
all clear as we are looking at a distinguished infected particle p0, whose existence depends on the
whole spread of infection up to time τS. We will stick with the above definition for the moment
not to overload the proof with technical constructions. Afterwards, in Section 5.2.4, we explain a
construction that can be used to take care of this issue.

Remark 5.6. In fact, it would suffice to define a box Q(i, τ) to be good if just the events E4 and
E5 hold, while the events E1, E2 and E3 could appear only inside the proof that establishes that
E4∩E5 holds with high probability. But we chose to define the event that Q(i, τ) is good in a more
explicit manner so as to highlight the intermediate steps used to establish E4 ∩ E5.

5.2.2 Probability of good boxes

Later we will take L to be large enough, but now we set S′ and ` as functions of L by the following
relations:

S′ = L, ` =

(
L

δ

) 1
d+2

. (5.11)

We choose the relation above because S′ = L will be a good choice for us later on, when we will
use this event in the multi-scale analysis, whereas the choice for ` is made to optimize the bound
in the lemma below.

Lemma 5.7. Fix a box Q(i, τ) and let ` and S′ be as in (5.11). Then for any small enough δ there
exists a constant c = c(µ, d, δ) so that

P (Q(i, τ) is bad) ≤ exp
(
−cL

d
d+2

)
,

for all large enough L.

Proof. First, we write

P (Q(i, τ) is bad) ≤ P (Ec
1) + P (Ec

2) + P (Ec
3 ∩ E2) + P (Ec

4 ∩ E1 ∩ E2) + P (Ec
5 ∩ E3 ∩ E4) . (5.12)
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For E1, we use the union bound on i ∈ {1, 2, . . . , k} and then the bounds on the displacement of
random walks (cf. Lemma B.1) to obtain

P (Ec
1) ≤

k∑
j=1

P
(
p0 is outside Qhalf(i, τ) at time τj

)

≤
k∑
j=1

exp

(
−c
′(L/12)2

S′

)
≤ S′

`2
exp

(
−c
′(L/12)2

S′

)
. (5.13)

We will only apply the relation in (5.11) at the very end. The only thing that we need to keep in
mind here from (5.11) is that the terms outside the exponential (which are polynomial in L) can be
easily absorbed in the constant c′. For E2, we use that the particle system is in stationarity, which
means that the number of particles at a given sub-box is a Poisson random variable of intensity µ.
Hence, taking the union bound on all sub-boxes (in space and time), and using a Chernoff bound
for Poisson random variables (cf. Lemma A.2) we have

P (Ec
2) ≤

(
(L/2)d

`d

)(
S′

`2

)
P
(

Poisson(µ`d) ≤ µ`d

2

)
≤
(

(L/2)d

`d

)(
S′

`2

)
exp

(
−cµ`d

)
. (5.14)

For E3, we again use the union bound on all sub-boxes (in space and time) and the union bound

on all µ`d

2 particles inside each sub-box, a fact that is given by E2. Then, each such particle has to
traverse a distance of at least L/4, which is the distance between the spatial region of Qhalf(i, τ)
and the boundary of the spatial region of Q(i, τ) (refer to Figure 2). Thus, using the bounds on
the displacement of random walks (cf. Lemma B.1), we have

P (Ec
3 ∩ E2)

≤
(

(L/2)d

`d

)(
S′

`2

)(
µ`d

2

)
P
(
a random walk moves more than L/4 in time at most S′

)
≤
(

(L/2)d

`d

)(
S′

`2

)(
µ`d

2

)
exp

(
c′(L/4)2

S′

)
. (5.15)

The event E4 is a little bit more delicate. First let x1, x2, . . . , xk be the location of p0 at times
τ1, τ2, . . . , τk. Since we are under E1, we have that xj ∈ Qhalf(i, τ) for all j. From now on, we just
fix x1, x2, . . . , xk. Note that Mj = 1 (pj 6= ∅). Now since xj ∈ Qhalf(i, τ), there exists a sub-box
that contains xj . Denote by Rj the spatial region of this sub-box (thus, xj ∈ R). Since there are

at least µ`d

2 particles inside Rj at time τj−1, the probability that one given such particle is at xj at
time τj is at least

c

(`2)d/2

since the distance between two sites inside the same sub-box is at most
√
d` and τj − τj−1 = `2;

here we apply the local CLT stated in Lemma B.1. Now we use the fact that there are at least
µ`d

2 particles in Rj at time τj−1 and, in fact, there are at least µ`d

2 − j particles if we disregard
p1, p2, . . . , pj−1. But using the value of S′ and the fact that δ can be set small enough with respect
to µ, we have

µ`d

2
− j ≥ µ`d

2
− S′

`2
=
µ`d

2
− δ`d+2

`2
≥ µ`d

3
.

Thus the probability that at least one of the particles is at xj at time τj is at least

1−
(

1− c

(`2)d/2

)µ`d

2
−j
≥ 1−

(
1− c

(`2)d/2

)µ`d

3

. (5.16)
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The important property is that there exists a constant c2 ∈ (0, 1) depending only on µ and d (and
not on `) so that

1−
(

1− c

(`2)d/2

)µ`d

3

≥ c2. (5.17)

So, we would like to claim that for each j there is a probability at least c2 that Mi is 1. Then, by
setting c1 smaller than c2 and using concentration for the sum of the Mj we would like to claim
that E4 holds with very large probability. The problem is that the Mj are not independent of one
another and, in fact, the events E1 and E2 depend on the configuration of particles during the
whole of [τ0, τk]. We go around this by refining the events E1 and E2, and changing the definition
of Mj . For each j ∈ {1, 2, . . . , k}, we define the events

E1,j =
{
xj ∈ Qhalf(i, τ)

}
,

and

E2,j =

{
at time τj−1 each sub-box has at least

µ`d

2
particles

}
.

Note that E1 =
⋂k
j=1E1,j and E2 =

⋂k
j=1E2,j . We now change the definition of Mj by defining

the event
M̄j = 1

(
{pj 6= ∅} ∪ Ec

1,j ∪ Ec
2,j

)
,

and we have that

P (Ec
4 ∩ E1 ∩ E2) ≤ P

 k∑
j=1

M̄j < c1k

 .

Now let Fj be the σ-algebra produced by M̄j′ for j′ ∈ {1, 2, . . . , j − 1}. Since Fj includes only
events that happen up to time τj−1 for the particles that are not p0, for any F ∈ Fj we obtain that

P
(
M̄j = 1 | F

)
= P

(
M̄j = 1 | F ∩ E1,j ∩ E2,j

)
P (E1,j ∩ E2,j | F )

+ P
(
M̄j = 1 | F ∩

{
Ec

1,j ∪ Ec
2,j

})
P
({
Ec

1,j ∪ Ec
2,j

}
| F
)

= P
(
M̄j = 1 | F ∩ E1,j ∩ E2,j

)
P (E1,j ∩ E2,j | F ) + P

({
Ec

1,j ∪ Ec
2,j

}
| F
)

≥ P
(
M̄j = 1 | F ∩ E1,j ∩ E2,j

)
≥ c2,

where the second-last inequality follows since the line above is a linear combination between
P
(
M̄j = 1 | F ∩ E1,j ∩ E2,j

)
and 1, and the last inequality follows from (5.16) and (5.17). So the

sum
∑k

j=1 M̄j stochastically dominates the sum of i.i.d. Bernoulli random variables of parameter
c2. Therefore, using a Chernoff bound for Binomial random variables (see Lemma A.3), we have

P (Ec
4 ∩ E1 ∩ E2) ≤ P (Binomial(k, c2) < c1k) ≤ exp (−ck) . (5.18)

Finally, for E5, we just need to notice that under E3 and E4, we find c1k infected particles at time
τk inside Qhalf(i, τ). So their distance to Qbase(j′, τ) (in `1 norm) is at most d (L+ L/12). Since
S−S′ is of order S, we can use the local CLT (cf. Lemma B.1) to obtain that each infected particle
will be inside Qhalf(i, τ) with probability at least

c(L/3)d

(S − S′)d/2
≥ c′.

Hence,
P (Ec

5 ∩ E3 ∩ E4) ≤ exp (−ck) . (5.19)

Now plugging (5.13), (5.14), (5.15), (5.18) and (5.19) into (5.12), and using the values of ` and S′

completes the proof.
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5.2.3 Finishing the proof of Theorem 5.4

Proof of Theorem 5.4. Mimicking the proof for the frog model, we would like to find an infinite
(in space and time) path of good boxes. Even though Lemma 5.7 gives that, by setting L large
enough, we can make the probability of a given box being good arbitrarily close to 1, the event
that a box is good is not independent from other boxes. This prevents us from comparing directly
with oriented percolation, as we did in the frog model. To illustrate this dependence, note that the
event E2 requires several particles to be present in the base of a box. If a very large region in space
(say, for example, of side-length 100L) is empty of particles at time 0, it is likely that, during a time
interval of length S, the bulk of this region (that is, away from the boundary) will remain empty of
particles. This implies that correlations do not decay exponentially fast, which in fact establishes
that the set of good boxes cannot be shown to stochastically dominate a (Bernoulli, independent)
percolation process. It is exactly to circumvent this problem that multi-scale arguments have been
developed. We will explain some of them in Sections 7 and 8.

