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Background

A general complex abelian surface does not contain any elliptic curves.
In the end of 19th centuryG.Humbert investigated, among others, prin‐
cipally polarised abelian surfaces containing elliptic curves. He has
shown that, in the moduli A2, there are countably many irreducible
components E(c) of loci of surfaces that contain elliptic curves. They
are parametrised by the discriminant ∆ = c of the singular equation.
Note that ∆ = 1 is the locus of products of elliptic curves.

In coordinates of the Siegel space

h2 = {Z =
[

z1 z2
z2 z3

]
: Im(Z) > 0}

the loci E(c) satisfy singular relations a1z1 + a2z2 + a3z3 + a4(z2
2 − z1z3)+

a5 = 0 for some integers (a1, a2, a3, a4, a5) without a common divisor
satisfying ∆ = a2

2 − 4a1a3 − 4a4a5 = c2 for some integer c.

In such a case, the surface XZ = C2/(Z2 + ZZ2) contains two comple‐
mentary elliptic curves both of exponent c.

Examples in non principally-polarised case

A possible naive approach is to say that being non‐simple is invariant
under isogeny, hence a (1, d) polarised case is similar to the principal
case. One only need to tweak a singular equation accordingly. The
following two examples show that the tweaking behaves quite badly
and the non‐principal setting is actually quite interesting. Firstly we
define a moduli space

Ed(m, n) :=
{

(A, L) ∈ A2(d) : A contains a pair of complementary
elliptic curves of exponents m, n

}
.

1. For d = 6, we have two components of products of elliptic curves,
i.e. the equations z2 = 0 and 6z1 − 5z2 + z3 = 0 (both having ∆ = 1)
yield abelian surfaces containing complementary elliptic curves of
exponents 1, 6 and 2, 3 respectively.

2. As a corollary from the Main theorem, one can show that for d = 90,
the equations 1620z1 − 81z2 + z3 = 0 (with ∆ = 92) and
180z1 − 27z2 + z3 = 0 (with ∆ = 32) induce the same locus E90(18, 45)
in A2(90).

Questions we would like to answer

The exponent of an elliptic (sub)curve E ⊂ X can be defined as the
degree of the restricted polarising line bundle from X to E. For every
elliptic curve on a surface, one can find so called complementary elliptic
curve. In the p.p. case, the complementary exponents coincide (see
[3]). This is not the case in general. hence the first question is:

What are possible complementary exponents on a (1, d) polarised
surface? (When Ed(m, n) is non‐empty?)

In the p. p. case Humbert described irreducible components of the
moduli of non‐simple surfaces. Hence the question:

Is the moduli Ed(m, n) irreducible (if non‐empty)?

Main theorem

Theorem [1] For d, m, n ∈ Z+, the moduli space Ed(m, n) is a (non‐
empty) irreducible subvariety of dimension 2 of A2(d) if and only if

mn · gcd(m, n, d) = gcd(m, n)2d.

In such a case, we can write m = cd
a , n = cd

b for some pairwise coprime
a, b, c ∈ Z+. Then, there exist u, v ∈ Z satisfying au − bv = c and
Ed(m, n) is the image of the set of period matrices{

Z =
[

z1 z2
z2 z3

]
: Im(Z) > 0, z3 =

(
du

b
+ dv

a

)
z2 − d2uv

ab
z1

}
.

Idea of the proof

The idea is to use what we know in the principally polarised case and
to control the kernel of an isogeny and especially its intersection with
elliptic curves.

Let X ∈ E(c), i. e. there exist complementary elliptic curves E, F of
exponent c in X , and let P ∈ X be of order d. Let A = X/P and
f : X → A be the quotient isogeny to a (1, d) polarised surface. Note
that every non‐simple surface arises in this way.

Firstly, we reduce possible cases by showing that we can assume that
ker(f ) ∩ E ∩ F = {0}.

Then, we denote a = |ker(f ) ∩ E|, b = |ker(f ) ∩ F | and we show that
a, b, c need to be pairwise coprime.

Now, we assume c = 1 and show that any a, b (coprime divisors of d)
can appear. This follows from the fact that the sum of independent
elements of order d

a and d
b is of order d. With this in mind, it is not hard

to show that all such points are equivalent under the action of product
of symplectic groups of E and F .

Taking a general c is quite technical. Using the symplectic action on the
set of cd

GCD(c,d) torsion points we show that we get exactly one orbit of
the action that has properties that we look for.

The equations follows from direct computation and knowledge of
Humbert’s singular equations.

Remarks concerning higher dimensions

We can answer the questions for non‐simple p.p. abelian varieties of
any dimension, see [4]. It is also known (see [5]) that the irreducible
components of the moduli of non‐simple abelian varieties corresponds
to orbits of some actions of groups on spaces of torsion points (if non‐
empty). In [2] we have generalisation of Humbert’s singular equations.
None of these results can answer the questions we stated.

Our construction does not generalise well, either. Firstly, not every
polarisation can be obtained via a cyclic isogeny. Secondly, the subva‐
rieties are of higher dimensions and not p.p. so their torsion points are
no longer ’homogenous’ under the action of a symplectic group.

Moreover, in general we do not expect any sort of uniqueness of orbits
hence irreducible components will depend onmore refine invariants (as
defined in [5]).
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