Here we will resort to a simpler solution, we will allow L to be large enough not only with respect
to µ and d but also with respect to t, in order to show that all boxes we need to look at up to time
t will be good (via a simple application of the union bound). First, note that if all boxes are good
in the space-time region [−t2, t2] × [0, t], then at time t the infection reaches distance t

SL − L/6,
where the negative term is to account for the distance between the infection and the boundary of

the base in the last box. Now it remains to set L = c (log t)
d+2
d , where c is a large enough constant

depending on µ and d. Then, applying Lemma 5.7 and taking the union bound over all boxes, the
probability that all boxes in [−t2, t2]× [0, t] are good is at least

1−
(

2t2

L

)d(
t

S

)
exp (−c log t)→ 1, as t→∞. (5.20)

Remark 5.8. In the proof above, if it had turned out that L were independent of t, then we would
have established positive speed since the speed obtained is

t
SL− L/6

t
→ 1

δL
, as t→∞ with L fixed.

However, L is not independent of t. If we were to set L to be independent of t, then the probability
that a box is good would not be close enough to 1 to apply the union bound in (5.20). This implies
that if we set L to be independent of t, then the infection will enter bad boxes. In fact, if we
set L independent of t, we will observe clusters of bad boxes of arbitrarily large size as time goes
to infinity. The multi-scale arguments we explain in Sections 7 and 8 will give a way to control
the location of bad boxes, to show that the good boxes are much more numerous and drastically
overwhelm the negative effect that bad boxes may produce.

5.2.4 Defining good boxes formally

We give a more pedantic definition of the event that a box is good, given in Definition 5.5. For each
box Q(i, τ), and each site x ∈ Q(i, τ), associate to x a random walk path γx : [τS, (τ + 1)S] → Zd
of time length S. If there is an infected particle in Qbase(i, τ), we choose one of them (according to
some pre-defined order of the sites in Qbase(i, τ)), and let this particle move from τS to (τ + 1)S
using the path γx, where x is the location of that particle in Qbase(i, τ). Then we replace the event
E1 from Definition 5.5 by the event
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(E′1) For each x ∈ Qbase(i, τ), γx ⊂ Qhalf(i, τ).

By taking the union bound on x ∈ Qbase(i, τ) it follows that one can obtain a bound of the same
order as the one obtained for E1 in (5.13). Similarly, the event E4 can be replaced by

(E′4) For each x ∈ Qbase(i, τ) and each j ∈ {1, 2, . . . , k}, if Mj is the indicator for the event that
there is a particle from Pj−1 \ {px1 , px2 , . . . , pxj−1} at γx(τj), where pxj′ being the particle found

at time τj′ at site γx(τj′), then
∑k

j=1Mj ≥ c1k.

By taking the union bound on x ∈ Qbase(i, τ) it follows that one can obtain a bound of the same
order as the one obtained for E4 in (5.18).

With these two changes, the event that a box is good does not depend on how the infection evolved
before time τS.

6 Local mixing

In this section we will show a very important technique to control dependences on this model.
In particular, we will show that if inside a box there is a large enough density of particle, with
some density β, then after some time the configuration of particles inside the box (away from
the boundary) is “sandwiched” between two Poisson process of densities (1 − ε)β and (1 + ε)β.
Intuitively, this gives a way to claim that the particles get close to stationary locally (deep within
the box).

This kind of argument was introduced by Sinclair and Stauffer in [35]. It also appeared in [29, 36],
and was adapted to the random conductance model in [16]. The version we present here is due to
Popov and Teixeira, who generalized the argument in [35] to apply to random interlacements, and
did that developing a very nice framework.

Theorem 6.1 (Local mixing). Let Q be a cube of side length L, tessellated into sub-cubes of side
length `. Assume that at time 0 each sub-cube contains at least β−`

d and at most β+`
d partcicles

from η0, and that η0(Zd \ Q) = 0. Let particles move for time T as independent random walks.

There are constants c1, c2, c3 > 0 such that, for any ε > 0, if T ≥ c1`2

ε2
any we take Q′ ⊂ Q with

d(Q′, ∂Q) ≥ c2

√
T log ε−1, letting Ψ+ and Ψ− be Poisson point processes on Q′ independent of η0

of intensity (1 + ε)β+ and (1− ε)β−, respectively, there exists a coupling P̃ between Ψ+,Ψ− and ηT
so that

P̃
(
∀S ⊆ Q′ Ψ−(S) ≤ ηT (S) ≤ Ψ+(S)

)
≥ 1− exp

(
−c3ε

2β−T
d/2
)
.

We note that in the local mixing theorem (Theorem 6.1), the location of the particles of η0 can
be arbitrarily correlated. As long as each sub-box satisfies the density condition, it is possible to
recover Poisson point processes after letting particles move for a time interval of order `2, which is
the time necessary for particles to be able to move to neighboring sub-cubes.

Before moving to the proof of Theorem 6.1, we describe two ideas.
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L

`

Q′

Figure 3: Illustration of the local mixing theorem with β−`
d = 3 and β+`

d = 5.

6.1 Coupling of Poisson point processes

Fix values λ+ > λ− > 0. We describe a standard procedure to couple two Poisson point processes
Ψ+ and Ψ− of intensity λ+ and λ−, respectively, so that

Ψ+ ⊇ Ψ−. (6.1)

Let Ω be the space on which the two processes are defined. We just sample a Poisson point process
of intensity one ine Ω×R+; so points have the form (ψi, hi)i and hi is denoted the height of point
ψi. Then all points of height at most λ− belong to Ψ− and all points of height at most λ+ belong
to Ψ+. Since λ+ > λ− we establish (6.1). See Figure 4.

6.2 Simulating a random variable via a Poisson point process

Let X be a random variable on Ω with density function g : Ω→ R+. Here we show how to sample
X using a Poisson point process Ψ of intensity 1 on Ω× R+.

First sample Ψ and let (ψi, hi)i be the points of Ψ. Define

ξ := inf
{
ϕ > 0: ∃i for which ϕg(ψi) ≥ hi

}
.

We extend the above definition for any S ⊆ Ω, by writing

ξS := inf
{
ϕ > 0: ∃i for which ϕg(ψi) ≥ hi and ψi ∈ S

}
. (6.2)

Note that ξ = ξΩ.

Then the lemma below establishes the construction of X as ψi.
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λ+

λ−

Ω

hi
ψi

Figure 4: Illustration of the coupling of two Poisson point processes. Ψ+ comprises the blue and
red points, whereas Ψ− comprises only the red points.

Lemma 6.2. Given Ψ, X, g and ξ as above, we obtain the following properties. Then there exists
a unique i such that ξg(ψi) = hi, and the distribution of ψi is g.

Proof. The uniqueness of i follows from standard properties of Poisson processes. Let Exp(ν)
denote an exponential random variable of rate ν. Then, for any S ⊂ Ω, we obtain

P(X ∈ S) = P
(
ξS

c
> ξS

)
= P

(
Exp

(∫
Sc

g

)
> Exp

(∫
S
g

))
=

∫
S g∫

S g +
∫
Sc g

=

∫
S
g.

λ+

λ−

Ω

Gn

G3

G2
G1

Figure 5: Illustration of how variables X1, X2, . . . can be sampled using a Poisson point process.
The red, green, blue and purple lines represent the graphs of the functions G1, G2, G3 and Gn,
respectively. The colored points indicates the points of the Poisson point process that is intersected
by each colored line.

If we have a sequence of random variables X1, X2, . . . to be sampled in order, and if gi is the
density of Xi conditioned on the values of X1, X2, . . . , Xi−1, then the above procedure can be used
replacing (6.2) by

ξSi := inf
{
ϕ > 0: ∃i for which hi ∈ (Gi−1(ψi), Gi−1(ψi) + ϕgi(ψi))},
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where Gi : Ω→ R+ is defined as

G0 ≡ 0 and Gi :=
∑i

j=1
ψjgj = Gi−1 + ψigi. (6.3)

Then if after sampling X1, X2, . . . , Xn we have that for all ψ ∈ Ω it holds that Gn(ψ) ∈ (λ−, λ+),
then X1 . . . , Xn are stochastically dominates a Poisson point process of intensity λ− and are stochas-
tically dominated by a Poisson point process of intensity λ+, which are coupled as described in
Section 6.1; see Figure 5.

6.3 Proof of local mixing

Proof of Theorem 6.1. Now we put the ideas of the previous two sections together to proof Theo-
rem 6.1. We let Ω = Q′. Assume that each sub-cube has exactly β`d particles (so β = β− = β+).
Here we will establish the lower bound ηT ⊇ Ψ−; the proof for the upper bound is identical. We
move the n := βLd particles in Q one by one, and let Xi be the location of the ith particle at
time T . Let gi be the density function of Xi. Since particles move independently, gi is the same
regardless of the values of X1, X2, . . . , Xi−1. In order to establish the theorem we will derive a
lower bound for the following probability:

P
(
∀z ∈ Q′ Gn(z) ≥ (1− ε)β

)
≥ 1−

∑
z∈Q′

P (Gn(z) ≥ (1− ε)β)) ,

where Gn is defined in (6.3). Now for a given z ∈ Q′ and any θ > 0, we use Chernoff bound to
write

P (Gn(z) < (1− ε)β)) = P
(

exp (−θGn(z)) > exp (−θ(1− ε)β))
)

≤ exp (θ(1− ε)β)E (exp (−θGn(z)))

= exp (θ(1− ε)β)
n∏
i=1

E (exp (−θξigi(z)))

= exp (θ(1− ε)β)
n∏
i=1

(
1

1 + θgi(z)

)
,

where in the second last step we used the definition of Gn and the fact that the ξi are independent,
and in the last step that ξi are exponential random variables of rate 1. We can now use the fact
that log(1 + x) ≥ x− x2 for all x ∈ (0, 1/2) to write the fraction in a different way. For simplicity,
we will just use that log(1 + x) ≥ x(1− ε/2) for x small enough. Thus,

we will require that θgi(z) ≤ ε
100 for all i, z, (6.4)

allowing us to write

P (Gn(z) < (1− ε)β)) ≤ exp

(
θ(1− ε)β − (1− ε/2)θ

n∑
i=1

gi(z)

)
. (6.5)

We now turn to deriving a lower bound for
∑n

i=1 gi(z). Let B denote a sub-cube, and let xi be the
location of the ith particle at time 0. For each B, let IB denote the values of i for which xi ∈ B;
hence, |IB| = β`d for all B. Note that

n∑
i=1

gi(z) =
∑
B

∑
i∈IB

pT (xi, z) =
∑
B

∑
i∈IB

pT (z, xi).
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Using Lemma B.2, and writing p̄B = 1
`d

∑
x∈B pT (z, x) the average value of pT (x, z) across x ∈ B,

we obtain

n∑
i=1

gi(z) ≥
∑
B

∑
i∈IB

p̄B exp

(
−d`

2

2T

)
=
∑
B

β`dp̄B = β exp

(
−d`

2

2T

)∑
x∈Q

pT (z, x).

Since z ∈ Q′, we obtain

n∑
i=1

gi(z) ≥ β exp

(
−d`

2

2T

)(
1− e−

cc2T log ε−1

T

)
≥ β(1− ε2).

Plugging this bound into (6.5), we finally obtain

P (Gn(z) < (1− ε)β)) ≤ exp
(
θ(1− ε)β − (1− ε/2)θβ(1− ε2)

)
≤ exp

(
−εβθ

3

)
.

We can still set θ and it is enough to set θ as large as possible, with the constraint given by (6.4).
Since gi(z) ≥ c

T d/2
, we can set θ of the order of εT d/2, which completes the proof.

7 Multi-scale renormalization

Here we establish the positive speed of propagation for the infection, Theorem 4.2, via a multi-
scale renormalization argument. This type of multi-scale argument has been widely used to analyze
several models, most notably the model of random interlacements, where it already appeared when
Sznitman introduced the model in [37].

We will make one simplification in this section. We will assume that

there is a constant C > 0 such that, almost surely, for any time t ∈ R and any s ≥ 0

each particle moves distance at most Cs during the time interval [t, t+ s]. (7.1)

At the end, in Section 7.6 we discuss how to get rid of this assumption.

Now we start by introducing a tessellation very similar to the one in the proof of the almost positive
speed in Theorem 5.4. We recommend the reader to first look at the proof of Theorem 5.4 before
continuing, as several aspects of that proof will be used here.

7.1 Defining scale 1

We fix a small constant δ and a large number L. The value of δ is fixed first, and then we take L
large enough later.

Partition space-time into boxes of spatial length L/3 and time length S1 := δL2. Then we construct
boxes of spatial length L and time length S1 so that the box Q1(i, τ) is given by

Q1(i, τ) :=
(
iL3 + [−L

2 ,
L
2 ]d
)
× (τS1 + [0, S1]) .

Note that this is different from the definition of the space-time boxes in Section 5.2, which is
given in (5.9), because here boxes overlap. In particular, the boxes in Section 5.2 were disjoint
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(disregarding boxes that overlap only at their boundaries), whereas here each box overlaps with
other 3d boxes. This will be essential because here we will necessarily run into bad boxes. Thus, as
we are following an infected particle and it enters a bad box, we will have little control on how the
infection spreads inside this box. So we cannot guarantee that an infected particle will be present
in a neighboring box. What we will do in such situations is to keep following the same infected
particle as it traverses the bad box. When the time of that box ends, the infected particle will be
somewhere in Zd, but the way our tessellation is defined guarantees that the particle will be at the
“base” of some box, where we define the base of Q1(i, τ) as

Qbase
1 (i, τ) :=

(
iL3 + [− εL

6 ,
εL
6 ]d
)
× {τS1};

hence, for any given τ , the base of the boxes Q(·, τ) tessellate Zd. For any set Λ in space-time, we
define its spatial projection as

S (Λ) =
{
x ∈ Zd : ∃s ∈ R for which (x, s) ∈ Λ

}
.

Now we define the event that Q1(i, τ) is good.

Definition 7.1. Assume that there is an infected particle in Qbase
1 (i, τ), which we denote by p0.

Let S′ = L. We say that Q(i, τ) is good if the following holds:

1. Considering only the particles located inQ(i, τ) at time τS1, during the time interval [τS1, τS1+

S′], p0 transmits the infection to at least c1L
d
d+2 such particles, for some fixed constant

c1 = c1(d, µ).

2. For each box Q(i′, τ + 1) with ‖i′ − i‖∞ = 3 (so S (Q(i, τ)) and S (Q(i′, τ + 1)) intersect in a
set of dimension at most d− 1), one of the infected particles above go to Qbase(i′, τ + 1).

The events above are essentially events E4 and E5 in Definition 5.5, where ` has been replaced

by its value
(
L
δ

) 1
d+2 and δ is a small constant. For an illustration, see figure 2 in the proof of

Theorem 5.4, and for a more thorough description on how this event can be defined so that it is
measurable locally see Section 5.2.4. Note that the event {Q(i, τ) is good} is an increasing event,
in the sense that if {Q(i, τ) is good} for a certain configuration, then {Q(i, τ) is good} also holds
if we add one particle to the previous configuration.

The lemma below gives the probability that a box is bad.

Lemma 7.2. Fix a box Q(i, τ). Then, for small enough c1 in Definition 7.1, there is a constant
c = c(d, µ, c1) > 0 so that, for any L large enough,

P(Q1(i, τ) is bad) ≤ exp(−cL
d
d+2 ).

Proof. The proof is essentially identical to the proof of Lemma 5.7. The main difference is that
here we restrict to the particles located in Q(i, τ) at time τS1. We proceed as follows. We tessellate

S (Q(i, τ)) into cubes of side length L1/3 and require that each such cube has at least 9µLd/3

10 particles
at time τS1. Now, using the local mixing result (Theorem 6.1) from time τS1 to any given time
s ∈ [τS1 + S′/2, τS1 + S′] (where we recall that S′ = L), the particles that are “deep inside”
S (Q(i, τ)) at time s (that is, away from the boundary of S (Q(i, τ)), for example, inside a region
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analogous to Qhalf from (5.10)) stochastically dominate a Poisson point process of intensity at least
8µ
9 with probability at least

1− exp
(
−cLd/2

)
.

Since Ld/2 is much larger than L
d
d+2 for all d ≥ 1, applying the local mixing is not going to change

the final probability that a box is good. Then, we apply local mixing and the union bound for all
values of s of the type τj (see the proof of Lemma 5.7) inside the interval [τS1+S′/2, τS1+S′], where
we skipped the interval [τS1, τS1 + S′/2] to leave enough time for local mixing to take place.

7.2 Defining higher scales

Now we develop a multi-scale renormalization framework. We introduce boxes at higher scales by
setting L1 = L and, for k ≥ 2, defining

Lk := CLk
10dLk−1, (7.2)

with CL being a fixed and large constant, which may depend on L, and the exponent 10d being
just a large number that we have not tried to optimize. (For concreteness it will be enough for our
purpose to take CL = L2.) The variable k will be an index for the scale (so, the larger k, the larger
the scale is). Note that the scale grows faster than exponential, since

Lk = CLk
10dLk−1 = C2

L(k(k − 1))10dLk−2 = Ck−1
L (k!)10dL1.

We will see that setting the scales to grow exponentially fast (such as Lk = CLk−1 for some constant
C) will not be enough here. For k ≥ 2, we also set

Sk := δLLk, (7.3)

and define the space time box Qk(i, τ) as

Qk(i, τ) :=
(
iLk3 + [−Lk

2 ,
Lk
2 ]d
)
× (τSk + [0, Sk]) .

with its enlargement

Qenlarge
k (i, τ) :=

(
i
Lk
3

+ [−5Lk
8 , 5Lk

8 ]d
)
× {τSk}. (7.4)

Note that S
(
Qenlarge
k (i, τ)

)
is a cube of side length 5Lk

4 and

the distance between S (Qk(i, τ)) and ∂S
(
Qenlarge
k (i, τ)

)
is
Lk
8

. (7.5)

7.3 Good boxes at higher scales

Before defining what a good box at higher scale is, we discuss the general strategy which gives
a kind of recipe for defining good boxes at higher scale at most applications of this multi-scale
renormalization argument. Then we will need to tweak the definition of good boxes (which usually
depend on the exact application one has in mind) so that we end with the definition we will need.
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7.3.1 Recipe for defining good boxes at higher scales

The general strategy is to impose a condition of the following type: fix a positive integer a and
define

Qk(i, τ) is bad if it contains at least a disjoint bad boxes of scale k − 1. (7.6)

Sometimes the word disjoint is replaced by well separated, as this is used with a lemma establishing
that disjoint (or well separated) boxes are roughly independent; this will be evident when we bound
the probability that a box is good in Section 7.4. Henceforth we fix a = 2, as this will be enough
for our purposes. However, a usually depends on the application: one just carries out the whole
calculation using the variable a, and then discovers what the requirement is needed from a.

The intuition behind (7.6) is the following. Let ρ̃k be the probability that a box of scale k is bad.
(We use the notation ρ̃k instead of ρk, because ρk will be defined slightly different later on to
represent the probability that a box of scale k is bad.) Then, if disjoint boxes were independent of
one another, we get that

ρ̃k ≤

((
Lk

Lk−1/3

)d Sk
Sk−1

)2

ρ̃2
k−1,

where the combinatorial term

((
Lk

Lk−1/3

)d
Sk
Sk−1

)2

just counts the number of ways to choose two

boxes of scale k − 1 inside a box of scale k, and ρ̃2
k−1 is the probability that two disjoint boxes of

scale k − 1 are bad, assuming independence. (The two powers of 2 in the equation above would
become a if we did not have a = 2.) Continuing the recursion we get

ρ̃k = ρ̃2k−1

1

k−1∏
i=1

((
Lk+1−i
Lk−i/3

)d Sk+1−i
Sk−i

)2i

.

Then the hope is that the term in the product is much smaller than the first term. One can usually

prove this by induction. First, assume that ρ̃k ≤ ρ̃Ck2k−1

1 , where Ck is to be set later, and note that
for k = 1 this is true by setting C1 = 1. Assume that this is true for all values up to k − 1. Then,
for ρ̃k one does

ρ̃k ≤

((
Lk

Lk−1/3

)d Sk
Sk−1

)2

ρ̃2
k−1

≤

((
Lk

Lk−1/3

)d Sk
Sk−1

)2

ρ̃
2Ck−12k−2

1

=

(( Lk
Lk−1/3

)d Sk
Sk−1

)2

ρ̃
(Ck−1−Ck)2k−1

1

 ρ̃Ck2k−1

1 . (7.7)

At this point, one tries to take Ck decreasing with k so that Ck−1 − Ck is positive but not too
close to zero to have (Ck−1 − Ck) 2k−1 to be a large power in the ρ̃1 term, making the term inside
the parenthesis smaller than 1 (so that the combinatorial term gets killed). At the same time, Ck
cannot decrease too quickly with k, because we also need that lim infk→∞Ck > 0. But this can be
easily achieved; for example, we can choose Ck = Ck−1 − 1

k2
. Then, if all the above works out, for

C∗ = lim infk→∞Ck, we establish

ρ̃k ≤ ρ̃C∗2
k−1

1 .
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Our problem (and the problem to be faced in essentially all applications of a multi-scale analysis),
of course, is that the disjoint boxes are not independent at all. Therefore, we will obtain a recursion
of the type

ρ̃k ≤ (“combinatorial term”)2 (ρ̃2
k−1 + “error term”

)
,

where the “error term” will express how well we can control the dependences between two disjoint
boxes. We will try to make the error term smaller than ρ̃2

k−1, which would yield

ρ̃k ≤ (“combinatorial term”)2 2ρ̃2
k−1,

so the two can be incorporated into the combinatorial term and all the reasoning above would go
through.

7.3.2 Actual definition of good boxes

In order to control the error term, we will need to enrich the definition of bad boxes given in (7.6).
Recall the definition of the enlargement of a box in (7.4).

Definition 7.3. The boxQk(i, τ) is good if, considering only the particles that are insideQenlarge
k (i, τ)

to decide whether boxes of scale k−1 in Qk(i, τ) are good or bad, Qk(i, τ) does not contain 2 disjoint
bad boxes of scale k − 1.

Note that since the spatial center of a box of scale k is iLk3 , cubes of side length Lk
3 centered at

iLk3 tessellate Zd. As a consequence, two disjoint boxes of scale k − 1 must have distance at least
Lk−1/3. We will use this distance and the fact that particles must come from the enlargement
of each box to control the dependences. Note that, given two disjoint boxes of scale k, we have
from (7.5) that

the distance between their enlargements is at least
Lk
3
− 2

Lk
8

=
Lk
12
. (7.8)

7.3.3 Definition of ρk

We will make ρk stand for the probability that a given box of scale k is bad. However, as we
hinted in Section 7.3.1, we will define ρk in a slight different way. We will need to consider different
intensities of particles at each scale. Let ε1 = ε > 0 small enough and, for k ≥ 2, define

εk := εk−1 −
ε

k2
≥ ε

4
. (7.9)

We emphasize that we pick ε small, then we pick δ small enough in the definition of scale 1 and
then at the end we take L large enough.

Let Pk be the probability measure induced by the process where ηS0 is obtained from a Poisson
point process of intensity (1− εk)µ. Since the event that Q1(i, τ) is good is an increasing event, we
have that

P (Q(i, τ) is good) ≥ P1 (Q(i, τ) is good) ,

and for any k ≥ 1 we have

Pk+1 (Qk(i, τ) is good) ≥ Pk (Qk(i, τ) is good) . (7.10)

For any k ≥ 1, we define
ρk := Pk(Qk(i, τ) is bad).

By translation-invariance, the above probability does not depend on (i, τ).
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7.4 Probability that a higher scale box is good

Note that the bound in Lemma 7.2 gives that

ρ1 ≤ exp
(
−cL

d
d+2

)
, (7.11)

since ε is small enough and the new definition of bad boxes is compatible to the one we had in
Lemma 7.2: the enlargement Qenlarge

1 (i, τ) contains Q1(i, τ) at time τS1.

Note that to show that a box Qk(i, τ) of scale k is bad, we need to control how particles move from

Qenlarge
k (i, τ) to the enlargement of the boxes of scale k − 1 inside Qk(i, τ).

Lemma 7.4. Let Λ ⊂ S
(
Qenlarge
k (i, τ)

)
be such that the distance between Λ and ∂Qenlarge

k (i, τ) is

at least Lk
16 . Let s be a time such that τSk + Sk−1 ≤ s ≤ τSk + Sk. Take ζ ≥ ε

10k2
. Then, let E be

the event that, from the set of particles that are in Qenlarge
k (i, τ), the ones that are in Λ at time s

contains a Poisson point process of intensity (1− ζ)(1− εk)µ, which is independent of the particles

in Qenlarge
k (i, τ). Then, there is a constant c = c(d) such that

Pk(E) ≥ 1− exp
(
−cζ2µS

d/2
k−1

)
.

Proof. This is just an application of local mixing, Theorem 6.1. To do this, we only need to tessellate

S
(
Qenlarge
k (i, τ)

)
into cubes of side length

√
Sk−1ζ2

c1
, where c1 is the constant from Theorem 6.1,

and then note that the distance between Λ and Qenlarge
k (i, τ) is at least

Lk
16

=
δLSk

16
≥ c2

√
Sk log ζ−1 ≥ c2

√
s log ζ−1.

Now we try to implement the reasoning discussed in Section 7.3 in the following lemma.

Lemma 7.5. The ρk satisfy the following recursion for k ≥ 2 and some constant c:

ρk ≤
(

3Lk
Lk−1

)2(d+1)

︸ ︷︷ ︸
combinatorial term

(
ρ2
k−1 + exp

(
−
cεd+2S

d/2
k−1

k2d+4

)
︸ ︷︷ ︸

error term

)
.

Proof. Let Qk(i, τ) be a box of scale k. We start by observing that ρk is at most

((
Lk

Lk−1/3

)d Sk
Sk−1

)2

 sup
Qk−1(j,s),Qk−1(j′,s′)⊂Qk(i,τ)
Qk−1(j,s)∩Qk−1(j′,s′)=∅

Pk
(
Qk−1(j, s), Qk−1(j′, s′) are bad

) , (7.12)

where the first term accounts for the total number of ways one can choose two boxes of scale k− 1
inside Qk(i, τ), and the second term is the probability that two boxes of scale k − 1 are bad. For
simplicity, let Q = Qk−1(j, s) and Q′ = Qk−1(j′, s′), and assume without loss of generality that
s′ ≥ s. We split the proof into three cases, which are illustrated in Figure 6.
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Sk−1

Lk−1
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Lk−1/3 Sk−1

Lk−1

(a) (b) (c)

Q Q′

Q′

Q′

Q Q

5Lk−1
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5Lk−1

8 + Lk−1

12

Λ′
sSk−1

s′Sk−1

sSk−1 sSk−1

Λ′

Sk−1

2

Figure 6: The three possible cases for two disjoint bad boxes of scale k − 1 inside a box of scale
k. The red lines under each box represent their enlargements, defined in (7.4). The green lines
illustrate the sets Λ′ in the proof of Lemma 7.5.

Case (a): s = s′. In this case the enlargement of Q and Q′ are disjoint. Let Λ be the union of the
spatial enlargements of Q and that of Q′. Also set ζ such that (1− ζ)(1− εk) = (1− εk−1). Note
that

ζ = 1−
(

1− εk−1

1− εk

)
≥ 1− (1− εk−1 + εk) ≥ εk−1 − εk =

ε

k2
.

Therefore, Lemma 7.4 gives that the particles from Qenlarge
k (i, τ) contain a Poisson point process of

intensity (1− ζ)(1− εk)µ = (1− εk−1)µ at the enlargements of Q and Q′, an event denoted by E .
But these enlargements are disjoint, therefore if sSk−1 ≥ τSk + Sk−1 we have

Pk
(
Q and Q′ are bad

)
≤ Pk−1 (Q is bad)Pk−1

(
Q′ is bad

)
+ Pk (Ec)

= ρ2
k−1 + exp

(
− cε
k2
S
d/2
k−1

)
. (7.13)

If sSk−1 = τSk, then we do not need to use the event E since Q and Q′ already start at the
enlargement of Qk(i, τ).

Case (b): s′ = s + 1, then we will again use the fact that they are disjoint and apply the local
mixing technique. But here it is slightly more involved since we need to apply the local mixing

twice. Let Λ′ ⊂ Zd be the cube j′
Lk−1

3 +
[
−5Lk−1

8 − Lk−1

12 ,
5Lk−1

8 +
Lk−1

12

]
; see Figure 6(b). Note

that Λ′ contains the spatial enlargement of Q′. Then, let Λ be defined as the union of the spatial
region of the enlargement of Q with Λ′. Note that such a Λ satisfies the condition of Lemma 7.4,
so we obtain the event E that the particles from Qenlarge

k (i, τ) contain a Poisson point process of
intensity (1− ζ)(1− εk)µ inside Λ at time s where now we set ζ so that (1− ζ)2(1− εk) = 1− εk−1.
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Note that

ζ = 1−
√

1− εk−1

1− εk
≥ εk−1 − εk

2
=

ε

2k2
. (7.14)

(As in case (a), the above step is only required if sSk−1 ≥ τSk + Sk−1, otherwise E is already
satisfied.) Now note that Λ′ does not intersect the spatial region of the enlargement of Q since the

distance betwen the spatial regions of the enlargements of Q and Q′ is at least
Lk−1

12 , cf. (7.8). So we
will apply the local mixing again, this time from Λ′ to the enlargement of Q′. To do this, consider
the particles that are in Λ′ at time sSk−1 and let Ē be the event that after these particles moved
upto time s′Sk−1, inside the enlargement of Q′ they contain a Poisson point process of intensity
(1− ζ)2(1− εk)µ = (1− εk−1)µ. Note that the distance between Λ′ and the spatial enlargement of

Q′ is
Lk−1

12 , and that particles will move during a time interval of length Sk−1 from sSk−1 to s′Sk−1.

Since
Lk−1

12 is larger than c2

√
Sk−1 log ζ−1, for all k ≥ 2, where c2 is the constant from Theorem 6.1

and the inequality holds when k = 2 because δ is small enough, we can apply Theorem 6.1 to obtain
that

Pk
(
Q and Q′ are bad

)
≤ Pk−1 (Q is bad)Pk−1

(
Q′ is bad

)
+ Pk (Ec) + Pk

(
Ēc
)

= ρ2
k−1 + exp

(
− cε
k2
S
d/2
k−1

)
. (7.15)

Case (c): s′ > s + 1. This is the most delicate one. We will again apply the local coupling
(Theorem 6.1) twice, using the fact that there is time difference of length at least Sk−1 between Q
and Q′. Let Λ be the spatial enlargement of Q, and let

Λ′ be the cube j′
Lk−1

3 +
[
−5Lk−1

8 − Lk−1

12 ,
5Lk−1

8 +
Lk−1

12

]d
.

We will first apply the local mixing from Qenlarge
k (i, τ) to Λ (as we did in the previous two cases as

well), and then apply the local mixing from Λ′ at time

r :=

(
s′ − 1

2

)
Sk−1

to the enlargement of Q′; see Figure 6(c). Set

ζ such that (1− ζ)3(1− εk) = 1− εk−1,

thus ζ ≥ ε
3k2

using the same reasoning as in (7.14). Tessellate Λ′ into sub-cubes of side-length

` :=
√

Sk−1ζ2

2c1
; which we will just refer to as the sub-cubes. Then, considering the set P of the

particles that are inside Qenlarge
k (i, τ), define the events

E = {the particles from P that are in Λ at time sSk−1 contain a PPP ((1− ζ)(1− εk)µ)} ,

and

D =
{

each sub-cube contains at least (1− ζ)2(1− εk)µ`d particles from P at time r
}
.

Note that
Pk (Ec) + Pk (Dc) ≤ exp

(
−cζ2S

d/2
k−1

)
+ exp

(
−cζd+2S

d/2
k−1

)
,
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where the first term follows from local mixing and the second term follows from local mixing and

the Chernoff bound for Poisson random variables: note that `d is of the order of S
d/2
k−1ζ

d and we are
asking a Poisson random variable to be larger than (1− ζ) times its expected value. Thus,

Pk (Ec) + Pk (Dc) ≤ exp

(
−
cεd+2S

d/2
k−1

k2d+4

)
. (7.16)

Finally, let P ′ be the particles of P that are found in the sub-cubes at time r. Define the event

E ′ =
{

the particles from P ′ that are in the enlargement of Q′ contain a PPP
(
(1− ζ)3(1− εk)µ

)}
.

Now we proceed by doing

Pk
(
Q and Q′ are bad

)
≤ Pk

({
Q and Q′ are bad

}
∩ E ∩ D

)
+ Pk(Ec) + P(Dc)

≤ Pk ({Q is bad} ∩ E ∩ D)Pk
(
Q′ is bad | {Q is bad} ∩ E ∩ D

)
+ Pk(Ec) + P(Dc)

≤ Pk−1 (Q is bad)Pk
(
Q′ is bad | {Q is bad} ∩ E ∩ D

)
+ exp

(
−
cεd+2S

d/2
k−1

k2d+4

)
,

where for the last term in the last step we used (7.16). Now we use the event E ′ to bound
Pk (Q′ is bad | {Q is bad} ∩ E ∩ D) by

Pk
({
Q′ is bad

}
∩ E ′ | {Q is bad} ∩ E ∩ D

)
+ Pk

(
E ′c | {Q is bad} ∩ E ∩ D

)
.

Since the time at which the event D takes place (that is, at which the event is measurable) is
between the times corresponding to E ′ and {Q is bad} ∩ E , we can use the the Markov property
and local mixing to infer that

Pk
(
E ′c | {Q is bad} ∩ E ∩ D

)
≤ exp

(
−cζ2S

d/2
k−1

)
and

Pk
({
Q′ is bad

}
∩ E ′ | {Q is bad} ∩ E ∩ D

)
≤ Pk−1

(
Q′ is bad

)
.

Putting everything together we obtain

Pk
(
Q and Q′ are bad

)
≤ Pk−1 (Q is bad)Pk−1 (Q is bad) + exp

(
−
cεd+2S

d/2
k−1

k2d+4

)

≤ ρ2
k−1 + exp

(
−
cεd+2S

d/2
k−1

k2d+4

)
. (7.17)

Putting all three cases together (that is, using (7.13), (7.15) or (7.17), depending on the case)
into (7.12) completes the proof by noting that in the combinatorial term we have Sk

Sk−1
= Lk

Lk−1
.

7.5 Completing the proof of positive speed

First, we simplify the bound in Lemma 7.5.
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Lemma 7.6. Fix any γ ∈ (0, 1). Then, if CL, the constant in the definition of Lk in (7.2), grows
not faster than polinomially in L, and if L is large enough with respect to µ, d, δ, ε and γ, we obtain
that

ρk ≤ ρ
(1−γ)2k−1

1 .

Proof. If we ignore the combinatorial and the error terms in Lemma 7.5, we obtain that

ρ2
k−1 ≥ ρ2k−1

1 , k ≥ 2.

We want to show that this is larger than the error term in Lemma 7.5. For this, using the definition
of Sk in (7.3) and the one of Lk in (7.2), we have that

exp

(
−
cεd+2S

d/2
k−1

k2d+4

)
≤ exp

(
−
c′εd+2Ld/2L

d/2
k−1

k2d+4

)
≤ exp

(
−
c′εd+2C

(k−2)d/2
L (k − 1)!5d

2
Ld

k2d+4

)
.

Comparing this with (7.11), we note that for all L large enough we get that the error term is
smaller than ρ2

k−1 for all k ≥ 2: in fact, for small k, we use that L is large enough because the

error term is exponential in Ld while ρ2
k−1 is exponential in L

d
d+2 , but when k is large we use that

ρ2
k−1 is exponential in 2k while the error term is exponential in Lk−1 but Lk−1 grows faster than

exponentially. Thus,

ρk ≤
(

3Lk
Lk−1

)2(d+1)

2ρ2
k−1.

Now we implement the strategy described in Section 7.3.1. We assume that ρk ≤ ρCk2k−1

1 , which is
true for k = 1 if we set C1 = 1. Then, to prove by induction, we assume that the above holds up
to k − 1. Then, following the steps described in (7.7) and in the paragraph afterwards, it suffices
to set Ck so as to have

2

(
3Lk
Lk−1

)2(d+1)

ρ
(Ck−1−Ck)2k−1

1 ≤ 1.

But setting Ck = Ck−1 − γ
10k2

, we have that the above is true for all k ≥ 2 because

3Lk
Lk−1

= 3CLk
10d,

so it grows only polinomially in k and, for small k, CL grows at most polinomially in L while ρ1

decreases as an stretched exponential in L. Since

lim inf
k→∞

Ck = lim inf
k→∞

1−
k∑
j=2

1

10j2
≥ 1− γ,

the proof is completed.

We are now ready to conclude the proof of positive speed of propagation.

Proof of Theorem 4.2. Let k be defined so that Sk = t (assume that one can choose k so that the
equality is satisfied). We need to show that the box of scale k centered at the origin being good
implies that the infection has positive speed of propagation. Consider a good box Qk(i, τ) of scale
k and assume that there is an infected particle at some vertex x ∈ Qbase

k (i, τ) at time τSk. Let
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ζk =
∑k

i=1
ζ
i2

, for a fixed small ζ > 0 so that ζk ≤ 1
2 for all k ≥ 1. Then, we will show that, at time

(τ + 1)Sk, we have an infected particle at some position y such that

‖y − x‖2 ≥
Lk
3

(1− ζk). (7.18)

This is true for k = 1, and we assume that this is true up to k − 1. Since Qk(i, τ) is good, there
is at most one bad box of scale k − 1 inside it (including possibly overlapping boxes). There are
two cases: either the infection manages to exits Qk(i, τ) during [τSk, (τ + 1)Sk] or it does not. In
the first case, the infection has to be within distance 2CSk−1 from the spatial boundary of Qk(i, τ)
at time (τ + 1)Sk. This is because the only way the infection can move back inside the box is the
presence of a bad box at the boundary. But then, the assumption (7.1) on the speed of particles
gives that particles cannot move deep inside Qk(i, τ). In this case we have

‖y − x‖2 ≥
Lk
3
− 2CSk−1 =

Lk
3
− 2CδLLk−1 =

Lk
3

(
1− 6δCL

CLk10d

)
,

which gives (7.18).

Now we assume that the infection does not manage to exit Qk(i, τ). Then, at each time interval of
length Sk−1, as the infection goes through a good box of scale k−1, the infection traverses distance
at least (1 − ζk−1)Lk−1/3 by the induction hypothesis. Since there are no 2 disjoint bad boxes of
scale k − 1 in Qk(i, τ), we have that the number of bad boxes is at most cd. So we have that

‖y − x‖2 ≥
(

Sk
Sk−1

− cd
)
Lk−1

3
(1− ζk−1)− cdCSk−1

=

(
Lk
Lk−1

− cd
)
Lk−1

3
(1− ζk−1)− cdCSk−1,

where CSk−1 represents the backtrack that the infection can suffer through the bad boxes. Thus,
using that ζk ≤ 1/2 for all k, we have

‖y − x‖2 ≥
Lk
3

(1− ζk−1)

(
1− cd

CLk10d
− 3cdCSk−1

Lk

)
≥ Lk

3
(1− ζk).

7.6 Getting rid of assumption (7.1)

In order to remove the assumption that random walks are not faster than ballistic, we add
this assumption to the definition that a box is good. For each box Qk(i, τ) and each site x ∈
S
(
Qbase
k (i, τ)

)
, we let Jk(x, τ) be a vector of Sk

Sk−1
independent random variables, the jth one giv-

ing the number of jumps an infected particles that is at x at time τSk gives during the time interval
τSk + [(i− 1)Sk−1, iSk−1]. Recall that at each time we choose just one infected particle to follow,
and when a particle is at x ∈ Qbase

k (i, τ), we let the number of jumps of this particle along the time
interval of Qk(i, τ) to be given by Jk(x, τ).

Now we are ready to define good boxes. Fix a constant Crw > 0 and take the following definition.

Definition 7.7. The box Qk(i, τ) is good if the following two things happen:
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(E1) For each x ∈ S
(
Qbase
k (i, τ)

)
and each j ∈ {1, 2, . . . , Sk

Sk−1
}, the jth element of Jk(x, τ) is at

most CrwSk−1.

(E2) Considering only the particles that are inside Qenlarge
k (i, τ) to decide whether boxes of scale

k−1 in Qk(i, τ) are good or bad, Qk(i, τ) does not contain 2 disjoint bad boxes of scale k−1.

Now we choose Crw to be some large (but universal) constant, and take the union bound on x and
j to obtain

P (Ec
1) ≤

(
Lk
3

)d( Sk
Sk−1

)
exp (−cCrwSk−1) ≤ exp

(
−c′CrwSk−1

)
,

for some constant c′ > 0. Now, updating the definition of ρk to be compatible with Definition 7.7,
we obtain the following recursion (cf. Lemma 7.5):

ρk ≤
(

3Lk
Lk−1

)2(d+1)
(
ρ2
k−1 + exp

(
−
cεd+2S

d/2
k−1

k2d+4

))
+ Pk (Ec

1)

≤
(

3Lk
Lk−1

)2(d+1)
(
ρ2
k−1 + exp

(
−
cεd+2S

d/2
k−1

k2d+4

))
+ exp

(
−c′CrwSk−1

)
.

Using the same reasoning as in Lemma 7.6, we have that, for k ≥ 2,

ρ2
k−1 ≥ exp

(
−c′CrwSk−1

)
.

In fact, for large k the term Sk−1 in the right-hand side grows faster than exponentially, and
for small k the term Sk−1 grows like L2. So it is a much faster growth than that of ρk−1 (see
Lemma 7.6). Thus, we obtain

ρk ≤ ρ
(1−γ)2k−1

1 ,

and everything discussed in the previous sections go through.

8 Multi-scale analysis and Lipschitz percolation

(Yet to be written.)

9 Beyond spread of infection

In this section we will illustrate several processes (beyond spread of infection) that belong to
the class of reaction-diffusion particle systems. We split the discussion in this section into two
parts, depending on whether the particle system moves according to independent random walks (as
discussed so far) or to an exclusion process.

9.1 Reaction-diffusion particle systems

9.1.1 Spread of infection: SIRS dynamics

This is a combination of SIS and SIR dynamics. There are three types of particles, S, I and R,
and there are two parameters λR and λS , besides µ. The initial configuration is as in the SI, SIS
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and SIR dynamics (ηS0 is a Poisson point process of intensity µ, ηI0(Zd) = ηI0(0) = 1 has only one
particle at the origin, and ηR0 (Zd) = 0). The reaction formulas are

S + I −→ 2I,

I
λR−→ R,

R
λS−→ S.

This model represents the case that when a particle heals it may be immune from the infection for
some time, but later become susceptible again.

9.1.2 Branching random walk

We will have only one type of particle (call it I). A branching random walk with binary branching
at rate 1 and death rate λ can be represented by taking the initial configuration ηI0(Zd) = ηI0(0) = 1
and the reaction formaulas

I
1−→ 2I,

I
λ−→ ∅.

In fact, the frog model (with SIR dynamics) is a model of branching random walk, where the
I-particles branch only in their first visit to a site. There is a vast literature on Branching random
walk, but treating this model is beyond the scope of this notes.

9.1.3 Branching random walks with catalysts

There are two types of particles, S and I, as in the spread of infection model. S particles are
regarded as catalysts and remain in their state forever. Meanwhile, I particles branch only when
they share a site with an S particle, and the rate of branching is the number of S particles in
that site. Moreover, I particles die at rate λ, independent of the other particles. The system is
characterized by the following formulas

I + S
1−→ 2I + S,

I
λ−→ ∅.

Note that the above formulas conserve the number of S particles. In fact, the S particles only serve
as catalysts that trigger the branching of I particles. For the sake of clarity, we remark that the
first reaction formula states that for each I particle and for each S particle in the same site as the
I particle, there is a rate 1 Poisson clock that triggers the reaction given by the formula.

This model played an important role in the development of multi-scale analysis techniques for
particle systems due to the seminal work of Kesten and Sidoravicius [22], which was later extended
to analyse the spread of infection with SI and SIS dynamics, and also extended by Stauffer [36] and
Gracar and Stauffer [17] to develop more general and robust multi-scale techniques.
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9.1.4 Annihilating random walks

There are two types of particles, S and I, both jumping at rate one (DI = DS = 1). One particle of
each type annihilate each other instantaneously when they are at the same site. We can represent
this by the following formula:

I + S −→ ∅.

For more information about annihilating random walks we refer to [8] and references therein.

9.1.5 Internal diffusion limited aggregation (IDLA)

There are two types of particles, S and I (standing for inactive). Only S particles move (DI =
0, DS = 1). When an S particle is alone at a site, it instantaneously turns into I, while I particles
never change state. We obtain the formula

S + ∅ −→ I.

There is a vast literature on IDLA, and treating this model is beyond the scope of this notes. For
more information we refer the reader to the original paper of Diaconis and Fulton [13] and the
recent work [6] and references therein.

9.1.6 Activated random walks (ARW)

There are two types of particles, S and I (standing for inactive). Only S particles move (DI =
0, DS = 1). When an S particle is alone at a site, at rate λ it turns into I. Moreover, when an S
particle jumps at a site occupied by an I particle, then the I particle turns into S. We obtain the
following formulas

S + ∅ λ−→ I,

I + S −→ 2S.

Note that IDLA can be viewed as the limit of activated random walks when λ → ∞. There has
been several recent results about ARW, we refer the reader to the survey [32].

9.1.7 General setting

A reaction-diffusion particle system is then composed of four ingredients:

• A set Σ of types for the particles, such as Σ = {S, I,R},

• Initial configurations for the particles, ησ0 for each σ ∈ Σ,

• The jump rates of each type, Dσ ≥ 0 for each σ ∈ Σ,

• A set of reaction formulas, which can be either instantenous reactions such as S + I −→ 2I

or reactions that happen at a certain rate such as I
λ−→ R.
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9.2 Reaction-diffusion by the exclusion process

Up to now we have only considered the case that particles move as independent random walks. In
this section we will discuss one possible variation, which gives rise to a myriad of new processes.

Let Dσ denote the rate at which particles of type σ try to jump. Each particle of type σ then have
a Poisson clock of rate 2dDσ and, when the clock rings, the particle chooses a neighbor uniformly
at random and if the neighbor is empty (that is, it is not occupied by a particle of any type), the
particle jumps to the neighbor. On the other hand, if the neighbor is occupied, the particle does
not jump and, moreover, if the neighbor is occupied by a particle of type σ′ and there is a reaction
formula with left-hand side represented by the directed sum σ+ σ′, the reaction is performed. The
order of the terms in the left-hand side of the reaction formula is important, as it specifies which
type of particle was attempting to jump.

As a consequence, we will have at most one particle per site at all times; thus
∑

σ∈Σ η
σ
t (x) ∈ {0, 1}

for all t ≥ 0 and all x ∈ Zd. Reactions may also happen at empty sites, which will be represented
as ∅.

9.2.1 Birth-death particle system

This is a model studied by De Masi, Ferrari and Lebowitz [12]; see also [15]. There is one type of
particle, S, and DS = 1. Then, at rate λ, there is creation or deletion of particles according to the
following reaction formulas

S
λ−→ ∅,

∅ λ−→ S.

Note that there is no reaction when particles jump.

9.2.2 Multi-particle diffusion limited aggregation (MDLA)

There are two types of particles, S and I (standing for inactive). The jump rates are DS = 1 and
DI = 0, so only S particles may jump and trigger a reaction. We take the initial configuration to
be ηI0(Zd) = ηI0(0) = 1 and ηS0 being a product of Bernoulli measures of parameter µ ∈ (0, 1) on
Zd \ {0}. Then when an S particle attempts to jump onto a site occupied by an I particle, the S
particle turns into I. The reaction formulas is the following

S + I −→ I + I.

Above we write I + I instead of 2I, as a way to emphasize that sites cannot host more than one
particle. As with the left-hand side, the order of the terms in the right-hand side matter. For
example, the reaction formula S + I −→ I + S would mean that the S particle turns into I and
the I particle turns into S.

For existing works in this model see [33], where Sidoravicius and Stauffer used a multi-scale analysis
to analyze MDLA in dimensions d ≥ 2.
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9.3 Beyond particle systems

Using the exclusion process as a form of diffusion, as explained in Section 9.2, allows us to model
several stochastic processes as a reaction diffusion particle system. Examples include growth pro-
cesses and classical interacting particles systems from Liggett’s book [28].

The way this is achieved is by introducing a virtual type of particle, which we will call type V.
Particles of type V will occupy all the sites that are not occupied by the other types (in other words,
V particles occupy all vacant sites). Because all sites have at least one particle, no particle move,
and several processes can be modeled in this way, including contact process, voter model, majority
dynamics and first passage percolation. Below we illustrate this with three growth processes based
on first passage percolation. Nonetheless, we will not spend much time in this type of processes,
since their nature is very different from an actual reaction diffusion particle system; they are not
based on a mobile, diffusive system of particles.

We decided to mention this alternative here as the techniques discussed in this note have also been
employed in the analysis of such processes.

9.3.1 First passage percolation

This is a model of spread of infection with SI dynamics. There are two types of particles, I (for
infected) and V (for vacant), and the initial configuration is ηI0(Zd) = ηI0(0) = 1, and ηV (x) = 1 for
all x ∈ Zd \ {0}. Note that there are no empty sites, so particles do not jump. But the jump rate
DI = 1 is used to trigger the reaction formula

I + V −→ I + I.

Since no other reaction formula has been specified, I particles do not trigger any reaction. The
above characterizes first passage percolation with exponential passage times (of rate DI).

First passage percolation is by now a classical process, and we refer the reader to the book [4] for
further information.

9.3.2 Prey-predator first passage percolation

There are three types of particles P (predator), p (prey), and V (vacant). Initially we have ηP0 (Zd) =
ηP0 (0) = 1 and ηp0(Zd) = ηp0(x) = 1 for some neighbor x of the origin. For all y ∈ Zd \ {0, x}, we
have ηV0 (y) = 1. The process evolves as prey conquer sites with V particles, and predators conquer
sites with preys. The reaction formulas are as follows

p+ V −→ p+ p,

P + p −→ P + P.

An interesting question is whether the prey can survive for some value of Dp < DP . For further
information on this model, see [26] and references therein.
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9.3.3 First passage percolation in hostile environment

This model was introduced by Sidoravicius and Stauffer [33] as a means to analyzing the aforemen-
tioned MDLA process (see also [9]), but it is an interesting model in its own right. There are four
types of particles: 1 (standing for type 1 ), 2 (standing for type 2 ), S (standing for type 2 seed), V
(standing for vacant).

We start with η1
0(Zd) = η1

0(0) = 1, and let ηS0 be a product of Bernoulli measures on Zd \ {0} of
parameter µ. Then for each x ∈ Zd \ {0} for which ηS0 (x) = 0 we set ηV0 (x) = 1. Then S particles
turn into type 2 when type 1 or 2 try to jump at the site of the S particle. Also, V particles turn
into type 1 or 2 whenever a type 1 or 2 particle, respectively, tries to jump onto the site of the V
particle. For the jump rates, we have DS = 0 (so type 2 seeds do not trigger any reaction, they
just wait), D1 = 1 and D2 = λ so different types can spread at different rates when λ 6= 1, and DV

is irrelevant. The reaction formulas are as follows

1 + V −→ 1 + 1,

2 + V −→ 2 + 2,

1 + S −→ 1 + 2,

2 + S −→ 2 + 2.

10 Multi-scale analysis in percolation

10.1 Particle percolation

We start defining a percolation process based on ηt, which we henceforth call particle percolation.

Definition 10.1 (t-open sites). Given ηt, we say that a vertex

x ∈ Zd is t-open iff ηt(x) ≥ 1.

Definition 10.2 (Critical densities). We define two critical values. First, let µc be the critical
value for percolation of occupied sites, defined as the value which satisfies

1− e−µc = psite
c ,

where psite
c = psite

c (Zd) is the critical probability for site percolation on Zd. Similarly, let µv
c be the

critical value for percolation of vacant sites, defined as the value which satisfies

e−µ
v
c = psite

c .

The above definition and stationarity of ηt (Theorem 2.1) imply that, for all µ > µc and any given
t ≥ 0 we have

P
(

0
t→∞

)
> 0,

where {0 t→ ∞} denotes the event that the origin is in an infinite cluster of t-open sites. Since
there are uncountably many values for t, it is a priori unclear whether for µ > µc there could be
times for which percolation occurs. The theorem below settles this question; it has essentially the
same proof as in the corresponding result for dynamical percolation [18]. Let C∞t be the event that
there exists an infinite cluster of t-open sites.
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Theorem 10.3 (No exceptional times away from criticality). In particle percolation, for any µ >
µc, we have P (C∞t for all t) = 1. Conversely, for any µ < µc, we have P ({C∞t }c for all t) = 1.

Proof. Take ε small enough and consider a site x open during [iε, (i+ 1)ε] if there exists a particle
at x at time iε that does not move during that time interval. Then, the probability that x is open
at the ith slot according to the above definition is

1− exp
(
−µe−ε

)
,

since e−ε is the probability that a particle does not move during an interval of length ε. Since
µ > µc, taking ε small enough makes the above probability larger than psite

c . So there is an infinite
cluster with probability 1 during [iε, (i + 1)ε]. Since the number of slots is countable, we obtain
that there is an infinite cluster for all times.

For the second part, we use a similar strategy. We consider a site open during [iε, (i+ 1)ε] if there
exists a particle at x at some time during that interval. For any site y, a particle starting from y
can only be at x after time ε if it makes at least ‖x − y‖1 jumps during a time interval of length
ε. The probability that a random walk makes j jumps during a time interval of length ε ≤ 1

2e is
given by (cf. Lemma A.1)

P(Poisson(ε) ≥ j) ≤ 2 exp

(
−ε− j

(
log

(
j

ε

)
− 1

))
≤ exp

(
−cj log

(
j

ε

))
,

where the last inequality holds for all small enough ε and j ≥ 1, and some constant c. Since there
are at most (2d)j particles at `1-distance j from x, we obtain that the probability that x is open
at slot i is

1− e−µ + e−µ

1− exp

−µ ∞∑
j=1

(2d)j exp

(
−cj log

(
j

ε

)) .

For small enough ε, the above probability is at most

1− e−µ + e−µ
(

1− exp

(
−µ exp

(
−c log

(
1

ε

))))
≤ 1− e−µ + e−µµεc < psite

c ,

where the last inequality holds because by choosing ε small enough we can make the left-hand side
arbitrarily close to 1− e−µ < psite

c .

10.1.1 Percolation time

The percolation time was introduced by Sinclair and Stauffer [35], in the context of a particle
system moving in continuous time and continuous space. But the definition of the percolation time
makes sense in any percolation process that updates over time.

Definition 10.4 (Percolation time). The percolation time Tperc is the first time that the origin
belongs to the infinite cluster of open sites; that is,

Tperc := inf{t ≥ 0: 0
t→∞}.
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We first study the percolation time in so-called dynamical percolation. In dynamical percolation,
at time 0 each site is open or closed with probability p and 1− p, respectively. Moreover, each site
has a Poisson clock of rate 1, and when the clock of a site x rings, then x refreshes its state: it
becomes open or closed with probability p and 1− p, respectively, independent of anything else.

Dynamical percolation was introduced in 1997 by Häggström, Peres and Steif [18], and indepen-
dently by Itai Benjamini.

Theorem 10.5 (Percolation time in dynamical percolation). In dynamical percolation, for all d ≥ 2
and all p > pc, there exists a constant c = c(d, p) > 0 such that

P(Tperc > t) ≤ exp(−ct).

Proof. Let s be large enough so that

p′ :=
(
1− e−s

)
p > psite

c .

Divide the interval [0, t] into subintervals of length s. For the ith interval, say that a site is open
at interval i if its state was refreshed during ((i− 1)s, is] and the site is open at time is. Note that
the open sites in this definition are independent across different i. Therefore,

P(Tperc > t) ≤
t/s∏
i=1

P(0 is not in the infinite cluster of open sites at interval i)

≤
(
1− θ(p′)

)t/s
,

where θ(p′) is the probability that the origin is in the infinite cluster of Bernoulli percolation of
parameter p′.

10.1.2 Percolation time in particle percolation

The percolation time for particle percolation was initially studied by Sinclair and Stauffer [35]
in the model of particles moving as independent Brownian motions in Rd, and also analyzed by
Peres, Sinclair, Sousi and Stauffer [29]. The results of those papers are expected to hold also for
the discrete-space setting of these notes. The expected behavior of the percolation time is the
following.

Question 10.6. In particle percolation, does it hold that P(Tperc > t) is at most exp
(
− ct

log t

)
in

d = 2 and exp (−ct) in d ≥ 3?

It is known that P(Tperc > t) cannot decay faster than stated above [29, 35, 14], in particular
the above bounds are lower bounds on the probability that the origin is s-closed for all s ∈ [0, t].
Establishing the upper bound, in turn, remains a challenging open problem. The best upper bounds
on the above questions were obtained by Peres, Sinclair, Sousi and Stauffer [29] in 2013 for the
model in continuous space.

Theorem 10.7 ([29, Theorem 1.6]). For all d ≥ 2 and all µ > µc, there exists c = c(d, µ) such
that

P(Tperc > t) ≤ exp

(
− ct

t3+6/d

)
.
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10.1.3 Detection (percolation of vacant sets)

We say that a space-time site (x, s), x ∈ Zd and s ∈ R, is vacant if ηs(x) = 0.

Definition 10.8. Define the event
{

0
v↑−→∞

}
as the event that there is an infinite path from the

space-time origin (0, 0) that is oriented in time and only visits vacant space-time sites.

Note that the in the definition above path does not need to go to infinity in time and, in fact, when
µ < µv

c , with positive probability this events holds for a path that remains at time 0; recall the
value of µv

c from Definition 10.2.

The existence of the above path corresponds to the problem of detecting the presence of a mobile
target, whose goal is to avoid being detected by the particle system ηt. It has been established by
Stauffer [36] (in the model in continuous space) that if µ is large enough then the target cannot
avoid detection. The proof of this theorem involves a multi-scale analysis in the spirit of Section 8,
and in fact includes the case that the space-time path of the target is allowed to move backwards
in time. It also establishes almost tight bounds for dimensions d ≥ 3.

Definition 10.9. Define the event
{

(0, 0)
v−→∞

}
as the event that there is an infinite path from

the space-time origin (0, 0) that only visits vacant space-time sites.

Let B1
t = [−t, t] be the one-dimensional ball of radius t, ∂B1

t be its external boundary, and Zd×∂B1
t

be the corresponding space-time region. Then {(0, 0)
v−→ Zd × ∂B1

t } is the event that the target
avoids detection up to time t or −t via a space-time path that can move backwards in time.

Theorem 10.10 ([36, Theorem 1.6]). There exists a value µ0 = µ0(d) and constants c, C depending
on c, C such that, for all µ > µ0, we have

P((0, 0)
v−→ Zd × ∂B1

t ) ≤

{
exp

(
− ct

(log t)c′

)
, in d = 2

exp (−ct) , in d ≥ 3.

A central question is whether the critical probability for the event that the target can avoid detection
forever is different than µv

c . If this is the case, then there are values of µ for which the target can
avoid detection only through space-time paths that leave time 0.

Question 10.11. Does there exist µ′c > µv
c such that for µ ∈ (µv

c , µ
′
c) we have

P
(

0
v↑−→∞

)
> 0?

We conclude this section with a quick remark regarding the detection of a static target, which is
equivalent to estimating the first time that the origin is occupied by at least one particle. Sharp
results can be obtained regarding this time. For example, it is known [29, 35, 14] that, for any
t ≥ 0, the probability that the origin is s-closed for all s ∈ [0, t] behaves as exp(−c

√
t) in d = 1,

exp(−c t
log t) in d = 2, and exp(−ct) in d ≥ 3, and the constant c = c(d, µ) can be computed

explicitly.
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A Standard large deviation results

Lemma A.1 (Upper tail of Poisson). For any λ > 0 and any x ≥ 2eλ, we have

P(Poisson(λ) ≥ x) ≤ 2 exp
(
−λ− x

(
log
(x
λ

)
− 1
))

.

Proof. Let X be a Poisson random variable of parameter λ. Then

P(X ≥ x) =

∞∑
z=x

e−λ
λz

z!
≤
∞∑
z=x

e−λ
(
λ e

z

)z
.

Since x ≥ 2eλ, the last term is at most 2−z, which yields P(X ≥ x) ≤ 2e−λ
(
λ e
x

)x
.

Lemma A.2 (Lower tail of Poisson). For any λ > 0 and any ε > 0, we have

P(Poisson(λ) < (1− ε)λ) ≤ (1− ε)λ exp

(
−ε

2λ

2

)
.

Proof. Let X be a Poisson random variable of parameter λ. Then

P(X < (1− ε)λ) =

(1−ε)λ−1∑
z=0

e−λ
λz

z!
≤ (1− ε)λe−λ

(
λe

(1− ε)λ

)(1−ε)λ
,

where in the inequality we use the fact that the largest term of the sum is when z = (1− ε)λ, and

the fact that z! ≥ (z/e)z. Now we use the fact that (1− log(1− ε))(1− ε) ≤ 1− ε2

2 for all ε ∈ (0, 1),
which yields

P(X < (1− ε)λ) ≤ (1− ε)λe−λ+(1−ε2/2)λ = (1− ε)λ exp

(
−ε

2λ

2

)
.

Lemma A.3 (Chernoff bound for Binomial).

B Estimates for simple random walks

In this section, we let (Zt)t≥0 be a continuous-time random walk on Zd starting from the origin,
and recall that pt(x, y) is the probability that a random walk starting from x is at site y at time t.

Lemma B.1 (Probability bounds). For any α > 0 there exist constants C, c > 0 depending on α
such that for any t > 0 and any x ∈ Zd for which ‖x‖1 ≤ α

√
t, we have

c

td/2
≤ pt(0, x) ≤ C

td/2
.

Moreover, there exists c′ such that for any t ≥ 0 and any ` ≥ 1, we have

P(
⋃

s∈[0,t]

{‖Zs‖1 ≥ `}) ≤ exp

(
−c
′`2

t

)
.
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Proof. The first part follows from the local central limit theorem in [27, Theorem 2.1.1]. The second
part follows by considering each dimension an then using the bound for one-dimensional random
walk (which uses the reflection principle).

Lemma B.2 (Collision of random walks). For t ≥ 0 and x, y ∈ Zd, let pt(x, y) be the probability
that a particle that is at x at time 0 is located at y at time t. Then, if ‖x− y‖1 ≤

√
t, then

pt(0, x) ≤ pt(0, y) exp

(
‖x− t‖22

2t

)
.

Proof. Essentially a consequence of the local CLT.
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